diff options
Diffstat (limited to 'compiler/dex/quick/gen_invoke.cc')
-rw-r--r-- | compiler/dex/quick/gen_invoke.cc | 1476 |
1 files changed, 1476 insertions, 0 deletions
diff --git a/compiler/dex/quick/gen_invoke.cc b/compiler/dex/quick/gen_invoke.cc new file mode 100644 index 0000000000..e3993e0617 --- /dev/null +++ b/compiler/dex/quick/gen_invoke.cc @@ -0,0 +1,1476 @@ +/* + * Copyright (C) 2012 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dex/compiler_ir.h" +#include "dex_file-inl.h" +#include "invoke_type.h" +#include "mirror/array.h" +#include "mirror/string.h" +#include "mir_to_lir-inl.h" +#include "oat/runtime/oat_support_entrypoints.h" +#include "x86/codegen_x86.h" + +namespace art { + +/* + * This source files contains "gen" codegen routines that should + * be applicable to most targets. Only mid-level support utilities + * and "op" calls may be used here. + */ + +/* + * To save scheduling time, helper calls are broken into two parts: generation of + * the helper target address, and the actuall call to the helper. Because x86 + * has a memory call operation, part 1 is a NOP for x86. For other targets, + * load arguments between the two parts. + */ +int Mir2Lir::CallHelperSetup(int helper_offset) +{ + return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset); +} + +/* NOTE: if r_tgt is a temp, it will be freed following use */ +LIR* Mir2Lir::CallHelper(int r_tgt, int helper_offset, bool safepoint_pc) +{ + LIR* call_inst; + if (cu_->instruction_set == kX86) { + call_inst = OpThreadMem(kOpBlx, helper_offset); + } else { + call_inst = OpReg(kOpBlx, r_tgt); + FreeTemp(r_tgt); + } + if (safepoint_pc) { + MarkSafepointPC(call_inst); + } + return call_inst; +} + +void Mir2Lir::CallRuntimeHelperImm(int helper_offset, int arg0, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + LoadConstant(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperReg(int helper_offset, int arg0, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + OpRegCopy(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperRegLocation(int helper_offset, RegLocation arg0, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + if (arg0.wide == 0) { + LoadValueDirectFixed(arg0, TargetReg(kArg0)); + } else { + LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1)); + } + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperImmImm(int helper_offset, int arg0, int arg1, + bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + LoadConstant(TargetReg(kArg0), arg0); + LoadConstant(TargetReg(kArg1), arg1); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperImmRegLocation(int helper_offset, int arg0, + RegLocation arg1, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + if (arg1.wide == 0) { + LoadValueDirectFixed(arg1, TargetReg(kArg1)); + } else { + LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); + } + LoadConstant(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperRegLocationImm(int helper_offset, RegLocation arg0, int arg1, + bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + LoadValueDirectFixed(arg0, TargetReg(kArg0)); + LoadConstant(TargetReg(kArg1), arg1); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperImmReg(int helper_offset, int arg0, int arg1, + bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + OpRegCopy(TargetReg(kArg1), arg1); + LoadConstant(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperRegImm(int helper_offset, int arg0, int arg1, + bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + OpRegCopy(TargetReg(kArg0), arg0); + LoadConstant(TargetReg(kArg1), arg1); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperImmMethod(int helper_offset, int arg0, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + LoadCurrMethodDirect(TargetReg(kArg1)); + LoadConstant(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(int helper_offset, RegLocation arg0, + RegLocation arg1, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + if (arg0.wide == 0) { + LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); + if (arg1.wide == 0) { + if (cu_->instruction_set == kMips) { + LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1)); + } else { + LoadValueDirectFixed(arg1, TargetReg(kArg1)); + } + } else { + if (cu_->instruction_set == kMips) { + LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2)); + } else { + LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); + } + } + } else { + LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); + if (arg1.wide == 0) { + LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2)); + } else { + LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3)); + } + } + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperRegReg(int helper_offset, int arg0, int arg1, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 + OpRegCopy(TargetReg(kArg0), arg0); + OpRegCopy(TargetReg(kArg1), arg1); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperRegRegImm(int helper_offset, int arg0, int arg1, + int arg2, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 + OpRegCopy(TargetReg(kArg0), arg0); + OpRegCopy(TargetReg(kArg1), arg1); + LoadConstant(TargetReg(kArg2), arg2); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(int helper_offset, + int arg0, RegLocation arg2, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + LoadValueDirectFixed(arg2, TargetReg(kArg2)); + LoadCurrMethodDirect(TargetReg(kArg1)); + LoadConstant(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperImmMethodImm(int helper_offset, int arg0, + int arg2, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + LoadCurrMethodDirect(TargetReg(kArg1)); + LoadConstant(TargetReg(kArg2), arg2); + LoadConstant(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(int helper_offset, + int arg0, RegLocation arg1, + RegLocation arg2, bool safepoint_pc) { + int r_tgt = CallHelperSetup(helper_offset); + LoadValueDirectFixed(arg1, TargetReg(kArg1)); + if (arg2.wide == 0) { + LoadValueDirectFixed(arg2, TargetReg(kArg2)); + } else { + LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3)); + } + LoadConstant(TargetReg(kArg0), arg0); + ClobberCalleeSave(); + CallHelper(r_tgt, helper_offset, safepoint_pc); +} + +/* + * If there are any ins passed in registers that have not been promoted + * to a callee-save register, flush them to the frame. Perform intial + * assignment of promoted arguments. + * + * ArgLocs is an array of location records describing the incoming arguments + * with one location record per word of argument. + */ +void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) +{ + /* + * Dummy up a RegLocation for the incoming Method* + * It will attempt to keep kArg0 live (or copy it to home location + * if promoted). + */ + RegLocation rl_src = rl_method; + rl_src.location = kLocPhysReg; + rl_src.low_reg = TargetReg(kArg0); + rl_src.home = false; + MarkLive(rl_src.low_reg, rl_src.s_reg_low); + StoreValue(rl_method, rl_src); + // If Method* has been promoted, explicitly flush + if (rl_method.location == kLocPhysReg) { + StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0)); + } + + if (cu_->num_ins == 0) + return; + const int num_arg_regs = 3; + static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3}; + int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; + /* + * Copy incoming arguments to their proper home locations. + * NOTE: an older version of dx had an issue in which + * it would reuse static method argument registers. + * This could result in the same Dalvik virtual register + * being promoted to both core and fp regs. To account for this, + * we only copy to the corresponding promoted physical register + * if it matches the type of the SSA name for the incoming + * argument. It is also possible that long and double arguments + * end up half-promoted. In those cases, we must flush the promoted + * half to memory as well. + */ + for (int i = 0; i < cu_->num_ins; i++) { + PromotionMap* v_map = &promotion_map_[start_vreg + i]; + if (i < num_arg_regs) { + // If arriving in register + bool need_flush = true; + RegLocation* t_loc = &ArgLocs[i]; + if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) { + OpRegCopy(v_map->core_reg, TargetReg(arg_regs[i])); + need_flush = false; + } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) { + OpRegCopy(v_map->FpReg, TargetReg(arg_regs[i])); + need_flush = false; + } else { + need_flush = true; + } + + // For wide args, force flush if only half is promoted + if (t_loc->wide) { + PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1); + need_flush |= (p_map->core_location != v_map->core_location) || + (p_map->fp_location != v_map->fp_location); + } + if (need_flush) { + StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), + TargetReg(arg_regs[i]), kWord); + } + } else { + // If arriving in frame & promoted + if (v_map->core_location == kLocPhysReg) { + LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), + v_map->core_reg); + } + if (v_map->fp_location == kLocPhysReg) { + LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), + v_map->FpReg); + } + } + } +} + +/* + * Bit of a hack here - in the absence of a real scheduling pass, + * emit the next instruction in static & direct invoke sequences. + */ +static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info, + int state, const MethodReference& target_method, + uint32_t unused, + uintptr_t direct_code, uintptr_t direct_method, + InvokeType type) +{ + Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); + if (cu->instruction_set != kThumb2) { + // Disable sharpening + direct_code = 0; + direct_method = 0; + } + if (direct_code != 0 && direct_method != 0) { + switch (state) { + case 0: // Get the current Method* [sets kArg0] + if (direct_code != static_cast<unsigned int>(-1)) { + cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); + } else { + CHECK_EQ(cu->dex_file, target_method.dex_file); + LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_, + target_method.dex_method_index, 0); + if (data_target == NULL) { + data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index); + data_target->operands[1] = type; + } + LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target); + cg->AppendLIR(load_pc_rel); + DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); + } + if (direct_method != static_cast<unsigned int>(-1)) { + cg->LoadConstant(cg->TargetReg(kArg0), direct_method); + } else { + CHECK_EQ(cu->dex_file, target_method.dex_file); + LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_, + target_method.dex_method_index, 0); + if (data_target == NULL) { + data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index); + data_target->operands[1] = type; + } + LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target); + cg->AppendLIR(load_pc_rel); + DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); + } + break; + default: + return -1; + } + } else { + switch (state) { + case 0: // Get the current Method* [sets kArg0] + // TUNING: we can save a reg copy if Method* has been promoted. + cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); + break; + case 1: // Get method->dex_cache_resolved_methods_ + cg->LoadWordDisp(cg->TargetReg(kArg0), + mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0)); + // Set up direct code if known. + if (direct_code != 0) { + if (direct_code != static_cast<unsigned int>(-1)) { + cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); + } else { + CHECK_EQ(cu->dex_file, target_method.dex_file); + LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_, + target_method.dex_method_index, 0); + if (data_target == NULL) { + data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index); + data_target->operands[1] = type; + } + LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target); + cg->AppendLIR(load_pc_rel); + DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); + } + } + break; + case 2: // Grab target method* + CHECK_EQ(cu->dex_file, target_method.dex_file); + cg->LoadWordDisp(cg->TargetReg(kArg0), + mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + + (target_method.dex_method_index * 4), + cg-> TargetReg(kArg0)); + break; + case 3: // Grab the code from the method* + if (cu->instruction_set != kX86) { + if (direct_code == 0) { + cg->LoadWordDisp(cg->TargetReg(kArg0), + mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), + cg->TargetReg(kInvokeTgt)); + } + break; + } + // Intentional fallthrough for x86 + default: + return -1; + } + } + return state + 1; +} + +/* + * Bit of a hack here - in the absence of a real scheduling pass, + * emit the next instruction in a virtual invoke sequence. + * We can use kLr as a temp prior to target address loading + * Note also that we'll load the first argument ("this") into + * kArg1 here rather than the standard LoadArgRegs. + */ +static int NextVCallInsn(CompilationUnit* cu, CallInfo* info, + int state, const MethodReference& target_method, + uint32_t method_idx, uintptr_t unused, uintptr_t unused2, + InvokeType unused3) +{ + Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); + /* + * This is the fast path in which the target virtual method is + * fully resolved at compile time. + */ + switch (state) { + case 0: { // Get "this" [set kArg1] + RegLocation rl_arg = info->args[0]; + cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1)); + break; + } + case 1: // Is "this" null? [use kArg1] + cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags); + // get this->klass_ [use kArg1, set kInvokeTgt] + cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(), + cg->TargetReg(kInvokeTgt)); + break; + case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt] + cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(), + cg->TargetReg(kInvokeTgt)); + break; + case 3: // Get target method [use kInvokeTgt, set kArg0] + cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) + + mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(), + cg->TargetReg(kArg0)); + break; + case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt] + if (cu->instruction_set != kX86) { + cg->LoadWordDisp(cg->TargetReg(kArg0), + mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), + cg->TargetReg(kInvokeTgt)); + break; + } + // Intentional fallthrough for X86 + default: + return -1; + } + return state + 1; +} + +/* + * All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline, + * which will locate the target and continue on via a tail call. + */ +static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state, + const MethodReference& target_method, + uint32_t unused, uintptr_t unused2, + uintptr_t direct_method, InvokeType unused4) +{ + Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); + if (cu->instruction_set != kThumb2) { + // Disable sharpening + direct_method = 0; + } + int trampoline = (cu->instruction_set == kX86) ? 0 + : ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline); + + if (direct_method != 0) { + switch (state) { + case 0: // Load the trampoline target [sets kInvokeTgt]. + if (cu->instruction_set != kX86) { + cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt)); + } + // Get the interface Method* [sets kArg0] + if (direct_method != static_cast<unsigned int>(-1)) { + cg->LoadConstant(cg->TargetReg(kArg0), direct_method); + } else { + CHECK_EQ(cu->dex_file, target_method.dex_file); + LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_, + target_method.dex_method_index, 0); + if (data_target == NULL) { + data_target = cg->AddWordData(&cg->method_literal_list_, + target_method.dex_method_index); + data_target->operands[1] = kInterface; + } + LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target); + cg->AppendLIR(load_pc_rel); + DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); + } + break; + default: + return -1; + } + } else { + switch (state) { + case 0: + // Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted. + cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); + // Load the trampoline target [sets kInvokeTgt]. + if (cu->instruction_set != kX86) { + cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt)); + } + break; + case 1: // Get method->dex_cache_resolved_methods_ [set/use kArg0] + cg->LoadWordDisp(cg->TargetReg(kArg0), + mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(), + cg->TargetReg(kArg0)); + break; + case 2: // Grab target method* [set/use kArg0] + CHECK_EQ(cu->dex_file, target_method.dex_file); + cg->LoadWordDisp(cg->TargetReg(kArg0), + mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + + (target_method.dex_method_index * 4), + cg->TargetReg(kArg0)); + break; + default: + return -1; + } + } + return state + 1; +} + +static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, int trampoline, + int state, const MethodReference& target_method, + uint32_t method_idx) +{ + Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); + /* + * This handles the case in which the base method is not fully + * resolved at compile time, we bail to a runtime helper. + */ + if (state == 0) { + if (cu->instruction_set != kX86) { + // Load trampoline target + cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt)); + } + // Load kArg0 with method index + CHECK_EQ(cu->dex_file, target_method.dex_file); + cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index); + return 1; + } + return -1; +} + +static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info, + int state, + const MethodReference& target_method, + uint32_t method_idx, + uintptr_t unused, uintptr_t unused2, + InvokeType unused3) +{ + int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); + return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); +} + +static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, + const MethodReference& target_method, + uint32_t method_idx, uintptr_t unused, + uintptr_t unused2, InvokeType unused3) +{ + int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); + return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); +} + +static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, + const MethodReference& target_method, + uint32_t method_idx, uintptr_t unused, + uintptr_t unused2, InvokeType unused3) +{ + int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); + return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); +} + +static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, + const MethodReference& target_method, + uint32_t method_idx, uintptr_t unused, + uintptr_t unused2, InvokeType unused3) +{ + int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); + return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); +} + +static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu, + CallInfo* info, int state, + const MethodReference& target_method, + uint32_t unused, + uintptr_t unused2, uintptr_t unused3, + InvokeType unused4) +{ + int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); + return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); +} + +int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state, + NextCallInsn next_call_insn, + const MethodReference& target_method, + uint32_t vtable_idx, uintptr_t direct_code, + uintptr_t direct_method, InvokeType type, bool skip_this) +{ + int last_arg_reg = TargetReg(kArg3); + int next_reg = TargetReg(kArg1); + int next_arg = 0; + if (skip_this) { + next_reg++; + next_arg++; + } + for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) { + RegLocation rl_arg = info->args[next_arg++]; + rl_arg = UpdateRawLoc(rl_arg); + if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) { + LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1); + next_reg++; + next_arg++; + } else { + if (rl_arg.wide) { + rl_arg.wide = false; + rl_arg.is_const = false; + } + LoadValueDirectFixed(rl_arg, next_reg); + } + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + } + return call_state; +} + +/* + * Load up to 5 arguments, the first three of which will be in + * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, + * and as part of the load sequence, it must be replaced with + * the target method pointer. Note, this may also be called + * for "range" variants if the number of arguments is 5 or fewer. + */ +int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, + int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, + const MethodReference& target_method, + uint32_t vtable_idx, uintptr_t direct_code, + uintptr_t direct_method, InvokeType type, bool skip_this) +{ + RegLocation rl_arg; + + /* If no arguments, just return */ + if (info->num_arg_words == 0) + return call_state; + + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + + DCHECK_LE(info->num_arg_words, 5); + if (info->num_arg_words > 3) { + int32_t next_use = 3; + //Detect special case of wide arg spanning arg3/arg4 + RegLocation rl_use0 = info->args[0]; + RegLocation rl_use1 = info->args[1]; + RegLocation rl_use2 = info->args[2]; + if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && + rl_use2.wide) { + int reg = -1; + // Wide spans, we need the 2nd half of uses[2]. + rl_arg = UpdateLocWide(rl_use2); + if (rl_arg.location == kLocPhysReg) { + reg = rl_arg.high_reg; + } else { + // kArg2 & rArg3 can safely be used here + reg = TargetReg(kArg3); + LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg); + call_state = next_call_insn(cu_, info, call_state, target_method, + vtable_idx, direct_code, direct_method, type); + } + StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord); + StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord); + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + next_use++; + } + // Loop through the rest + while (next_use < info->num_arg_words) { + int low_reg; + int high_reg = -1; + rl_arg = info->args[next_use]; + rl_arg = UpdateRawLoc(rl_arg); + if (rl_arg.location == kLocPhysReg) { + low_reg = rl_arg.low_reg; + high_reg = rl_arg.high_reg; + } else { + low_reg = TargetReg(kArg2); + if (rl_arg.wide) { + high_reg = TargetReg(kArg3); + LoadValueDirectWideFixed(rl_arg, low_reg, high_reg); + } else { + LoadValueDirectFixed(rl_arg, low_reg); + } + call_state = next_call_insn(cu_, info, call_state, target_method, + vtable_idx, direct_code, direct_method, type); + } + int outs_offset = (next_use + 1) * 4; + if (rl_arg.wide) { + StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg); + next_use += 2; + } else { + StoreWordDisp(TargetReg(kSp), outs_offset, low_reg); + next_use++; + } + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + } + } + + call_state = LoadArgRegs(info, call_state, next_call_insn, + target_method, vtable_idx, direct_code, direct_method, + type, skip_this); + + if (pcrLabel) { + *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); + } + return call_state; +} + +/* + * May have 0+ arguments (also used for jumbo). Note that + * source virtual registers may be in physical registers, so may + * need to be flushed to home location before copying. This + * applies to arg3 and above (see below). + * + * Two general strategies: + * If < 20 arguments + * Pass args 3-18 using vldm/vstm block copy + * Pass arg0, arg1 & arg2 in kArg1-kArg3 + * If 20+ arguments + * Pass args arg19+ using memcpy block copy + * Pass arg0, arg1 & arg2 in kArg1-kArg3 + * + */ +int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, + LIR** pcrLabel, NextCallInsn next_call_insn, + const MethodReference& target_method, + uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, + InvokeType type, bool skip_this) +{ + + // If we can treat it as non-range (Jumbo ops will use range form) + if (info->num_arg_words <= 5) + return GenDalvikArgsNoRange(info, call_state, pcrLabel, + next_call_insn, target_method, vtable_idx, + direct_code, direct_method, type, skip_this); + /* + * First load the non-register arguments. Both forms expect all + * of the source arguments to be in their home frame location, so + * scan the s_reg names and flush any that have been promoted to + * frame backing storage. + */ + // Scan the rest of the args - if in phys_reg flush to memory + for (int next_arg = 0; next_arg < info->num_arg_words;) { + RegLocation loc = info->args[next_arg]; + if (loc.wide) { + loc = UpdateLocWide(loc); + if ((next_arg >= 2) && (loc.location == kLocPhysReg)) { + StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low), + loc.low_reg, loc.high_reg); + } + next_arg += 2; + } else { + loc = UpdateLoc(loc); + if ((next_arg >= 3) && (loc.location == kLocPhysReg)) { + StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), + loc.low_reg, kWord); + } + next_arg++; + } + } + + int start_offset = SRegOffset(info->args[3].s_reg_low); + int outs_offset = 4 /* Method* */ + (3 * 4); + if (cu_->instruction_set != kThumb2) { + // Generate memcpy + OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); + OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); + CallRuntimeHelperRegRegImm(ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0), + TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); + } else { + if (info->num_arg_words >= 20) { + // Generate memcpy + OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); + OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); + CallRuntimeHelperRegRegImm(ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0), + TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); + } else { + // Use vldm/vstm pair using kArg3 as a temp + int regs_left = std::min(info->num_arg_words - 3, 16); + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset); + LIR* ld = OpVldm(TargetReg(kArg3), regs_left); + //TUNING: loosen barrier + ld->def_mask = ENCODE_ALL; + SetMemRefType(ld, true /* is_load */, kDalvikReg); + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4)); + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + LIR* st = OpVstm(TargetReg(kArg3), regs_left); + SetMemRefType(st, false /* is_load */, kDalvikReg); + st->def_mask = ENCODE_ALL; + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + } + } + + call_state = LoadArgRegs(info, call_state, next_call_insn, + target_method, vtable_idx, direct_code, direct_method, + type, skip_this); + + call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, + direct_code, direct_method, type); + if (pcrLabel) { + *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); + } + return call_state; +} + +RegLocation Mir2Lir::InlineTarget(CallInfo* info) +{ + RegLocation res; + if (info->result.location == kLocInvalid) { + res = GetReturn(false); + } else { + res = info->result; + } + return res; +} + +RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) +{ + RegLocation res; + if (info->result.location == kLocInvalid) { + res = GetReturnWide(false); + } else { + res = info->result; + } + return res; +} + +bool Mir2Lir::GenInlinedCharAt(CallInfo* info) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + // Location of reference to data array + int value_offset = mirror::String::ValueOffset().Int32Value(); + // Location of count + int count_offset = mirror::String::CountOffset().Int32Value(); + // Starting offset within data array + int offset_offset = mirror::String::OffsetOffset().Int32Value(); + // Start of char data with array_ + int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); + + RegLocation rl_obj = info->args[0]; + RegLocation rl_idx = info->args[1]; + rl_obj = LoadValue(rl_obj, kCoreReg); + rl_idx = LoadValue(rl_idx, kCoreReg); + int reg_max; + GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); + bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); + LIR* launch_pad = NULL; + int reg_off = INVALID_REG; + int reg_ptr = INVALID_REG; + if (cu_->instruction_set != kX86) { + reg_off = AllocTemp(); + reg_ptr = AllocTemp(); + if (range_check) { + reg_max = AllocTemp(); + LoadWordDisp(rl_obj.low_reg, count_offset, reg_max); + } + LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); + LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); + if (range_check) { + // Set up a launch pad to allow retry in case of bounds violation */ + launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); + intrinsic_launchpads_.Insert(launch_pad); + OpRegReg(kOpCmp, rl_idx.low_reg, reg_max); + FreeTemp(reg_max); + OpCondBranch(kCondCs, launch_pad); + } + } else { + if (range_check) { + reg_max = AllocTemp(); + LoadWordDisp(rl_obj.low_reg, count_offset, reg_max); + // Set up a launch pad to allow retry in case of bounds violation */ + launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); + intrinsic_launchpads_.Insert(launch_pad); + OpRegReg(kOpCmp, rl_idx.low_reg, reg_max); + FreeTemp(reg_max); + OpCondBranch(kCondCc, launch_pad); + } + reg_off = AllocTemp(); + reg_ptr = AllocTemp(); + LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); + LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); + } + OpRegImm(kOpAdd, reg_ptr, data_offset); + OpRegReg(kOpAdd, reg_off, rl_idx.low_reg); + FreeTemp(rl_obj.low_reg); + FreeTemp(rl_idx.low_reg); + RegLocation rl_dest = InlineTarget(info); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf); + FreeTemp(reg_off); + FreeTemp(reg_ptr); + StoreValue(rl_dest, rl_result); + if (range_check) { + launch_pad->operands[2] = 0; // no resumption + } + // Record that we've already inlined & null checked + info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); + return true; +} + +// Generates an inlined String.is_empty or String.length. +bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + // dst = src.length(); + RegLocation rl_obj = info->args[0]; + rl_obj = LoadValue(rl_obj, kCoreReg); + RegLocation rl_dest = InlineTarget(info); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); + LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg); + if (is_empty) { + // dst = (dst == 0); + if (cu_->instruction_set == kThumb2) { + int t_reg = AllocTemp(); + OpRegReg(kOpNeg, t_reg, rl_result.low_reg); + OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg); + } else { + DCHECK_EQ(cu_->instruction_set, kX86); + OpRegImm(kOpSub, rl_result.low_reg, 1); + OpRegImm(kOpLsr, rl_result.low_reg, 31); + } + } + StoreValue(rl_dest, rl_result); + return true; +} + +bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + RegLocation rl_src = info->args[0]; + rl_src = LoadValue(rl_src, kCoreReg); + RegLocation rl_dest = InlineTarget(info); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + int sign_reg = AllocTemp(); + // abs(x) = y<=x>>31, (x+y)^y. + OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31); + OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); + OpRegReg(kOpXor, rl_result.low_reg, sign_reg); + StoreValue(rl_dest, rl_result); + return true; +} + +bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + if (cu_->instruction_set == kThumb2) { + RegLocation rl_src = info->args[0]; + rl_src = LoadValueWide(rl_src, kCoreReg); + RegLocation rl_dest = InlineTargetWide(info); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + int sign_reg = AllocTemp(); + // abs(x) = y<=x>>31, (x+y)^y. + OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31); + OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); + OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg); + OpRegReg(kOpXor, rl_result.low_reg, sign_reg); + OpRegReg(kOpXor, rl_result.high_reg, sign_reg); + StoreValueWide(rl_dest, rl_result); + return true; + } else { + DCHECK_EQ(cu_->instruction_set, kX86); + // Reuse source registers to avoid running out of temps + RegLocation rl_src = info->args[0]; + rl_src = LoadValueWide(rl_src, kCoreReg); + RegLocation rl_dest = InlineTargetWide(info); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg); + FreeTemp(rl_src.low_reg); + FreeTemp(rl_src.high_reg); + int sign_reg = AllocTemp(); + // abs(x) = y<=x>>31, (x+y)^y. + OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31); + OpRegReg(kOpAdd, rl_result.low_reg, sign_reg); + OpRegReg(kOpAdc, rl_result.high_reg, sign_reg); + OpRegReg(kOpXor, rl_result.low_reg, sign_reg); + OpRegReg(kOpXor, rl_result.high_reg, sign_reg); + StoreValueWide(rl_dest, rl_result); + return true; + } +} + +bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + RegLocation rl_src = info->args[0]; + RegLocation rl_dest = InlineTarget(info); + StoreValue(rl_dest, rl_src); + return true; +} + +bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + RegLocation rl_src = info->args[0]; + RegLocation rl_dest = InlineTargetWide(info); + StoreValueWide(rl_dest, rl_src); + return true; +} + +/* + * Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff, + * otherwise bails to standard library code. + */ +bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + ClobberCalleeSave(); + LockCallTemps(); // Using fixed registers + int reg_ptr = TargetReg(kArg0); + int reg_char = TargetReg(kArg1); + int reg_start = TargetReg(kArg2); + + RegLocation rl_obj = info->args[0]; + RegLocation rl_char = info->args[1]; + RegLocation rl_start = info->args[2]; + LoadValueDirectFixed(rl_obj, reg_ptr); + LoadValueDirectFixed(rl_char, reg_char); + if (zero_based) { + LoadConstant(reg_start, 0); + } else { + LoadValueDirectFixed(rl_start, reg_start); + } + int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(ENTRYPOINT_OFFSET(pIndexOf)) : 0; + GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags); + LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); + intrinsic_launchpads_.Insert(launch_pad); + OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad); + // NOTE: not a safepoint + if (cu_->instruction_set != kX86) { + OpReg(kOpBlx, r_tgt); + } else { + OpThreadMem(kOpBlx, ENTRYPOINT_OFFSET(pIndexOf)); + } + LIR* resume_tgt = NewLIR0(kPseudoTargetLabel); + launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt); + // Record that we've already inlined & null checked + info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); + RegLocation rl_return = GetReturn(false); + RegLocation rl_dest = InlineTarget(info); + StoreValue(rl_dest, rl_return); + return true; +} + +/* Fast string.compareTo(Ljava/lang/string;)I. */ +bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) +{ + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + ClobberCalleeSave(); + LockCallTemps(); // Using fixed registers + int reg_this = TargetReg(kArg0); + int reg_cmp = TargetReg(kArg1); + + RegLocation rl_this = info->args[0]; + RegLocation rl_cmp = info->args[1]; + LoadValueDirectFixed(rl_this, reg_this); + LoadValueDirectFixed(rl_cmp, reg_cmp); + int r_tgt = (cu_->instruction_set != kX86) ? + LoadHelper(ENTRYPOINT_OFFSET(pStringCompareTo)) : 0; + GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags); + //TUNING: check if rl_cmp.s_reg_low is already null checked + LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); + intrinsic_launchpads_.Insert(launch_pad); + OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad); + // NOTE: not a safepoint + if (cu_->instruction_set != kX86) { + OpReg(kOpBlx, r_tgt); + } else { + OpThreadMem(kOpBlx, ENTRYPOINT_OFFSET(pStringCompareTo)); + } + launch_pad->operands[2] = 0; // No return possible + // Record that we've already inlined & null checked + info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); + RegLocation rl_return = GetReturn(false); + RegLocation rl_dest = InlineTarget(info); + StoreValue(rl_dest, rl_return); + return true; +} + +bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { + RegLocation rl_dest = InlineTarget(info); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + int offset = Thread::PeerOffset().Int32Value(); + if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) { + LoadWordDisp(TargetReg(kSelf), offset, rl_result.low_reg); + } else { + CHECK(cu_->instruction_set == kX86); + ((X86Mir2Lir*)this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset); + } + StoreValue(rl_dest, rl_result); + return true; +} + +bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info, + bool is_long, bool is_volatile) { + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + // Unused - RegLocation rl_src_unsafe = info->args[0]; + RegLocation rl_src_obj = info->args[1]; // Object + RegLocation rl_src_offset = info->args[2]; // long low + rl_src_offset.wide = 0; // ignore high half in info->args[3] + RegLocation rl_dest = InlineTarget(info); // result reg + if (is_volatile) { + GenMemBarrier(kLoadLoad); + } + RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); + RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + if (is_long) { + OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); + LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); + StoreValueWide(rl_dest, rl_result); + } else { + LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord); + StoreValue(rl_dest, rl_result); + } + return true; +} + +bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long, + bool is_object, bool is_volatile, bool is_ordered) { + if (cu_->instruction_set == kMips) { + // TODO - add Mips implementation + return false; + } + if (cu_->instruction_set == kX86 && is_object) { + // TODO: fix X86, it exhausts registers for card marking. + return false; + } + // Unused - RegLocation rl_src_unsafe = info->args[0]; + RegLocation rl_src_obj = info->args[1]; // Object + RegLocation rl_src_offset = info->args[2]; // long low + rl_src_offset.wide = 0; // ignore high half in info->args[3] + RegLocation rl_src_value = info->args[4]; // value to store + if (is_volatile || is_ordered) { + GenMemBarrier(kStoreStore); + } + RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); + RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); + RegLocation rl_value; + if (is_long) { + rl_value = LoadValueWide(rl_src_value, kCoreReg); + OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); + StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg); + } else { + rl_value = LoadValue(rl_src_value, kCoreReg); + StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord); + } + if (is_volatile) { + GenMemBarrier(kStoreLoad); + } + if (is_object) { + MarkGCCard(rl_value.low_reg, rl_object.low_reg); + } + return true; +} + +bool Mir2Lir::GenIntrinsic(CallInfo* info) +{ + if (info->opt_flags & MIR_INLINED) { + return false; + } + /* + * TODO: move these to a target-specific structured constant array + * and use a generic match function. The list of intrinsics may be + * slightly different depending on target. + * TODO: Fold this into a matching function that runs during + * basic block building. This should be part of the action for + * small method inlining and recognition of the special object init + * method. By doing this during basic block construction, we can also + * take advantage of/generate new useful dataflow info. + */ + StringPiece tgt_methods_declaring_class( + cu_->dex_file->GetMethodDeclaringClassDescriptor(cu_->dex_file->GetMethodId(info->index))); + if (tgt_methods_declaring_class.starts_with("Ljava/lang/Double;")) { + std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); + if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") { + return GenInlinedDoubleCvt(info); + } + if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") { + return GenInlinedDoubleCvt(info); + } + } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Float;")) { + std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); + if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") { + return GenInlinedFloatCvt(info); + } + if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") { + return GenInlinedFloatCvt(info); + } + } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Math;") || + tgt_methods_declaring_class.starts_with("Ljava/lang/StrictMath;")) { + std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); + if (tgt_method == "int java.lang.Math.abs(int)" || + tgt_method == "int java.lang.StrictMath.abs(int)") { + return GenInlinedAbsInt(info); + } + if (tgt_method == "long java.lang.Math.abs(long)" || + tgt_method == "long java.lang.StrictMath.abs(long)") { + return GenInlinedAbsLong(info); + } + if (tgt_method == "int java.lang.Math.max(int, int)" || + tgt_method == "int java.lang.StrictMath.max(int, int)") { + return GenInlinedMinMaxInt(info, false /* is_min */); + } + if (tgt_method == "int java.lang.Math.min(int, int)" || + tgt_method == "int java.lang.StrictMath.min(int, int)") { + return GenInlinedMinMaxInt(info, true /* is_min */); + } + if (tgt_method == "double java.lang.Math.sqrt(double)" || + tgt_method == "double java.lang.StrictMath.sqrt(double)") { + return GenInlinedSqrt(info); + } + } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/String;")) { + std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); + if (tgt_method == "char java.lang.String.charAt(int)") { + return GenInlinedCharAt(info); + } + if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") { + return GenInlinedStringCompareTo(info); + } + if (tgt_method == "boolean java.lang.String.is_empty()") { + return GenInlinedStringIsEmptyOrLength(info, true /* is_empty */); + } + if (tgt_method == "int java.lang.String.index_of(int, int)") { + return GenInlinedIndexOf(info, false /* base 0 */); + } + if (tgt_method == "int java.lang.String.index_of(int)") { + return GenInlinedIndexOf(info, true /* base 0 */); + } + if (tgt_method == "int java.lang.String.length()") { + return GenInlinedStringIsEmptyOrLength(info, false /* is_empty */); + } + } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Thread;")) { + std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); + if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") { + return GenInlinedCurrentThread(info); + } + } else if (tgt_methods_declaring_class.starts_with("Lsun/misc/Unsafe;")) { + std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); + if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") { + return GenInlinedCas32(info, false); + } + if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") { + return GenInlinedCas32(info, true); + } + if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") { + return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */); + } + if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") { + return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */); + } + if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") { + return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, + false /* is_volatile */, false /* is_ordered */); + } + if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") { + return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, + true /* is_volatile */, false /* is_ordered */); + } + if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") { + return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, + false /* is_volatile */, true /* is_ordered */); + } + if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") { + return GenInlinedUnsafeGet(info, true /* is_long */, false /* is_volatile */); + } + if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") { + return GenInlinedUnsafeGet(info, true /* is_long */, true /* is_volatile */); + } + if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") { + return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, + false /* is_volatile */, false /* is_ordered */); + } + if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") { + return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, + true /* is_volatile */, false /* is_ordered */); + } + if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") { + return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, + false /* is_volatile */, true /* is_ordered */); + } + if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") { + return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */); + } + if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") { + return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */); + } + if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") { + return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, + false /* is_volatile */, false /* is_ordered */); + } + if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") { + return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, + true /* is_volatile */, false /* is_ordered */); + } + if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") { + return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, + false /* is_volatile */, true /* is_ordered */); + } + } + return false; +} + +void Mir2Lir::GenInvoke(CallInfo* info) +{ + if (GenIntrinsic(info)) { + return; + } + InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo + int call_state = 0; + LIR* null_ck; + LIR** p_null_ck = NULL; + NextCallInsn next_call_insn; + FlushAllRegs(); /* Everything to home location */ + // Explicit register usage + LockCallTemps(); + + DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit(); + MethodReference target_method(cUnit->GetDexFile(), info->index); + int vtable_idx; + uintptr_t direct_code; + uintptr_t direct_method; + bool skip_this; + bool fast_path = + cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(), + current_dalvik_offset_, + info->type, target_method, + vtable_idx, + direct_code, direct_method, + true) && !SLOW_INVOKE_PATH; + if (info->type == kInterface) { + if (fast_path) { + p_null_ck = &null_ck; + } + next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck; + skip_this = false; + } else if (info->type == kDirect) { + if (fast_path) { + p_null_ck = &null_ck; + } + next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP; + skip_this = false; + } else if (info->type == kStatic) { + next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP; + skip_this = false; + } else if (info->type == kSuper) { + DCHECK(!fast_path); // Fast path is a direct call. + next_call_insn = NextSuperCallInsnSP; + skip_this = false; + } else { + DCHECK_EQ(info->type, kVirtual); + next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP; + skip_this = fast_path; + } + if (!info->is_range) { + call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck, + next_call_insn, target_method, + vtable_idx, direct_code, direct_method, + original_type, skip_this); + } else { + call_state = GenDalvikArgsRange(info, call_state, p_null_ck, + next_call_insn, target_method, vtable_idx, + direct_code, direct_method, original_type, + skip_this); + } + // Finish up any of the call sequence not interleaved in arg loading + while (call_state >= 0) { + call_state = next_call_insn(cu_, info, call_state, target_method, + vtable_idx, direct_code, direct_method, + original_type); + } + LIR* call_inst; + if (cu_->instruction_set != kX86) { + call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt)); + } else { + if (fast_path && info->type != kInterface) { + call_inst = OpMem(kOpBlx, TargetReg(kArg0), + mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value()); + } else { + int trampoline = 0; + switch (info->type) { + case kInterface: + trampoline = fast_path ? ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline) + : ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); + break; + case kDirect: + trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); + break; + case kStatic: + trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); + break; + case kSuper: + trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); + break; + case kVirtual: + trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); + break; + default: + LOG(FATAL) << "Unexpected invoke type"; + } + call_inst = OpThreadMem(kOpBlx, trampoline); + } + } + MarkSafepointPC(call_inst); + + ClobberCalleeSave(); + if (info->result.location != kLocInvalid) { + // We have a following MOVE_RESULT - do it now. + if (info->result.wide) { + RegLocation ret_loc = GetReturnWide(info->result.fp); + StoreValueWide(info->result, ret_loc); + } else { + RegLocation ret_loc = GetReturn(info->result.fp); + StoreValue(info->result, ret_loc); + } + } +} + +} // namespace art |