summaryrefslogtreecommitdiffstats
path: root/compiler/dex/mir_graph.h
blob: c728d84942557d1b32b248c22c23a5a0a3462fb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
#define ART_COMPILER_DEX_MIR_GRAPH_H_

#include <stdint.h>

#include "dex_file.h"
#include "dex_instruction.h"
#include "compiler_ir.h"
#include "invoke_type.h"
#include "mir_field_info.h"
#include "mir_method_info.h"
#include "utils/arena_bit_vector.h"
#include "utils/growable_array.h"
#include "reg_storage.h"

namespace art {

enum InstructionAnalysisAttributePos {
  kUninterestingOp = 0,
  kArithmeticOp,
  kFPOp,
  kSingleOp,
  kDoubleOp,
  kIntOp,
  kLongOp,
  kBranchOp,
  kInvokeOp,
  kArrayOp,
  kHeavyweightOp,
  kSimpleConstOp,
  kMoveOp,
  kSwitch
};

#define AN_NONE (1 << kUninterestingOp)
#define AN_MATH (1 << kArithmeticOp)
#define AN_FP (1 << kFPOp)
#define AN_LONG (1 << kLongOp)
#define AN_INT (1 << kIntOp)
#define AN_SINGLE (1 << kSingleOp)
#define AN_DOUBLE (1 << kDoubleOp)
#define AN_FLOATMATH (1 << kFPOp)
#define AN_BRANCH (1 << kBranchOp)
#define AN_INVOKE (1 << kInvokeOp)
#define AN_ARRAYOP (1 << kArrayOp)
#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
#define AN_SIMPLECONST (1 << kSimpleConstOp)
#define AN_MOVE (1 << kMoveOp)
#define AN_SWITCH (1 << kSwitch)
#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)

enum DataFlowAttributePos {
  kUA = 0,
  kUB,
  kUC,
  kAWide,
  kBWide,
  kCWide,
  kDA,
  kIsMove,
  kSetsConst,
  kFormat35c,
  kFormat3rc,
  kNullCheckSrc0,        // Null check of uses[0].
  kNullCheckSrc1,        // Null check of uses[1].
  kNullCheckSrc2,        // Null check of uses[2].
  kNullCheckOut0,        // Null check out outgoing arg0.
  kDstNonNull,           // May assume dst is non-null.
  kRetNonNull,           // May assume retval is non-null.
  kNullTransferSrc0,     // Object copy src[0] -> dst.
  kNullTransferSrcN,     // Phi null check state transfer.
  kRangeCheckSrc1,       // Range check of uses[1].
  kRangeCheckSrc2,       // Range check of uses[2].
  kRangeCheckSrc3,       // Range check of uses[3].
  kFPA,
  kFPB,
  kFPC,
  kCoreA,
  kCoreB,
  kCoreC,
  kRefA,
  kRefB,
  kRefC,
  kUsesMethodStar,       // Implicit use of Method*.
  kUsesIField,           // Accesses an instance field (IGET/IPUT).
  kUsesSField,           // Accesses a static field (SGET/SPUT).
  kDoLVN,                // Worth computing local value numbers.
};

#define DF_NOP                  UINT64_C(0)
#define DF_UA                   (UINT64_C(1) << kUA)
#define DF_UB                   (UINT64_C(1) << kUB)
#define DF_UC                   (UINT64_C(1) << kUC)
#define DF_A_WIDE               (UINT64_C(1) << kAWide)
#define DF_B_WIDE               (UINT64_C(1) << kBWide)
#define DF_C_WIDE               (UINT64_C(1) << kCWide)
#define DF_DA                   (UINT64_C(1) << kDA)
#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
#define DF_FP_A                 (UINT64_C(1) << kFPA)
#define DF_FP_B                 (UINT64_C(1) << kFPB)
#define DF_FP_C                 (UINT64_C(1) << kFPC)
#define DF_CORE_A               (UINT64_C(1) << kCoreA)
#define DF_CORE_B               (UINT64_C(1) << kCoreB)
#define DF_CORE_C               (UINT64_C(1) << kCoreC)
#define DF_REF_A                (UINT64_C(1) << kRefA)
#define DF_REF_B                (UINT64_C(1) << kRefB)
#define DF_REF_C                (UINT64_C(1) << kRefC)
#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
#define DF_LVN                  (UINT64_C(1) << kDoLVN)

#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)

#define DF_HAS_DEFS             (DF_DA)

#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
                                 DF_NULL_CHK_1 | \
                                 DF_NULL_CHK_2 | \
                                 DF_NULL_CHK_OUT0)

#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
                                 DF_RANGE_CHK_2 | \
                                 DF_RANGE_CHK_3)

#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
                                 DF_HAS_RANGE_CHKS)

#define DF_A_IS_REG             (DF_UA | DF_DA)
#define DF_B_IS_REG             (DF_UB)
#define DF_C_IS_REG             (DF_UC)
#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
enum OatMethodAttributes {
  kIsLeaf,            // Method is leaf.
  kHasLoop,           // Method contains simple loop.
};

#define METHOD_IS_LEAF          (1 << kIsLeaf)
#define METHOD_HAS_LOOP         (1 << kHasLoop)

// Minimum field size to contain Dalvik v_reg number.
#define VREG_NUM_WIDTH 16

#define INVALID_SREG (-1)
#define INVALID_VREG (0xFFFFU)
#define INVALID_OFFSET (0xDEADF00FU)

#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
#define MIR_INLINED                     (1 << kMIRInlined)
#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
#define MIR_CALLEE                      (1 << kMIRCallee)
#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
#define MIR_DUP                         (1 << kMIRDup)

#define BLOCK_NAME_LEN 80

typedef uint16_t BasicBlockId;
static const BasicBlockId NullBasicBlockId = 0;

/*
 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
 * it is useful to have compiler-generated temporary registers and have them treated
 * in the same manner as dx-generated virtual registers.  This struct records the SSA
 * name of compiler-introduced temporaries.
 */
struct CompilerTemp {
  int32_t v_reg;      // Virtual register number for temporary.
  int32_t s_reg_low;  // SSA name for low Dalvik word.
};

enum CompilerTempType {
  kCompilerTempVR,                // A virtual register temporary.
  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
};

// When debug option enabled, records effectiveness of null and range check elimination.
struct Checkstats {
  int32_t null_checks;
  int32_t null_checks_eliminated;
  int32_t range_checks;
  int32_t range_checks_eliminated;
};

// Dataflow attributes of a basic block.
struct BasicBlockDataFlow {
  ArenaBitVector* use_v;
  ArenaBitVector* def_v;
  ArenaBitVector* live_in_v;
  ArenaBitVector* phi_v;
  int32_t* vreg_to_ssa_map;
  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
};

/*
 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
 * Following SSA renaming, this is the primary struct used by code generators to locate
 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
 * we may want to revisit in the future.
 */
struct SSARepresentation {
  int16_t num_uses;
  int16_t num_defs;
  int32_t* uses;
  bool* fp_use;
  int32_t* defs;
  bool* fp_def;
};

/*
 * The Midlevel Intermediate Representation node, which may be largely considered a
 * wrapper around a Dalvik byte code.
 */
struct MIR {
  /*
   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
   * need to carry aux data pointer.
   */
  struct DecodedInstruction {
    uint32_t vA;
    uint32_t vB;
    uint64_t vB_wide;        /* for k51l */
    uint32_t vC;
    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
    Instruction::Code opcode;
  } dalvikInsn;

  uint16_t width;                 // Note: width can include switch table or fill array data.
  NarrowDexOffset offset;         // Offset of the instruction in code units.
  uint16_t optimization_flags;
  int16_t m_unit_index;           // From which method was this MIR included
  MIR* next;
  SSARepresentation* ssa_rep;
  union {
    // Incoming edges for phi node.
    BasicBlockId* phi_incoming;
    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
    MIR* throw_insn;
    // Branch condition for fused cmp or select.
    ConditionCode ccode;
    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
    uint32_t ifield_lowering_info;
    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
    uint32_t sfield_lowering_info;
    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
    uint32_t method_lowering_info;
  } meta;
};

struct SuccessorBlockInfo;

struct BasicBlock {
  BasicBlockId id;
  BasicBlockId dfs_id;
  NarrowDexOffset start_offset;     // Offset in code units.
  BasicBlockId fall_through;
  BasicBlockId taken;
  BasicBlockId i_dom;               // Immediate dominator.
  uint16_t nesting_depth;
  BBType block_type:4;
  BlockListType successor_block_list_type:4;
  bool visited:1;
  bool hidden:1;
  bool catch_entry:1;
  bool explicit_throw:1;
  bool conditional_branch:1;
  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
  bool dominates_return:1;      // Is a member of return extended basic block.
  bool use_lvn:1;               // Run local value numbering on this block.
  MIR* first_mir_insn;
  MIR* last_mir_insn;
  BasicBlockDataFlow* data_flow_info;
  ArenaBitVector* dominators;
  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
  ArenaBitVector* dom_frontier;     // Dominance frontier.
  GrowableArray<BasicBlockId>* predecessors;
  GrowableArray<SuccessorBlockInfo*>* successor_blocks;

  void AppendMIR(MIR* mir);
  void PrependMIR(MIR* mir);
  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);

  /**
   * @brief Used to obtain the next MIR that follows unconditionally.
   * @details The implementation does not guarantee that a MIR does not
   * follow even if this method returns nullptr.
   * @param mir_graph the MIRGraph.
   * @param current The MIR for which to find an unconditional follower.
   * @return Returns the following MIR if one can be found.
   */
  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
};

/*
 * The "blocks" field in "successor_block_list" points to an array of elements with the type
 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For swtich
 * blocks, key is the case value.
 */
struct SuccessorBlockInfo {
  BasicBlockId block;
  int key;
};

/*
 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
 * the type of an SSA name (and, can also be used by code generators to record where the
 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
 * there is a RegLocation.
 * A note on SSA names:
 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
 *     the Method pointer.  SSA names < -2 are reserved for future use.
 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
 *     represent the read of an undefined local variable).  The first definition of the
 *     underlying Dalvik vReg will result in a vN_1 name.
 *
 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
 */
struct RegLocation {
  RegLocationType location:3;
  unsigned wide:1;
  unsigned defined:1;   // Do we know the type?
  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
  unsigned fp:1;        // Floating point?
  unsigned core:1;      // Non-floating point?
  unsigned ref:1;       // Something GC cares about.
  unsigned high_word:1;  // High word of pair?
  unsigned home:1;      // Does this represent the home location?
  RegStorage reg;       // Encoded physical registers.
  int16_t s_reg_low;    // SSA name for low Dalvik word.
  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
                        // and consolidate usage w/ s_reg_low.
};

/*
 * Collection of information describing an invoke, and the destination of
 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
 * more efficient invoke code generation.
 */
struct CallInfo {
  int num_arg_words;    // Note: word count, not arg count.
  RegLocation* args;    // One for each word of arguments.
  RegLocation result;   // Eventual target of MOVE_RESULT.
  int opt_flags;
  InvokeType type;
  uint32_t dex_idx;
  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
  uintptr_t direct_code;
  uintptr_t direct_method;
  RegLocation target;    // Target of following move_result.
  bool skip_this;
  bool is_range;
  DexOffset offset;      // Offset in code units.
  MIR* mir;
};


const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
                             INVALID_SREG};

class MIRGraph {
 public:
  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
  ~MIRGraph();

  /*
   * Examine the graph to determine whether it's worthwile to spend the time compiling
   * this method.
   */
  bool SkipCompilation();

  /*
   * Should we skip the compilation of this method based on its name?
   */
  bool SkipCompilation(const std::string& methodname);

  /*
   * Parse dex method and add MIR at current insert point.  Returns id (which is
   * actually the index of the method in the m_units_ array).
   */
  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
                    InvokeType invoke_type, uint16_t class_def_idx,
                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);

  /* Find existing block */
  BasicBlock* FindBlock(DexOffset code_offset) {
    return FindBlock(code_offset, false, false, NULL);
  }

  const uint16_t* GetCurrentInsns() const {
    return current_code_item_->insns_;
  }

  const uint16_t* GetInsns(int m_unit_index) const {
    return m_units_[m_unit_index]->GetCodeItem()->insns_;
  }

  int GetNumBlocks() const {
    return num_blocks_;
  }

  size_t GetNumDalvikInsns() const {
    return cu_->code_item->insns_size_in_code_units_;
  }

  ArenaBitVector* GetTryBlockAddr() const {
    return try_block_addr_;
  }

  BasicBlock* GetEntryBlock() const {
    return entry_block_;
  }

  BasicBlock* GetExitBlock() const {
    return exit_block_;
  }

  BasicBlock* GetBasicBlock(int block_id) const {
    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
  }

  size_t GetBasicBlockListCount() const {
    return block_list_.Size();
  }

  GrowableArray<BasicBlock*>* GetBlockList() {
    return &block_list_;
  }

  GrowableArray<BasicBlockId>* GetDfsOrder() {
    return dfs_order_;
  }

  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
    return dfs_post_order_;
  }

  GrowableArray<BasicBlockId>* GetDomPostOrder() {
    return dom_post_order_traversal_;
  }

  int GetDefCount() const {
    return def_count_;
  }

  ArenaAllocator* GetArena() {
    return arena_;
  }

  void EnableOpcodeCounting() {
    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
                                                    kArenaAllocMisc));
  }

  void ShowOpcodeStats();

  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
    return m_units_[current_method_];
  }

  /**
   * @brief Dump a CFG into a dot file format.
   * @param dir_prefix the directory the file will be created in.
   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
   * @param suffix does the filename require a suffix or not (default = nullptr).
   */
  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);

  bool HasFieldAccess() const {
    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
  }

  bool HasStaticFieldAccess() const {
    return (merged_df_flags_ & DF_SFIELD) != 0u;
  }

  bool HasInvokes() const {
    // NOTE: These formats include the rare filled-new-array/range.
    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
  }

  void DoCacheFieldLoweringInfo();

  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
  }

  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
  }

  void DoCacheMethodLoweringInfo();

  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
  }

  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);

  void InitRegLocations();

  void RemapRegLocations();

  void DumpRegLocTable(RegLocation* table, int count);

  void BasicBlockOptimization();

  bool IsConst(int32_t s_reg) const {
    return is_constant_v_->IsBitSet(s_reg);
  }

  bool IsConst(RegLocation loc) const {
    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
  }

  int32_t ConstantValue(RegLocation loc) const {
    DCHECK(IsConst(loc));
    return constant_values_[loc.orig_sreg];
  }

  int32_t ConstantValue(int32_t s_reg) const {
    DCHECK(IsConst(s_reg));
    return constant_values_[s_reg];
  }

  int64_t ConstantValueWide(RegLocation loc) const {
    DCHECK(IsConst(loc));
    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
  }

  bool IsConstantNullRef(RegLocation loc) const {
    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
  }

  int GetNumSSARegs() const {
    return num_ssa_regs_;
  }

  void SetNumSSARegs(int new_num) {
     /*
      * TODO: It's theoretically possible to exceed 32767, though any cases which did
      * would be filtered out with current settings.  When orig_sreg field is removed
      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
      */
    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
    num_ssa_regs_ = new_num;
  }

  unsigned int GetNumReachableBlocks() const {
    return num_reachable_blocks_;
  }

  int GetUseCount(int vreg) const {
    return use_counts_.Get(vreg);
  }

  int GetRawUseCount(int vreg) const {
    return raw_use_counts_.Get(vreg);
  }

  int GetSSASubscript(int ssa_reg) const {
    return ssa_subscripts_->Get(ssa_reg);
  }

  RegLocation GetRawSrc(MIR* mir, int num) {
    DCHECK(num < mir->ssa_rep->num_uses);
    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
    return res;
  }

  RegLocation GetRawDest(MIR* mir) {
    DCHECK_GT(mir->ssa_rep->num_defs, 0);
    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
    return res;
  }

  RegLocation GetDest(MIR* mir) {
    RegLocation res = GetRawDest(mir);
    DCHECK(!res.wide);
    return res;
  }

  RegLocation GetSrc(MIR* mir, int num) {
    RegLocation res = GetRawSrc(mir, num);
    DCHECK(!res.wide);
    return res;
  }

  RegLocation GetDestWide(MIR* mir) {
    RegLocation res = GetRawDest(mir);
    DCHECK(res.wide);
    return res;
  }

  RegLocation GetSrcWide(MIR* mir, int low) {
    RegLocation res = GetRawSrc(mir, low);
    DCHECK(res.wide);
    return res;
  }

  RegLocation GetBadLoc() {
    return bad_loc;
  }

  int GetMethodSReg() const {
    return method_sreg_;
  }

  /**
   * @brief Used to obtain the number of compiler temporaries being used.
   * @return Returns the number of compiler temporaries.
   */
  size_t GetNumUsedCompilerTemps() const {
    size_t total_num_temps = compiler_temps_.Size();
    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
    return total_num_temps;
  }

  /**
   * @brief Used to obtain the number of non-special compiler temporaries being used.
   * @return Returns the number of non-special compiler temporaries.
   */
  size_t GetNumNonSpecialCompilerTemps() const {
    return num_non_special_compiler_temps_;
  }

  /**
   * @brief Used to set the total number of available non-special compiler temporaries.
   * @details Can fail setting the new max if there are more temps being used than the new_max.
   * @param new_max The new maximum number of non-special compiler temporaries.
   * @return Returns true if the max was set and false if failed to set.
   */
  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
    if (new_max < GetNumNonSpecialCompilerTemps()) {
      return false;
    } else {
      max_available_non_special_compiler_temps_ = new_max;
      return true;
    }
  }

  /**
   * @brief Provides the number of non-special compiler temps available.
   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
   * @return Returns the number of available temps.
   */
  size_t GetNumAvailableNonSpecialCompilerTemps();

  /**
   * @brief Used to obtain an existing compiler temporary.
   * @param index The index of the temporary which must be strictly less than the
   * number of temporaries.
   * @return Returns the temporary that was asked for.
   */
  CompilerTemp* GetCompilerTemp(size_t index) const {
    return compiler_temps_.Get(index);
  }

  /**
   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
   * @return Returns the maximum number of compiler temporaries, whether used or not.
   */
  size_t GetMaxPossibleCompilerTemps() const {
    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
  }

  /**
   * @brief Used to obtain a new unique compiler temporary.
   * @param ct_type Type of compiler temporary requested.
   * @param wide Whether we should allocate a wide temporary.
   * @return Returns the newly created compiler temporary.
   */
  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);

  bool MethodIsLeaf() {
    return attributes_ & METHOD_IS_LEAF;
  }

  RegLocation GetRegLocation(int index) {
    DCHECK((index >= 0) && (index < num_ssa_regs_));
    return reg_location_[index];
  }

  RegLocation GetMethodLoc() {
    return reg_location_[method_sreg_];
  }

  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
    return ((target_bb_id != NullBasicBlockId) &&
            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
  }

  bool IsBackwardsBranch(BasicBlock* branch_bb) {
    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
  }

  void CountBranch(DexOffset target_offset) {
    if (target_offset <= current_offset_) {
      backward_branches_++;
    } else {
      forward_branches_++;
    }
  }

  int GetBranchCount() {
    return backward_branches_ + forward_branches_;
  }

  bool IsPseudoMirOp(Instruction::Code opcode) {
    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
  }

  bool IsPseudoMirOp(int opcode) {
    return opcode >= static_cast<int>(kMirOpFirst);
  }

  // Is this vreg in the in set?
  bool IsInVReg(int vreg) {
    return (vreg >= cu_->num_regs);
  }

  void DumpCheckStats();
  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
  int SRegToVReg(int ssa_reg) const;
  void VerifyDataflow();
  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
  void EliminateNullChecksAndInferTypesStart();
  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
  void EliminateNullChecksAndInferTypesEnd();
  bool EliminateClassInitChecksGate();
  bool EliminateClassInitChecks(BasicBlock* bb);
  void EliminateClassInitChecksEnd();
  /*
   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
   * we have to do some work to figure out the sreg type.  For some operations it is
   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
   * may never know the "real" type.
   *
   * We perform the type inference operation by using an iterative  walk over
   * the graph, propagating types "defined" by typed opcodes to uses and defs in
   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
   * tells whether our guess of the type is based on a previously typed definition.
   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
   * show multiple defined types because dx treats constants as untyped bit patterns.
   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
   * the current guess, and is used to know when to terminate the iterative walk.
   */
  bool SetFp(int index, bool is_fp);
  bool SetFp(int index);
  bool SetCore(int index, bool is_core);
  bool SetCore(int index);
  bool SetRef(int index, bool is_ref);
  bool SetRef(int index);
  bool SetWide(int index, bool is_wide);
  bool SetWide(int index);
  bool SetHigh(int index, bool is_high);
  bool SetHigh(int index);

  char* GetDalvikDisassembly(const MIR* mir);
  void ReplaceSpecialChars(std::string& str);
  std::string GetSSAName(int ssa_reg);
  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
  void GetBlockName(BasicBlock* bb, char* name);
  const char* GetShortyFromTargetIdx(int);
  void DumpMIRGraph();
  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
  BasicBlock* NewMemBB(BBType block_type, int block_id);
  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
  BasicBlock* NextDominatedBlock(BasicBlock* bb);
  bool LayoutBlocks(BasicBlock* bb);

  bool InlineCallsGate();
  void InlineCallsStart();
  void InlineCalls(BasicBlock* bb);
  void InlineCallsEnd();

  /**
   * @brief Perform the initial preparation for the Method Uses.
   */
  void InitializeMethodUses();

  /**
   * @brief Perform the initial preparation for the Constant Propagation.
   */
  void InitializeConstantPropagation();

  /**
   * @brief Perform the initial preparation for the SSA Transformation.
   */
  void InitializeSSATransformation();

  /**
   * @brief Insert a the operands for the Phi nodes.
   * @param bb the considered BasicBlock.
   * @return true
   */
  bool InsertPhiNodeOperands(BasicBlock* bb);

  /**
   * @brief Perform constant propagation on a BasicBlock.
   * @param bb the considered BasicBlock.
   */
  void DoConstantPropagation(BasicBlock* bb);

  /**
   * @brief Count the uses in the BasicBlock
   * @param bb the BasicBlock
   */
  void CountUses(struct BasicBlock* bb);

  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
  static uint64_t GetDataFlowAttributes(MIR* mir);

  /**
   * @brief Combine BasicBlocks
   * @param the BasicBlock we are considering
   */
  void CombineBlocks(BasicBlock* bb);

  void ClearAllVisitedFlags();
  /*
   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
   * we can verify that all catch entries have native PC entries.
   */
  std::set<uint32_t> catches_;

  // TODO: make these private.
  RegLocation* reg_location_;                         // Map SSA names to location.
  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.

  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
  static const uint32_t analysis_attributes_[kMirOpLast];

 private:
  int FindCommonParent(int block1, int block2);
  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
                         const ArenaBitVector* src2);
  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
                       ArenaBitVector* live_in_v, int dalvik_reg_id);
  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
  void CompilerInitializeSSAConversion();
  bool DoSSAConversion(BasicBlock* bb);
  bool InvokeUsesMethodStar(MIR* mir);
  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
  bool ContentIsInsn(const uint16_t* code_ptr);
  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
                         BasicBlock** immed_pred_block_p);
  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
                        BasicBlock** immed_pred_block_p);
  void ProcessTryCatchBlocks();
  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
                               int flags);
  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
                              const uint16_t* code_end);
  int AddNewSReg(int v_reg);
  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
  void DataFlowSSAFormat35C(MIR* mir);
  void DataFlowSSAFormat3RC(MIR* mir);
  bool FindLocalLiveIn(BasicBlock* bb);
  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
  bool VerifyPredInfo(BasicBlock* bb);
  BasicBlock* NeedsVisit(BasicBlock* bb);
  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
  void MarkPreOrder(BasicBlock* bb);
  void RecordDFSOrders(BasicBlock* bb);
  void ComputeDFSOrders();
  void ComputeDefBlockMatrix();
  void ComputeDomPostOrderTraversal(BasicBlock* bb);
  void ComputeDominators();
  void InsertPhiNodes();
  void DoDFSPreOrderSSARename(BasicBlock* block);
  void SetConstant(int32_t ssa_reg, int value);
  void SetConstantWide(int ssa_reg, int64_t value);
  int GetSSAUseCount(int s_reg);
  bool BasicBlockOpt(BasicBlock* bb);
  bool BuildExtendedBBList(struct BasicBlock* bb);
  bool FillDefBlockMatrix(BasicBlock* bb);
  void InitializeDominationInfo(BasicBlock* bb);
  bool ComputeblockIDom(BasicBlock* bb);
  bool ComputeBlockDominators(BasicBlock* bb);
  bool SetDominators(BasicBlock* bb);
  bool ComputeBlockLiveIns(BasicBlock* bb);
  bool ComputeDominanceFrontier(BasicBlock* bb);

  void CountChecks(BasicBlock* bb);
  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);

  CompilationUnit* const cu_;
  GrowableArray<int>* ssa_base_vregs_;
  GrowableArray<int>* ssa_subscripts_;
  // Map original Dalvik virtual reg i to the current SSA name.
  int* vreg_to_ssa_map_;            // length == method->registers_size
  int* ssa_last_defs_;              // length == method->registers_size
  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
  int* constant_values_;            // length == num_ssa_reg
  // Use counts of ssa names.
  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
  unsigned int num_reachable_blocks_;
  GrowableArray<BasicBlockId>* dfs_order_;
  GrowableArray<BasicBlockId>* dfs_post_order_;
  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
  int* i_dom_list_;
  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
  ArenaBitVector* temp_dalvik_register_v_;
  UniquePtr<ScopedArenaAllocator> temp_scoped_alloc_;
  uint16_t* temp_insn_data_;
  uint32_t temp_bit_vector_size_;
  ArenaBitVector* temp_bit_vector_;
  static const int kInvalidEntry = -1;
  GrowableArray<BasicBlock*> block_list_;
  ArenaBitVector* try_block_addr_;
  BasicBlock* entry_block_;
  BasicBlock* exit_block_;
  int num_blocks_;
  const DexFile::CodeItem* current_code_item_;
  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
  std::vector<MIRLocation> method_stack_;        // Include stack
  int current_method_;
  DexOffset current_offset_;                     // Offset in code units
  int def_count_;                                // Used to estimate size of ssa name storage.
  int* opcode_count_;                            // Dex opcode coverage stats.
  int num_ssa_regs_;                             // Number of names following SSA transformation.
  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
  int method_sreg_;
  unsigned int attributes_;
  Checkstats* checkstats_;
  ArenaAllocator* arena_;
  int backward_branches_;
  int forward_branches_;
  GrowableArray<CompilerTemp*> compiler_temps_;
  size_t num_non_special_compiler_temps_;
  size_t max_available_non_special_compiler_temps_;
  size_t max_available_special_compiler_temps_;
  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
  uint64_t merged_df_flags_;
  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
  static const uint64_t oat_data_flow_attributes_[kMirOpLast];

  friend class ClassInitCheckEliminationTest;
  friend class LocalValueNumberingTest;
};

}  // namespace art

#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_