diff options
Diffstat (limited to 'runtime/native/java_lang_System.cc')
-rw-r--r-- | runtime/native/java_lang_System.cc | 342 |
1 files changed, 85 insertions, 257 deletions
diff --git a/runtime/native/java_lang_System.cc b/runtime/native/java_lang_System.cc index ea78e04702..6bbe642217 100644 --- a/runtime/native/java_lang_System.cc +++ b/runtime/native/java_lang_System.cc @@ -24,150 +24,14 @@ #include "mirror/object_array-inl.h" #include "scoped_fast_native_object_access.h" -/* - * We make guarantees about the atomicity of accesses to primitive - * variables. These guarantees also apply to elements of arrays. - * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and - * must not cause "word tearing". Accesses to 64-bit array elements must - * either be atomic or treated as two 32-bit operations. References are - * always read and written atomically, regardless of the number of bits - * used to represent them. - * - * We can't rely on standard libc functions like memcpy(3) and memmove(3) - * in our implementation of System.arraycopy, because they may copy - * byte-by-byte (either for the full run or for "unaligned" parts at the - * start or end). We need to use functions that guarantee 16-bit or 32-bit - * atomicity as appropriate. - * - * System.arraycopy() is heavily used, so having an efficient implementation - * is important. The bionic libc provides a platform-optimized memory move - * function that should be used when possible. If it's not available, - * the trivial "reference implementation" versions below can be used until - * a proper version can be written. - * - * For these functions, The caller must guarantee that dst/src are aligned - * appropriately for the element type, and that n is a multiple of the - * element size. - */ +namespace art { /* - * Works like memmove(), except: - * - if all arguments are at least 32-bit aligned, we guarantee that we - * will use operations that preserve atomicity of 32-bit values - * - if not, we guarantee atomicity of 16-bit values - * - * If all three arguments are not at least 16-bit aligned, the behavior - * of this function is undefined. (We could remove this restriction by - * testing for unaligned values and punting to memmove(), but that's - * not currently useful.) - * - * TODO: add loop for 64-bit alignment - * TODO: use __builtin_prefetch - * TODO: write ARM/MIPS/x86 optimized versions + * We make guarantees about the atomicity of accesses to primitive variables. These guarantees + * also apply to elements of arrays. In particular, 8-bit, 16-bit, and 32-bit accesses must not + * cause "word tearing". Accesses to 64-bit array elements may be two 32-bit operations. + * References are never torn regardless of the number of bits used to represent them. */ -void MemmoveWords(void* dst, const void* src, size_t n) { - DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x01), 0U); - - char* d = reinterpret_cast<char*>(dst); - const char* s = reinterpret_cast<const char*>(src); - size_t copyCount; - - // If the source and destination pointers are the same, this is - // an expensive no-op. Testing for an empty move now allows us - // to skip a check later. - if (n == 0 || d == s) { - return; - } - - // Determine if the source and destination buffers will overlap if - // we copy data forward (i.e. *dst++ = *src++). - // - // It's okay if the destination buffer starts before the source and - // there is some overlap, because the reader is always ahead of the - // writer. - if (LIKELY((d < s) || ((size_t)(d - s) >= n))) { - // Copy forward. We prefer 32-bit loads and stores even for 16-bit - // data, so sort that out. - if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { - // Not 32-bit aligned. Two possibilities: - // (1) Congruent, we can align to 32-bit by copying one 16-bit val - // (2) Non-congruent, we can do one of: - // a. copy whole buffer as a series of 16-bit values - // b. load/store 32 bits, using shifts to ensure alignment - // c. just copy the as 32-bit values and assume the CPU - // will do a reasonable job - // - // We're currently using (a), which is suboptimal. - if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { - copyCount = n; - } else { - copyCount = 2; - } - n -= copyCount; - copyCount /= sizeof(uint16_t); - - while (copyCount--) { - *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); - d += sizeof(uint16_t); - s += sizeof(uint16_t); - } - } - - // Copy 32-bit aligned words. - copyCount = n / sizeof(uint32_t); - while (copyCount--) { - *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s); - d += sizeof(uint32_t); - s += sizeof(uint32_t); - } - - // Check for leftovers. Either we finished exactly, or we have one remaining 16-bit chunk. - if ((n & 0x02) != 0) { - *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); - } - } else { - // Copy backward, starting at the end. - d += n; - s += n; - - if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { - // try for 32-bit alignment. - if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { - copyCount = n; - } else { - copyCount = 2; - } - n -= copyCount; - copyCount /= sizeof(uint16_t); - - while (copyCount--) { - d -= sizeof(uint16_t); - s -= sizeof(uint16_t); - *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); - } - } - - // Copy 32-bit aligned words. - copyCount = n / sizeof(uint32_t); - while (copyCount--) { - d -= sizeof(uint32_t); - s -= sizeof(uint32_t); - *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s); - } - - // Copy leftovers. - if ((n & 0x02) != 0) { - d -= sizeof(uint16_t); - s -= sizeof(uint16_t); - *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); - } - } -} - -#define move16 MemmoveWords -#define move32 MemmoveWords - -namespace art { static void ThrowArrayStoreException_NotAnArray(const char* identifier, mirror::Object* array) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { @@ -178,168 +42,132 @@ static void ThrowArrayStoreException_NotAnArray(const char* identifier, mirror:: "%s of type %s is not an array", identifier, actualType.c_str()); } -static void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) { +static void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, + jint dstPos, jint length) { + // The API is defined in terms of length, but length is somewhat overloaded so we use count. + const jint count = length; ScopedFastNativeObjectAccess soa(env); // Null pointer checks. - if (UNLIKELY(javaSrc == NULL)) { - ThrowNullPointerException(NULL, "src == null"); + if (UNLIKELY(javaSrc == nullptr)) { + ThrowNullPointerException(nullptr, "src == null"); return; } - if (UNLIKELY(javaDst == NULL)) { - ThrowNullPointerException(NULL, "dst == null"); + if (UNLIKELY(javaDst == nullptr)) { + ThrowNullPointerException(nullptr, "dst == null"); return; } // Make sure source and destination are both arrays. mirror::Object* srcObject = soa.Decode<mirror::Object*>(javaSrc); - mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst); if (UNLIKELY(!srcObject->IsArrayInstance())) { ThrowArrayStoreException_NotAnArray("source", srcObject); return; } + mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst); if (UNLIKELY(!dstObject->IsArrayInstance())) { ThrowArrayStoreException_NotAnArray("destination", dstObject); return; } mirror::Array* srcArray = srcObject->AsArray(); mirror::Array* dstArray = dstObject->AsArray(); - mirror::Class* srcComponentType = srcArray->GetClass()->GetComponentType(); - mirror::Class* dstComponentType = dstArray->GetClass()->GetComponentType(); // Bounds checking. - if (UNLIKELY(srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length)) { + if (UNLIKELY(srcPos < 0) || UNLIKELY(dstPos < 0) || UNLIKELY(count < 0) || + UNLIKELY(srcPos > srcArray->GetLength() - count) || + UNLIKELY(dstPos > dstArray->GetLength() - count)) { ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayIndexOutOfBoundsException;", "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d", - srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length); + srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, + count); return; } - // Handle primitive arrays. - if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) { - // If one of the arrays holds a primitive type the other array must hold the exact same type. - if (UNLIKELY(srcComponentType != dstComponentType)) { - std::string srcType(PrettyTypeOf(srcArray)); - std::string dstType(PrettyTypeOf(dstArray)); - ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); - soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", - "Incompatible types: src=%s, dst=%s", - srcType.c_str(), dstType.c_str()); - return; - } - - size_t width = srcArray->GetClass()->GetComponentSize(); - uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width)); - const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width)); - - switch (width) { - case 1: - memmove(dstBytes + dstPos, srcBytes + srcPos, length); - break; - case 2: - move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2); - break; - case 4: - move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4); - break; - case 8: - // We don't need to guarantee atomicity of the entire 64-bit word. - move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8); - break; - default: - LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray); - } - - return; - } - - // Neither class is primitive. Are the types trivially compatible? - const size_t width = sizeof(mirror::Object*); - uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width)); - const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width)); - if (dstArray == srcArray || dstComponentType->IsAssignableFrom(srcComponentType)) { - // Yes. Bulk copy. - COMPILE_ASSERT(sizeof(width) == sizeof(uint32_t), move32_assumes_Object_references_are_32_bit); - move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width); - Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length); - return; - } - - // The arrays are not trivially compatible. However, we may still be able to copy some or all of - // the elements if the source objects are compatible (for example, copying an Object[] to - // String[], the Objects being copied might actually be Strings). - // We can't do a bulk move because that would introduce a check-use race condition, so we copy - // elements one by one. - - // We already dealt with overlapping copies, so we don't need to cope with that case below. - CHECK_NE(dstArray, srcArray); - - mirror::Object* const * srcObjects = - reinterpret_cast<mirror::Object* const *>(srcBytes + srcPos * width); - mirror::Object** dstObjects = reinterpret_cast<mirror::Object**>(dstBytes + dstPos * width); - mirror::Class* dstClass = dstArray->GetClass()->GetComponentType(); - - // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that - // we know is assignable to the destination array's component type. - mirror::Class* lastAssignableElementClass = dstClass; - - mirror::Object* o = NULL; - int i = 0; - for (; i < length; ++i) { - o = srcObjects[i]; - if (o != NULL) { - mirror::Class* oClass = o->GetClass(); - if (lastAssignableElementClass == oClass) { - dstObjects[i] = o; - } else if (dstClass->IsAssignableFrom(oClass)) { - lastAssignableElementClass = oClass; - dstObjects[i] = o; - } else { - // Can't put this element into the array. - break; + mirror::Class* dstComponentType = dstArray->GetClass()->GetComponentType(); + mirror::Class* srcComponentType = srcArray->GetClass()->GetComponentType(); + Primitive::Type dstComponentPrimitiveType = dstComponentType->GetPrimitiveType(); + + if (LIKELY(srcComponentType == dstComponentType)) { + // Trivial assignability. + switch (dstComponentPrimitiveType) { + case Primitive::kPrimVoid: + LOG(FATAL) << "Unreachable, cannot have arrays of type void"; + return; + case Primitive::kPrimBoolean: + case Primitive::kPrimByte: + DCHECK_EQ(Primitive::ComponentSize(dstComponentPrimitiveType), 1U); + dstArray->AsByteSizedArray()->Memmove(dstPos, srcArray->AsByteSizedArray(), srcPos, count); + return; + case Primitive::kPrimChar: + case Primitive::kPrimShort: + DCHECK_EQ(Primitive::ComponentSize(dstComponentPrimitiveType), 2U); + dstArray->AsShortSizedArray()->Memmove(dstPos, srcArray->AsShortSizedArray(), srcPos, count); + return; + case Primitive::kPrimInt: + case Primitive::kPrimFloat: + DCHECK_EQ(Primitive::ComponentSize(dstComponentPrimitiveType), 4U); + dstArray->AsIntArray()->Memmove(dstPos, srcArray->AsIntArray(), srcPos, count); + return; + case Primitive::kPrimLong: + case Primitive::kPrimDouble: + DCHECK_EQ(Primitive::ComponentSize(dstComponentPrimitiveType), 8U); + dstArray->AsLongArray()->Memmove(dstPos, srcArray->AsLongArray(), srcPos, count); + return; + case Primitive::kPrimNot: { + mirror::ObjectArray<mirror::Object>* dstObjArray = dstArray->AsObjectArray<mirror::Object>(); + mirror::ObjectArray<mirror::Object>* srcObjArray = srcArray->AsObjectArray<mirror::Object>(); + dstObjArray->AssignableMemmove(dstPos, srcObjArray, srcPos, count); + return; } - } else { - dstObjects[i] = NULL; + default: + LOG(FATAL) << "Unknown array type: " << PrettyTypeOf(srcArray); + return; } } - - Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length); - if (UNLIKELY(i != length)) { - std::string actualSrcType(PrettyTypeOf(o)); + // If one of the arrays holds a primitive type the other array must hold the exact same type. + if (UNLIKELY((dstComponentPrimitiveType != Primitive::kPrimNot) || + srcComponentType->IsPrimitive())) { + std::string srcType(PrettyTypeOf(srcArray)); std::string dstType(PrettyTypeOf(dstArray)); ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", - "source[%d] of type %s cannot be stored in destination array of type %s", - srcPos + i, actualSrcType.c_str(), dstType.c_str()); + "Incompatible types: src=%s, dst=%s", + srcType.c_str(), dstType.c_str()); + return; + } + // Arrays hold distinct types and so therefore can't alias - use memcpy instead of memmove. + mirror::ObjectArray<mirror::Object>* dstObjArray = dstArray->AsObjectArray<mirror::Object>(); + mirror::ObjectArray<mirror::Object>* srcObjArray = srcArray->AsObjectArray<mirror::Object>(); + // If we're assigning into say Object[] then we don't need per element checks. + if (dstComponentType->IsAssignableFrom(srcComponentType)) { + dstObjArray->AssignableMemcpy(dstPos, srcObjArray, srcPos, count); return; } + dstObjArray->AssignableCheckingMemcpy(dstPos, srcObjArray, srcPos, count, true); } -static void System_arraycopyCharUnchecked(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) { +static void System_arraycopyCharUnchecked(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, + jobject javaDst, jint dstPos, jint count) { ScopedFastNativeObjectAccess soa(env); - DCHECK(javaSrc != NULL); - DCHECK(javaDst != NULL); mirror::Object* srcObject = soa.Decode<mirror::Object*>(javaSrc); mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst); - DCHECK(srcObject->IsArrayInstance()); - DCHECK(dstObject->IsArrayInstance()); + DCHECK(srcObject != nullptr); + DCHECK(dstObject != nullptr); mirror::Array* srcArray = srcObject->AsArray(); mirror::Array* dstArray = dstObject->AsArray(); - DCHECK(srcPos >= 0 && dstPos >= 0 && length >= 0 && - srcPos + length <= srcArray->GetLength() && dstPos + length <= dstArray->GetLength()); - DCHECK_EQ(srcArray->GetClass()->GetComponentType(), dstArray->GetClass()->GetComponentType()); - DCHECK(srcArray->GetClass()->GetComponentType()->IsPrimitive()); - DCHECK(dstArray->GetClass()->GetComponentType()->IsPrimitive()); - DCHECK_EQ(srcArray->GetClass()->GetComponentSize(), static_cast<size_t>(2)); - DCHECK_EQ(dstArray->GetClass()->GetComponentSize(), static_cast<size_t>(2)); - uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(2)); - const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(2)); - move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2); + DCHECK_GE(srcPos, 0); + DCHECK_GE(dstPos, 0); + DCHECK_GE(count, 0); + DCHECK_LE(srcPos + count, srcArray->GetLength()); + DCHECK_LE(dstPos + count, dstArray->GetLength()); + DCHECK_EQ(srcArray->GetClass(), dstArray->GetClass()); + DCHECK_EQ(srcArray->GetClass()->GetComponentType()->GetPrimitiveType(), Primitive::kPrimChar); + dstArray->AsCharArray()->Memmove(dstPos, srcArray->AsCharArray(), srcPos, count); } static jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) { - if (javaObject == nullptr) { + if (UNLIKELY(javaObject == nullptr)) { return 0; } ScopedFastNativeObjectAccess soa(env); |