summaryrefslogtreecommitdiffstats
path: root/compiler/dex/quick/gen_invoke.cc
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/dex/quick/gen_invoke.cc')
-rw-r--r--compiler/dex/quick/gen_invoke.cc1476
1 files changed, 1476 insertions, 0 deletions
diff --git a/compiler/dex/quick/gen_invoke.cc b/compiler/dex/quick/gen_invoke.cc
new file mode 100644
index 0000000000..e3993e0617
--- /dev/null
+++ b/compiler/dex/quick/gen_invoke.cc
@@ -0,0 +1,1476 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dex/compiler_ir.h"
+#include "dex_file-inl.h"
+#include "invoke_type.h"
+#include "mirror/array.h"
+#include "mirror/string.h"
+#include "mir_to_lir-inl.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+#include "x86/codegen_x86.h"
+
+namespace art {
+
+/*
+ * This source files contains "gen" codegen routines that should
+ * be applicable to most targets. Only mid-level support utilities
+ * and "op" calls may be used here.
+ */
+
+/*
+ * To save scheduling time, helper calls are broken into two parts: generation of
+ * the helper target address, and the actuall call to the helper. Because x86
+ * has a memory call operation, part 1 is a NOP for x86. For other targets,
+ * load arguments between the two parts.
+ */
+int Mir2Lir::CallHelperSetup(int helper_offset)
+{
+ return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset);
+}
+
+/* NOTE: if r_tgt is a temp, it will be freed following use */
+LIR* Mir2Lir::CallHelper(int r_tgt, int helper_offset, bool safepoint_pc)
+{
+ LIR* call_inst;
+ if (cu_->instruction_set == kX86) {
+ call_inst = OpThreadMem(kOpBlx, helper_offset);
+ } else {
+ call_inst = OpReg(kOpBlx, r_tgt);
+ FreeTemp(r_tgt);
+ }
+ if (safepoint_pc) {
+ MarkSafepointPC(call_inst);
+ }
+ return call_inst;
+}
+
+void Mir2Lir::CallRuntimeHelperImm(int helper_offset, int arg0, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ LoadConstant(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperReg(int helper_offset, int arg0, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ OpRegCopy(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperRegLocation(int helper_offset, RegLocation arg0, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ if (arg0.wide == 0) {
+ LoadValueDirectFixed(arg0, TargetReg(kArg0));
+ } else {
+ LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1));
+ }
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperImmImm(int helper_offset, int arg0, int arg1,
+ bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ LoadConstant(TargetReg(kArg0), arg0);
+ LoadConstant(TargetReg(kArg1), arg1);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperImmRegLocation(int helper_offset, int arg0,
+ RegLocation arg1, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ if (arg1.wide == 0) {
+ LoadValueDirectFixed(arg1, TargetReg(kArg1));
+ } else {
+ LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
+ }
+ LoadConstant(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperRegLocationImm(int helper_offset, RegLocation arg0, int arg1,
+ bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ LoadValueDirectFixed(arg0, TargetReg(kArg0));
+ LoadConstant(TargetReg(kArg1), arg1);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperImmReg(int helper_offset, int arg0, int arg1,
+ bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ OpRegCopy(TargetReg(kArg1), arg1);
+ LoadConstant(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperRegImm(int helper_offset, int arg0, int arg1,
+ bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ OpRegCopy(TargetReg(kArg0), arg0);
+ LoadConstant(TargetReg(kArg1), arg1);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperImmMethod(int helper_offset, int arg0, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ LoadCurrMethodDirect(TargetReg(kArg1));
+ LoadConstant(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(int helper_offset, RegLocation arg0,
+ RegLocation arg1, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ if (arg0.wide == 0) {
+ LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
+ if (arg1.wide == 0) {
+ if (cu_->instruction_set == kMips) {
+ LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
+ } else {
+ LoadValueDirectFixed(arg1, TargetReg(kArg1));
+ }
+ } else {
+ if (cu_->instruction_set == kMips) {
+ LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
+ } else {
+ LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
+ }
+ }
+ } else {
+ LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
+ if (arg1.wide == 0) {
+ LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
+ } else {
+ LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
+ }
+ }
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperRegReg(int helper_offset, int arg0, int arg1, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
+ OpRegCopy(TargetReg(kArg0), arg0);
+ OpRegCopy(TargetReg(kArg1), arg1);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperRegRegImm(int helper_offset, int arg0, int arg1,
+ int arg2, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
+ OpRegCopy(TargetReg(kArg0), arg0);
+ OpRegCopy(TargetReg(kArg1), arg1);
+ LoadConstant(TargetReg(kArg2), arg2);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(int helper_offset,
+ int arg0, RegLocation arg2, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ LoadValueDirectFixed(arg2, TargetReg(kArg2));
+ LoadCurrMethodDirect(TargetReg(kArg1));
+ LoadConstant(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperImmMethodImm(int helper_offset, int arg0,
+ int arg2, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ LoadCurrMethodDirect(TargetReg(kArg1));
+ LoadConstant(TargetReg(kArg2), arg2);
+ LoadConstant(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(int helper_offset,
+ int arg0, RegLocation arg1,
+ RegLocation arg2, bool safepoint_pc) {
+ int r_tgt = CallHelperSetup(helper_offset);
+ LoadValueDirectFixed(arg1, TargetReg(kArg1));
+ if (arg2.wide == 0) {
+ LoadValueDirectFixed(arg2, TargetReg(kArg2));
+ } else {
+ LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3));
+ }
+ LoadConstant(TargetReg(kArg0), arg0);
+ ClobberCalleeSave();
+ CallHelper(r_tgt, helper_offset, safepoint_pc);
+}
+
+/*
+ * If there are any ins passed in registers that have not been promoted
+ * to a callee-save register, flush them to the frame. Perform intial
+ * assignment of promoted arguments.
+ *
+ * ArgLocs is an array of location records describing the incoming arguments
+ * with one location record per word of argument.
+ */
+void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method)
+{
+ /*
+ * Dummy up a RegLocation for the incoming Method*
+ * It will attempt to keep kArg0 live (or copy it to home location
+ * if promoted).
+ */
+ RegLocation rl_src = rl_method;
+ rl_src.location = kLocPhysReg;
+ rl_src.low_reg = TargetReg(kArg0);
+ rl_src.home = false;
+ MarkLive(rl_src.low_reg, rl_src.s_reg_low);
+ StoreValue(rl_method, rl_src);
+ // If Method* has been promoted, explicitly flush
+ if (rl_method.location == kLocPhysReg) {
+ StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
+ }
+
+ if (cu_->num_ins == 0)
+ return;
+ const int num_arg_regs = 3;
+ static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3};
+ int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
+ /*
+ * Copy incoming arguments to their proper home locations.
+ * NOTE: an older version of dx had an issue in which
+ * it would reuse static method argument registers.
+ * This could result in the same Dalvik virtual register
+ * being promoted to both core and fp regs. To account for this,
+ * we only copy to the corresponding promoted physical register
+ * if it matches the type of the SSA name for the incoming
+ * argument. It is also possible that long and double arguments
+ * end up half-promoted. In those cases, we must flush the promoted
+ * half to memory as well.
+ */
+ for (int i = 0; i < cu_->num_ins; i++) {
+ PromotionMap* v_map = &promotion_map_[start_vreg + i];
+ if (i < num_arg_regs) {
+ // If arriving in register
+ bool need_flush = true;
+ RegLocation* t_loc = &ArgLocs[i];
+ if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
+ OpRegCopy(v_map->core_reg, TargetReg(arg_regs[i]));
+ need_flush = false;
+ } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
+ OpRegCopy(v_map->FpReg, TargetReg(arg_regs[i]));
+ need_flush = false;
+ } else {
+ need_flush = true;
+ }
+
+ // For wide args, force flush if only half is promoted
+ if (t_loc->wide) {
+ PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
+ need_flush |= (p_map->core_location != v_map->core_location) ||
+ (p_map->fp_location != v_map->fp_location);
+ }
+ if (need_flush) {
+ StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
+ TargetReg(arg_regs[i]), kWord);
+ }
+ } else {
+ // If arriving in frame & promoted
+ if (v_map->core_location == kLocPhysReg) {
+ LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
+ v_map->core_reg);
+ }
+ if (v_map->fp_location == kLocPhysReg) {
+ LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
+ v_map->FpReg);
+ }
+ }
+ }
+}
+
+/*
+ * Bit of a hack here - in the absence of a real scheduling pass,
+ * emit the next instruction in static & direct invoke sequences.
+ */
+static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
+ int state, const MethodReference& target_method,
+ uint32_t unused,
+ uintptr_t direct_code, uintptr_t direct_method,
+ InvokeType type)
+{
+ Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
+ if (cu->instruction_set != kThumb2) {
+ // Disable sharpening
+ direct_code = 0;
+ direct_method = 0;
+ }
+ if (direct_code != 0 && direct_method != 0) {
+ switch (state) {
+ case 0: // Get the current Method* [sets kArg0]
+ if (direct_code != static_cast<unsigned int>(-1)) {
+ cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
+ } else {
+ CHECK_EQ(cu->dex_file, target_method.dex_file);
+ LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
+ target_method.dex_method_index, 0);
+ if (data_target == NULL) {
+ data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
+ data_target->operands[1] = type;
+ }
+ LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
+ cg->AppendLIR(load_pc_rel);
+ DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+ }
+ if (direct_method != static_cast<unsigned int>(-1)) {
+ cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
+ } else {
+ CHECK_EQ(cu->dex_file, target_method.dex_file);
+ LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
+ target_method.dex_method_index, 0);
+ if (data_target == NULL) {
+ data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index);
+ data_target->operands[1] = type;
+ }
+ LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
+ cg->AppendLIR(load_pc_rel);
+ DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+ }
+ break;
+ default:
+ return -1;
+ }
+ } else {
+ switch (state) {
+ case 0: // Get the current Method* [sets kArg0]
+ // TUNING: we can save a reg copy if Method* has been promoted.
+ cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
+ break;
+ case 1: // Get method->dex_cache_resolved_methods_
+ cg->LoadWordDisp(cg->TargetReg(kArg0),
+ mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
+ // Set up direct code if known.
+ if (direct_code != 0) {
+ if (direct_code != static_cast<unsigned int>(-1)) {
+ cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
+ } else {
+ CHECK_EQ(cu->dex_file, target_method.dex_file);
+ LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
+ target_method.dex_method_index, 0);
+ if (data_target == NULL) {
+ data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
+ data_target->operands[1] = type;
+ }
+ LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
+ cg->AppendLIR(load_pc_rel);
+ DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+ }
+ }
+ break;
+ case 2: // Grab target method*
+ CHECK_EQ(cu->dex_file, target_method.dex_file);
+ cg->LoadWordDisp(cg->TargetReg(kArg0),
+ mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+ (target_method.dex_method_index * 4),
+ cg-> TargetReg(kArg0));
+ break;
+ case 3: // Grab the code from the method*
+ if (cu->instruction_set != kX86) {
+ if (direct_code == 0) {
+ cg->LoadWordDisp(cg->TargetReg(kArg0),
+ mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
+ cg->TargetReg(kInvokeTgt));
+ }
+ break;
+ }
+ // Intentional fallthrough for x86
+ default:
+ return -1;
+ }
+ }
+ return state + 1;
+}
+
+/*
+ * Bit of a hack here - in the absence of a real scheduling pass,
+ * emit the next instruction in a virtual invoke sequence.
+ * We can use kLr as a temp prior to target address loading
+ * Note also that we'll load the first argument ("this") into
+ * kArg1 here rather than the standard LoadArgRegs.
+ */
+static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
+ int state, const MethodReference& target_method,
+ uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
+ InvokeType unused3)
+{
+ Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
+ /*
+ * This is the fast path in which the target virtual method is
+ * fully resolved at compile time.
+ */
+ switch (state) {
+ case 0: { // Get "this" [set kArg1]
+ RegLocation rl_arg = info->args[0];
+ cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
+ break;
+ }
+ case 1: // Is "this" null? [use kArg1]
+ cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
+ // get this->klass_ [use kArg1, set kInvokeTgt]
+ cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
+ cg->TargetReg(kInvokeTgt));
+ break;
+ case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
+ cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
+ cg->TargetReg(kInvokeTgt));
+ break;
+ case 3: // Get target method [use kInvokeTgt, set kArg0]
+ cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) +
+ mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
+ cg->TargetReg(kArg0));
+ break;
+ case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt]
+ if (cu->instruction_set != kX86) {
+ cg->LoadWordDisp(cg->TargetReg(kArg0),
+ mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
+ cg->TargetReg(kInvokeTgt));
+ break;
+ }
+ // Intentional fallthrough for X86
+ default:
+ return -1;
+ }
+ return state + 1;
+}
+
+/*
+ * All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline,
+ * which will locate the target and continue on via a tail call.
+ */
+static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
+ const MethodReference& target_method,
+ uint32_t unused, uintptr_t unused2,
+ uintptr_t direct_method, InvokeType unused4)
+{
+ Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
+ if (cu->instruction_set != kThumb2) {
+ // Disable sharpening
+ direct_method = 0;
+ }
+ int trampoline = (cu->instruction_set == kX86) ? 0
+ : ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline);
+
+ if (direct_method != 0) {
+ switch (state) {
+ case 0: // Load the trampoline target [sets kInvokeTgt].
+ if (cu->instruction_set != kX86) {
+ cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
+ }
+ // Get the interface Method* [sets kArg0]
+ if (direct_method != static_cast<unsigned int>(-1)) {
+ cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
+ } else {
+ CHECK_EQ(cu->dex_file, target_method.dex_file);
+ LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
+ target_method.dex_method_index, 0);
+ if (data_target == NULL) {
+ data_target = cg->AddWordData(&cg->method_literal_list_,
+ target_method.dex_method_index);
+ data_target->operands[1] = kInterface;
+ }
+ LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
+ cg->AppendLIR(load_pc_rel);
+ DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
+ }
+ break;
+ default:
+ return -1;
+ }
+ } else {
+ switch (state) {
+ case 0:
+ // Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted.
+ cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
+ // Load the trampoline target [sets kInvokeTgt].
+ if (cu->instruction_set != kX86) {
+ cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
+ }
+ break;
+ case 1: // Get method->dex_cache_resolved_methods_ [set/use kArg0]
+ cg->LoadWordDisp(cg->TargetReg(kArg0),
+ mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(),
+ cg->TargetReg(kArg0));
+ break;
+ case 2: // Grab target method* [set/use kArg0]
+ CHECK_EQ(cu->dex_file, target_method.dex_file);
+ cg->LoadWordDisp(cg->TargetReg(kArg0),
+ mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+ (target_method.dex_method_index * 4),
+ cg->TargetReg(kArg0));
+ break;
+ default:
+ return -1;
+ }
+ }
+ return state + 1;
+}
+
+static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, int trampoline,
+ int state, const MethodReference& target_method,
+ uint32_t method_idx)
+{
+ Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
+ /*
+ * This handles the case in which the base method is not fully
+ * resolved at compile time, we bail to a runtime helper.
+ */
+ if (state == 0) {
+ if (cu->instruction_set != kX86) {
+ // Load trampoline target
+ cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
+ }
+ // Load kArg0 with method index
+ CHECK_EQ(cu->dex_file, target_method.dex_file);
+ cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index);
+ return 1;
+ }
+ return -1;
+}
+
+static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
+ int state,
+ const MethodReference& target_method,
+ uint32_t method_idx,
+ uintptr_t unused, uintptr_t unused2,
+ InvokeType unused3)
+{
+ int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
+ return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
+}
+
+static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
+ const MethodReference& target_method,
+ uint32_t method_idx, uintptr_t unused,
+ uintptr_t unused2, InvokeType unused3)
+{
+ int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
+ return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
+}
+
+static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
+ const MethodReference& target_method,
+ uint32_t method_idx, uintptr_t unused,
+ uintptr_t unused2, InvokeType unused3)
+{
+ int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
+ return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
+}
+
+static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
+ const MethodReference& target_method,
+ uint32_t method_idx, uintptr_t unused,
+ uintptr_t unused2, InvokeType unused3)
+{
+ int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
+ return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
+}
+
+static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
+ CallInfo* info, int state,
+ const MethodReference& target_method,
+ uint32_t unused,
+ uintptr_t unused2, uintptr_t unused3,
+ InvokeType unused4)
+{
+ int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
+ return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
+}
+
+int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
+ NextCallInsn next_call_insn,
+ const MethodReference& target_method,
+ uint32_t vtable_idx, uintptr_t direct_code,
+ uintptr_t direct_method, InvokeType type, bool skip_this)
+{
+ int last_arg_reg = TargetReg(kArg3);
+ int next_reg = TargetReg(kArg1);
+ int next_arg = 0;
+ if (skip_this) {
+ next_reg++;
+ next_arg++;
+ }
+ for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
+ RegLocation rl_arg = info->args[next_arg++];
+ rl_arg = UpdateRawLoc(rl_arg);
+ if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) {
+ LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1);
+ next_reg++;
+ next_arg++;
+ } else {
+ if (rl_arg.wide) {
+ rl_arg.wide = false;
+ rl_arg.is_const = false;
+ }
+ LoadValueDirectFixed(rl_arg, next_reg);
+ }
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ }
+ return call_state;
+}
+
+/*
+ * Load up to 5 arguments, the first three of which will be in
+ * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
+ * and as part of the load sequence, it must be replaced with
+ * the target method pointer. Note, this may also be called
+ * for "range" variants if the number of arguments is 5 or fewer.
+ */
+int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
+ int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
+ const MethodReference& target_method,
+ uint32_t vtable_idx, uintptr_t direct_code,
+ uintptr_t direct_method, InvokeType type, bool skip_this)
+{
+ RegLocation rl_arg;
+
+ /* If no arguments, just return */
+ if (info->num_arg_words == 0)
+ return call_state;
+
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+
+ DCHECK_LE(info->num_arg_words, 5);
+ if (info->num_arg_words > 3) {
+ int32_t next_use = 3;
+ //Detect special case of wide arg spanning arg3/arg4
+ RegLocation rl_use0 = info->args[0];
+ RegLocation rl_use1 = info->args[1];
+ RegLocation rl_use2 = info->args[2];
+ if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
+ rl_use2.wide) {
+ int reg = -1;
+ // Wide spans, we need the 2nd half of uses[2].
+ rl_arg = UpdateLocWide(rl_use2);
+ if (rl_arg.location == kLocPhysReg) {
+ reg = rl_arg.high_reg;
+ } else {
+ // kArg2 & rArg3 can safely be used here
+ reg = TargetReg(kArg3);
+ LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
+ call_state = next_call_insn(cu_, info, call_state, target_method,
+ vtable_idx, direct_code, direct_method, type);
+ }
+ StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
+ StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ next_use++;
+ }
+ // Loop through the rest
+ while (next_use < info->num_arg_words) {
+ int low_reg;
+ int high_reg = -1;
+ rl_arg = info->args[next_use];
+ rl_arg = UpdateRawLoc(rl_arg);
+ if (rl_arg.location == kLocPhysReg) {
+ low_reg = rl_arg.low_reg;
+ high_reg = rl_arg.high_reg;
+ } else {
+ low_reg = TargetReg(kArg2);
+ if (rl_arg.wide) {
+ high_reg = TargetReg(kArg3);
+ LoadValueDirectWideFixed(rl_arg, low_reg, high_reg);
+ } else {
+ LoadValueDirectFixed(rl_arg, low_reg);
+ }
+ call_state = next_call_insn(cu_, info, call_state, target_method,
+ vtable_idx, direct_code, direct_method, type);
+ }
+ int outs_offset = (next_use + 1) * 4;
+ if (rl_arg.wide) {
+ StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg);
+ next_use += 2;
+ } else {
+ StoreWordDisp(TargetReg(kSp), outs_offset, low_reg);
+ next_use++;
+ }
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ }
+ }
+
+ call_state = LoadArgRegs(info, call_state, next_call_insn,
+ target_method, vtable_idx, direct_code, direct_method,
+ type, skip_this);
+
+ if (pcrLabel) {
+ *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
+ }
+ return call_state;
+}
+
+/*
+ * May have 0+ arguments (also used for jumbo). Note that
+ * source virtual registers may be in physical registers, so may
+ * need to be flushed to home location before copying. This
+ * applies to arg3 and above (see below).
+ *
+ * Two general strategies:
+ * If < 20 arguments
+ * Pass args 3-18 using vldm/vstm block copy
+ * Pass arg0, arg1 & arg2 in kArg1-kArg3
+ * If 20+ arguments
+ * Pass args arg19+ using memcpy block copy
+ * Pass arg0, arg1 & arg2 in kArg1-kArg3
+ *
+ */
+int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
+ LIR** pcrLabel, NextCallInsn next_call_insn,
+ const MethodReference& target_method,
+ uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
+ InvokeType type, bool skip_this)
+{
+
+ // If we can treat it as non-range (Jumbo ops will use range form)
+ if (info->num_arg_words <= 5)
+ return GenDalvikArgsNoRange(info, call_state, pcrLabel,
+ next_call_insn, target_method, vtable_idx,
+ direct_code, direct_method, type, skip_this);
+ /*
+ * First load the non-register arguments. Both forms expect all
+ * of the source arguments to be in their home frame location, so
+ * scan the s_reg names and flush any that have been promoted to
+ * frame backing storage.
+ */
+ // Scan the rest of the args - if in phys_reg flush to memory
+ for (int next_arg = 0; next_arg < info->num_arg_words;) {
+ RegLocation loc = info->args[next_arg];
+ if (loc.wide) {
+ loc = UpdateLocWide(loc);
+ if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
+ StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low),
+ loc.low_reg, loc.high_reg);
+ }
+ next_arg += 2;
+ } else {
+ loc = UpdateLoc(loc);
+ if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
+ StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
+ loc.low_reg, kWord);
+ }
+ next_arg++;
+ }
+ }
+
+ int start_offset = SRegOffset(info->args[3].s_reg_low);
+ int outs_offset = 4 /* Method* */ + (3 * 4);
+ if (cu_->instruction_set != kThumb2) {
+ // Generate memcpy
+ OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
+ OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
+ CallRuntimeHelperRegRegImm(ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
+ TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
+ } else {
+ if (info->num_arg_words >= 20) {
+ // Generate memcpy
+ OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
+ OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
+ CallRuntimeHelperRegRegImm(ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
+ TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
+ } else {
+ // Use vldm/vstm pair using kArg3 as a temp
+ int regs_left = std::min(info->num_arg_words - 3, 16);
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
+ LIR* ld = OpVldm(TargetReg(kArg3), regs_left);
+ //TUNING: loosen barrier
+ ld->def_mask = ENCODE_ALL;
+ SetMemRefType(ld, true /* is_load */, kDalvikReg);
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ LIR* st = OpVstm(TargetReg(kArg3), regs_left);
+ SetMemRefType(st, false /* is_load */, kDalvikReg);
+ st->def_mask = ENCODE_ALL;
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ }
+ }
+
+ call_state = LoadArgRegs(info, call_state, next_call_insn,
+ target_method, vtable_idx, direct_code, direct_method,
+ type, skip_this);
+
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ if (pcrLabel) {
+ *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
+ }
+ return call_state;
+}
+
+RegLocation Mir2Lir::InlineTarget(CallInfo* info)
+{
+ RegLocation res;
+ if (info->result.location == kLocInvalid) {
+ res = GetReturn(false);
+ } else {
+ res = info->result;
+ }
+ return res;
+}
+
+RegLocation Mir2Lir::InlineTargetWide(CallInfo* info)
+{
+ RegLocation res;
+ if (info->result.location == kLocInvalid) {
+ res = GetReturnWide(false);
+ } else {
+ res = info->result;
+ }
+ return res;
+}
+
+bool Mir2Lir::GenInlinedCharAt(CallInfo* info)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ // Location of reference to data array
+ int value_offset = mirror::String::ValueOffset().Int32Value();
+ // Location of count
+ int count_offset = mirror::String::CountOffset().Int32Value();
+ // Starting offset within data array
+ int offset_offset = mirror::String::OffsetOffset().Int32Value();
+ // Start of char data with array_
+ int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
+
+ RegLocation rl_obj = info->args[0];
+ RegLocation rl_idx = info->args[1];
+ rl_obj = LoadValue(rl_obj, kCoreReg);
+ rl_idx = LoadValue(rl_idx, kCoreReg);
+ int reg_max;
+ GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
+ bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
+ LIR* launch_pad = NULL;
+ int reg_off = INVALID_REG;
+ int reg_ptr = INVALID_REG;
+ if (cu_->instruction_set != kX86) {
+ reg_off = AllocTemp();
+ reg_ptr = AllocTemp();
+ if (range_check) {
+ reg_max = AllocTemp();
+ LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
+ }
+ LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
+ LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
+ if (range_check) {
+ // Set up a launch pad to allow retry in case of bounds violation */
+ launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+ intrinsic_launchpads_.Insert(launch_pad);
+ OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
+ FreeTemp(reg_max);
+ OpCondBranch(kCondCs, launch_pad);
+ }
+ } else {
+ if (range_check) {
+ reg_max = AllocTemp();
+ LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
+ // Set up a launch pad to allow retry in case of bounds violation */
+ launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+ intrinsic_launchpads_.Insert(launch_pad);
+ OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
+ FreeTemp(reg_max);
+ OpCondBranch(kCondCc, launch_pad);
+ }
+ reg_off = AllocTemp();
+ reg_ptr = AllocTemp();
+ LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
+ LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
+ }
+ OpRegImm(kOpAdd, reg_ptr, data_offset);
+ OpRegReg(kOpAdd, reg_off, rl_idx.low_reg);
+ FreeTemp(rl_obj.low_reg);
+ FreeTemp(rl_idx.low_reg);
+ RegLocation rl_dest = InlineTarget(info);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf);
+ FreeTemp(reg_off);
+ FreeTemp(reg_ptr);
+ StoreValue(rl_dest, rl_result);
+ if (range_check) {
+ launch_pad->operands[2] = 0; // no resumption
+ }
+ // Record that we've already inlined & null checked
+ info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
+ return true;
+}
+
+// Generates an inlined String.is_empty or String.length.
+bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ // dst = src.length();
+ RegLocation rl_obj = info->args[0];
+ rl_obj = LoadValue(rl_obj, kCoreReg);
+ RegLocation rl_dest = InlineTarget(info);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
+ LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg);
+ if (is_empty) {
+ // dst = (dst == 0);
+ if (cu_->instruction_set == kThumb2) {
+ int t_reg = AllocTemp();
+ OpRegReg(kOpNeg, t_reg, rl_result.low_reg);
+ OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg);
+ } else {
+ DCHECK_EQ(cu_->instruction_set, kX86);
+ OpRegImm(kOpSub, rl_result.low_reg, 1);
+ OpRegImm(kOpLsr, rl_result.low_reg, 31);
+ }
+ }
+ StoreValue(rl_dest, rl_result);
+ return true;
+}
+
+bool Mir2Lir::GenInlinedAbsInt(CallInfo* info)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ RegLocation rl_src = info->args[0];
+ rl_src = LoadValue(rl_src, kCoreReg);
+ RegLocation rl_dest = InlineTarget(info);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ int sign_reg = AllocTemp();
+ // abs(x) = y<=x>>31, (x+y)^y.
+ OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31);
+ OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
+ OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
+ StoreValue(rl_dest, rl_result);
+ return true;
+}
+
+bool Mir2Lir::GenInlinedAbsLong(CallInfo* info)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ if (cu_->instruction_set == kThumb2) {
+ RegLocation rl_src = info->args[0];
+ rl_src = LoadValueWide(rl_src, kCoreReg);
+ RegLocation rl_dest = InlineTargetWide(info);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ int sign_reg = AllocTemp();
+ // abs(x) = y<=x>>31, (x+y)^y.
+ OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31);
+ OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
+ OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg);
+ OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
+ OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
+ StoreValueWide(rl_dest, rl_result);
+ return true;
+ } else {
+ DCHECK_EQ(cu_->instruction_set, kX86);
+ // Reuse source registers to avoid running out of temps
+ RegLocation rl_src = info->args[0];
+ rl_src = LoadValueWide(rl_src, kCoreReg);
+ RegLocation rl_dest = InlineTargetWide(info);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
+ FreeTemp(rl_src.low_reg);
+ FreeTemp(rl_src.high_reg);
+ int sign_reg = AllocTemp();
+ // abs(x) = y<=x>>31, (x+y)^y.
+ OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31);
+ OpRegReg(kOpAdd, rl_result.low_reg, sign_reg);
+ OpRegReg(kOpAdc, rl_result.high_reg, sign_reg);
+ OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
+ OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
+ StoreValueWide(rl_dest, rl_result);
+ return true;
+ }
+}
+
+bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ RegLocation rl_src = info->args[0];
+ RegLocation rl_dest = InlineTarget(info);
+ StoreValue(rl_dest, rl_src);
+ return true;
+}
+
+bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ RegLocation rl_src = info->args[0];
+ RegLocation rl_dest = InlineTargetWide(info);
+ StoreValueWide(rl_dest, rl_src);
+ return true;
+}
+
+/*
+ * Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff,
+ * otherwise bails to standard library code.
+ */
+bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ ClobberCalleeSave();
+ LockCallTemps(); // Using fixed registers
+ int reg_ptr = TargetReg(kArg0);
+ int reg_char = TargetReg(kArg1);
+ int reg_start = TargetReg(kArg2);
+
+ RegLocation rl_obj = info->args[0];
+ RegLocation rl_char = info->args[1];
+ RegLocation rl_start = info->args[2];
+ LoadValueDirectFixed(rl_obj, reg_ptr);
+ LoadValueDirectFixed(rl_char, reg_char);
+ if (zero_based) {
+ LoadConstant(reg_start, 0);
+ } else {
+ LoadValueDirectFixed(rl_start, reg_start);
+ }
+ int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(ENTRYPOINT_OFFSET(pIndexOf)) : 0;
+ GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags);
+ LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+ intrinsic_launchpads_.Insert(launch_pad);
+ OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad);
+ // NOTE: not a safepoint
+ if (cu_->instruction_set != kX86) {
+ OpReg(kOpBlx, r_tgt);
+ } else {
+ OpThreadMem(kOpBlx, ENTRYPOINT_OFFSET(pIndexOf));
+ }
+ LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
+ launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt);
+ // Record that we've already inlined & null checked
+ info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
+ RegLocation rl_return = GetReturn(false);
+ RegLocation rl_dest = InlineTarget(info);
+ StoreValue(rl_dest, rl_return);
+ return true;
+}
+
+/* Fast string.compareTo(Ljava/lang/string;)I. */
+bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info)
+{
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ ClobberCalleeSave();
+ LockCallTemps(); // Using fixed registers
+ int reg_this = TargetReg(kArg0);
+ int reg_cmp = TargetReg(kArg1);
+
+ RegLocation rl_this = info->args[0];
+ RegLocation rl_cmp = info->args[1];
+ LoadValueDirectFixed(rl_this, reg_this);
+ LoadValueDirectFixed(rl_cmp, reg_cmp);
+ int r_tgt = (cu_->instruction_set != kX86) ?
+ LoadHelper(ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
+ GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags);
+ //TUNING: check if rl_cmp.s_reg_low is already null checked
+ LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
+ intrinsic_launchpads_.Insert(launch_pad);
+ OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad);
+ // NOTE: not a safepoint
+ if (cu_->instruction_set != kX86) {
+ OpReg(kOpBlx, r_tgt);
+ } else {
+ OpThreadMem(kOpBlx, ENTRYPOINT_OFFSET(pStringCompareTo));
+ }
+ launch_pad->operands[2] = 0; // No return possible
+ // Record that we've already inlined & null checked
+ info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
+ RegLocation rl_return = GetReturn(false);
+ RegLocation rl_dest = InlineTarget(info);
+ StoreValue(rl_dest, rl_return);
+ return true;
+}
+
+bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
+ RegLocation rl_dest = InlineTarget(info);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ int offset = Thread::PeerOffset().Int32Value();
+ if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) {
+ LoadWordDisp(TargetReg(kSelf), offset, rl_result.low_reg);
+ } else {
+ CHECK(cu_->instruction_set == kX86);
+ ((X86Mir2Lir*)this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset);
+ }
+ StoreValue(rl_dest, rl_result);
+ return true;
+}
+
+bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
+ bool is_long, bool is_volatile) {
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ // Unused - RegLocation rl_src_unsafe = info->args[0];
+ RegLocation rl_src_obj = info->args[1]; // Object
+ RegLocation rl_src_offset = info->args[2]; // long low
+ rl_src_offset.wide = 0; // ignore high half in info->args[3]
+ RegLocation rl_dest = InlineTarget(info); // result reg
+ if (is_volatile) {
+ GenMemBarrier(kLoadLoad);
+ }
+ RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
+ RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ if (is_long) {
+ OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
+ LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
+ StoreValueWide(rl_dest, rl_result);
+ } else {
+ LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord);
+ StoreValue(rl_dest, rl_result);
+ }
+ return true;
+}
+
+bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
+ bool is_object, bool is_volatile, bool is_ordered) {
+ if (cu_->instruction_set == kMips) {
+ // TODO - add Mips implementation
+ return false;
+ }
+ if (cu_->instruction_set == kX86 && is_object) {
+ // TODO: fix X86, it exhausts registers for card marking.
+ return false;
+ }
+ // Unused - RegLocation rl_src_unsafe = info->args[0];
+ RegLocation rl_src_obj = info->args[1]; // Object
+ RegLocation rl_src_offset = info->args[2]; // long low
+ rl_src_offset.wide = 0; // ignore high half in info->args[3]
+ RegLocation rl_src_value = info->args[4]; // value to store
+ if (is_volatile || is_ordered) {
+ GenMemBarrier(kStoreStore);
+ }
+ RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
+ RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
+ RegLocation rl_value;
+ if (is_long) {
+ rl_value = LoadValueWide(rl_src_value, kCoreReg);
+ OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
+ StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
+ } else {
+ rl_value = LoadValue(rl_src_value, kCoreReg);
+ StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord);
+ }
+ if (is_volatile) {
+ GenMemBarrier(kStoreLoad);
+ }
+ if (is_object) {
+ MarkGCCard(rl_value.low_reg, rl_object.low_reg);
+ }
+ return true;
+}
+
+bool Mir2Lir::GenIntrinsic(CallInfo* info)
+{
+ if (info->opt_flags & MIR_INLINED) {
+ return false;
+ }
+ /*
+ * TODO: move these to a target-specific structured constant array
+ * and use a generic match function. The list of intrinsics may be
+ * slightly different depending on target.
+ * TODO: Fold this into a matching function that runs during
+ * basic block building. This should be part of the action for
+ * small method inlining and recognition of the special object init
+ * method. By doing this during basic block construction, we can also
+ * take advantage of/generate new useful dataflow info.
+ */
+ StringPiece tgt_methods_declaring_class(
+ cu_->dex_file->GetMethodDeclaringClassDescriptor(cu_->dex_file->GetMethodId(info->index)));
+ if (tgt_methods_declaring_class.starts_with("Ljava/lang/Double;")) {
+ std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
+ if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") {
+ return GenInlinedDoubleCvt(info);
+ }
+ if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") {
+ return GenInlinedDoubleCvt(info);
+ }
+ } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Float;")) {
+ std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
+ if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") {
+ return GenInlinedFloatCvt(info);
+ }
+ if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") {
+ return GenInlinedFloatCvt(info);
+ }
+ } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Math;") ||
+ tgt_methods_declaring_class.starts_with("Ljava/lang/StrictMath;")) {
+ std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
+ if (tgt_method == "int java.lang.Math.abs(int)" ||
+ tgt_method == "int java.lang.StrictMath.abs(int)") {
+ return GenInlinedAbsInt(info);
+ }
+ if (tgt_method == "long java.lang.Math.abs(long)" ||
+ tgt_method == "long java.lang.StrictMath.abs(long)") {
+ return GenInlinedAbsLong(info);
+ }
+ if (tgt_method == "int java.lang.Math.max(int, int)" ||
+ tgt_method == "int java.lang.StrictMath.max(int, int)") {
+ return GenInlinedMinMaxInt(info, false /* is_min */);
+ }
+ if (tgt_method == "int java.lang.Math.min(int, int)" ||
+ tgt_method == "int java.lang.StrictMath.min(int, int)") {
+ return GenInlinedMinMaxInt(info, true /* is_min */);
+ }
+ if (tgt_method == "double java.lang.Math.sqrt(double)" ||
+ tgt_method == "double java.lang.StrictMath.sqrt(double)") {
+ return GenInlinedSqrt(info);
+ }
+ } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/String;")) {
+ std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
+ if (tgt_method == "char java.lang.String.charAt(int)") {
+ return GenInlinedCharAt(info);
+ }
+ if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") {
+ return GenInlinedStringCompareTo(info);
+ }
+ if (tgt_method == "boolean java.lang.String.is_empty()") {
+ return GenInlinedStringIsEmptyOrLength(info, true /* is_empty */);
+ }
+ if (tgt_method == "int java.lang.String.index_of(int, int)") {
+ return GenInlinedIndexOf(info, false /* base 0 */);
+ }
+ if (tgt_method == "int java.lang.String.index_of(int)") {
+ return GenInlinedIndexOf(info, true /* base 0 */);
+ }
+ if (tgt_method == "int java.lang.String.length()") {
+ return GenInlinedStringIsEmptyOrLength(info, false /* is_empty */);
+ }
+ } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Thread;")) {
+ std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
+ if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") {
+ return GenInlinedCurrentThread(info);
+ }
+ } else if (tgt_methods_declaring_class.starts_with("Lsun/misc/Unsafe;")) {
+ std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
+ if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
+ return GenInlinedCas32(info, false);
+ }
+ if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") {
+ return GenInlinedCas32(info, true);
+ }
+ if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") {
+ return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
+ }
+ if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") {
+ return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") {
+ return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
+ false /* is_volatile */, false /* is_ordered */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") {
+ return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
+ true /* is_volatile */, false /* is_ordered */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") {
+ return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
+ false /* is_volatile */, true /* is_ordered */);
+ }
+ if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") {
+ return GenInlinedUnsafeGet(info, true /* is_long */, false /* is_volatile */);
+ }
+ if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") {
+ return GenInlinedUnsafeGet(info, true /* is_long */, true /* is_volatile */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") {
+ return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
+ false /* is_volatile */, false /* is_ordered */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") {
+ return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
+ true /* is_volatile */, false /* is_ordered */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") {
+ return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
+ false /* is_volatile */, true /* is_ordered */);
+ }
+ if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") {
+ return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
+ }
+ if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") {
+ return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") {
+ return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
+ false /* is_volatile */, false /* is_ordered */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") {
+ return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
+ true /* is_volatile */, false /* is_ordered */);
+ }
+ if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") {
+ return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
+ false /* is_volatile */, true /* is_ordered */);
+ }
+ }
+ return false;
+}
+
+void Mir2Lir::GenInvoke(CallInfo* info)
+{
+ if (GenIntrinsic(info)) {
+ return;
+ }
+ InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo
+ int call_state = 0;
+ LIR* null_ck;
+ LIR** p_null_ck = NULL;
+ NextCallInsn next_call_insn;
+ FlushAllRegs(); /* Everything to home location */
+ // Explicit register usage
+ LockCallTemps();
+
+ DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit();
+ MethodReference target_method(cUnit->GetDexFile(), info->index);
+ int vtable_idx;
+ uintptr_t direct_code;
+ uintptr_t direct_method;
+ bool skip_this;
+ bool fast_path =
+ cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(),
+ current_dalvik_offset_,
+ info->type, target_method,
+ vtable_idx,
+ direct_code, direct_method,
+ true) && !SLOW_INVOKE_PATH;
+ if (info->type == kInterface) {
+ if (fast_path) {
+ p_null_ck = &null_ck;
+ }
+ next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
+ skip_this = false;
+ } else if (info->type == kDirect) {
+ if (fast_path) {
+ p_null_ck = &null_ck;
+ }
+ next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
+ skip_this = false;
+ } else if (info->type == kStatic) {
+ next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
+ skip_this = false;
+ } else if (info->type == kSuper) {
+ DCHECK(!fast_path); // Fast path is a direct call.
+ next_call_insn = NextSuperCallInsnSP;
+ skip_this = false;
+ } else {
+ DCHECK_EQ(info->type, kVirtual);
+ next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
+ skip_this = fast_path;
+ }
+ if (!info->is_range) {
+ call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
+ next_call_insn, target_method,
+ vtable_idx, direct_code, direct_method,
+ original_type, skip_this);
+ } else {
+ call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
+ next_call_insn, target_method, vtable_idx,
+ direct_code, direct_method, original_type,
+ skip_this);
+ }
+ // Finish up any of the call sequence not interleaved in arg loading
+ while (call_state >= 0) {
+ call_state = next_call_insn(cu_, info, call_state, target_method,
+ vtable_idx, direct_code, direct_method,
+ original_type);
+ }
+ LIR* call_inst;
+ if (cu_->instruction_set != kX86) {
+ call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt));
+ } else {
+ if (fast_path && info->type != kInterface) {
+ call_inst = OpMem(kOpBlx, TargetReg(kArg0),
+ mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value());
+ } else {
+ int trampoline = 0;
+ switch (info->type) {
+ case kInterface:
+ trampoline = fast_path ? ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline)
+ : ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
+ break;
+ case kDirect:
+ trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
+ break;
+ case kStatic:
+ trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
+ break;
+ case kSuper:
+ trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
+ break;
+ case kVirtual:
+ trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
+ break;
+ default:
+ LOG(FATAL) << "Unexpected invoke type";
+ }
+ call_inst = OpThreadMem(kOpBlx, trampoline);
+ }
+ }
+ MarkSafepointPC(call_inst);
+
+ ClobberCalleeSave();
+ if (info->result.location != kLocInvalid) {
+ // We have a following MOVE_RESULT - do it now.
+ if (info->result.wide) {
+ RegLocation ret_loc = GetReturnWide(info->result.fp);
+ StoreValueWide(info->result, ret_loc);
+ } else {
+ RegLocation ret_loc = GetReturn(info->result.fp);
+ StoreValue(info->result, ret_loc);
+ }
+ }
+}
+
+} // namespace art