diff options
Diffstat (limited to 'docs/getting_started')
-rw-r--r-- | docs/getting_started/image-terminology.rst | 180 | ||||
-rw-r--r-- | docs/getting_started/index.rst | 13 | ||||
-rw-r--r-- | docs/getting_started/porting-guide.rst | 2828 | ||||
-rw-r--r-- | docs/getting_started/psci-lib-integration-guide.rst | 552 | ||||
-rw-r--r-- | docs/getting_started/rt-svc-writers-guide.rst | 311 | ||||
-rw-r--r-- | docs/getting_started/user-guide.rst | 2142 |
6 files changed, 6026 insertions, 0 deletions
diff --git a/docs/getting_started/image-terminology.rst b/docs/getting_started/image-terminology.rst new file mode 100644 index 000000000..4dc1d7346 --- /dev/null +++ b/docs/getting_started/image-terminology.rst @@ -0,0 +1,180 @@ +Image Terminology +================= + +.. section-numbering:: + :suffix: . + +.. contents:: + +This page contains the current name, abbreviated name and purpose of the various +images referred to in the Trusted Firmware project. + +General Notes +------------- + +- Some of the names and abbreviated names have changed to accomodate new + requirements. The changed names are as backward compatible as possible to + minimize confusion. Where applicable, the previous names are indicated. Some + code, documentation and build artefacts may still refer to the previous names; + these will inevitably take time to catch up. + +- The main name change is to prefix each image with the processor it corresponds + to (for example ``AP_``, ``SCP_``, ...). In situations where there is no + ambiguity (for example, within AP specific code/documentation), it is + permitted to omit the processor prefix (for example, just BL1 instead of + ``AP_BL1``). + +- Previously, the format for 3rd level images had 2 forms; ``BL3`` was either + suffixed with a dash ("-") followed by a number (for example, ``BL3-1``) or a + subscript number, depending on whether rich text formatting was available. + This was confusing and often the dash gets omitted in practice. Therefore the + new form is to just omit the dash and not use subscript formatting. + +- The names no longer contain dash ("-") characters at all. In some places (for + example, function names) it's not possible to use this character. All dashes + are either removed or replaced by underscores ("_"). + +- The abbreviation BL stands for BootLoader. This is a historical anomaly. + Clearly, many of these images are not BootLoaders, they are simply firmware + images. However, the BL abbreviation is now widely used and is retained for + backwards compatibility. + +- The image names are not case sensitive. For example, ``bl1`` is + interchangeable with ``BL1``, although mixed case should be avoided. + +Trusted Firmware Images +----------------------- + +AP Boot ROM: ``AP_BL1`` +~~~~~~~~~~~~~~~~~~~~~~~ + +Typically, this is the first code to execute on the AP and cannot be modified. +Its primary purpose is to perform the minimum intialization necessary to load +and authenticate an updateable AP firmware image into an executable RAM +location, then hand-off control to that image. + +AP RAM Firmware: ``AP_BL2`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This is the 2nd stage AP firmware. It is currently also known as the "Trusted +Boot Firmware". Its primary purpose is to perform any additional initialization +required to load and authenticate all 3rd level firmware images into their +executable RAM locations, then hand-off control to the EL3 Runtime Firmware. + +EL3 Runtime Firmware: ``AP_BL31`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Also known as "SoC AP firmware" or "EL3 monitor firmware". Its primary purpose +is to handle transitions between the normal and secure world. + +Secure-EL1 Payload (SP): ``AP_BL32`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Typically this is a TEE or Trusted OS, providing runtime secure services to the +normal world. However, it may refer to a more abstract Secure-EL1 Payload (SP). +Note that this abbreviation should only be used in systems where there is a +single or primary image executing at Secure-EL1. In systems where there are +potentially multiple SPs and there is no concept of a primary SP, this +abbreviation should be avoided; use the recommended **Other AP 3rd level +images** abbreviation instead. + +AP Normal World Firmware: ``AP_BL33`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +For example, UEFI or uboot. Its primary purpose is to boot a normal world OS. + +Other AP 3rd level images: ``AP_BL3_XXX`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The abbreviated names of the existing 3rd level images imply a load/execution +ordering (for example, ``AP_BL31 -> AP_BL32 -> AP_BL33``). Some systems may +have additional images and/or a different load/execution ordering. The +abbreviated names of the existing images are retained for backward compatibility +but new 3rd level images should be suffixed with an underscore followed by text +identifier, not a number. + +In systems where 3rd level images are provided by different vendors, the +abbreviated name should identify the vendor as well as the image +function. For example, ``AP_BL3_ARM_RAS``. + +SCP Boot ROM: ``SCP_BL1`` (previously ``BL0``) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Typically, this is the first code to execute on the SCP and cannot be modified. +Its primary purpose is to perform the minimum intialization necessary to load +and authenticate an updateable SCP firmware image into an executable RAM +location, then hand-off control to that image. This may be performed in +conjunction with other processor firmware (for example, ``AP_BL1`` and +``AP_BL2``). + +This image was previously abbreviated as ``BL0`` but in some systems, the SCP +may directly load/authenticate its own firmware. In these systems, it doesn't +make sense to interleave the image terminology for AP and SCP; both AP and SCP +Boot ROMs are ``BL1`` from their own point of view. + +SCP RAM Firmware: ``SCP_BL2`` (previously ``BL3-0``) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This is the 2nd stage SCP firmware. It is currently also known as the "SCP +runtime firmware" but it could potentially be an intermediate firmware if the +SCP needs to load/authenticate multiple 3rd level images in future. + +This image was previously abbreviated as BL3-0 but from the SCP's point of view, +this has always been the 2nd stage firmware. The previous name is too +AP-centric. + +Firmware Update (FWU) Images +---------------------------- + +The terminology for these images has not been widely adopted yet but they have +to be considered in a production Trusted Board Boot solution. + +AP Firmware Update Boot ROM: ``AP_NS_BL1U`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Typically, this is the first normal world code to execute on the AP during a +firmware update operation, and cannot be modified. Its primary purpose is to +load subequent firmware update images from an external interface and communicate +with ``AP_BL1`` to authenticate those images. + +During firmware update, there are (potentially) multiple transitions between the +secure and normal world. The "level" of the BL image is relative to the world +it's in so it makes sense to encode "NS" in the normal world images. The absence +of "NS" implies a secure world image. + +AP Firmware Update Config: ``AP_BL2U`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This image does the minimum necessary AP secure world configuration required to +complete the firmware update operation. It is potentially a subset of ``AP_BL2`` +functionality. + +SCP Firmware Update Config: ``SCP_BL2U`` (previously ``BL2-U0``) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This image does the minimum necessary SCP secure world configuration required to +complete the firmware update operation. It is potentially a subset of +``SCP_BL2`` functionality. + +AP Firmware Updater: ``AP_NS_BL2U`` (previously ``BL3-U``) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This is the 2nd stage AP normal world firmware updater. Its primary purpose is +to load a new set of firmware images from an external interface and write them +into non-volatile storage. + +Other Processor Firmware Images +------------------------------- + +Some systems may have additional processors to the AP and SCP. For example, a +Management Control Processor (MCP). Images for these processors should follow +the same terminology, with the processor abbreviation prefix, followed by +underscore and the level of the firmware image. + +For example, + +MCP Boot ROM: ``MCP_BL1`` +~~~~~~~~~~~~~~~~~~~~~~~~~ + +MCP RAM Firmware: ``MCP_BL2`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/getting_started/index.rst b/docs/getting_started/index.rst new file mode 100644 index 000000000..23608f860 --- /dev/null +++ b/docs/getting_started/index.rst @@ -0,0 +1,13 @@ +Getting Started +=============== + +.. toctree:: + :maxdepth: 1 + :caption: Contents + :numbered: + + user-guide + image-terminology + porting-guide + psci-lib-integration-guide + rt-svc-writers-guide diff --git a/docs/getting_started/porting-guide.rst b/docs/getting_started/porting-guide.rst new file mode 100644 index 000000000..cad8b5c9a --- /dev/null +++ b/docs/getting_started/porting-guide.rst @@ -0,0 +1,2828 @@ +Trusted Firmware-A Porting Guide +================================ + + + +.. contents:: + +Introduction +------------ + +Porting Trusted Firmware-A (TF-A) to a new platform involves making some +mandatory and optional modifications for both the cold and warm boot paths. +Modifications consist of: + +- Implementing a platform-specific function or variable, +- Setting up the execution context in a certain way, or +- Defining certain constants (for example #defines). + +The platform-specific functions and variables are declared in +`include/plat/common/platform.h`_. The firmware provides a default implementation +of variables and functions to fulfill the optional requirements. These +implementations are all weakly defined; they are provided to ease the porting +effort. Each platform port can override them with its own implementation if the +default implementation is inadequate. + +Some modifications are common to all Boot Loader (BL) stages. Section 2 +discusses these in detail. The subsequent sections discuss the remaining +modifications for each BL stage in detail. + +This document should be read in conjunction with the TF-A `User Guide`_. + +Please refer to the `Platform compatibility policy`_ for the policy regarding +compatibility and deprecation of these porting interfaces. + +Only Arm development platforms (such as FVP and Juno) may use the +functions/definitions in ``include/plat/arm/common/`` and the corresponding +source files in ``plat/arm/common/``. This is done so that there are no +dependencies between platforms maintained by different people/companies. If you +want to use any of the functionality present in ``plat/arm`` files, please +create a pull request that moves the code to ``plat/common`` so that it can be +discussed. + +Common modifications +-------------------- + +This section covers the modifications that should be made by the platform for +each BL stage to correctly port the firmware stack. They are categorized as +either mandatory or optional. + +Common mandatory modifications +------------------------------ + +A platform port must enable the Memory Management Unit (MMU) as well as the +instruction and data caches for each BL stage. Setting up the translation +tables is the responsibility of the platform port because memory maps differ +across platforms. A memory translation library (see ``lib/xlat_tables/``) is +provided to help in this setup. + +Note that although this library supports non-identity mappings, this is intended +only for re-mapping peripheral physical addresses and allows platforms with high +I/O addresses to reduce their virtual address space. All other addresses +corresponding to code and data must currently use an identity mapping. + +Also, the only translation granule size supported in TF-A is 4KB, as various +parts of the code assume that is the case. It is not possible to switch to +16 KB or 64 KB granule sizes at the moment. + +In Arm standard platforms, each BL stage configures the MMU in the +platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses +an identity mapping for all addresses. + +If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a +block of identity mapped secure memory with Device-nGnRE attributes aligned to +page boundary (4K) for each BL stage. All sections which allocate coherent +memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a +section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its +possible for the firmware to place variables in it using the following C code +directive: + +:: + + __section("bakery_lock") + +Or alternatively the following assembler code directive: + +:: + + .section bakery_lock + +The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are +used to allocate any data structures that are accessed both when a CPU is +executing with its MMU and caches enabled, and when it's running with its MMU +and caches disabled. Examples are given below. + +The following variables, functions and constants must be defined by the platform +for the firmware to work correctly. + +File : platform_def.h [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Each platform must ensure that a header file of this name is in the system +include path with the following constants defined. This will require updating +the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file. + +Platform ports may optionally use the file `include/plat/common/common_def.h`_, +which provides typical values for some of the constants below. These values are +likely to be suitable for all platform ports. + +- **#define : PLATFORM_LINKER_FORMAT** + + Defines the linker format used by the platform, for example + ``elf64-littleaarch64``. + +- **#define : PLATFORM_LINKER_ARCH** + + Defines the processor architecture for the linker by the platform, for + example ``aarch64``. + +- **#define : PLATFORM_STACK_SIZE** + + Defines the normal stack memory available to each CPU. This constant is used + by `plat/common/aarch64/platform_mp_stack.S`_ and + `plat/common/aarch64/platform_up_stack.S`_. + +- **define : CACHE_WRITEBACK_GRANULE** + + Defines the size in bits of the largest cache line across all the cache + levels in the platform. + +- **#define : FIRMWARE_WELCOME_STR** + + Defines the character string printed by BL1 upon entry into the ``bl1_main()`` + function. + +- **#define : PLATFORM_CORE_COUNT** + + Defines the total number of CPUs implemented by the platform across all + clusters in the system. + +- **#define : PLAT_NUM_PWR_DOMAINS** + + Defines the total number of nodes in the power domain topology + tree at all the power domain levels used by the platform. + This macro is used by the PSCI implementation to allocate + data structures to represent power domain topology. + +- **#define : PLAT_MAX_PWR_LVL** + + Defines the maximum power domain level that the power management operations + should apply to. More often, but not always, the power domain level + corresponds to affinity level. This macro allows the PSCI implementation + to know the highest power domain level that it should consider for power + management operations in the system that the platform implements. For + example, the Base AEM FVP implements two clusters with a configurable + number of CPUs and it reports the maximum power domain level as 1. + +- **#define : PLAT_MAX_OFF_STATE** + + Defines the local power state corresponding to the deepest power down + possible at every power domain level in the platform. The local power + states for each level may be sparsely allocated between 0 and this value + with 0 being reserved for the RUN state. The PSCI implementation uses this + value to initialize the local power states of the power domain nodes and + to specify the requested power state for a PSCI_CPU_OFF call. + +- **#define : PLAT_MAX_RET_STATE** + + Defines the local power state corresponding to the deepest retention state + possible at every power domain level in the platform. This macro should be + a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the + PSCI implementation to distinguish between retention and power down local + power states within PSCI_CPU_SUSPEND call. + +- **#define : PLAT_MAX_PWR_LVL_STATES** + + Defines the maximum number of local power states per power domain level + that the platform supports. The default value of this macro is 2 since + most platforms just support a maximum of two local power states at each + power domain level (power-down and retention). If the platform needs to + account for more local power states, then it must redefine this macro. + + Currently, this macro is used by the Generic PSCI implementation to size + the array used for PSCI_STAT_COUNT/RESIDENCY accounting. + +- **#define : BL1_RO_BASE** + + Defines the base address in secure ROM where BL1 originally lives. Must be + aligned on a page-size boundary. + +- **#define : BL1_RO_LIMIT** + + Defines the maximum address in secure ROM that BL1's actual content (i.e. + excluding any data section allocated at runtime) can occupy. + +- **#define : BL1_RW_BASE** + + Defines the base address in secure RAM where BL1's read-write data will live + at runtime. Must be aligned on a page-size boundary. + +- **#define : BL1_RW_LIMIT** + + Defines the maximum address in secure RAM that BL1's read-write data can + occupy at runtime. + +- **#define : BL2_BASE** + + Defines the base address in secure RAM where BL1 loads the BL2 binary image. + Must be aligned on a page-size boundary. This constant is not applicable + when BL2_IN_XIP_MEM is set to '1'. + +- **#define : BL2_LIMIT** + + Defines the maximum address in secure RAM that the BL2 image can occupy. + This constant is not applicable when BL2_IN_XIP_MEM is set to '1'. + +- **#define : BL2_RO_BASE** + + Defines the base address in secure XIP memory where BL2 RO section originally + lives. Must be aligned on a page-size boundary. This constant is only needed + when BL2_IN_XIP_MEM is set to '1'. + +- **#define : BL2_RO_LIMIT** + + Defines the maximum address in secure XIP memory that BL2's actual content + (i.e. excluding any data section allocated at runtime) can occupy. This + constant is only needed when BL2_IN_XIP_MEM is set to '1'. + +- **#define : BL2_RW_BASE** + + Defines the base address in secure RAM where BL2's read-write data will live + at runtime. Must be aligned on a page-size boundary. This constant is only + needed when BL2_IN_XIP_MEM is set to '1'. + +- **#define : BL2_RW_LIMIT** + + Defines the maximum address in secure RAM that BL2's read-write data can + occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set + to '1'. + +- **#define : BL31_BASE** + + Defines the base address in secure RAM where BL2 loads the BL31 binary + image. Must be aligned on a page-size boundary. + +- **#define : BL31_LIMIT** + + Defines the maximum address in secure RAM that the BL31 image can occupy. + +For every image, the platform must define individual identifiers that will be +used by BL1 or BL2 to load the corresponding image into memory from non-volatile +storage. For the sake of performance, integer numbers will be used as +identifiers. The platform will use those identifiers to return the relevant +information about the image to be loaded (file handler, load address, +authentication information, etc.). The following image identifiers are +mandatory: + +- **#define : BL2_IMAGE_ID** + + BL2 image identifier, used by BL1 to load BL2. + +- **#define : BL31_IMAGE_ID** + + BL31 image identifier, used by BL2 to load BL31. + +- **#define : BL33_IMAGE_ID** + + BL33 image identifier, used by BL2 to load BL33. + +If Trusted Board Boot is enabled, the following certificate identifiers must +also be defined: + +- **#define : TRUSTED_BOOT_FW_CERT_ID** + + BL2 content certificate identifier, used by BL1 to load the BL2 content + certificate. + +- **#define : TRUSTED_KEY_CERT_ID** + + Trusted key certificate identifier, used by BL2 to load the trusted key + certificate. + +- **#define : SOC_FW_KEY_CERT_ID** + + BL31 key certificate identifier, used by BL2 to load the BL31 key + certificate. + +- **#define : SOC_FW_CONTENT_CERT_ID** + + BL31 content certificate identifier, used by BL2 to load the BL31 content + certificate. + +- **#define : NON_TRUSTED_FW_KEY_CERT_ID** + + BL33 key certificate identifier, used by BL2 to load the BL33 key + certificate. + +- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID** + + BL33 content certificate identifier, used by BL2 to load the BL33 content + certificate. + +- **#define : FWU_CERT_ID** + + Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the + FWU content certificate. + +- **#define : PLAT_CRYPTOCELL_BASE** + + This defines the base address of ArmĀ® TrustZoneĀ® CryptoCell and must be + defined if CryptoCell crypto driver is used for Trusted Board Boot. For + capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is + set. + +If the AP Firmware Updater Configuration image, BL2U is used, the following +must also be defined: + +- **#define : BL2U_BASE** + + Defines the base address in secure memory where BL1 copies the BL2U binary + image. Must be aligned on a page-size boundary. + +- **#define : BL2U_LIMIT** + + Defines the maximum address in secure memory that the BL2U image can occupy. + +- **#define : BL2U_IMAGE_ID** + + BL2U image identifier, used by BL1 to fetch an image descriptor + corresponding to BL2U. + +If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following +must also be defined: + +- **#define : SCP_BL2U_IMAGE_ID** + + SCP_BL2U image identifier, used by BL1 to fetch an image descriptor + corresponding to SCP_BL2U. + NOTE: TF-A does not provide source code for this image. + +If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must +also be defined: + +- **#define : NS_BL1U_BASE** + + Defines the base address in non-secure ROM where NS_BL1U executes. + Must be aligned on a page-size boundary. + NOTE: TF-A does not provide source code for this image. + +- **#define : NS_BL1U_IMAGE_ID** + + NS_BL1U image identifier, used by BL1 to fetch an image descriptor + corresponding to NS_BL1U. + +If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also +be defined: + +- **#define : NS_BL2U_BASE** + + Defines the base address in non-secure memory where NS_BL2U executes. + Must be aligned on a page-size boundary. + NOTE: TF-A does not provide source code for this image. + +- **#define : NS_BL2U_IMAGE_ID** + + NS_BL2U image identifier, used by BL1 to fetch an image descriptor + corresponding to NS_BL2U. + +For the the Firmware update capability of TRUSTED BOARD BOOT, the following +macros may also be defined: + +- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES** + + Total number of images that can be loaded simultaneously. If the platform + doesn't specify any value, it defaults to 10. + +If a SCP_BL2 image is supported by the platform, the following constants must +also be defined: + +- **#define : SCP_BL2_IMAGE_ID** + + SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory + from platform storage before being transferred to the SCP. + +- **#define : SCP_FW_KEY_CERT_ID** + + SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key + certificate (mandatory when Trusted Board Boot is enabled). + +- **#define : SCP_FW_CONTENT_CERT_ID** + + SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2 + content certificate (mandatory when Trusted Board Boot is enabled). + +If a BL32 image is supported by the platform, the following constants must +also be defined: + +- **#define : BL32_IMAGE_ID** + + BL32 image identifier, used by BL2 to load BL32. + +- **#define : TRUSTED_OS_FW_KEY_CERT_ID** + + BL32 key certificate identifier, used by BL2 to load the BL32 key + certificate (mandatory when Trusted Board Boot is enabled). + +- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID** + + BL32 content certificate identifier, used by BL2 to load the BL32 content + certificate (mandatory when Trusted Board Boot is enabled). + +- **#define : BL32_BASE** + + Defines the base address in secure memory where BL2 loads the BL32 binary + image. Must be aligned on a page-size boundary. + +- **#define : BL32_LIMIT** + + Defines the maximum address that the BL32 image can occupy. + +If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the +platform, the following constants must also be defined: + +- **#define : TSP_SEC_MEM_BASE** + + Defines the base address of the secure memory used by the TSP image on the + platform. This must be at the same address or below ``BL32_BASE``. + +- **#define : TSP_SEC_MEM_SIZE** + + Defines the size of the secure memory used by the BL32 image on the + platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully + accommodate the memory required by the BL32 image, defined by ``BL32_BASE`` + and ``BL32_LIMIT``. + +- **#define : TSP_IRQ_SEC_PHY_TIMER** + + Defines the ID of the secure physical generic timer interrupt used by the + TSP's interrupt handling code. + +If the platform port uses the translation table library code, the following +constants must also be defined: + +- **#define : PLAT_XLAT_TABLES_DYNAMIC** + + Optional flag that can be set per-image to enable the dynamic allocation of + regions even when the MMU is enabled. If not defined, only static + functionality will be available, if defined and set to 1 it will also + include the dynamic functionality. + +- **#define : MAX_XLAT_TABLES** + + Defines the maximum number of translation tables that are allocated by the + translation table library code. To minimize the amount of runtime memory + used, choose the smallest value needed to map the required virtual addresses + for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL + image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions + as well. + +- **#define : MAX_MMAP_REGIONS** + + Defines the maximum number of regions that are allocated by the translation + table library code. A region consists of physical base address, virtual base + address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as + defined in the ``mmap_region_t`` structure. The platform defines the regions + that should be mapped. Then, the translation table library will create the + corresponding tables and descriptors at runtime. To minimize the amount of + runtime memory used, choose the smallest value needed to register the + required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is + enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate + the dynamic regions as well. + +- **#define : PLAT_VIRT_ADDR_SPACE_SIZE** + + Defines the total size of the virtual address space in bytes. For example, + for a 32 bit virtual address space, this value should be ``(1ULL << 32)``. + +- **#define : PLAT_PHY_ADDR_SPACE_SIZE** + + Defines the total size of the physical address space in bytes. For example, + for a 32 bit physical address space, this value should be ``(1ULL << 32)``. + +If the platform port uses the IO storage framework, the following constants +must also be defined: + +- **#define : MAX_IO_DEVICES** + + Defines the maximum number of registered IO devices. Attempting to register + more devices than this value using ``io_register_device()`` will fail with + -ENOMEM. + +- **#define : MAX_IO_HANDLES** + + Defines the maximum number of open IO handles. Attempting to open more IO + entities than this value using ``io_open()`` will fail with -ENOMEM. + +- **#define : MAX_IO_BLOCK_DEVICES** + + Defines the maximum number of registered IO block devices. Attempting to + register more devices this value using ``io_dev_open()`` will fail + with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES. + With this macro, multiple block devices could be supported at the same + time. + +If the platform needs to allocate data within the per-cpu data framework in +BL31, it should define the following macro. Currently this is only required if +the platform decides not to use the coherent memory section by undefining the +``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the +required memory within the the per-cpu data to minimize wastage. + +- **#define : PLAT_PCPU_DATA_SIZE** + + Defines the memory (in bytes) to be reserved within the per-cpu data + structure for use by the platform layer. + +The following constants are optional. They should be defined when the platform +memory layout implies some image overlaying like in Arm standard platforms. + +- **#define : BL31_PROGBITS_LIMIT** + + Defines the maximum address in secure RAM that the BL31's progbits sections + can occupy. + +- **#define : TSP_PROGBITS_LIMIT** + + Defines the maximum address that the TSP's progbits sections can occupy. + +If the platform port uses the PL061 GPIO driver, the following constant may +optionally be defined: + +- **PLAT_PL061_MAX_GPIOS** + Maximum number of GPIOs required by the platform. This allows control how + much memory is allocated for PL061 GPIO controllers. The default value is + + #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS)) + +If the platform port uses the partition driver, the following constant may +optionally be defined: + +- **PLAT_PARTITION_MAX_ENTRIES** + Maximum number of partition entries required by the platform. This allows + control how much memory is allocated for partition entries. The default + value is 128. + `For example, define the build flag in platform.mk`_: + PLAT_PARTITION_MAX_ENTRIES := 12 + $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES)) + +The following constant is optional. It should be defined to override the default +behaviour of the ``assert()`` function (for example, to save memory). + +- **PLAT_LOG_LEVEL_ASSERT** + If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``, + ``assert()`` prints the name of the file, the line number and the asserted + expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file + name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it + doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't + defined, it defaults to ``LOG_LEVEL``. + +If the platform port uses the Activity Monitor Unit, the following constants +may be defined: + +- **PLAT_AMU_GROUP1_COUNTERS_MASK** + This mask reflects the set of group counters that should be enabled. The + maximum number of group 1 counters supported by AMUv1 is 16 so the mask + can be at most 0xffff. If the platform does not define this mask, no group 1 + counters are enabled. If the platform defines this mask, the following + constant needs to also be defined. + +- **PLAT_AMU_GROUP1_NR_COUNTERS** + This value is used to allocate an array to save and restore the counters + specified by ``PLAT_AMU_GROUP1_COUNTERS_MASK`` on CPU suspend. + This value should be equal to the highest bit position set in the + mask, plus 1. The maximum number of group 1 counters in AMUv1 is 16. + +File : plat_macros.S [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Each platform must ensure a file of this name is in the system include path with +the following macro defined. In the Arm development platforms, this file is +found in ``plat/arm/board/<plat_name>/include/plat_macros.S``. + +- **Macro : plat_crash_print_regs** + + This macro allows the crash reporting routine to print relevant platform + registers in case of an unhandled exception in BL31. This aids in debugging + and this macro can be defined to be empty in case register reporting is not + desired. + + For instance, GIC or interconnect registers may be helpful for + troubleshooting. + +Handling Reset +-------------- + +BL1 by default implements the reset vector where execution starts from a cold +or warm boot. BL31 can be optionally set as a reset vector using the +``RESET_TO_BL31`` make variable. + +For each CPU, the reset vector code is responsible for the following tasks: + +#. Distinguishing between a cold boot and a warm boot. + +#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that + the CPU is placed in a platform-specific state until the primary CPU + performs the necessary steps to remove it from this state. + +#. In the case of a warm boot, ensuring that the CPU jumps to a platform- + specific address in the BL31 image in the same processor mode as it was + when released from reset. + +The following functions need to be implemented by the platform port to enable +reset vector code to perform the above tasks. + +Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : uintptr_t + +This function is called with the MMU and caches disabled +(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for +distinguishing between a warm and cold reset for the current CPU using +platform-specific means. If it's a warm reset, then it returns the warm +reset entrypoint point provided to ``plat_setup_psci_ops()`` during +BL31 initialization. If it's a cold reset then this function must return zero. + +This function does not follow the Procedure Call Standard used by the +Application Binary Interface for the Arm 64-bit architecture. The caller should +not assume that callee saved registers are preserved across a call to this +function. + +This function fulfills requirement 1 and 3 listed above. + +Note that for platforms that support programming the reset address, it is +expected that a CPU will start executing code directly at the right address, +both on a cold and warm reset. In this case, there is no need to identify the +type of reset nor to query the warm reset entrypoint. Therefore, implementing +this function is not required on such platforms. + +Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + +This function is called with the MMU and data caches disabled. It is responsible +for placing the executing secondary CPU in a platform-specific state until the +primary CPU performs the necessary actions to bring it out of that state and +allow entry into the OS. This function must not return. + +In the Arm FVP port, when using the normal boot flow, each secondary CPU powers +itself off. The primary CPU is responsible for powering up the secondary CPUs +when normal world software requires them. When booting an EL3 payload instead, +they stay powered on and are put in a holding pen until their mailbox gets +populated. + +This function fulfills requirement 2 above. + +Note that for platforms that can't release secondary CPUs out of reset, only the +primary CPU will execute the cold boot code. Therefore, implementing this +function is not required on such platforms. + +Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : unsigned int + +This function identifies whether the current CPU is the primary CPU or a +secondary CPU. A return value of zero indicates that the CPU is not the +primary CPU, while a non-zero return value indicates that the CPU is the +primary CPU. + +Note that for platforms that can't release secondary CPUs out of reset, only the +primary CPU will execute the cold boot code. Therefore, there is no need to +distinguish between primary and secondary CPUs and implementing this function is +not required. + +Function : platform_mem_init() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function is called before any access to data is made by the firmware, in +order to carry out any essential memory initialization. + +Function: plat_get_rotpk_info() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void *, void **, unsigned int *, unsigned int * + Return : int + +This function is mandatory when Trusted Board Boot is enabled. It returns a +pointer to the ROTPK stored in the platform (or a hash of it) and its length. +The ROTPK must be encoded in DER format according to the following ASN.1 +structure: + +:: + + AlgorithmIdentifier ::= SEQUENCE { + algorithm OBJECT IDENTIFIER, + parameters ANY DEFINED BY algorithm OPTIONAL + } + + SubjectPublicKeyInfo ::= SEQUENCE { + algorithm AlgorithmIdentifier, + subjectPublicKey BIT STRING + } + +In case the function returns a hash of the key: + +:: + + DigestInfo ::= SEQUENCE { + digestAlgorithm AlgorithmIdentifier, + digest OCTET STRING + } + +The function returns 0 on success. Any other value is treated as error by the +Trusted Board Boot. The function also reports extra information related +to the ROTPK in the flags parameter: + +:: + + ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a + hash. + ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK + verification while the platform ROTPK is not deployed. + When this flag is set, the function does not need to + return a platform ROTPK, and the authentication + framework uses the ROTPK in the certificate without + verifying it against the platform value. This flag + must not be used in a deployed production environment. + +Function: plat_get_nv_ctr() +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void *, unsigned int * + Return : int + +This function is mandatory when Trusted Board Boot is enabled. It returns the +non-volatile counter value stored in the platform in the second argument. The +cookie in the first argument may be used to select the counter in case the +platform provides more than one (for example, on platforms that use the default +TBBR CoT, the cookie will correspond to the OID values defined in +TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID). + +The function returns 0 on success. Any other value means the counter value could +not be retrieved from the platform. + +Function: plat_set_nv_ctr() +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void *, unsigned int + Return : int + +This function is mandatory when Trusted Board Boot is enabled. It sets a new +counter value in the platform. The cookie in the first argument may be used to +select the counter (as explained in plat_get_nv_ctr()). The second argument is +the updated counter value to be written to the NV counter. + +The function returns 0 on success. Any other value means the counter value could +not be updated. + +Function: plat_set_nv_ctr2() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void *, const auth_img_desc_t *, unsigned int + Return : int + +This function is optional when Trusted Board Boot is enabled. If this +interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The +first argument passed is a cookie and is typically used to +differentiate between a Non Trusted NV Counter and a Trusted NV +Counter. The second argument is a pointer to an authentication image +descriptor and may be used to decide if the counter is allowed to be +updated or not. The third argument is the updated counter value to +be written to the NV counter. + +The function returns 0 on success. Any other value means the counter value +either could not be updated or the authentication image descriptor indicates +that it is not allowed to be updated. + +Common mandatory function modifications +--------------------------------------- + +The following functions are mandatory functions which need to be implemented +by the platform port. + +Function : plat_my_core_pos() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : unsigned int + +This function returns the index of the calling CPU which is used as a +CPU-specific linear index into blocks of memory (for example while allocating +per-CPU stacks). This function will be invoked very early in the +initialization sequence which mandates that this function should be +implemented in assembly and should not rely on the availability of a C +runtime environment. This function can clobber x0 - x8 and must preserve +x9 - x29. + +This function plays a crucial role in the power domain topology framework in +PSCI and details of this can be found in `Power Domain Topology Design`_. + +Function : plat_core_pos_by_mpidr() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : u_register_t + Return : int + +This function validates the ``MPIDR`` of a CPU and converts it to an index, +which can be used as a CPU-specific linear index into blocks of memory. In +case the ``MPIDR`` is invalid, this function returns -1. This function will only +be invoked by BL31 after the power domain topology is initialized and can +utilize the C runtime environment. For further details about how TF-A +represents the power domain topology and how this relates to the linear CPU +index, please refer `Power Domain Topology Design`_. + +Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Arguments : void **heap_addr, size_t *heap_size + Return : int + +This function is invoked during Mbed TLS library initialisation to get a heap, +by means of a starting address and a size. This heap will then be used +internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS +must be able to provide a heap to it. + +A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in +which a heap is statically reserved during compile time inside every image +(i.e. every BL stage) that utilises Mbed TLS. In this default implementation, +the function simply returns the address and size of this "pre-allocated" heap. +For a platform to use this default implementation, only a call to the helper +from inside plat_get_mbedtls_heap() body is enough and nothing else is needed. + +However, by writting their own implementation, platforms have the potential to +optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is +shared between BL1 and BL2 stages and, thus, the necessary space is not reserved +twice. + +On success the function should return 0 and a negative error code otherwise. + +Common optional modifications +----------------------------- + +The following are helper functions implemented by the firmware that perform +common platform-specific tasks. A platform may choose to override these +definitions. + +Function : plat_set_my_stack() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function sets the current stack pointer to the normal memory stack that +has been allocated for the current CPU. For BL images that only require a +stack for the primary CPU, the UP version of the function is used. The size +of the stack allocated to each CPU is specified by the platform defined +constant ``PLATFORM_STACK_SIZE``. + +Common implementations of this function for the UP and MP BL images are +provided in `plat/common/aarch64/platform_up_stack.S`_ and +`plat/common/aarch64/platform_mp_stack.S`_ + +Function : plat_get_my_stack() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : uintptr_t + +This function returns the base address of the normal memory stack that +has been allocated for the current CPU. For BL images that only require a +stack for the primary CPU, the UP version of the function is used. The size +of the stack allocated to each CPU is specified by the platform defined +constant ``PLATFORM_STACK_SIZE``. + +Common implementations of this function for the UP and MP BL images are +provided in `plat/common/aarch64/platform_up_stack.S`_ and +`plat/common/aarch64/platform_mp_stack.S`_ + +Function : plat_report_exception() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int + Return : void + +A platform may need to report various information about its status when an +exception is taken, for example the current exception level, the CPU security +state (secure/non-secure), the exception type, and so on. This function is +called in the following circumstances: + +- In BL1, whenever an exception is taken. +- In BL2, whenever an exception is taken. + +The default implementation doesn't do anything, to avoid making assumptions +about the way the platform displays its status information. + +For AArch64, this function receives the exception type as its argument. +Possible values for exceptions types are listed in the +`include/common/bl_common.h`_ header file. Note that these constants are not +related to any architectural exception code; they are just a TF-A convention. + +For AArch32, this function receives the exception mode as its argument. +Possible values for exception modes are listed in the +`include/lib/aarch32/arch.h`_ header file. + +Function : plat_reset_handler() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +A platform may need to do additional initialization after reset. This function +allows the platform to do the platform specific intializations. Platform +specific errata workarounds could also be implemented here. The API should +preserve the values of callee saved registers x19 to x29. + +The default implementation doesn't do anything. If a platform needs to override +the default implementation, refer to the `Firmware Design`_ for general +guidelines. + +Function : plat_disable_acp() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This API allows a platform to disable the Accelerator Coherency Port (if +present) during a cluster power down sequence. The default weak implementation +doesn't do anything. Since this API is called during the power down sequence, +it has restrictions for stack usage and it can use the registers x0 - x17 as +scratch registers. It should preserve the value in x18 register as it is used +by the caller to store the return address. + +Function : plat_error_handler() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : int + Return : void + +This API is called when the generic code encounters an error situation from +which it cannot continue. It allows the platform to perform error reporting or +recovery actions (for example, reset the system). This function must not return. + +The parameter indicates the type of error using standard codes from ``errno.h``. +Possible errors reported by the generic code are: + +- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted + Board Boot is enabled) +- ``-ENOENT``: the requested image or certificate could not be found or an IO + error was detected +- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this + error is usually an indication of an incorrect array size + +The default implementation simply spins. + +Function : plat_panic_handler() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This API is called when the generic code encounters an unexpected error +situation from which it cannot recover. This function must not return, +and must be implemented in assembly because it may be called before the C +environment is initialized. + +Note: The address from where it was called is stored in x30 (Link Register). +The default implementation simply spins. + +Function : plat_get_bl_image_load_info() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : bl_load_info_t * + +This function returns pointer to the list of images that the platform has +populated to load. This function is invoked in BL2 to load the +BL3xx images. + +Function : plat_get_next_bl_params() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : bl_params_t * + +This function returns a pointer to the shared memory that the platform has +kept aside to pass TF-A related information that next BL image needs. This +function is invoked in BL2 to pass this information to the next BL +image. + +Function : plat_get_stack_protector_canary() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : u_register_t + +This function returns a random value that is used to initialize the canary used +when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable +value will weaken the protection as the attacker could easily write the right +value as part of the attack most of the time. Therefore, it should return a +true random number. + +Note: For the protection to be effective, the global data need to be placed at +a lower address than the stack bases. Failure to do so would allow an attacker +to overwrite the canary as part of the stack buffer overflow attack. + +Function : plat_flush_next_bl_params() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function flushes to main memory all the image params that are passed to +next image. This function is invoked in BL2 to flush this information +to the next BL image. + +Function : plat_log_get_prefix() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int + Return : const char * + +This function defines the prefix string corresponding to the `log_level` to be +prepended to all the log output from TF-A. The `log_level` (argument) will +correspond to one of the standard log levels defined in debug.h. The platform +can override the common implementation to define a different prefix string for +the log output. The implementation should be robust to future changes that +increase the number of log levels. + +Modifications specific to a Boot Loader stage +--------------------------------------------- + +Boot Loader Stage 1 (BL1) +------------------------- + +BL1 implements the reset vector where execution starts from after a cold or +warm boot. For each CPU, BL1 is responsible for the following tasks: + +#. Handling the reset as described in section 2.2 + +#. In the case of a cold boot and the CPU being the primary CPU, ensuring that + only this CPU executes the remaining BL1 code, including loading and passing + control to the BL2 stage. + +#. Identifying and starting the Firmware Update process (if required). + +#. Loading the BL2 image from non-volatile storage into secure memory at the + address specified by the platform defined constant ``BL2_BASE``. + +#. Populating a ``meminfo`` structure with the following information in memory, + accessible by BL2 immediately upon entry. + + :: + + meminfo.total_base = Base address of secure RAM visible to BL2 + meminfo.total_size = Size of secure RAM visible to BL2 + + By default, BL1 places this ``meminfo`` structure at the end of secure + memory visible to BL2. + + It is possible for the platform to decide where it wants to place the + ``meminfo`` structure for BL2 or restrict the amount of memory visible to + BL2 by overriding the weak default implementation of + ``bl1_plat_handle_post_image_load`` API. + +The following functions need to be implemented by the platform port to enable +BL1 to perform the above tasks. + +Function : bl1_early_platform_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function executes with the MMU and data caches disabled. It is only called +by the primary CPU. + +On Arm standard platforms, this function: + +- Enables a secure instance of SP805 to act as the Trusted Watchdog. + +- Initializes a UART (PL011 console), which enables access to the ``printf`` + family of functions in BL1. + +- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to + the CCI slave interface corresponding to the cluster that includes the + primary CPU. + +Function : bl1_plat_arch_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function performs any platform-specific and architectural setup that the +platform requires. Platform-specific setup might include configuration of +memory controllers and the interconnect. + +In Arm standard platforms, this function enables the MMU. + +This function helps fulfill requirement 2 above. + +Function : bl1_platform_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function executes with the MMU and data caches enabled. It is responsible +for performing any remaining platform-specific setup that can occur after the +MMU and data cache have been enabled. + +if support for multiple boot sources is required, it initializes the boot +sequence used by plat_try_next_boot_source(). + +In Arm standard platforms, this function initializes the storage abstraction +layer used to load the next bootloader image. + +This function helps fulfill requirement 4 above. + +Function : bl1_plat_sec_mem_layout() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : meminfo * + +This function should only be called on the cold boot path. It executes with the +MMU and data caches enabled. The pointer returned by this function must point to +a ``meminfo`` structure containing the extents and availability of secure RAM for +the BL1 stage. + +:: + + meminfo.total_base = Base address of secure RAM visible to BL1 + meminfo.total_size = Size of secure RAM visible to BL1 + +This information is used by BL1 to load the BL2 image in secure RAM. BL1 also +populates a similar structure to tell BL2 the extents of memory available for +its own use. + +This function helps fulfill requirements 4 and 5 above. + +Function : bl1_plat_prepare_exit() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : entry_point_info_t * + Return : void + +This function is called prior to exiting BL1 in response to the +``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform +platform specific clean up or bookkeeping operations before transferring +control to the next image. It receives the address of the ``entry_point_info_t`` +structure passed from BL2. This function runs with MMU disabled. + +Function : bl1_plat_set_ep_info() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int image_id, entry_point_info_t *ep_info + Return : void + +This function allows platforms to override ``ep_info`` for the given ``image_id``. + +The default implementation just returns. + +Function : bl1_plat_get_next_image_id() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : unsigned int + +This and the following function must be overridden to enable the FWU feature. + +BL1 calls this function after platform setup to identify the next image to be +loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds +with the normal boot sequence, which loads and executes BL2. If the platform +returns a different image id, BL1 assumes that Firmware Update is required. + +The default implementation always returns ``BL2_IMAGE_ID``. The Arm development +platforms override this function to detect if firmware update is required, and +if so, return the first image in the firmware update process. + +Function : bl1_plat_get_image_desc() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int image_id + Return : image_desc_t * + +BL1 calls this function to get the image descriptor information ``image_desc_t`` +for the provided ``image_id`` from the platform. + +The default implementation always returns a common BL2 image descriptor. Arm +standard platforms return an image descriptor corresponding to BL2 or one of +the firmware update images defined in the Trusted Board Boot Requirements +specification. + +Function : bl1_plat_handle_pre_image_load() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int image_id + Return : int + +This function can be used by the platforms to update/use image information +corresponding to ``image_id``. This function is invoked in BL1, both in cold +boot and FWU code path, before loading the image. + +Function : bl1_plat_handle_post_image_load() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int image_id + Return : int + +This function can be used by the platforms to update/use image information +corresponding to ``image_id``. This function is invoked in BL1, both in cold +boot and FWU code path, after loading and authenticating the image. + +The default weak implementation of this function calculates the amount of +Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t`` +structure at the beginning of this free memory and populates it. The address +of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint +information to BL2. + +Function : bl1_plat_fwu_done() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int image_id, uintptr_t image_src, + unsigned int image_size + Return : void + +BL1 calls this function when the FWU process is complete. It must not return. +The platform may override this function to take platform specific action, for +example to initiate the normal boot flow. + +The default implementation spins forever. + +Function : bl1_plat_mem_check() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uintptr_t mem_base, unsigned int mem_size, + unsigned int flags + Return : int + +BL1 calls this function while handling FWU related SMCs, more specifically when +copying or authenticating an image. Its responsibility is to ensure that the +region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and +that this memory corresponds to either a secure or non-secure memory region as +indicated by the security state of the ``flags`` argument. + +This function can safely assume that the value resulting from the addition of +``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not +overflow. + +This function must return 0 on success, a non-null error code otherwise. + +The default implementation of this function asserts therefore platforms must +override it when using the FWU feature. + +Boot Loader Stage 2 (BL2) +------------------------- + +The BL2 stage is executed only by the primary CPU, which is determined in BL1 +using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at +``BL2_BASE``. BL2 executes in Secure EL1 and and invokes +``plat_get_bl_image_load_info()`` to retrieve the list of images to load from +non-volatile storage to secure/non-secure RAM. After all the images are loaded +then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable +images to be passed to the next BL image. + +The following functions must be implemented by the platform port to enable BL2 +to perform the above tasks. + +Function : bl2_early_platform_setup2() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : u_register_t, u_register_t, u_register_t, u_register_t + Return : void + +This function executes with the MMU and data caches disabled. It is only called +by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments +are platform specific. + +On Arm standard platforms, the arguments received are : + + arg0 - Points to load address of HW_CONFIG if present + + arg1 - ``meminfo`` structure populated by BL1. The platform copies + the contents of ``meminfo`` as it may be subsequently overwritten by BL2. + +On Arm standard platforms, this function also: + +- Initializes a UART (PL011 console), which enables access to the ``printf`` + family of functions in BL2. + +- Initializes the storage abstraction layer used to load further bootloader + images. It is necessary to do this early on platforms with a SCP_BL2 image, + since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded. + +Function : bl2_plat_arch_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function executes with the MMU and data caches disabled. It is only called +by the primary CPU. + +The purpose of this function is to perform any architectural initialization +that varies across platforms. + +On Arm standard platforms, this function enables the MMU. + +Function : bl2_platform_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function may execute with the MMU and data caches enabled if the platform +port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only +called by the primary CPU. + +The purpose of this function is to perform any platform initialization +specific to BL2. + +In Arm standard platforms, this function performs security setup, including +configuration of the TrustZone controller to allow non-secure masters access +to most of DRAM. Part of DRAM is reserved for secure world use. + +Function : bl2_plat_handle_pre_image_load() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int + Return : int + +This function can be used by the platforms to update/use image information +for given ``image_id``. This function is currently invoked in BL2 before +loading each image. + +Function : bl2_plat_handle_post_image_load() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int + Return : int + +This function can be used by the platforms to update/use image information +for given ``image_id``. This function is currently invoked in BL2 after +loading each image. + +Function : bl2_plat_preload_setup [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This optional function performs any BL2 platform initialization +required before image loading, that is not done later in +bl2_platform_setup(). Specifically, if support for multiple +boot sources is required, it initializes the boot sequence used by +plat_try_next_boot_source(). + +Function : plat_try_next_boot_source() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : int + +This optional function passes to the next boot source in the redundancy +sequence. + +This function moves the current boot redundancy source to the next +element in the boot sequence. If there are no more boot sources then it +must return 0, otherwise it must return 1. The default implementation +of this always returns 0. + +Boot Loader Stage 2 (BL2) at EL3 +-------------------------------- + +When the platform has a non-TF-A Boot ROM it is desirable to jump +directly to BL2 instead of TF-A BL1. In this case BL2 is expected to +execute at EL3 instead of executing at EL1. Refer to the `Firmware +Design`_ for more information. + +All mandatory functions of BL2 must be implemented, except the functions +bl2_early_platform_setup and bl2_el3_plat_arch_setup, because +their work is done now by bl2_el3_early_platform_setup and +bl2_el3_plat_arch_setup. These functions should generally implement +the bl1_plat_xxx() and bl2_plat_xxx() functionality combined. + + +Function : bl2_el3_early_platform_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : u_register_t, u_register_t, u_register_t, u_register_t + Return : void + +This function executes with the MMU and data caches disabled. It is only called +by the primary CPU. This function receives four parameters which can be used +by the platform to pass any needed information from the Boot ROM to BL2. + +On Arm standard platforms, this function does the following: + +- Initializes a UART (PL011 console), which enables access to the ``printf`` + family of functions in BL2. + +- Initializes the storage abstraction layer used to load further bootloader + images. It is necessary to do this early on platforms with a SCP_BL2 image, + since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded. + +- Initializes the private variables that define the memory layout used. + +Function : bl2_el3_plat_arch_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function executes with the MMU and data caches disabled. It is only called +by the primary CPU. + +The purpose of this function is to perform any architectural initialization +that varies across platforms. + +On Arm standard platforms, this function enables the MMU. + +Function : bl2_el3_plat_prepare_exit() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function is called prior to exiting BL2 and run the next image. +It should be used to perform platform specific clean up or bookkeeping +operations before transferring control to the next image. This function +runs with MMU disabled. + +FWU Boot Loader Stage 2 (BL2U) +------------------------------ + +The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU +process and is executed only by the primary CPU. BL1 passes control to BL2U at +``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for: + +#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure + memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1. + ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U + should be copied from. Subsequent handling of the SCP_BL2U image is + implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function. + If ``SCP_BL2U_BASE`` is not defined then this step is not performed. + +#. Any platform specific setup required to perform the FWU process. For + example, Arm standard platforms initialize the TZC controller so that the + normal world can access DDR memory. + +The following functions must be implemented by the platform port to enable +BL2U to perform the tasks mentioned above. + +Function : bl2u_early_platform_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : meminfo *mem_info, void *plat_info + Return : void + +This function executes with the MMU and data caches disabled. It is only +called by the primary CPU. The arguments to this function is the address +of the ``meminfo`` structure and platform specific info provided by BL1. + +The platform may copy the contents of the ``mem_info`` and ``plat_info`` into +private storage as the original memory may be subsequently overwritten by BL2U. + +On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure, +to extract SCP_BL2U image information, which is then copied into a private +variable. + +Function : bl2u_plat_arch_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function executes with the MMU and data caches disabled. It is only +called by the primary CPU. + +The purpose of this function is to perform any architectural initialization +that varies across platforms, for example enabling the MMU (since the memory +map differs across platforms). + +Function : bl2u_platform_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function may execute with the MMU and data caches enabled if the platform +port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only +called by the primary CPU. + +The purpose of this function is to perform any platform initialization +specific to BL2U. + +In Arm standard platforms, this function performs security setup, including +configuration of the TrustZone controller to allow non-secure masters access +to most of DRAM. Part of DRAM is reserved for secure world use. + +Function : bl2u_plat_handle_scp_bl2u() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : int + +This function is used to perform any platform-specific actions required to +handle the SCP firmware. Typically it transfers the image into SCP memory using +a platform-specific protocol and waits until SCP executes it and signals to the +Application Processor (AP) for BL2U execution to continue. + +This function returns 0 on success, a negative error code otherwise. +This function is included if SCP_BL2U_BASE is defined. + +Boot Loader Stage 3-1 (BL31) +---------------------------- + +During cold boot, the BL31 stage is executed only by the primary CPU. This is +determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes +control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all +CPUs. BL31 executes at EL3 and is responsible for: + +#. Re-initializing all architectural and platform state. Although BL1 performs + some of this initialization, BL31 remains resident in EL3 and must ensure + that EL3 architectural and platform state is completely initialized. It + should make no assumptions about the system state when it receives control. + +#. Passing control to a normal world BL image, pre-loaded at a platform- + specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list + populated by BL2 in memory to do this. + +#. Providing runtime firmware services. Currently, BL31 only implements a + subset of the Power State Coordination Interface (PSCI) API as a runtime + service. See Section 3.3 below for details of porting the PSCI + implementation. + +#. Optionally passing control to the BL32 image, pre-loaded at a platform- + specific address by BL2. BL31 exports a set of APIs that allow runtime + services to specify the security state in which the next image should be + executed and run the corresponding image. On ARM platforms, BL31 uses the + ``bl_params`` list populated by BL2 in memory to do this. + +If BL31 is a reset vector, It also needs to handle the reset as specified in +section 2.2 before the tasks described above. + +The following functions must be implemented by the platform port to enable BL31 +to perform the above tasks. + +Function : bl31_early_platform_setup2() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : u_register_t, u_register_t, u_register_t, u_register_t + Return : void + +This function executes with the MMU and data caches disabled. It is only called +by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are +platform specific. + +In Arm standard platforms, the arguments received are : + + arg0 - The pointer to the head of `bl_params_t` list + which is list of executable images following BL31, + + arg1 - Points to load address of SOC_FW_CONFIG if present + + arg2 - Points to load address of HW_CONFIG if present + + arg3 - A special value to verify platform parameters from BL2 to BL31. Not + used in release builds. + +The function runs through the `bl_param_t` list and extracts the entry point +information for BL32 and BL33. It also performs the following: + +- Initialize a UART (PL011 console), which enables access to the ``printf`` + family of functions in BL31. + +- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the + CCI slave interface corresponding to the cluster that includes the primary + CPU. + +Function : bl31_plat_arch_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function executes with the MMU and data caches disabled. It is only called +by the primary CPU. + +The purpose of this function is to perform any architectural initialization +that varies across platforms. + +On Arm standard platforms, this function enables the MMU. + +Function : bl31_platform_setup() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function may execute with the MMU and data caches enabled if the platform +port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only +called by the primary CPU. + +The purpose of this function is to complete platform initialization so that both +BL31 runtime services and normal world software can function correctly. + +On Arm standard platforms, this function does the following: + +- Initialize the generic interrupt controller. + + Depending on the GIC driver selected by the platform, the appropriate GICv2 + or GICv3 initialization will be done, which mainly consists of: + + - Enable secure interrupts in the GIC CPU interface. + - Disable the legacy interrupt bypass mechanism. + - Configure the priority mask register to allow interrupts of all priorities + to be signaled to the CPU interface. + - Mark SGIs 8-15 and the other secure interrupts on the platform as secure. + - Target all secure SPIs to CPU0. + - Enable these secure interrupts in the GIC distributor. + - Configure all other interrupts as non-secure. + - Enable signaling of secure interrupts in the GIC distributor. + +- Enable system-level implementation of the generic timer counter through the + memory mapped interface. + +- Grant access to the system counter timer module + +- Initialize the power controller device. + + In particular, initialise the locks that prevent concurrent accesses to the + power controller device. + +Function : bl31_plat_runtime_setup() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +The purpose of this function is allow the platform to perform any BL31 runtime +setup just prior to BL31 exit during cold boot. The default weak +implementation of this function will invoke ``console_switch_state()`` to switch +console output to consoles marked for use in the ``runtime`` state. + +Function : bl31_plat_get_next_image_ep_info() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uint32_t + Return : entry_point_info * + +This function may execute with the MMU and data caches enabled if the platform +port does the necessary initializations in ``bl31_plat_arch_setup()``. + +This function is called by ``bl31_main()`` to retrieve information provided by +BL2 for the next image in the security state specified by the argument. BL31 +uses this information to pass control to that image in the specified security +state. This function must return a pointer to the ``entry_point_info`` structure +(that was copied during ``bl31_early_platform_setup()``) if the image exists. It +should return NULL otherwise. + +Function : bl31_plat_enable_mmu [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uint32_t + Return : void + +This function enables the MMU. The boot code calls this function with MMU and +caches disabled. This function should program necessary registers to enable +translation, and upon return, the MMU on the calling PE must be enabled. + +The function must honor flags passed in the first argument. These flags are +defined by the translation library, and can be found in the file +``include/lib/xlat_tables/xlat_mmu_helpers.h``. + +On DynamIQ systems, this function must not use stack while enabling MMU, which +is how the function in xlat table library version 2 is implemented. + +Function : plat_init_apiakey [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : uint64_t * + +This function populates the ``plat_apiakey`` array that contains the values used +to set the ``APIAKey{Hi,Lo}_EL1`` registers. It returns a pointer to this array. + +The value should be obtained from a reliable source of randomness. + +This function is only needed if ARMv8.3 pointer authentication is used in the +Trusted Firmware by building with ``ENABLE_PAUTH=1``. + +Function : plat_get_syscnt_freq2() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : unsigned int + +This function is used by the architecture setup code to retrieve the counter +frequency for the CPU's generic timer. This value will be programmed into the +``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency +of the system counter, which is retrieved from the first entry in the frequency +modes table. + +#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in +bytes) aligned to the cache line boundary that should be allocated per-cpu to +accommodate all the bakery locks. + +If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker +calculates the size of the ``bakery_lock`` input section, aligns it to the +nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT`` +and stores the result in a linker symbol. This constant prevents a platform +from relying on the linker and provide a more efficient mechanism for +accessing per-cpu bakery lock information. + +If this constant is defined and its value is not equal to the value +calculated by the linker then a link time assertion is raised. A compile time +assertion is raised if the value of the constant is not aligned to the cache +line boundary. + +SDEI porting requirements +~~~~~~~~~~~~~~~~~~~~~~~~~ + +The SDEI dispatcher requires the platform to provide the following macros +and functions, of which some are optional, and some others mandatory. + +Macros +...... + +Macro: PLAT_SDEI_NORMAL_PRI [mandatory] +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +This macro must be defined to the EL3 exception priority level associated with +Normal SDEI events on the platform. This must have a higher value (therefore of +lower priority) than ``PLAT_SDEI_CRITICAL_PRI``. + +Macro: PLAT_SDEI_CRITICAL_PRI [mandatory] +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +This macro must be defined to the EL3 exception priority level associated with +Critical SDEI events on the platform. This must have a lower value (therefore of +higher priority) than ``PLAT_SDEI_NORMAL_PRI``. + +**Note**: SDEI exception priorities must be the lowest among Secure priorities. +Among the SDEI exceptions, Critical SDEI priority must be higher than Normal +SDEI priority. + +Functions +......... + +Function: int plat_sdei_validate_entry_point(uintptr_t ep) [optional] +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:: + + Argument: uintptr_t + Return: int + +This function validates the address of client entry points provided for both +event registration and *Complete and Resume* SDEI calls. The function takes one +argument, which is the address of the handler the SDEI client requested to +register. The function must return ``0`` for successful validation, or ``-1`` +upon failure. + +The default implementation always returns ``0``. On Arm platforms, this function +is implemented to translate the entry point to physical address, and further to +ensure that the address is located in Non-secure DRAM. + +Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional] +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:: + + Argument: uint64_t + Argument: unsigned int + Return: void + +SDEI specification requires that a PE comes out of reset with the events masked. +The client therefore is expected to call ``PE_UNMASK`` to unmask SDEI events on +the PE. No SDEI events can be dispatched until such time. + +Should a PE receive an interrupt that was bound to an SDEI event while the +events are masked on the PE, the dispatcher implementation invokes the function +``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the +interrupt and the interrupt ID are passed as parameters. + +The default implementation only prints out a warning message. + +Power State Coordination Interface (in BL31) +-------------------------------------------- + +The TF-A implementation of the PSCI API is based around the concept of a +*power domain*. A *power domain* is a CPU or a logical group of CPUs which +share some state on which power management operations can be performed as +specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is +a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The +*power domains* are arranged in a hierarchical tree structure and each +*power domain* can be identified in a system by the cpu index of any CPU that +is part of that domain and a *power domain level*. A processing element (for +example, a CPU) is at level 0. If the *power domain* node above a CPU is a +logical grouping of CPUs that share some state, then level 1 is that group of +CPUs (for example, a cluster), and level 2 is a group of clusters (for +example, the system). More details on the power domain topology and its +organization can be found in `Power Domain Topology Design`_. + +BL31's platform initialization code exports a pointer to the platform-specific +power management operations required for the PSCI implementation to function +correctly. This information is populated in the ``plat_psci_ops`` structure. The +PSCI implementation calls members of the ``plat_psci_ops`` structure for performing +power management operations on the power domains. For example, the target +CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()`` +handler (if present) is called for the CPU power domain. + +The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to +describe composite power states specific to a platform. The PSCI implementation +defines a generic representation of the power-state parameter, which is an +array of local power states where each index corresponds to a power domain +level. Each entry contains the local power state the power domain at that power +level could enter. It depends on the ``validate_power_state()`` handler to +convert the power-state parameter (possibly encoding a composite power state) +passed in a PSCI ``CPU_SUSPEND`` call to this representation. + +The following functions form part of platform port of PSCI functionality. + +Function : plat_psci_stat_accounting_start() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : const psci_power_state_t * + Return : void + +This is an optional hook that platforms can implement for residency statistics +accounting before entering a low power state. The ``pwr_domain_state`` field of +``state_info`` (first argument) can be inspected if stat accounting is done +differently at CPU level versus higher levels. As an example, if the element at +index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down +state, special hardware logic may be programmed in order to keep track of the +residency statistics. For higher levels (array indices > 0), the residency +statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the +default implementation will use PMF to capture timestamps. + +Function : plat_psci_stat_accounting_stop() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : const psci_power_state_t * + Return : void + +This is an optional hook that platforms can implement for residency statistics +accounting after exiting from a low power state. The ``pwr_domain_state`` field +of ``state_info`` (first argument) can be inspected if stat accounting is done +differently at CPU level versus higher levels. As an example, if the element at +index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down +state, special hardware logic may be programmed in order to keep track of the +residency statistics. For higher levels (array indices > 0), the residency +statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the +default implementation will use PMF to capture timestamps. + +Function : plat_psci_stat_get_residency() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int, const psci_power_state_t *, int + Return : u_register_t + +This is an optional interface that is is invoked after resuming from a low power +state and provides the time spent resident in that low power state by the power +domain at a particular power domain level. When a CPU wakes up from suspend, +all its parent power domain levels are also woken up. The generic PSCI code +invokes this function for each parent power domain that is resumed and it +identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second +argument) describes the low power state that the power domain has resumed from. +The current CPU is the first CPU in the power domain to resume from the low +power state and the ``last_cpu_idx`` (third parameter) is the index of the last +CPU in the power domain to suspend and may be needed to calculate the residency +for that power domain. + +Function : plat_get_target_pwr_state() [optional] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : unsigned int, const plat_local_state_t *, unsigned int + Return : plat_local_state_t + +The PSCI generic code uses this function to let the platform participate in +state coordination during a power management operation. The function is passed +a pointer to an array of platform specific local power state ``states`` (second +argument) which contains the requested power state for each CPU at a particular +power domain level ``lvl`` (first argument) within the power domain. The function +is expected to traverse this array of upto ``ncpus`` (third argument) and return +a coordinated target power state by the comparing all the requested power +states. The target power state should not be deeper than any of the requested +power states. + +A weak definition of this API is provided by default wherein it assumes +that the platform assigns a local state value in order of increasing depth +of the power state i.e. for two power states X & Y, if X < Y +then X represents a shallower power state than Y. As a result, the +coordinated target local power state for a power domain will be the minimum +of the requested local power state values. + +Function : plat_get_power_domain_tree_desc() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : const unsigned char * + +This function returns a pointer to the byte array containing the power domain +topology tree description. The format and method to construct this array are +described in `Power Domain Topology Design`_. The BL31 PSCI initialization code +requires this array to be described by the platform, either statically or +dynamically, to initialize the power domain topology tree. In case the array +is populated dynamically, then plat_core_pos_by_mpidr() and +plat_my_core_pos() should also be implemented suitably so that the topology +tree description matches the CPU indices returned by these APIs. These APIs +together form the platform interface for the PSCI topology framework. + +Function : plat_setup_psci_ops() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uintptr_t, const plat_psci_ops ** + Return : int + +This function may execute with the MMU and data caches enabled if the platform +port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only +called by the primary CPU. + +This function is called by PSCI initialization code. Its purpose is to let +the platform layer know about the warm boot entrypoint through the +``sec_entrypoint`` (first argument) and to export handler routines for +platform-specific psci power management actions by populating the passed +pointer with a pointer to BL31's private ``plat_psci_ops`` structure. + +A description of each member of this structure is given below. Please refer to +the Arm FVP specific implementation of these handlers in +`plat/arm/board/fvp/fvp_pm.c`_ as an example. For each PSCI function that the +platform wants to support, the associated operation or operations in this +structure must be provided and implemented (Refer section 4 of +`Firmware Design`_ for the PSCI API supported in TF-A). To disable a PSCI +function in a platform port, the operation should be removed from this +structure instead of providing an empty implementation. + +plat_psci_ops.cpu_standby() +........................... + +Perform the platform-specific actions to enter the standby state for a cpu +indicated by the passed argument. This provides a fast path for CPU standby +wherein overheads of PSCI state management and lock acquisition is avoided. +For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation, +the suspend state type specified in the ``power-state`` parameter should be +STANDBY and the target power domain level specified should be the CPU. The +handler should put the CPU into a low power retention state (usually by +issuing a wfi instruction) and ensure that it can be woken up from that +state by a normal interrupt. The generic code expects the handler to succeed. + +plat_psci_ops.pwr_domain_on() +............................. + +Perform the platform specific actions to power on a CPU, specified +by the ``MPIDR`` (first argument). The generic code expects the platform to +return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure. + +plat_psci_ops.pwr_domain_off() +.............................. + +Perform the platform specific actions to prepare to power off the calling CPU +and its higher parent power domain levels as indicated by the ``target_state`` +(first argument). It is called by the PSCI ``CPU_OFF`` API implementation. + +The ``target_state`` encodes the platform coordinated target local power states +for the CPU power domain and its parent power domain levels. The handler +needs to perform power management operation corresponding to the local state +at each power level. + +For this handler, the local power state for the CPU power domain will be a +power down state where as it could be either power down, retention or run state +for the higher power domain levels depending on the result of state +coordination. The generic code expects the handler to succeed. + +plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional] +........................................................... + +This optional function may be used as a performance optimization to replace +or complement pwr_domain_suspend() on some platforms. Its calling semantics +are identical to pwr_domain_suspend(), except the PSCI implementation only +calls this function when suspending to a power down state, and it guarantees +that data caches are enabled. + +When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches +before calling pwr_domain_suspend(). If the target_state corresponds to a +power down state and it is safe to perform some or all of the platform +specific actions in that function with data caches enabled, it may be more +efficient to move those actions to this function. When HW_ASSISTED_COHERENCY += 1, data caches remain enabled throughout, and so there is no advantage to +moving platform specific actions to this function. + +plat_psci_ops.pwr_domain_suspend() +.................................. + +Perform the platform specific actions to prepare to suspend the calling +CPU and its higher parent power domain levels as indicated by the +``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND`` +API implementation. + +The ``target_state`` has a similar meaning as described in +the ``pwr_domain_off()`` operation. It encodes the platform coordinated +target local power states for the CPU power domain and its parent +power domain levels. The handler needs to perform power management operation +corresponding to the local state at each power level. The generic code +expects the handler to succeed. + +The difference between turning a power domain off versus suspending it is that +in the former case, the power domain is expected to re-initialize its state +when it is next powered on (see ``pwr_domain_on_finish()``). In the latter +case, the power domain is expected to save enough state so that it can resume +execution by restoring this state when its powered on (see +``pwr_domain_suspend_finish()``). + +When suspending a core, the platform can also choose to power off the GICv3 +Redistributor and ITS through an implementation-defined sequence. To achieve +this safely, the ITS context must be saved first. The architectural part is +implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed +sequence is implementation defined and it is therefore the responsibility of +the platform code to implement the necessary sequence. Then the GIC +Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper. +Powering off the Redistributor requires the implementation to support it and it +is the responsibility of the platform code to execute the right implementation +defined sequence. + +When a system suspend is requested, the platform can also make use of the +``gicv3_distif_save()`` helper to save the context of the GIC Distributor after +it has saved the context of the Redistributors and ITS of all the cores in the +system. The context of the Distributor can be large and may require it to be +allocated in a special area if it cannot fit in the platform's global static +data, for example in DRAM. The Distributor can then be powered down using an +implementation-defined sequence. + +plat_psci_ops.pwr_domain_pwr_down_wfi() +....................................... + +This is an optional function and, if implemented, is expected to perform +platform specific actions including the ``wfi`` invocation which allows the +CPU to powerdown. Since this function is invoked outside the PSCI locks, +the actions performed in this hook must be local to the CPU or the platform +must ensure that races between multiple CPUs cannot occur. + +The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()`` +operation and it encodes the platform coordinated target local power states for +the CPU power domain and its parent power domain levels. This function must +not return back to the caller. + +If this function is not implemented by the platform, PSCI generic +implementation invokes ``psci_power_down_wfi()`` for power down. + +plat_psci_ops.pwr_domain_on_finish() +.................................... + +This function is called by the PSCI implementation after the calling CPU is +powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call. +It performs the platform-specific setup required to initialize enough state for +this CPU to enter the normal world and also provide secure runtime firmware +services. + +The ``target_state`` (first argument) is the prior state of the power domains +immediately before the CPU was turned on. It indicates which power domains +above the CPU might require initialization due to having previously been in +low power states. The generic code expects the handler to succeed. + +plat_psci_ops.pwr_domain_suspend_finish() +......................................... + +This function is called by the PSCI implementation after the calling CPU is +powered on and released from reset in response to an asynchronous wakeup +event, for example a timer interrupt that was programmed by the CPU during the +``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific +setup required to restore the saved state for this CPU to resume execution +in the normal world and also provide secure runtime firmware services. + +The ``target_state`` (first argument) has a similar meaning as described in +the ``pwr_domain_on_finish()`` operation. The generic code expects the platform +to succeed. + +If the Distributor, Redistributors or ITS have been powered off as part of a +suspend, their context must be restored in this function in the reverse order +to how they were saved during suspend sequence. + +plat_psci_ops.system_off() +.......................... + +This function is called by PSCI implementation in response to a ``SYSTEM_OFF`` +call. It performs the platform-specific system poweroff sequence after +notifying the Secure Payload Dispatcher. + +plat_psci_ops.system_reset() +............................ + +This function is called by PSCI implementation in response to a ``SYSTEM_RESET`` +call. It performs the platform-specific system reset sequence after +notifying the Secure Payload Dispatcher. + +plat_psci_ops.validate_power_state() +.................................... + +This function is called by the PSCI implementation during the ``CPU_SUSPEND`` +call to validate the ``power_state`` parameter of the PSCI API and if valid, +populate it in ``req_state`` (second argument) array as power domain level +specific local states. If the ``power_state`` is invalid, the platform must +return PSCI_E_INVALID_PARAMS as error, which is propagated back to the +normal world PSCI client. + +plat_psci_ops.validate_ns_entrypoint() +...................................... + +This function is called by the PSCI implementation during the ``CPU_SUSPEND``, +``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point`` +parameter passed by the normal world. If the ``entry_point`` is invalid, +the platform must return PSCI_E_INVALID_ADDRESS as error, which is +propagated back to the normal world PSCI client. + +plat_psci_ops.get_sys_suspend_power_state() +........................................... + +This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND`` +call to get the ``req_state`` parameter from platform which encodes the power +domain level specific local states to suspend to system affinity level. The +``req_state`` will be utilized to do the PSCI state coordination and +``pwr_domain_suspend()`` will be invoked with the coordinated target state to +enter system suspend. + +plat_psci_ops.get_pwr_lvl_state_idx() +..................................... + +This is an optional function and, if implemented, is invoked by the PSCI +implementation to convert the ``local_state`` (first argument) at a specified +``pwr_lvl`` (second argument) to an index between 0 and +``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform +supports more than two local power states at each power domain level, that is +``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these +local power states. + +plat_psci_ops.translate_power_state_by_mpidr() +.............................................. + +This is an optional function and, if implemented, verifies the ``power_state`` +(second argument) parameter of the PSCI API corresponding to a target power +domain. The target power domain is identified by using both ``MPIDR`` (first +argument) and the power domain level encoded in ``power_state``. The power domain +level specific local states are to be extracted from ``power_state`` and be +populated in the ``output_state`` (third argument) array. The functionality +is similar to the ``validate_power_state`` function described above and is +envisaged to be used in case the validity of ``power_state`` depend on the +targeted power domain. If the ``power_state`` is invalid for the targeted power +domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this +function is not implemented, then the generic implementation relies on +``validate_power_state`` function to translate the ``power_state``. + +This function can also be used in case the platform wants to support local +power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY +APIs as described in Section 5.18 of `PSCI`_. + +plat_psci_ops.get_node_hw_state() +................................. + +This is an optional function. If implemented this function is intended to return +the power state of a node (identified by the first parameter, the ``MPIDR``) in +the power domain topology (identified by the second parameter, ``power_level``), +as retrieved from a power controller or equivalent component on the platform. +Upon successful completion, the implementation must map and return the final +status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it +must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as +appropriate. + +Implementations are not expected to handle ``power_levels`` greater than +``PLAT_MAX_PWR_LVL``. + +plat_psci_ops.system_reset2() +............................. + +This is an optional function. If implemented this function is +called during the ``SYSTEM_RESET2`` call to perform a reset +based on the first parameter ``reset_type`` as specified in +`PSCI`_. The parameter ``cookie`` can be used to pass additional +reset information. If the ``reset_type`` is not supported, the +function must return ``PSCI_E_NOT_SUPPORTED``. For architectural +resets, all failures must return ``PSCI_E_INVALID_PARAMETERS`` +and vendor reset can return other PSCI error codes as defined +in `PSCI`_. On success this function will not return. + +plat_psci_ops.write_mem_protect() +................................. + +This is an optional function. If implemented it enables or disables the +``MEM_PROTECT`` functionality based on the value of ``val``. +A non-zero value enables ``MEM_PROTECT`` and a value of zero +disables it. Upon encountering failures it must return a negative value +and on success it must return 0. + +plat_psci_ops.read_mem_protect() +................................ + +This is an optional function. If implemented it returns the current +state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering +failures it must return a negative value and on success it must +return 0. + +plat_psci_ops.mem_protect_chk() +............................... + +This is an optional function. If implemented it checks if a memory +region defined by a base address ``base`` and with a size of ``length`` +bytes is protected by ``MEM_PROTECT``. If the region is protected +then it must return 0, otherwise it must return a negative number. + +Interrupt Management framework (in BL31) +---------------------------------------- + +BL31 implements an Interrupt Management Framework (IMF) to manage interrupts +generated in either security state and targeted to EL1 or EL2 in the non-secure +state or EL3/S-EL1 in the secure state. The design of this framework is +described in the `IMF Design Guide`_ + +A platform should export the following APIs to support the IMF. The following +text briefly describes each API and its implementation in Arm standard +platforms. The API implementation depends upon the type of interrupt controller +present in the platform. Arm standard platform layer supports both +`Arm Generic Interrupt Controller version 2.0 (GICv2)`_ +and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the +FVP can be configured to use either GICv2 or GICv3 depending on the build flag +``FVP_USE_GIC_DRIVER`` (See FVP platform specific build options in +`User Guide`_ for more details). + +See also: `Interrupt Controller Abstraction APIs`__. + +.. __: ../design/platform-interrupt-controller-API.rst + +Function : plat_interrupt_type_to_line() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uint32_t, uint32_t + Return : uint32_t + +The Arm processor signals an interrupt exception either through the IRQ or FIQ +interrupt line. The specific line that is signaled depends on how the interrupt +controller (IC) reports different interrupt types from an execution context in +either security state. The IMF uses this API to determine which interrupt line +the platform IC uses to signal each type of interrupt supported by the framework +from a given security state. This API must be invoked at EL3. + +The first parameter will be one of the ``INTR_TYPE_*`` values (see +`IMF Design Guide`_) indicating the target type of the interrupt, the second parameter is the +security state of the originating execution context. The return result is the +bit position in the ``SCR_EL3`` register of the respective interrupt trap: IRQ=1, +FIQ=2. + +In the case of Arm standard platforms using GICv2, S-EL1 interrupts are +configured as FIQs and Non-secure interrupts as IRQs from either security +state. + +In the case of Arm standard platforms using GICv3, the interrupt line to be +configured depends on the security state of the execution context when the +interrupt is signalled and are as follows: + +- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in + NS-EL0/1/2 context. +- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ + in the NS-EL0/1/2 context. +- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2 + context. + +Function : plat_ic_get_pending_interrupt_type() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : uint32_t + +This API returns the type of the highest priority pending interrupt at the +platform IC. The IMF uses the interrupt type to retrieve the corresponding +handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt +pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``, +``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3. + +In the case of Arm standard platforms using GICv2, the *Highest Priority +Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of +the pending interrupt. The type of interrupt depends upon the id value as +follows. + +#. id < 1022 is reported as a S-EL1 interrupt +#. id = 1022 is reported as a Non-secure interrupt. +#. id = 1023 is reported as an invalid interrupt type. + +In the case of Arm standard platforms using GICv3, the system register +``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*, +is read to determine the id of the pending interrupt. The type of interrupt +depends upon the id value as follows. + +#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt +#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt. +#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type. +#. All other interrupt id's are reported as EL3 interrupt. + +Function : plat_ic_get_pending_interrupt_id() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : uint32_t + +This API returns the id of the highest priority pending interrupt at the +platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt +pending. + +In the case of Arm standard platforms using GICv2, the *Highest Priority +Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the +pending interrupt. The id that is returned by API depends upon the value of +the id read from the interrupt controller as follows. + +#. id < 1022. id is returned as is. +#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register* + (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt. + This id is returned by the API. +#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned. + +In the case of Arm standard platforms using GICv3, if the API is invoked from +EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt +group 0 Register*, is read to determine the id of the pending interrupt. The id +that is returned by API depends upon the value of the id read from the +interrupt controller as follows. + +#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is. +#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system + register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1 + Register* is read to determine the id of the group 1 interrupt. This id + is returned by the API as long as it is a valid interrupt id +#. If the id is any of the special interrupt identifiers, + ``INTR_ID_UNAVAILABLE`` is returned. + +When the API invoked from S-EL1 for GICv3 systems, the id read from system +register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt +Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else +``INTR_ID_UNAVAILABLE`` is returned. + +Function : plat_ic_acknowledge_interrupt() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : uint32_t + +This API is used by the CPU to indicate to the platform IC that processing of +the highest pending interrupt has begun. It should return the raw, unmodified +value obtained from the interrupt controller when acknowledging an interrupt. +The actual interrupt number shall be extracted from this raw value using the API +`plat_ic_get_interrupt_id()`__. + +.. __: ../design/platform-interrupt-controller-API.rst#function-unsigned-int-plat-ic-get-interrupt-id-unsigned-int-raw-optional + +This function in Arm standard platforms using GICv2, reads the *Interrupt +Acknowledge Register* (``GICC_IAR``). This changes the state of the highest +priority pending interrupt from pending to active in the interrupt controller. +It returns the value read from the ``GICC_IAR``, unmodified. + +In the case of Arm standard platforms using GICv3, if the API is invoked +from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt +Acknowledge Register group 0*. If the API is invoked from S-EL1, the function +reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register +group 1*. The read changes the state of the highest pending interrupt from +pending to active in the interrupt controller. The value read is returned +unmodified. + +The TSP uses this API to start processing of the secure physical timer +interrupt. + +Function : plat_ic_end_of_interrupt() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uint32_t + Return : void + +This API is used by the CPU to indicate to the platform IC that processing of +the interrupt corresponding to the id (passed as the parameter) has +finished. The id should be the same as the id returned by the +``plat_ic_acknowledge_interrupt()`` API. + +Arm standard platforms write the id to the *End of Interrupt Register* +(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1`` +system register in case of GICv3 depending on where the API is invoked from, +EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt +controller. + +The TSP uses this API to finish processing of the secure physical timer +interrupt. + +Function : plat_ic_get_interrupt_type() [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uint32_t + Return : uint32_t + +This API returns the type of the interrupt id passed as the parameter. +``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid +interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is +returned depending upon how the interrupt has been configured by the platform +IC. This API must be invoked at EL3. + +Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts +and Non-secure interrupts as Group1 interrupts. It reads the group value +corresponding to the interrupt id from the relevant *Interrupt Group Register* +(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt. + +In the case of Arm standard platforms using GICv3, both the *Interrupt Group +Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register* +(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured +as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt. + +Crash Reporting mechanism (in BL31) +----------------------------------- + +BL31 implements a crash reporting mechanism which prints the various registers +of the CPU to enable quick crash analysis and debugging. This mechanism relies +on the platform implementing ``plat_crash_console_init``, +``plat_crash_console_putc`` and ``plat_crash_console_flush``. + +The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample +implementation of all of them. Platforms may include this file to their +makefiles in order to benefit from them. By default, they will cause the crash +output to be routed over the normal console infrastructure and get printed on +consoles configured to output in crash state. ``console_set_scope()`` can be +used to control whether a console is used for crash output. +NOTE: Platforms are responsible for making sure that they only mark consoles for +use in the crash scope that are able to support this, i.e. that are written in +assembly and conform with the register clobber rules for putc() (x0-x2, x16-x17) +and flush() (x0-x3, x16-x17) crash callbacks. + +In some cases (such as debugging very early crashes that happen before the +normal boot console can be set up), platforms may want to control crash output +more explicitly. These platforms may instead provide custom implementations for +these. They are executed outside of a C environment and without a stack. Many +console drivers provide functions named ``console_xxx_core_init/putc/flush`` +that are designed to be used by these functions. See Arm platforms (like juno) +for an example of this. + +Function : plat_crash_console_init [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : int + +This API is used by the crash reporting mechanism to initialize the crash +console. It must only use the general purpose registers x0 through x7 to do the +initialization and returns 1 on success. + +Function : plat_crash_console_putc [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : int + Return : int + +This API is used by the crash reporting mechanism to print a character on the +designated crash console. It must only use general purpose registers x1 and +x2 to do its work. The parameter and the return value are in general purpose +register x0. + +Function : plat_crash_console_flush [mandatory] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : int + +This API is used by the crash reporting mechanism to force write of all buffered +data on the designated crash console. It should only use general purpose +registers x0 through x5 to do its work. The return value is 0 on successful +completion; otherwise the return value is -1. + +External Abort handling and RAS Support +--------------------------------------- + +Function : plat_ea_handler +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : int + Argument : uint64_t + Argument : void * + Argument : void * + Argument : uint64_t + Return : void + +This function is invoked by the RAS framework for the platform to handle an +External Abort received at EL3. The intention of the function is to attempt to +resolve the cause of External Abort and return; if that's not possible, to +initiate orderly shutdown of the system. + +The first parameter (``int ea_reason``) indicates the reason for External Abort. +Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``. + +The second parameter (``uint64_t syndrome``) is the respective syndrome +presented to EL3 after having received the External Abort. Depending on the +nature of the abort (as can be inferred from the ``ea_reason`` parameter), this +can be the content of either ``ESR_EL3`` or ``DISR_EL1``. + +The third parameter (``void *cookie``) is unused for now. The fourth parameter +(``void *handle``) is a pointer to the preempted context. The fifth parameter +(``uint64_t flags``) indicates the preempted security state. These parameters +are received from the top-level exception handler. + +If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this +function iterates through RAS handlers registered by the platform. If any of the +RAS handlers resolve the External Abort, no further action is taken. + +If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers +could resolve the External Abort, the default implementation prints an error +message, and panics. + +Function : plat_handle_uncontainable_ea +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : int + Argument : uint64_t + Return : void + +This function is invoked by the RAS framework when an External Abort of +Uncontainable type is received at EL3. Due to the critical nature of +Uncontainable errors, the intention of this function is to initiate orderly +shutdown of the system, and is not expected to return. + +This function must be implemented in assembly. + +The first and second parameters are the same as that of ``plat_ea_handler``. + +The default implementation of this function calls +``report_unhandled_exception``. + +Function : plat_handle_double_fault +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : int + Argument : uint64_t + Return : void + +This function is invoked by the RAS framework when another External Abort is +received at EL3 while one is already being handled. I.e., a call to +``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of +this function is to initiate orderly shutdown of the system, and is not expected +recover or return. + +This function must be implemented in assembly. + +The first and second parameters are the same as that of ``plat_ea_handler``. + +The default implementation of this function calls +``report_unhandled_exception``. + +Function : plat_handle_el3_ea +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Return : void + +This function is invoked when an External Abort is received while executing in +EL3. Due to its critical nature, the intention of this function is to initiate +orderly shutdown of the system, and is not expected recover or return. + +This function must be implemented in assembly. + +The default implementation of this function calls +``report_unhandled_exception``. + +Build flags +----------- + +There are some build flags which can be defined by the platform to control +inclusion or exclusion of certain BL stages from the FIP image. These flags +need to be defined in the platform makefile which will get included by the +build system. + +- **NEED_BL33** + By default, this flag is defined ``yes`` by the build system and ``BL33`` + build option should be supplied as a build option. The platform has the + option of excluding the BL33 image in the ``fip`` image by defining this flag + to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE`` + are used, this flag will be set to ``no`` automatically. + +C Library +--------- + +To avoid subtle toolchain behavioral dependencies, the header files provided +by the compiler are not used. The software is built with the ``-nostdinc`` flag +to ensure no headers are included from the toolchain inadvertently. Instead the +required headers are included in the TF-A source tree. The library only +contains those C library definitions required by the local implementation. If +more functionality is required, the needed library functions will need to be +added to the local implementation. + +Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have +been written specifically for TF-A. Fome implementation files have been obtained +from `FreeBSD`_, others have been written specifically for TF-A as well. The +files can be found in ``include/lib/libc`` and ``lib/libc``. + +SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources +can be obtained from http://github.com/freebsd/freebsd. + +Storage abstraction layer +------------------------- + +In order to improve platform independence and portability an storage abstraction +layer is used to load data from non-volatile platform storage. + +Each platform should register devices and their drivers via the Storage layer. +These drivers then need to be initialized by bootloader phases as +required in their respective ``blx_platform_setup()`` functions. Currently +storage access is only required by BL1 and BL2 phases. The ``load_image()`` +function uses the storage layer to access non-volatile platform storage. + +It is mandatory to implement at least one storage driver. For the Arm +development platforms the Firmware Image Package (FIP) driver is provided as +the default means to load data from storage (see the "Firmware Image Package" +section in the `User Guide`_). The storage layer is described in the header file +``include/drivers/io/io_storage.h``. The implementation of the common library +is in ``drivers/io/io_storage.c`` and the driver files are located in +``drivers/io/``. + +Each IO driver must provide ``io_dev_*`` structures, as described in +``drivers/io/io_driver.h``. These are returned via a mandatory registration +function that is called on platform initialization. The semi-hosting driver +implementation in ``io_semihosting.c`` can be used as an example. + +The Storage layer provides mechanisms to initialize storage devices before +IO operations are called. The basic operations supported by the layer +include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``. +Drivers do not have to implement all operations, but each platform must +provide at least one driver for a device capable of supporting generic +operations such as loading a bootloader image. + +The current implementation only allows for known images to be loaded by the +firmware. These images are specified by using their identifiers, as defined in +``include/plat/common/common_def.h`` (or a separate header file included from +there). The platform layer (``plat_get_image_source()``) then returns a reference +to a device and a driver-specific ``spec`` which will be understood by the driver +to allow access to the image data. + +The layer is designed in such a way that is it possible to chain drivers with +other drivers. For example, file-system drivers may be implemented on top of +physical block devices, both represented by IO devices with corresponding +drivers. In such a case, the file-system "binding" with the block device may +be deferred until the file-system device is initialised. + +The abstraction currently depends on structures being statically allocated +by the drivers and callers, as the system does not yet provide a means of +dynamically allocating memory. This may also have the affect of limiting the +amount of open resources per driver. + +-------------- + +*Copyright (c) 2013-2019, Arm Limited and Contributors. All rights reserved.* + +.. _include/plat/common/platform.h: ../include/plat/common/platform.h +.. _include/plat/arm/common/plat_arm.h: ../include/plat/arm/common/plat_arm.h%5D +.. _User Guide: user-guide.rst +.. _include/plat/common/common_def.h: ../include/plat/common/common_def.h +.. _include/plat/arm/common/arm_def.h: ../include/plat/arm/common/arm_def.h +.. _plat/common/aarch64/platform_mp_stack.S: ../plat/common/aarch64/platform_mp_stack.S +.. _plat/common/aarch64/platform_up_stack.S: ../plat/common/aarch64/platform_up_stack.S +.. _For example, define the build flag in platform.mk: PLAT_PL061_MAX_GPIOS%20:=%20160 +.. _Power Domain Topology Design: psci-pd-tree.rst +.. _include/common/bl_common.h: ../include/common/bl_common.h +.. _include/lib/aarch32/arch.h: ../include/lib/aarch32/arch.h +.. _Firmware Design: firmware-design.rst +.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf +.. _plat/arm/board/fvp/fvp_pm.c: ../plat/arm/board/fvp/fvp_pm.c +.. _Platform compatibility policy: ./platform-compatibility-policy.rst +.. _IMF Design Guide: interrupt-framework-design.rst +.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html +.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html +.. _FreeBSD: https://www.freebsd.org +.. _SCC: http://www.simple-cc.org/ diff --git a/docs/getting_started/psci-lib-integration-guide.rst b/docs/getting_started/psci-lib-integration-guide.rst new file mode 100644 index 000000000..c8cf3f393 --- /dev/null +++ b/docs/getting_started/psci-lib-integration-guide.rst @@ -0,0 +1,552 @@ +PSCI Library Integration guide for Armv8-A AArch32 systems +========================================================== + + + +.. contents:: + +This document describes the PSCI library interface with a focus on how to +integrate with a suitable Trusted OS for an Armv8-A AArch32 system. The PSCI +Library implements the PSCI Standard as described in `PSCI spec`_ and is meant +to be integrated with EL3 Runtime Software which invokes the PSCI Library +interface appropriately. **EL3 Runtime Software** refers to software executing +at the highest secure privileged mode, which is EL3 in AArch64 or Secure SVC/ +Monitor mode in AArch32, and provides runtime services to the non-secure world. +The runtime service request is made via SMC (Secure Monitor Call) and the call +must adhere to `SMCCC`_. In AArch32, EL3 Runtime Software may additionally +include Trusted OS functionality. A minimal AArch32 Secure Payload, SP-MIN, is +provided in Trusted Firmware-A (TF-A) to illustrate the usage and integration +of the PSCI library. The description of PSCI library interface and its +integration with EL3 Runtime Software in this document is targeted towards +AArch32 systems. + +Generic call sequence for PSCI Library interface (AArch32) +---------------------------------------------------------- + +The generic call sequence of PSCI Library interfaces (see +`PSCI Library Interface`_) during cold boot in AArch32 +system is described below: + +#. After cold reset, the EL3 Runtime Software performs its cold boot + initialization including the PSCI library pre-requisites mentioned in + `PSCI Library Interface`_, and also the necessary platform + setup. + +#. Call ``psci_setup()`` in Monitor mode. + +#. Optionally call ``psci_register_spd_pm_hook()`` to register callbacks to + do bookkeeping for the EL3 Runtime Software during power management. + +#. Call ``psci_prepare_next_non_secure_ctx()`` to initialize the non-secure CPU + context. + +#. Get the non-secure ``cpu_context_t`` for the current CPU by calling + ``cm_get_context()`` , then programming the registers in the non-secure + context and exiting to non-secure world. If the EL3 Runtime Software needs + additional configuration to be set for non-secure context, like routing + FIQs to the secure world, the values of the registers can be modified prior + to programming. See `PSCI CPU context management`_ for more + details on CPU context management. + +The generic call sequence of PSCI library interfaces during warm boot in +AArch32 systems is described below: + +#. After warm reset, the EL3 Runtime Software performs the necessary warm + boot initialization including the PSCI library pre-requisites mentioned in + `PSCI Library Interface`_ (Note that the Data cache + **must not** be enabled). + +#. Call ``psci_warmboot_entrypoint()`` in Monitor mode. This interface + initializes/restores the non-secure CPU context as well. + +#. Do step 5 of the cold boot call sequence described above. + +The generic call sequence of PSCI library interfaces on receipt of a PSCI SMC +on an AArch32 system is described below: + +#. On receipt of an SMC, save the register context as per `SMCCC`_. + +#. If the SMC function identifier corresponds to a SMC32 PSCI API, construct + the appropriate arguments and call the ``psci_smc_handler()`` interface. + The invocation may or may not return back to the caller depending on + whether the PSCI API resulted in power down of the CPU. + +#. If ``psci_smc_handler()`` returns, populate the return value in R0 (AArch32)/ + X0 (AArch64) and restore other registers as per `SMCCC`_. + +PSCI CPU context management +--------------------------- + +PSCI library is in charge of initializing/restoring the non-secure CPU system +registers according to `PSCI specification`_ during cold/warm boot. +This is referred to as ``PSCI CPU Context Management``. Registers that need to +be preserved across CPU power down/power up cycles are maintained in +``cpu_context_t`` data structure. The initialization of other non-secure CPU +system registers which do not require coordination with the EL3 Runtime +Software is done directly by the PSCI library (see ``cm_prepare_el3_exit()``). + +The EL3 Runtime Software is responsible for managing register context +during switch between Normal and Secure worlds. The register context to be +saved and restored depends on the mechanism used to trigger the world switch. +For example, if the world switch was triggered by an SMC call, then the +registers need to be saved and restored according to `SMCCC`_. In AArch64, +due to the tight integration with BL31, both BL31 and PSCI library +use the same ``cpu_context_t`` data structure for PSCI CPU context management +and register context management during world switch. This cannot be assumed +for AArch32 EL3 Runtime Software since most AArch32 Trusted OSes already implement +a mechanism for register context management during world switch. Hence, when +the PSCI library is integrated with a AArch32 EL3 Runtime Software, the +``cpu_context_t`` is stripped down for just PSCI CPU context management. + +During cold/warm boot, after invoking appropriate PSCI library interfaces, it +is expected that the EL3 Runtime Software will query the ``cpu_context_t`` and +write appropriate values to the corresponding system registers. This mechanism +resolves 2 additional problems for AArch32 EL3 Runtime Software: + +#. Values for certain system registers like SCR and SCTLR cannot be + unilaterally determined by PSCI library and need inputs from the EL3 + Runtime Software. Using ``cpu_context_t`` as an intermediary data store + allows EL3 Runtime Software to modify the register values appropriately + before programming them. + +#. The PSCI library provides appropriate LR and SPSR values (entrypoint + information) for exit into non-secure world. Using ``cpu_context_t`` as an + intermediary data store allows the EL3 Runtime Software to store these + values safely until it is ready for exit to non-secure world. + +Currently the ``cpu_context_t`` data structure for AArch32 stores the following +registers: R0 - R3, LR (R14), SCR, SPSR, SCTLR. + +The EL3 Runtime Software must implement accessors to get/set pointers +to CPU context ``cpu_context_t`` data and these are described in +`CPU Context management API`_. + +PSCI Library Interface +---------------------- + +The PSCI library implements the `PSCI Specification`_. The interfaces +to this library are declared in ``psci_lib.h`` and are as listed below: + +.. code:: c + + u_register_t psci_smc_handler(uint32_t smc_fid, u_register_t x1, + u_register_t x2, u_register_t x3, + u_register_t x4, void *cookie, + void *handle, u_register_t flags); + int psci_setup(const psci_lib_args_t *lib_args); + void psci_warmboot_entrypoint(void); + void psci_register_spd_pm_hook(const spd_pm_ops_t *pm); + void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info); + +The CPU context data 'cpu_context_t' is programmed to the registers differently +when PSCI is integrated with an AArch32 EL3 Runtime Software compared to +when the PSCI is integrated with an AArch64 EL3 Runtime Software (BL31). For +example, in the case of AArch64, there is no need to retrieve ``cpu_context_t`` +data and program the registers as it will done implicitly as part of +``el3_exit``. The description below of the PSCI interfaces is targeted at +integration with an AArch32 EL3 Runtime Software. + +The PSCI library is responsible for initializing/restoring the non-secure world +to an appropriate state after boot and may choose to directly program the +non-secure system registers. The PSCI generic code takes care not to directly +modify any of the system registers affecting the secure world and instead +returns the values to be programmed to these registers via ``cpu_context_t``. +The EL3 Runtime Software is responsible for programming those registers and +can use the proposed values provided in the ``cpu_context_t``, modifying the +values if required. + +PSCI library needs the flexibility to access both secure and non-secure +copies of banked registers. Hence it needs to be invoked in Monitor mode +for AArch32 and in EL3 for AArch64. The NS bit in SCR (in AArch32) or SCR_EL3 +(in AArch64) must be set to 0. Additional requirements for the PSCI library +interfaces are: + +- Instruction cache must be enabled +- Both IRQ and FIQ must be masked for the current CPU +- The page tables must be setup and the MMU enabled +- The C runtime environment must be setup and stack initialized +- The Data cache must be enabled prior to invoking any of the PSCI library + interfaces except for ``psci_warmboot_entrypoint()``. For + ``psci_warmboot_entrypoint()``, if the build option ``HW_ASSISTED_COHERENCY`` + is enabled however, data caches are expected to be enabled. + +Further requirements for each interface can be found in the interface +description. + +Interface : psci_setup() +~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : const psci_lib_args_t *lib_args + Return : void + +This function is to be called by the primary CPU during cold boot before +any other interface to the PSCI library. It takes ``lib_args``, a const pointer +to ``psci_lib_args_t``, as the argument. The ``psci_lib_args_t`` is a versioned +structure and is declared in ``psci_lib.h`` header as follows: + +.. code:: c + + typedef struct psci_lib_args { + /* The version information of PSCI Library Interface */ + param_header_t h; + /* The warm boot entrypoint function */ + mailbox_entrypoint_t mailbox_ep; + } psci_lib_args_t; + +The first field ``h``, of ``param_header_t`` type, provides the version +information. The second field ``mailbox_ep`` is the warm boot entrypoint address +and is used to configure the platform mailbox. Helper macros are provided in +``psci_lib.h`` to construct the ``lib_args`` argument statically or during +runtime. Prior to calling the ``psci_setup()`` interface, the platform setup for +cold boot must have completed. Major actions performed by this interface are: + +- Initializes architecture. +- Initializes PSCI power domain and state coordination data structures. +- Calls ``plat_setup_psci_ops()`` with warm boot entrypoint ``mailbox_ep`` as + argument. +- Calls ``cm_set_context_by_index()`` (see + `CPU Context management API`_) for all the CPUs in the + platform + +Interface : psci_prepare_next_non_secure_ctx() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : entry_point_info_t *next_image_info + Return : void + +After ``psci_setup()`` and prior to exit to the non-secure world, this function +must be called by the EL3 Runtime Software to initialize the non-secure world +context. The non-secure world entrypoint information ``next_image_info`` (first +argument) will be used to determine the non-secure context. After this function +returns, the EL3 Runtime Software must retrieve the ``cpu_context_t`` (using +cm_get_context()) for the current CPU and program the registers prior to exit +to the non-secure world. + +Interface : psci_register_spd_pm_hook() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : const spd_pm_ops_t * + Return : void + +As explained in `Secure payload power management callback`_, +the EL3 Runtime Software may want to perform some bookkeeping during power +management operations. This function is used to register the ``spd_pm_ops_t`` +(first argument) callbacks with the PSCI library which will be called +appropriately during power management. Calling this function is optional and +need to be called by the primary CPU during the cold boot sequence after +``psci_setup()`` has completed. + +Interface : psci_smc_handler() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : uint32_t smc_fid, u_register_t x1, + u_register_t x2, u_register_t x3, + u_register_t x4, void *cookie, + void *handle, u_register_t flags + Return : u_register_t + +This function is the top level handler for SMCs which fall within the +PSCI service range specified in `SMCCC`_. The function ID ``smc_fid`` (first +argument) determines the PSCI API to be called. The ``x1`` to ``x4`` (2nd to 5th +arguments), are the values of the registers r1 - r4 (in AArch32) or x1 - x4 +(in AArch64) when the SMC is received. These are the arguments to PSCI API as +described in `PSCI spec`_. The 'flags' (8th argument) is a bit field parameter +and is detailed in 'smccc.h' header. It includes whether the call is from the +secure or non-secure world. The ``cookie`` (6th argument) and the ``handle`` +(7th argument) are not used and are reserved for future use. + +The return value from this interface is the return value from the underlying +PSCI API corresponding to ``smc_fid``. This function may not return back to the +caller if PSCI API causes power down of the CPU. In this case, when the CPU +wakes up, it will start execution from the warm reset address. + +Interface : psci_warmboot_entrypoint() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + Argument : void + Return : void + +This function performs the warm boot initialization/restoration as mandated by +`PSCI spec`_. For AArch32, on wakeup from power down the CPU resets to secure SVC +mode and the EL3 Runtime Software must perform the prerequisite initializations +mentioned at top of this section. This function must be called with Data cache +disabled (unless build option ``HW_ASSISTED_COHERENCY`` is enabled) but with MMU +initialized and enabled. The major actions performed by this function are: + +- Invalidates the stack and enables the data cache. +- Initializes architecture and PSCI state coordination. +- Restores/Initializes the peripheral drivers to the required state via + appropriate ``plat_psci_ops_t`` hooks +- Restores the EL3 Runtime Software context via appropriate ``spd_pm_ops_t`` + callbacks. +- Restores/Initializes the non-secure context and populates the + ``cpu_context_t`` for the current CPU. + +Upon the return of this function, the EL3 Runtime Software must retrieve the +non-secure ``cpu_context_t`` using ``cm_get_context()`` and program the registers +prior to exit to the non-secure world. + +EL3 Runtime Software dependencies +--------------------------------- + +The PSCI Library includes supporting frameworks like context management, +cpu operations (cpu_ops) and per-cpu data framework. Other helper library +functions like bakery locks and spin locks are also included in the library. +The dependencies which must be fulfilled by the EL3 Runtime Software +for integration with PSCI library are described below. + +General dependencies +~~~~~~~~~~~~~~~~~~~~ + +The PSCI library being a Multiprocessor (MP) implementation, EL3 Runtime +Software must provide an SMC handling framework capable of MP adhering to +`SMCCC`_ specification. + +The EL3 Runtime Software must also export cache maintenance primitives +and some helper utilities for assert, print and memory operations as listed +below. The TF-A source tree provides implementations for all +these functions but the EL3 Runtime Software may use its own implementation. + +**Functions : assert(), memcpy(), memset(), printf()** + +These must be implemented as described in ISO C Standard. + +**Function : flush_dcache_range()** + +:: + + Argument : uintptr_t addr, size_t size + Return : void + +This function cleans and invalidates (flushes) the data cache for memory +at address ``addr`` (first argument) address and of size ``size`` (second argument). + +**Function : inv_dcache_range()** + +:: + + Argument : uintptr_t addr, size_t size + Return : void + +This function invalidates (flushes) the data cache for memory at address +``addr`` (first argument) address and of size ``size`` (second argument). + +**Function : do_panic()** + +:: + + Argument : void + Return : void + +This function will be called by the PSCI library on encountering a critical +failure that cannot be recovered from. This function **must not** return. + +CPU Context management API +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The CPU context management data memory is statically allocated by PSCI library +in BSS section. The PSCI library requires the EL3 Runtime Software to implement +APIs to store and retrieve pointers to this CPU context data. SP-MIN +demonstrates how these APIs can be implemented but the EL3 Runtime Software can +choose a more optimal implementation (like dedicating the secure TPIDRPRW +system register (in AArch32) for storing these pointers). + +**Function : cm_set_context_by_index()** + +:: + + Argument : unsigned int cpu_idx, void *context, unsigned int security_state + Return : void + +This function is called during cold boot when the ``psci_setup()`` PSCI library +interface is called. + +This function must store the pointer to the CPU context data, ``context`` (2nd +argument), for the specified ``security_state`` (3rd argument) and CPU identified +by ``cpu_idx`` (first argument). The ``security_state`` will always be non-secure +when called by PSCI library and this argument is retained for compatibility +with BL31. The ``cpu_idx`` will correspond to the index returned by the +``plat_core_pos_by_mpidr()`` for ``mpidr`` of the CPU. + +The actual method of storing the ``context`` pointers is implementation specific. +For example, SP-MIN stores the pointers in the array ``sp_min_cpu_ctx_ptr`` +declared in ``sp_min_main.c``. + +**Function : cm_get_context()** + +:: + + Argument : uint32_t security_state + Return : void * + +This function must return the pointer to the ``cpu_context_t`` structure for +the specified ``security_state`` (first argument) for the current CPU. The caller +must ensure that ``cm_set_context_by_index`` is called first and the appropriate +context pointers are stored prior to invoking this API. The ``security_state`` +will always be non-secure when called by PSCI library and this argument +is retained for compatibility with BL31. + +**Function : cm_get_context_by_index()** + +:: + + Argument : unsigned int cpu_idx, unsigned int security_state + Return : void * + +This function must return the pointer to the ``cpu_context_t`` structure for +the specified ``security_state`` (second argument) for the CPU identified by +``cpu_idx`` (first argument). The caller must ensure that +``cm_set_context_by_index`` is called first and the appropriate context +pointers are stored prior to invoking this API. The ``security_state`` will +always be non-secure when called by PSCI library and this argument is +retained for compatibility with BL31. The ``cpu_idx`` will correspond to the +index returned by the ``plat_core_pos_by_mpidr()`` for ``mpidr`` of the CPU. + +Platform API +~~~~~~~~~~~~ + +The platform layer abstracts the platform-specific details from the generic +PSCI library. The following platform APIs/macros must be defined by the EL3 +Runtime Software for integration with the PSCI library. + +The mandatory platform APIs are: + +- plat_my_core_pos +- plat_core_pos_by_mpidr +- plat_get_syscnt_freq2 +- plat_get_power_domain_tree_desc +- plat_setup_psci_ops +- plat_reset_handler +- plat_panic_handler +- plat_get_my_stack + +The mandatory platform macros are: + +- PLATFORM_CORE_COUNT +- PLAT_MAX_PWR_LVL +- PLAT_NUM_PWR_DOMAINS +- CACHE_WRITEBACK_GRANULE +- PLAT_MAX_OFF_STATE +- PLAT_MAX_RET_STATE +- PLAT_MAX_PWR_LVL_STATES (optional) +- PLAT_PCPU_DATA_SIZE (optional) + +The details of these APIs/macros can be found in `Porting Guide`_. + +All platform specific operations for power management are done via +``plat_psci_ops_t`` callbacks registered by the platform when +``plat_setup_psci_ops()`` API is called. The description of each of +the callbacks in ``plat_psci_ops_t`` can be found in PSCI section of the +`Porting Guide`_. If any these callbacks are not registered, then the +PSCI API associated with that callback will not be supported by PSCI +library. + +Secure payload power management callback +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +During PSCI power management operations, the EL3 Runtime Software may +need to perform some bookkeeping, and PSCI library provides +``spd_pm_ops_t`` callbacks for this purpose. These hooks must be +populated and registered by using ``psci_register_spd_pm_hook()`` PSCI +library interface. + +Typical bookkeeping during PSCI power management calls include save/restore +of the EL3 Runtime Software context. Also if the EL3 Runtime Software makes +use of secure interrupts, then these interrupts must also be managed +appropriately during CPU power down/power up. Any secure interrupt targeted +to the current CPU must be disabled or re-targeted to other running CPU prior +to power down of the current CPU. During power up, these interrupt can be +enabled/re-targeted back to the current CPU. + +.. code:: c + + typedef struct spd_pm_ops { + void (*svc_on)(u_register_t target_cpu); + int32_t (*svc_off)(u_register_t __unused); + void (*svc_suspend)(u_register_t max_off_pwrlvl); + void (*svc_on_finish)(u_register_t __unused); + void (*svc_suspend_finish)(u_register_t max_off_pwrlvl); + int32_t (*svc_migrate)(u_register_t from_cpu, u_register_t to_cpu); + int32_t (*svc_migrate_info)(u_register_t *resident_cpu); + void (*svc_system_off)(void); + void (*svc_system_reset)(void); + } spd_pm_ops_t; + +A brief description of each callback is given below: + +- svc_on, svc_off, svc_on_finish + + The ``svc_on``, ``svc_off`` callbacks are called during PSCI_CPU_ON, + PSCI_CPU_OFF APIs respectively. The ``svc_on_finish`` is called when the + target CPU of PSCI_CPU_ON API powers up and executes the + ``psci_warmboot_entrypoint()`` PSCI library interface. + +- svc_suspend, svc_suspend_finish + + The ``svc_suspend`` callback is called during power down bu either + PSCI_SUSPEND or PSCI_SYSTEM_SUSPEND APIs. The ``svc_suspend_finish`` is + called when the CPU wakes up from suspend and executes the + ``psci_warmboot_entrypoint()`` PSCI library interface. The ``max_off_pwrlvl`` + (first parameter) denotes the highest power domain level being powered down + to or woken up from suspend. + +- svc_system_off, svc_system_reset + + These callbacks are called during PSCI_SYSTEM_OFF and PSCI_SYSTEM_RESET + PSCI APIs respectively. + +- svc_migrate_info + + This callback is called in response to PSCI_MIGRATE_INFO_TYPE or + PSCI_MIGRATE_INFO_UP_CPU APIs. The return value of this callback must + correspond to the return value of PSCI_MIGRATE_INFO_TYPE API as described + in `PSCI spec`_. If the secure payload is a Uniprocessor (UP) + implementation, then it must update the mpidr of the CPU it is resident in + via ``resident_cpu`` (first argument). The updates to ``resident_cpu`` is + ignored if the secure payload is a multiprocessor (MP) implementation. + +- svc_migrate + + This callback is only relevant if the secure payload in EL3 Runtime + Software is a Uniprocessor (UP) implementation and supports migration from + the current CPU ``from_cpu`` (first argument) to another CPU ``to_cpu`` + (second argument). This callback is called in response to PSCI_MIGRATE + API. This callback is never called if the secure payload is a + Multiprocessor (MP) implementation. + +CPU operations +~~~~~~~~~~~~~~ + +The CPU operations (cpu_ops) framework implement power down sequence specific +to the CPU and the details of which can be found in the +``CPU specific operations framework`` section of `Firmware Design`_. The TF-A +tree implements the ``cpu_ops`` for various supported CPUs and the EL3 Runtime +Software needs to include the required ``cpu_ops`` in its build. The start and +end of the ``cpu_ops`` descriptors must be exported by the EL3 Runtime Software +via the ``__CPU_OPS_START__`` and ``__CPU_OPS_END__`` linker symbols. + +The ``cpu_ops`` descriptors also include reset sequences and may include errata +workarounds for the CPU. The EL3 Runtime Software can choose to call this +during cold/warm reset if it does not implement its own reset sequence/errata +workarounds. + +-------------- + +*Copyright (c) 2016-2018, Arm Limited and Contributors. All rights reserved.* + +.. _PSCI spec: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf +.. _SMCCC: https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR570-DA-80002-r0p0-00rel0/ARM_DEN0028A_SMC_Calling_Convention.pdf +.. _PSCI specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf +.. _PSCI Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf +.. _Porting Guide: ../getting_started/porting-guide.rst +.. _Firmware Design: ../design/firmware-design.rst diff --git a/docs/getting_started/rt-svc-writers-guide.rst b/docs/getting_started/rt-svc-writers-guide.rst new file mode 100644 index 000000000..f4d786cd2 --- /dev/null +++ b/docs/getting_started/rt-svc-writers-guide.rst @@ -0,0 +1,311 @@ +Trusted Firmware-A EL3 runtime service writer's guide +===================================================== + + + +.. contents:: + +Introduction +------------ + +This document describes how to add a runtime service to the EL3 Runtime +Firmware component of Trusted Firmware-A (TF-A), BL31. + +Software executing in the normal world and in the trusted world at exception +levels lower than EL3 will request runtime services using the Secure Monitor +Call (SMC) instruction. These requests will follow the convention described in +the SMC Calling Convention PDD (`SMCCC`_). The `SMCCC`_ assigns function +identifiers to each SMC request and describes how arguments are passed and +results are returned. + +SMC Functions are grouped together based on the implementor of the service, for +example a subset of the Function IDs are designated as "OEM Calls" (see `SMCCC`_ +for full details). The EL3 runtime services framework in BL31 enables the +independent implementation of services for each group, which are then compiled +into the BL31 image. This simplifies the integration of common software from +Arm to support `PSCI`_, Secure Monitor for a Trusted OS and SoC specific +software. The common runtime services framework ensures that SMC Functions are +dispatched to their respective service implementation - the `Firmware Design`_ +provides details of how this is achieved. + +The interface and operation of the runtime services depends heavily on the +concepts and definitions described in the `SMCCC`_, in particular SMC Function +IDs, Owning Entity Numbers (OEN), Fast and Standard calls, and the SMC32 and +SMC64 calling conventions. Please refer to that document for a full explanation +of these terms. + +Owning Entities, Call Types and Function IDs +-------------------------------------------- + +The SMC Function Identifier includes a OEN field. These values and their +meaning are described in `SMCCC`_ and summarized in table 1 below. Some entities +are allocated a range of of OENs. The OEN must be interpreted in conjunction +with the SMC call type, which is either *Fast* or *Yielding*. Fast calls are +uninterruptible whereas Yielding calls can be pre-empted. The majority of +Owning Entities only have allocated ranges for Fast calls: Yielding calls are +reserved exclusively for Trusted OS providers or for interoperability with +legacy 32-bit software that predates the `SMCCC`_. + +:: + + Type OEN Service + Fast 0 Arm Architecture calls + Fast 1 CPU Service calls + Fast 2 SiP Service calls + Fast 3 OEM Service calls + Fast 4 Standard Service calls + Fast 5-47 Reserved for future use + Fast 48-49 Trusted Application calls + Fast 50-63 Trusted OS calls + + Yielding 0- 1 Reserved for existing Armv7-A calls + Yielding 2-63 Trusted OS Standard Calls + +*Table 1: Service types and their corresponding Owning Entity Numbers* + +Each individual entity can allocate the valid identifiers within the entity +range as they need - it is not necessary to coordinate with other entities of +the same type. For example, two SoC providers can use the same Function ID +within the SiP Service calls OEN range to mean different things - as these +calls should be specific to the SoC. The Standard Runtime Calls OEN is used for +services defined by Arm standards, such as `PSCI`_. + +The SMC Function ID also indicates whether the call has followed the SMC32 +calling convention, where all parameters are 32-bit, or the SMC64 calling +convention, where the parameters are 64-bit. The framework identifies and +rejects invalid calls that use the SMC64 calling convention but that originate +from an AArch32 caller. + +The EL3 runtime services framework uses the call type and OEN to identify a +specific handler for each SMC call, but it is expected that an individual +handler will be responsible for all SMC Functions within a given service type. + +Getting started +--------------- + +TF-A has a `services`_ directory in the source tree under which +each owning entity can place the implementation of its runtime service. The +`PSCI`_ implementation is located here in the `lib/psci`_ directory. + +Runtime service sources will need to include the `runtime_svc.h`_ header file. + +Registering a runtime service +----------------------------- + +A runtime service is registered using the ``DECLARE_RT_SVC()`` macro, specifying +the name of the service, the range of OENs covered, the type of service and +initialization and call handler functions. + +:: + + #define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch) + +- ``_name`` is used to identify the data structure declared by this macro, and + is also used for diagnostic purposes + +- ``_start`` and ``_end`` values must be based on the ``OEN_*`` values defined in + `smccc.h`_ + +- ``_type`` must be one of ``SMC_TYPE_FAST`` or ``SMC_TYPE_YIELD`` + +- ``_setup`` is the initialization function with the ``rt_svc_init`` signature: + + .. code:: c + + typedef int32_t (*rt_svc_init)(void); + +- ``_smch`` is the SMC handler function with the ``rt_svc_handle`` signature: + + .. code:: c + + typedef uintptr_t (*rt_svc_handle_t)(uint32_t smc_fid, + u_register_t x1, u_register_t x2, + u_register_t x3, u_register_t x4, + void *cookie, + void *handle, + u_register_t flags); + +Details of the requirements and behavior of the two callbacks is provided in +the following sections. + +During initialization the services framework validates each declared service +to ensure that the following conditions are met: + +#. The ``_start`` OEN is not greater than the ``_end`` OEN +#. The ``_end`` OEN does not exceed the maximum OEN value (63) +#. The ``_type`` is one of ``SMC_TYPE_FAST`` or ``SMC_TYPE_YIELD`` +#. ``_setup`` and ``_smch`` routines have been specified + +`std_svc_setup.c`_ provides an example of registering a runtime service: + +.. code:: c + + /* Register Standard Service Calls as runtime service */ + DECLARE_RT_SVC( + std_svc, + OEN_STD_START, + OEN_STD_END, + SMC_TYPE_FAST, + std_svc_setup, + std_svc_smc_handler + ); + +Initializing a runtime service +------------------------------ + +Runtime services are initialized once, during cold boot, by the primary CPU +after platform and architectural initialization is complete. The framework +performs basic validation of the declared service before calling +the service initialization function (``_setup`` in the declaration). This +function must carry out any essential EL3 initialization prior to receiving a +SMC Function call via the handler function. + +On success, the initialization function must return ``0``. Any other return value +will cause the framework to issue a diagnostic: + +:: + + Error initializing runtime service <name of the service> + +and then ignore the service - the system will continue to boot but SMC calls +will not be passed to the service handler and instead return the *Unknown SMC +Function ID* result ``0xFFFFFFFF``. + +If the system must not be allowed to proceed without the service, the +initialization function must itself cause the firmware boot to be halted. + +If the service uses per-CPU data this must either be initialized for all CPUs +during this call, or be done lazily when a CPU first issues an SMC call to that +service. + +Handling runtime service requests +--------------------------------- + +SMC calls for a service are forwarded by the framework to the service's SMC +handler function (``_smch`` in the service declaration). This function must have +the following signature: + +.. code:: c + + typedef uintptr_t (*rt_svc_handle_t)(uint32_t smc_fid, + u_register_t x1, u_register_t x2, + u_register_t x3, u_register_t x4, + void *cookie, + void *handle, + u_register_t flags); + +The handler is responsible for: + +#. Determining that ``smc_fid`` is a valid and supported SMC Function ID, + otherwise completing the request with the *Unknown SMC Function ID*: + + .. code:: c + + SMC_RET1(handle, SMC_UNK); + +#. Determining if the requested function is valid for the calling security + state. SMC Calls can be made from both the normal and trusted worlds and + the framework will forward all calls to the service handler. + + The ``flags`` parameter to this function indicates the caller security state + in bit[0], where a value of ``1`` indicates a non-secure caller. The + ``is_caller_secure(flags)`` and ``is_caller_non_secure(flags)`` can be used to + test this condition. + + If invalid, the request should be completed with: + + .. code:: c + + SMC_RET1(handle, SMC_UNK); + +#. Truncating parameters for calls made using the SMC32 calling convention. + Such calls can be determined by checking the CC field in bit[30] of the + ``smc_fid`` parameter, for example by using: + + :: + + if (GET_SMC_CC(smc_fid) == SMC_32) ... + + For such calls, the upper bits of the parameters x1-x4 and the saved + parameters X5-X7 are UNDEFINED and must be explicitly ignored by the + handler. This can be done by truncating the values to a suitable 32-bit + integer type before use, for example by ensuring that functions defined + to handle individual SMC Functions use appropriate 32-bit parameters. + +#. Providing the service requested by the SMC Function, utilizing the + immediate parameters x1-x4 and/or the additional saved parameters X5-X7. + The latter can be retrieved using the ``SMC_GET_GP(handle, ref)`` function, + supplying the appropriate ``CTX_GPREG_Xn`` reference, e.g. + + .. code:: c + + uint64_t x6 = SMC_GET_GP(handle, CTX_GPREG_X6); + +#. Implementing the standard SMC32 Functions that provide information about + the implementation of the service. These are the Call Count, Implementor + UID and Revision Details for each service documented in section 6 of the + `SMCCC`_. + + TF-A expects owning entities to follow this recommendation. + +#. Returning the result to the caller. The `SMCCC`_ allows for up to 256 bits + of return value in SMC64 using X0-X3 and 128 bits in SMC32 using W0-W3. The + framework provides a family of macros to set the multi-register return + value and complete the handler: + + .. code:: c + + SMC_RET1(handle, x0); + SMC_RET2(handle, x0, x1); + SMC_RET3(handle, x0, x1, x2); + SMC_RET4(handle, x0, x1, x2, x3); + +The ``cookie`` parameter to the handler is reserved for future use and can be +ignored. The ``handle`` is returned by the SMC handler - completion of the +handler function must always be via one of the ``SMC_RETn()`` macros. + +NOTE: The PSCI and Test Secure-EL1 Payload Dispatcher services do not follow +all of the above requirements yet. + +Services that contain multiple sub-services +------------------------------------------- + +It is possible that a single owning entity implements multiple sub-services. For +example, the Standard calls service handles ``0x84000000``-``0x8400FFFF`` and +``0xC4000000``-``0xC400FFFF`` functions. Within that range, the `PSCI`_ service +handles the ``0x84000000``-``0x8400001F`` and ``0xC4000000``-``0xC400001F`` functions. +In that respect, `PSCI`_ is a 'sub-service' of the Standard calls service. In +future, there could be additional such sub-services in the Standard calls +service which perform independent functions. + +In this situation it may be valuable to introduce a second level framework to +enable independent implementation of sub-services. Such a framework might look +very similar to the current runtime services framework, but using a different +part of the SMC Function ID to identify the sub-service. TF-A does not provide +such a framework at present. + +Secure-EL1 Payload Dispatcher service (SPD) +------------------------------------------- + +Services that handle SMC Functions targeting a Trusted OS, Trusted Application, +or other Secure-EL1 Payload are special. These services need to manage the +Secure-EL1 context, provide the *Secure Monitor* functionality of switching +between the normal and secure worlds, deliver SMC Calls through to Secure-EL1 +and generally manage the Secure-EL1 Payload through CPU power-state transitions. + +TODO: Provide details of the additional work required to implement a SPD and +the BL31 support for these services. Or a reference to the document that will +provide this information.... + +-------------- + +*Copyright (c) 2014-2018, Arm Limited and Contributors. All rights reserved.* + +.. _SMCCC: http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html +.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf +.. _Firmware Design: ../designb_documents/firmware-design.rst +.. _services: ../../services +.. _lib/psci: ../../lib/psci +.. _runtime_svc.h: ../../include/common/runtime_svc.h +.. _smccc.h: ../../include/lib/smccc.h +.. _std_svc_setup.c: ../../services/std_svc/std_svc_setup.c diff --git a/docs/getting_started/user-guide.rst b/docs/getting_started/user-guide.rst new file mode 100644 index 000000000..3cc5f3cc9 --- /dev/null +++ b/docs/getting_started/user-guide.rst @@ -0,0 +1,2142 @@ +Trusted Firmware-A User Guide +============================= + + + + +.. contents:: + +This document describes how to build Trusted Firmware-A (TF-A) and run it with a +tested set of other software components using defined configurations on the Juno +Arm development platform and Arm Fixed Virtual Platform (FVP) models. It is +possible to use other software components, configurations and platforms but that +is outside the scope of this document. + +This document assumes that the reader has previous experience running a fully +bootable Linux software stack on Juno or FVP using the prebuilt binaries and +filesystems provided by `Linaro`_. Further information may be found in the +`Linaro instructions`_. It also assumes that the user understands the role of +the different software components required to boot a Linux system: + +- Specific firmware images required by the platform (e.g. SCP firmware on Juno) +- Normal world bootloader (e.g. UEFI or U-Boot) +- Device tree +- Linux kernel image +- Root filesystem + +This document also assumes that the user is familiar with the `FVP models`_ and +the different command line options available to launch the model. + +This document should be used in conjunction with the `Firmware Design`_. + +Host machine requirements +------------------------- + +The minimum recommended machine specification for building the software and +running the FVP models is a dual-core processor running at 2GHz with 12GB of +RAM. For best performance, use a machine with a quad-core processor running at +2.6GHz with 16GB of RAM. + +The software has been tested on Ubuntu 16.04 LTS (64-bit). Packages used for +building the software were installed from that distribution unless otherwise +specified. + +The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE, +Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain. + +Tools +----- + +Install the required packages to build TF-A with the following command: + +:: + + sudo apt-get install device-tree-compiler build-essential gcc make git libssl-dev + +TF-A has been tested with Linaro Release 18.04. + +Download and install the AArch32 or AArch64 little-endian GCC cross compiler. If +you would like to use the latest features available, download GCC 8.2-2019.01 +compiler from `arm Developer page`_. Otherwise, the `Linaro Release Notes`_ +documents which version of the compiler to use for a given Linaro Release. Also, +these `Linaro instructions`_ provide further guidance and a script, which can be +used to download Linaro deliverables automatically. + +Optionally, TF-A can be built using clang version 4.0 or newer or Arm +Compiler 6. See instructions below on how to switch the default compiler. + +In addition, the following optional packages and tools may be needed: + +- ``device-tree-compiler`` (dtc) package if you need to rebuild the Flattened Device + Tree (FDT) source files (``.dts`` files) provided with this software. The + version of dtc must be 1.4.6 or above. + +- For debugging, Arm `Development Studio 5 (DS-5)`_. + +- To create and modify the diagram files included in the documentation, `Dia`_. + This tool can be found in most Linux distributions. Inkscape is needed to + generate the actual \*.png files. + +Getting the TF-A source code +---------------------------- + +Clone the repository from the Gerrit server. The project details may be found +on the `arm-trusted-firmware-a project page`_. We recommend the "`Clone with +commit-msg hook`" clone method, which will setup the git commit hook that +automatically generates and inserts appropriate `Change-Id:` lines in your +commit messages. + +Checking source code style +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Trusted Firmware follows the `Linux Coding Style`_ . When making changes to the +source, for submission to the project, the source must be in compliance with +this style guide. + +Additional, project-specific guidelines are defined in the `Trusted Firmware-A +Coding Guidelines`_ document. + +To assist with coding style compliance, the project Makefile contains two +targets which both utilise the `checkpatch.pl` script that ships with the Linux +source tree. The project also defines certain *checkpatch* options in the +``.checkpatch.conf`` file in the top-level directory. + +**Note:** Checkpatch errors will gate upstream merging of pull requests. +Checkpatch warnings will not gate merging but should be reviewed and fixed if +possible. + +To check the entire source tree, you must first download copies of +``checkpatch.pl``, ``spelling.txt`` and ``const_structs.checkpatch`` available +in the `Linux master tree`_ *scripts* directory, then set the ``CHECKPATCH`` +environment variable to point to ``checkpatch.pl`` (with the other 2 files in +the same directory) and build the `checkcodebase` target: + +:: + + make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase + +To just check the style on the files that differ between your local branch and +the remote master, use: + +:: + + make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch + +If you wish to check your patch against something other than the remote master, +set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT`` +is set to ``origin/master``. + +Building TF-A +------------- + +- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point + to the Linaro cross compiler. + + For AArch64: + + :: + + export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- + + For AArch32: + + :: + + export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf- + + It is possible to build TF-A using Clang or Arm Compiler 6. To do so + ``CC`` needs to point to the clang or armclang binary, which will + also select the clang or armclang assembler. Be aware that the + GNU linker is used by default. In case of being needed the linker + can be overridden using the ``LD`` variable. Clang linker version 6 is + known to work with TF-A. + + In both cases ``CROSS_COMPILE`` should be set as described above. + + Arm Compiler 6 will be selected when the base name of the path assigned + to ``CC`` matches the string 'armclang'. + + For AArch64 using Arm Compiler 6: + + :: + + export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- + make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all + + Clang will be selected when the base name of the path assigned to ``CC`` + contains the string 'clang'. This is to allow both clang and clang-X.Y + to work. + + For AArch64 using clang: + + :: + + export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- + make CC=<path-to-clang>/bin/clang PLAT=<platform> all + +- Change to the root directory of the TF-A source tree and build. + + For AArch64: + + :: + + make PLAT=<platform> all + + For AArch32: + + :: + + make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all + + Notes: + + - If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the + `Summary of build options`_ for more information on available build + options. + + - (AArch32 only) Currently only ``PLAT=fvp`` is supported. + + - (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it + corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp_min, is + provided by TF-A to demonstrate how PSCI Library can be integrated with + an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may + include other runtime services, for example Trusted OS services. A guide + to integrate PSCI library with AArch32 EL3 Runtime Software can be found + `here`_. + + - (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32 + image, is not compiled in by default. Refer to the + `Building the Test Secure Payload`_ section below. + + - By default this produces a release version of the build. To produce a + debug version instead, refer to the "Debugging options" section below. + + - The build process creates products in a ``build`` directory tree, building + the objects and binaries for each boot loader stage in separate + sub-directories. The following boot loader binary files are created + from the corresponding ELF files: + + - ``build/<platform>/<build-type>/bl1.bin`` + - ``build/<platform>/<build-type>/bl2.bin`` + - ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only) + - ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32) + + where ``<platform>`` is the name of the chosen platform and ``<build-type>`` + is either ``debug`` or ``release``. The actual number of images might differ + depending on the platform. + +- Build products for a specific build variant can be removed using: + + :: + + make DEBUG=<D> PLAT=<platform> clean + + ... where ``<D>`` is ``0`` or ``1``, as specified when building. + + The build tree can be removed completely using: + + :: + + make realclean + +Summary of build options +~~~~~~~~~~~~~~~~~~~~~~~~ + +The TF-A build system supports the following build options. Unless mentioned +otherwise, these options are expected to be specified at the build command +line and are not to be modified in any component makefiles. Note that the +build system doesn't track dependency for build options. Therefore, if any of +the build options are changed from a previous build, a clean build must be +performed. + +Common build options +^^^^^^^^^^^^^^^^^^^^ + +- ``AARCH32_INSTRUCTION_SET``: Choose the AArch32 instruction set that the + compiler should use. Valid values are T32 and A32. It defaults to T32 due to + code having a smaller resulting size. + +- ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as + as the BL32 image when ``ARCH=aarch32``. The value should be the path to the + directory containing the SP source, relative to the ``bl32/``; the directory + is expected to contain a makefile called ``<aarch32_sp-value>.mk``. + +- ``ARCH`` : Choose the target build architecture for TF-A. It can take either + ``aarch64`` or ``aarch32`` as values. By default, it is defined to + ``aarch64``. + +- ``ARM_ARCH_MAJOR``: The major version of Arm Architecture to target when + compiling TF-A. Its value must be numeric, and defaults to 8 . See also, + *Armv8 Architecture Extensions* and *Armv7 Architecture Extensions* in + `Firmware Design`_. + +- ``ARM_ARCH_MINOR``: The minor version of Arm Architecture to target when + compiling TF-A. Its value must be a numeric, and defaults to 0. See also, + *Armv8 Architecture Extensions* in `Firmware Design`_. + +- ``BL2``: This is an optional build option which specifies the path to BL2 + image for the ``fip`` target. In this case, the BL2 in the TF-A will not be + built. + +- ``BL2U``: This is an optional build option which specifies the path to + BL2U image. In this case, the BL2U in TF-A will not be built. + +- ``BL2_AT_EL3``: This is an optional build option that enables the use of + BL2 at EL3 execution level. + +- ``BL2_IN_XIP_MEM``: In some use-cases BL2 will be stored in eXecute In Place + (XIP) memory, like BL1. In these use-cases, it is necessary to initialize + the RW sections in RAM, while leaving the RO sections in place. This option + enable this use-case. For now, this option is only supported when BL2_AT_EL3 + is set to '1'. + +- ``BL31``: This is an optional build option which specifies the path to + BL31 image for the ``fip`` target. In this case, the BL31 in TF-A will not + be built. + +- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the + file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``, + this file name will be used to save the key. + +- ``BL32``: This is an optional build option which specifies the path to + BL32 image for the ``fip`` target. In this case, the BL32 in TF-A will not + be built. + +- ``BL32_EXTRA1``: This is an optional build option which specifies the path to + Trusted OS Extra1 image for the ``fip`` target. + +- ``BL32_EXTRA2``: This is an optional build option which specifies the path to + Trusted OS Extra2 image for the ``fip`` target. + +- ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the + file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``, + this file name will be used to save the key. + +- ``BL33``: Path to BL33 image in the host file system. This is mandatory for + ``fip`` target in case TF-A BL2 is used. + +- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the + file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``, + this file name will be used to save the key. + +- ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the + compilation of each build. It must be set to a C string (including quotes + where applicable). Defaults to a string that contains the time and date of + the compilation. + +- ``BUILD_STRING``: Input string for VERSION_STRING, which allows the TF-A + build to be uniquely identified. Defaults to the current git commit id. + +- ``CFLAGS``: Extra user options appended on the compiler's command line in + addition to the options set by the build system. + +- ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may + release several CPUs out of reset. It can take either 0 (several CPUs may be + brought up) or 1 (only one CPU will ever be brought up during cold reset). + Default is 0. If the platform always brings up a single CPU, there is no + need to distinguish between primary and secondary CPUs and the boot path can + be optimised. The ``plat_is_my_cpu_primary()`` and + ``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need + to be implemented in this case. + +- ``CRASH_REPORTING``: A non-zero value enables a console dump of processor + register state when an unexpected exception occurs during execution of + BL31. This option defaults to the value of ``DEBUG`` - i.e. by default + this is only enabled for a debug build of the firmware. + +- ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the + certificate generation tool to create new keys in case no valid keys are + present or specified. Allowed options are '0' or '1'. Default is '1'. + +- ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause + the AArch32 system registers to be included when saving and restoring the + CPU context. The option must be set to 0 for AArch64-only platforms (that + is on hardware that does not implement AArch32, or at least not at EL1 and + higher ELs). Default value is 1. + +- ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP + registers to be included when saving and restoring the CPU context. Default + is 0. + +- ``CTX_INCLUDE_PAUTH_REGS``: Boolean option that, when set to 1, allows + Pointer Authentication for **Secure world**. This will cause the + Armv8.3-PAuth registers to be included when saving and restoring the CPU + context as part of a world switch. Default value is 0. Pointer Authentication + is an experimental feature. + + Note that, if the CPU supports it, Pointer Authentication is allowed for + Non-secure world irrespectively of the value of this flag. "Allowed" means + that accesses to PAuth-related registers or execution of PAuth-related + instructions will not be trapped to EL3. As such, usage or not of PAuth in + Non-secure world images, depends on those images themselves. + +- ``DEBUG``: Chooses between a debug and release build. It can take either 0 + (release) or 1 (debug) as values. 0 is the default. + +- ``DISABLE_BIN_GENERATION``: Boolean option to disable the generation + of the binary image. If set to 1, then only the ELF image is built. + 0 is the default. + +- ``DYN_DISABLE_AUTH``: Provides the capability to dynamically disable Trusted + Board Boot authentication at runtime. This option is meant to be enabled only + for development platforms. ``TRUSTED_BOARD_BOOT`` flag must be set if this + flag has to be enabled. 0 is the default. + +- ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of + the normal boot flow. It must specify the entry point address of the EL3 + payload. Please refer to the "Booting an EL3 payload" section for more + details. + +- ``ENABLE_AMU``: Boolean option to enable Activity Monitor Unit extensions. + This is an optional architectural feature available on v8.4 onwards. Some + v8.2 implementations also implement an AMU and this option can be used to + enable this feature on those systems as well. Default is 0. + +- ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()`` + are compiled out. For debug builds, this option defaults to 1, and calls to + ``assert()`` are left in place. For release builds, this option defaults to 0 + and calls to ``assert()`` function are compiled out. This option can be set + independently of ``DEBUG``. It can also be used to hide any auxiliary code + that is only required for the assertion and does not fit in the assertion + itself. + +- ``ENABLE_BACKTRACE``: This option controls whether to enables backtrace + dumps or not. It is supported in both AArch64 and AArch32. However, in + AArch32 the format of the frame records are not defined in the AAPCS and they + are defined by the implementation. This implementation of backtrace only + supports the format used by GCC when T32 interworking is disabled. For this + reason enabling this option in AArch32 will force the compiler to only + generate A32 code. This option is enabled by default only in AArch64 debug + builds, but this behaviour can be overridden in each platform's Makefile or + in the build command line. + +- ``ENABLE_MPAM_FOR_LOWER_ELS``: Boolean option to enable lower ELs to use MPAM + feature. MPAM is an optional Armv8.4 extension that enables various memory + system components and resources to define partitions; software running at + various ELs can assign themselves to desired partition to control their + performance aspects. + + When this option is set to ``1``, EL3 allows lower ELs to access their own + MPAM registers without trapping into EL3. This option doesn't make use of + partitioning in EL3, however. Platform initialisation code should configure + and use partitions in EL3 as required. This option defaults to ``0``. + +- ``ENABLE_PAUTH``: Boolean option to enable Armv8.3 Pointer Authentication + for **TF-A BL images themselves**. If enabled, the compiler must support the + ``-msign-return-address`` option. This flag defaults to 0. Pointer + Authentication is an experimental feature. + + If this flag is enabled, ``CTX_INCLUDE_PAUTH_REGS`` must also be enabled. + +- ``ENABLE_PIE``: Boolean option to enable Position Independent Executable(PIE) + support within generic code in TF-A. This option is currently only supported + in BL31. Default is 0. + +- ``ENABLE_PMF``: Boolean option to enable support for optional Performance + Measurement Framework(PMF). Default is 0. + +- ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI + functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0. + In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must + be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in + software. + +- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime + instrumentation which injects timestamp collection points into TF-A to + allow runtime performance to be measured. Currently, only PSCI is + instrumented. Enabling this option enables the ``ENABLE_PMF`` build option + as well. Default is 0. + +- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling + extensions. This is an optional architectural feature for AArch64. + The default is 1 but is automatically disabled when the target architecture + is AArch32. + +- ``ENABLE_SPM`` : Boolean option to enable the Secure Partition Manager (SPM). + Refer to the `Secure Partition Manager Design guide`_ for more details about + this feature. Default is 0. + +- ``ENABLE_SVE_FOR_NS``: Boolean option to enable Scalable Vector Extension + (SVE) for the Non-secure world only. SVE is an optional architectural feature + for AArch64. Note that when SVE is enabled for the Non-secure world, access + to SIMD and floating-point functionality from the Secure world is disabled. + This is to avoid corruption of the Non-secure world data in the Z-registers + which are aliased by the SIMD and FP registers. The build option is not + compatible with the ``CTX_INCLUDE_FPREGS`` build option, and will raise an + assert on platforms where SVE is implemented and ``ENABLE_SVE_FOR_NS`` set to + 1. The default is 1 but is automatically disabled when the target + architecture is AArch32. + +- ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection + checks in GCC. Allowed values are "all", "strong", "default" and "none". The + default value is set to "none". "strong" is the recommended stack protection + level if this feature is desired. "none" disables the stack protection. For + all values other than "none", the ``plat_get_stack_protector_canary()`` + platform hook needs to be implemented. The value is passed as the last + component of the option ``-fstack-protector-$ENABLE_STACK_PROTECTOR``. + +- ``ERROR_DEPRECATED``: This option decides whether to treat the usage of + deprecated platform APIs, helper functions or drivers within Trusted + Firmware as error. It can take the value 1 (flag the use of deprecated + APIs as error) or 0. The default is 0. + +- ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions + targeted at EL3. When set ``0`` (default), no exceptions are expected or + handled at EL3, and a panic will result. This is supported only for AArch64 + builds. + +- ``FAULT_INJECTION_SUPPORT``: ARMv8.4 extensions introduced support for fault + injection from lower ELs, and this build option enables lower ELs to use + Error Records accessed via System Registers to inject faults. This is + applicable only to AArch64 builds. + + This feature is intended for testing purposes only, and is advisable to keep + disabled for production images. + +- ``FIP_NAME``: This is an optional build option which specifies the FIP + filename for the ``fip`` target. Default is ``fip.bin``. + +- ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU + FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``. + +- ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create`` + tool to create certificates as per the Chain of Trust described in + `Trusted Board Boot`_. The build system then calls ``fiptool`` to + include the certificates in the FIP and FWU_FIP. Default value is '0'. + + Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support + for the Trusted Board Boot feature in the BL1 and BL2 images, to generate + the corresponding certificates, and to include those certificates in the + FIP and FWU_FIP. + + Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2 + images will not include support for Trusted Board Boot. The FIP will still + include the corresponding certificates. This FIP can be used to verify the + Chain of Trust on the host machine through other mechanisms. + + Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2 + images will include support for Trusted Board Boot, but the FIP and FWU_FIP + will not include the corresponding certificates, causing a boot failure. + +- ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have + inherent support for specific EL3 type interrupts. Setting this build option + to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both + by `platform abstraction layer`__ and `Interrupt Management Framework`__. + This allows GICv2 platforms to enable features requiring EL3 interrupt type. + This also means that all GICv2 Group 0 interrupts are delivered to EL3, and + the Secure Payload interrupts needs to be synchronously handed over to Secure + EL1 for handling. The default value of this option is ``0``, which means the + Group 0 interrupts are assumed to be handled by Secure EL1. + + .. __: `platform-interrupt-controller-API.rst` + .. __: `interrupt-framework-design.rst` + +- ``HANDLE_EA_EL3_FIRST``: When set to ``1``, External Aborts and SError + Interrupts will be always trapped in EL3 i.e. in BL31 at runtime. When set to + ``0`` (default), these exceptions will be trapped in the current exception + level (or in EL1 if the current exception level is EL0). + +- ``HW_ASSISTED_COHERENCY``: On most Arm systems to-date, platform-specific + software operations are required for CPUs to enter and exit coherency. + However, newer systems exist where CPUs' entry to and exit from coherency + is managed in hardware. Such systems require software to only initiate these + operations, and the rest is managed in hardware, minimizing active software + management. In such systems, this boolean option enables TF-A to carry out + build and run-time optimizations during boot and power management operations. + This option defaults to 0 and if it is enabled, then it implies + ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled. + + If this flag is disabled while the platform which TF-A is compiled for + includes cores that manage coherency in hardware, then a compilation error is + generated. This is based on the fact that a system cannot have, at the same + time, cores that manage coherency in hardware and cores that don't. In other + words, a platform cannot have, at the same time, cores that require + ``HW_ASSISTED_COHERENCY=1`` and cores that require + ``HW_ASSISTED_COHERENCY=0``. + + Note that, when ``HW_ASSISTED_COHERENCY`` is enabled, version 2 of + translation library (xlat tables v2) must be used; version 1 of translation + library is not supported. + +- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3 + runtime software in AArch32 mode, which is required to run AArch32 on Juno. + By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in + AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable + images. + +- ``KEY_ALG``: This build flag enables the user to select the algorithm to be + used for generating the PKCS keys and subsequent signing of the certificate. + It accepts 3 values: ``rsa``, ``rsa_1_5`` and ``ecdsa``. The option + ``rsa_1_5`` is the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR + compliant and is retained only for compatibility. The default value of this + flag is ``rsa`` which is the TBBR compliant PKCS#1 RSA 2.1 scheme. + +- ``HASH_ALG``: This build flag enables the user to select the secure hash + algorithm. It accepts 3 values: ``sha256``, ``sha384`` and ``sha512``. + The default value of this flag is ``sha256``. + +- ``LDFLAGS``: Extra user options appended to the linkers' command line in + addition to the one set by the build system. + +- ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log + output compiled into the build. This should be one of the following: + + :: + + 0 (LOG_LEVEL_NONE) + 10 (LOG_LEVEL_ERROR) + 20 (LOG_LEVEL_NOTICE) + 30 (LOG_LEVEL_WARNING) + 40 (LOG_LEVEL_INFO) + 50 (LOG_LEVEL_VERBOSE) + + All log output up to and including the selected log level is compiled into + the build. The default value is 40 in debug builds and 20 in release builds. + +- ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It + specifies the file that contains the Non-Trusted World private key in PEM + format. If ``SAVE_KEYS=1``, this file name will be used to save the key. + +- ``NS_BL2U``: Path to NS_BL2U image in the host file system. This image is + optional. It is only needed if the platform makefile specifies that it + is required in order to build the ``fwu_fip`` target. + +- ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register + contents upon world switch. It can take either 0 (don't save and restore) or + 1 (do save and restore). 0 is the default. An SPD may set this to 1 if it + wants the timer registers to be saved and restored. + +- ``OVERRIDE_LIBC``: This option allows platforms to override the default libc + for the BL image. It can be either 0 (include) or 1 (remove). The default + value is 0. + +- ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that + the underlying hardware is not a full PL011 UART but a minimally compliant + generic UART, which is a subset of the PL011. The driver will not access + any register that is not part of the SBSA generic UART specification. + Default value is 0 (a full PL011 compliant UART is present). + +- ``PLAT``: Choose a platform to build TF-A for. The chosen platform name + must be subdirectory of any depth under ``plat/``, and must contain a + platform makefile named ``platform.mk``. For example, to build TF-A for the + Arm Juno board, select PLAT=juno. + +- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image + instead of the normal boot flow. When defined, it must specify the entry + point address for the preloaded BL33 image. This option is incompatible with + ``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority + over ``PRELOADED_BL33_BASE``. + +- ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset + vector address can be programmed or is fixed on the platform. It can take + either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a + programmable reset address, it is expected that a CPU will start executing + code directly at the right address, both on a cold and warm reset. In this + case, there is no need to identify the entrypoint on boot and the boot path + can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface + does not need to be implemented in this case. + +- ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats + possible for the PSCI power-state parameter: original and extended State-ID + formats. This flag if set to 1, configures the generic PSCI layer to use the + extended format. The default value of this flag is 0, which means by default + the original power-state format is used by the PSCI implementation. This flag + should be specified by the platform makefile and it governs the return value + of PSCI_FEATURES API for CPU_SUSPEND smc function id. When this option is + enabled on Arm platforms, the option ``ARM_RECOM_STATE_ID_ENC`` needs to be + set to 1 as well. + +- ``RAS_EXTENSION``: When set to ``1``, enable Armv8.2 RAS features. RAS features + are an optional extension for pre-Armv8.2 CPUs, but are mandatory for Armv8.2 + or later CPUs. + + When ``RAS_EXTENSION`` is set to ``1``, ``HANDLE_EA_EL3_FIRST`` must also be + set to ``1``. + + This option is disabled by default. + +- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead + of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1 + entrypoint) or 1 (CPU reset to BL31 entrypoint). + The default value is 0. + +- ``RESET_TO_SP_MIN``: SP_MIN is the minimal AArch32 Secure Payload provided + in TF-A. This flag configures SP_MIN entrypoint as the CPU reset vector + instead of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1 + entrypoint) or 1 (CPU reset to SP_MIN entrypoint). The default value is 0. + +- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the + file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this + file name will be used to save the key. + +- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the + certificate generation tool to save the keys used to establish the Chain of + Trust. Allowed options are '0' or '1'. Default is '0' (do not save). + +- ``SCP_BL2``: Path to SCP_BL2 image in the host file system. This image is optional. + If a SCP_BL2 image is present then this option must be passed for the ``fip`` + target. + +- ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the + file that contains the SCP_BL2 private key in PEM format. If ``SAVE_KEYS=1``, + this file name will be used to save the key. + +- ``SCP_BL2U``: Path to SCP_BL2U image in the host file system. This image is + optional. It is only needed if the platform makefile specifies that it + is required in order to build the ``fwu_fip`` target. + +- ``SDEI_SUPPORT``: Setting this to ``1`` enables support for Software + Delegated Exception Interface to BL31 image. This defaults to ``0``. + + When set to ``1``, the build option ``EL3_EXCEPTION_HANDLING`` must also be + set to ``1``. + +- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be + isolated on separate memory pages. This is a trade-off between security and + memory usage. See "Isolating code and read-only data on separate memory + pages" section in `Firmware Design`_. This flag is disabled by default and + affects all BL images. + +- ``SPD``: Choose a Secure Payload Dispatcher component to be built into TF-A. + This build option is only valid if ``ARCH=aarch64``. The value should be + the path to the directory containing the SPD source, relative to + ``services/spd/``; the directory is expected to contain a makefile called + ``<spd-value>.mk``. + +- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can + take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops + execution in BL1 just before handing over to BL31. At this point, all + firmware images have been loaded in memory, and the MMU and caches are + turned off. Refer to the "Debugging options" section for more details. + +- ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles + secure interrupts (caught through the FIQ line). Platforms can enable + this directive if they need to handle such interruption. When enabled, + the FIQ are handled in monitor mode and non secure world is not allowed + to mask these events. Platforms that enable FIQ handling in SP_MIN shall + implement the api ``sp_min_plat_fiq_handler()``. The default value is 0. + +- ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board + Boot feature. When set to '1', BL1 and BL2 images include support to load + and verify the certificates and images in a FIP, and BL1 includes support + for the Firmware Update. The default value is '0'. Generation and inclusion + of certificates in the FIP and FWU_FIP depends upon the value of the + ``GENERATE_COT`` option. + + Note: This option depends on ``CREATE_KEYS`` to be enabled. If the keys + already exist in disk, they will be overwritten without further notice. + +- ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It + specifies the file that contains the Trusted World private key in PEM + format. If ``SAVE_KEYS=1``, this file name will be used to save the key. + +- ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or + synchronous, (see "Initializing a BL32 Image" section in + `Firmware Design`_). It can take the value 0 (BL32 is initialized using + synchronous method) or 1 (BL32 is initialized using asynchronous method). + Default is 0. + +- ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt + routing model which routes non-secure interrupts asynchronously from TSP + to EL3 causing immediate preemption of TSP. The EL3 is responsible + for saving and restoring the TSP context in this routing model. The + default routing model (when the value is 0) is to route non-secure + interrupts to TSP allowing it to save its context and hand over + synchronously to EL3 via an SMC. + + Note: when ``EL3_EXCEPTION_HANDLING`` is ``1``, ``TSP_NS_INTR_ASYNC_PREEMPT`` + must also be set to ``1``. + +- ``USE_ARM_LINK``: This flag determines whether to enable support for ARM + linker. When the ``LINKER`` build variable points to the armlink linker, + this flag is enabled automatically. To enable support for armlink, platforms + will have to provide a scatter file for the BL image. Currently, Tegra + platforms use the armlink support to compile BL3-1 images. + +- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent + memory region in the BL memory map or not (see "Use of Coherent memory in + TF-A" section in `Firmware Design`_). It can take the value 1 + (Coherent memory region is included) or 0 (Coherent memory region is + excluded). Default is 1. + +- ``USE_ROMLIB``: This flag determines whether library at ROM will be used. + This feature creates a library of functions to be placed in ROM and thus + reduces SRAM usage. Refer to `Library at ROM`_ for further details. Default + is 0. + +- ``V``: Verbose build. If assigned anything other than 0, the build commands + are printed. Default is 0. + +- ``VERSION_STRING``: String used in the log output for each TF-A image. + Defaults to a string formed by concatenating the version number, build type + and build string. + +- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on + the CPU after warm boot. This is applicable for platforms which do not + require interconnect programming to enable cache coherency (eg: single + cluster platforms). If this option is enabled, then warm boot path + enables D-caches immediately after enabling MMU. This option defaults to 0. + +Arm development platform specific build options +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured + DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load + BL31 in TZC secured DRAM. If TSP is present, then setting this option also + sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build + flag. + +- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>`` + frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The + frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should + match the frame used by the Non-Secure image (normally the Linux kernel). + Default is true (access to the frame is allowed). + +- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog. + By default, Arm platforms use a watchdog to trigger a system reset in case + an error is encountered during the boot process (for example, when an image + could not be loaded or authenticated). The watchdog is enabled in the early + platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The + Trusted Watchdog may be disabled at build time for testing or development + purposes. + +- ``ARM_LINUX_KERNEL_AS_BL33``: The Linux kernel expects registers x0-x3 to + have specific values at boot. This boolean option allows the Trusted Firmware + to have a Linux kernel image as BL33 by preparing the registers to these + values before jumping to BL33. This option defaults to 0 (disabled). For + AArch64 ``RESET_TO_BL31`` and for AArch32 ``RESET_TO_SP_MIN`` must be 1 when + using it. If this option is set to 1, ``ARM_PRELOADED_DTB_BASE`` must be set + to the location of a device tree blob (DTB) already loaded in memory. The + Linux Image address must be specified using the ``PRELOADED_BL33_BASE`` + option. + +- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to + cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag + is set, the functions which deal with MPIDR assume that the ``MT`` bit in + MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of + this flag is 0. Note that this option is not used on FVP platforms. + +- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding + for the construction of composite state-ID in the power-state parameter. + The existing PSCI clients currently do not support this encoding of + State-ID yet. Hence this flag is used to configure whether to use the + recommended State-ID encoding or not. The default value of this flag is 0, + in which case the platform is configured to expect NULL in the State-ID + field of power-state parameter. + +- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the + location of the ROTPK hash returned by the function ``plat_get_rotpk_info()`` + for Arm platforms. Depending on the selected option, the proper private key + must be specified using the ``ROT_KEY`` option when building the Trusted + Firmware. This private key will be used by the certificate generation tool + to sign the BL2 and Trusted Key certificates. Available options for + ``ARM_ROTPK_LOCATION`` are: + + - ``regs`` : return the ROTPK hash stored in the Trusted root-key storage + registers. The private key corresponding to this ROTPK hash is not + currently available. + - ``devel_rsa`` : return a development public key hash embedded in the BL1 + and BL2 binaries. This hash has been obtained from the RSA public key + ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use + this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when + creating the certificates. + - ``devel_ecdsa`` : return a development public key hash embedded in the BL1 + and BL2 binaries. This hash has been obtained from the ECDSA public key + ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use + this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY`` + when creating the certificates. + +- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options: + + - ``tsram`` : Trusted SRAM (default option when TBB is not enabled) + - ``tdram`` : Trusted DRAM (if available) + - ``dram`` : Secure region in DRAM (default option when TBB is enabled, + configured by the TrustZone controller) + +- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1 + of the translation tables library instead of version 2. It is set to 0 by + default, which selects version 2. + +- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke ArmĀ® + TrustZoneĀ® CryptoCell functionality for Trusted Board Boot on capable Arm + platforms. If this option is specified, then the path to the CryptoCell + SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag. + +For a better understanding of these options, the Arm development platform memory +map is explained in the `Firmware Design`_. + +Arm CSS platform specific build options +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version + incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards + compatible change to the MTL protocol, used for AP/SCP communication. + TF-A no longer supports earlier SCP versions. If this option is set to 1 + then TF-A will detect if an earlier version is in use. Default is 1. + +- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP_BL2 and + SCP_BL2U to the FIP and FWU_FIP respectively, and enables them to be loaded + during boot. Default is 1. + +- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers + instead of SCPI/BOM driver for communicating with the SCP during power + management operations and for SCP RAM Firmware transfer. If this option + is set to 1, then SCMI/SDS drivers will be used. Default is 0. + +Arm FVP platform specific build options +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to + build the topology tree within TF-A. By default TF-A is configured for dual + cluster topology and this option can be used to override the default value. + +- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The + default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as + explained in the options below: + + - ``FVP_CCI`` : The CCI driver is selected. This is the default + if 0 < ``FVP_CLUSTER_COUNT`` <= 2. + - ``FVP_CCN`` : The CCN driver is selected. This is the default + if ``FVP_CLUSTER_COUNT`` > 2. + +- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in + a single cluster. This option defaults to 4. + +- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU + in the system. This option defaults to 1. Note that the build option + ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms. + +- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options: + + - ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected + - ``FVP_GICV2`` : The GICv2 only driver is selected + - ``FVP_GICV3`` : The GICv3 only driver is selected (default option) + +- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer + for functions that wait for an arbitrary time length (udelay and mdelay). + The default value is 0. + +- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled + to DTB and packaged in FIP as the HW_CONFIG. See `Firmware Design`_ for + details on HW_CONFIG. By default, this is initialized to a sensible DTS + file in ``fdts/`` folder depending on other build options. But some cases, + like shifted affinity format for MPIDR, cannot be detected at build time + and this option is needed to specify the appropriate DTS file. + +- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in + FIP. See `Firmware Design`_ for details on HW_CONFIG. This option is + similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the + HW_CONFIG blob instead of the DTS file. This option is useful to override + the default HW_CONFIG selected by the build system. + +ARM JUNO platform specific build options +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- ``JUNO_TZMP1`` : Boolean option to configure Juno to be used for TrustZone + Media Protection (TZ-MP1). Default value of this flag is 0. + +Debugging options +~~~~~~~~~~~~~~~~~ + +To compile a debug version and make the build more verbose use + +:: + + make PLAT=<platform> DEBUG=1 V=1 all + +AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for +example DS-5) might not support this and may need an older version of DWARF +symbols to be emitted by GCC. This can be achieved by using the +``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the +version to 2 is recommended for DS-5 versions older than 5.16. + +When debugging logic problems it might also be useful to disable all compiler +optimizations by using ``-O0``. + +NOTE: Using ``-O0`` could cause output images to be larger and base addresses +might need to be recalculated (see the **Memory layout on Arm development +platforms** section in the `Firmware Design`_). + +Extra debug options can be passed to the build system by setting ``CFLAGS`` or +``LDFLAGS``: + +.. code:: makefile + + CFLAGS='-O0 -gdwarf-2' \ + make PLAT=<platform> DEBUG=1 V=1 all + +Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be +ignored as the linker is called directly. + +It is also possible to introduce an infinite loop to help in debugging the +post-BL2 phase of TF-A. This can be done by rebuilding BL1 with the +``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_ +section. In this case, the developer may take control of the target using a +debugger when indicated by the console output. When using DS-5, the following +commands can be used: + +:: + + # Stop target execution + interrupt + + # + # Prepare your debugging environment, e.g. set breakpoints + # + + # Jump over the debug loop + set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4 + + # Resume execution + continue + +Building the Test Secure Payload +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The TSP is coupled with a companion runtime service in the BL31 firmware, +called the TSPD. Therefore, if you intend to use the TSP, the BL31 image +must be recompiled as well. For more information on SPs and SPDs, see the +`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_. + +First clean the TF-A build directory to get rid of any previous BL31 binary. +Then to build the TSP image use: + +:: + + make PLAT=<platform> SPD=tspd all + +An additional boot loader binary file is created in the ``build`` directory: + +:: + + build/<platform>/<build-type>/bl32.bin + + +Building and using the FIP tool +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Firmware Image Package (FIP) is a packaging format used by TF-A to package +firmware images in a single binary. The number and type of images that should +be packed in a FIP is platform specific and may include TF-A images and other +firmware images required by the platform. For example, most platforms require +a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or +U-Boot). + +The TF-A build system provides the make target ``fip`` to create a FIP file +for the specified platform using the FIP creation tool included in the TF-A +project. Examples below show how to build a FIP file for FVP, packaging TF-A +and BL33 images. + +For AArch64: + +:: + + make PLAT=fvp BL33=<path-to>/bl33.bin fip + +For AArch32: + +:: + + make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path-to>/bl33.bin fip + +The resulting FIP may be found in: + +:: + + build/fvp/<build-type>/fip.bin + +For advanced operations on FIP files, it is also possible to independently build +the tool and create or modify FIPs using this tool. To do this, follow these +steps: + +It is recommended to remove old artifacts before building the tool: + +:: + + make -C tools/fiptool clean + +Build the tool: + +:: + + make [DEBUG=1] [V=1] fiptool + +The tool binary can be located in: + +:: + + ./tools/fiptool/fiptool + +Invoking the tool with ``help`` will print a help message with all available +options. + +Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31: + +:: + + ./tools/fiptool/fiptool create \ + --tb-fw build/<platform>/<build-type>/bl2.bin \ + --soc-fw build/<platform>/<build-type>/bl31.bin \ + fip.bin + +Example 2: view the contents of an existing Firmware package: + +:: + + ./tools/fiptool/fiptool info <path-to>/fip.bin + +Example 3: update the entries of an existing Firmware package: + +:: + + # Change the BL2 from Debug to Release version + ./tools/fiptool/fiptool update \ + --tb-fw build/<platform>/release/bl2.bin \ + build/<platform>/debug/fip.bin + +Example 4: unpack all entries from an existing Firmware package: + +:: + + # Images will be unpacked to the working directory + ./tools/fiptool/fiptool unpack <path-to>/fip.bin + +Example 5: remove an entry from an existing Firmware package: + +:: + + ./tools/fiptool/fiptool remove \ + --tb-fw build/<platform>/debug/fip.bin + +Note that if the destination FIP file exists, the create, update and +remove operations will automatically overwrite it. + +The unpack operation will fail if the images already exist at the +destination. In that case, use -f or --force to continue. + +More information about FIP can be found in the `Firmware Design`_ document. + +Building FIP images with support for Trusted Board Boot +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Trusted Board Boot primarily consists of the following two features: + +- Image Authentication, described in `Trusted Board Boot`_, and +- Firmware Update, described in `Firmware Update`_ + +The following steps should be followed to build FIP and (optionally) FWU_FIP +images with support for these features: + +#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser + modules by checking out a recent version of the `mbed TLS Repository`_. It + is important to use a version that is compatible with TF-A and fixes any + known security vulnerabilities. See `mbed TLS Security Center`_ for more + information. The latest version of TF-A is tested with tag + ``mbedtls-2.16.0``. + + The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS + source files the modules depend upon. + ``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration + options required to build the mbed TLS sources. + + Note that the mbed TLS library is licensed under the Apache version 2.0 + license. Using mbed TLS source code will affect the licensing of TF-A + binaries that are built using this library. + +#. To build the FIP image, ensure the following command line variables are set + while invoking ``make`` to build TF-A: + + - ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>`` + - ``TRUSTED_BOARD_BOOT=1`` + - ``GENERATE_COT=1`` + + In the case of Arm platforms, the location of the ROTPK hash must also be + specified at build time. Two locations are currently supported (see + ``ARM_ROTPK_LOCATION`` build option): + + - ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted + root-key storage registers present in the platform. On Juno, this + registers are read-only. On FVP Base and Cortex models, the registers + are read-only, but the value can be specified using the command line + option ``bp.trusted_key_storage.public_key`` when launching the model. + On both Juno and FVP models, the default value corresponds to an + ECDSA-SECP256R1 public key hash, whose private part is not currently + available. + + - ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded + in the Arm platform port. The private/public RSA key pair may be + found in ``plat/arm/board/common/rotpk``. + + - ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded + in the Arm platform port. The private/public ECDSA key pair may be + found in ``plat/arm/board/common/rotpk``. + + Example of command line using RSA development keys: + + :: + + MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \ + make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \ + ARM_ROTPK_LOCATION=devel_rsa \ + ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \ + BL33=<path-to>/<bl33_image> \ + all fip + + The result of this build will be the bl1.bin and the fip.bin binaries. This + FIP will include the certificates corresponding to the Chain of Trust + described in the TBBR-client document. These certificates can also be found + in the output build directory. + +#. The optional FWU_FIP contains any additional images to be loaded from + Non-Volatile storage during the `Firmware Update`_ process. To build the + FWU_FIP, any FWU images required by the platform must be specified on the + command line. On Arm development platforms like Juno, these are: + + - NS_BL2U. The AP non-secure Firmware Updater image. + - SCP_BL2U. The SCP Firmware Update Configuration image. + + Example of Juno command line for generating both ``fwu`` and ``fwu_fip`` + targets using RSA development: + + :: + + MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \ + make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \ + ARM_ROTPK_LOCATION=devel_rsa \ + ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \ + BL33=<path-to>/<bl33_image> \ + SCP_BL2=<path-to>/<scp_bl2_image> \ + SCP_BL2U=<path-to>/<scp_bl2u_image> \ + NS_BL2U=<path-to>/<ns_bl2u_image> \ + all fip fwu_fip + + Note: The BL2U image will be built by default and added to the FWU_FIP. + The user may override this by adding ``BL2U=<path-to>/<bl2u_image>`` + to the command line above. + + Note: Building and installing the non-secure and SCP FWU images (NS_BL1U, + NS_BL2U and SCP_BL2U) is outside the scope of this document. + + The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries. + Both the FIP and FWU_FIP will include the certificates corresponding to the + Chain of Trust described in the TBBR-client document. These certificates + can also be found in the output build directory. + +Building the Certificate Generation Tool +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The ``cert_create`` tool is built as part of the TF-A build process when the +``fip`` make target is specified and TBB is enabled (as described in the +previous section), but it can also be built separately with the following +command: + +:: + + make PLAT=<platform> [DEBUG=1] [V=1] certtool + +For platforms that require their own IDs in certificate files, the generic +'cert_create' tool can be built with the following command. Note that the target +platform must define its IDs within a ``platform_oid.h`` header file for the +build to succeed. + +:: + + make PLAT=<platform> USE_TBBR_DEFS=0 [DEBUG=1] [V=1] certtool + +``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more +verbose. The following command should be used to obtain help about the tool: + +:: + + ./tools/cert_create/cert_create -h + +Building a FIP for Juno and FVP +------------------------------- + +This section provides Juno and FVP specific instructions to build Trusted +Firmware, obtain the additional required firmware, and pack it all together in +a single FIP binary. It assumes that a `Linaro Release`_ has been installed. + +Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12 +onwards. Before that release, pre-built binaries are only available for AArch64. + +Note: Follow the full instructions for one platform before switching to a +different one. Mixing instructions for different platforms may result in +corrupted binaries. + +Note: The uboot image downloaded by the Linaro workspace script does not always +match the uboot image packaged as BL33 in the corresponding fip file. It is +recommended to use the version that is packaged in the fip file using the +instructions below. + +Note: For the FVP, the kernel FDT is packaged in FIP during build and loaded +by the firmware at runtime. See `Obtaining the Flattened Device Trees`_ +section for more info on selecting the right FDT to use. + +#. Clean the working directory + + :: + + make realclean + +#. Obtain SCP_BL2 (Juno) and BL33 (all platforms) + + Use the fiptool to extract the SCP_BL2 and BL33 images from the FIP + package included in the Linaro release: + + :: + + # Build the fiptool + make [DEBUG=1] [V=1] fiptool + + # Unpack firmware images from Linaro FIP + ./tools/fiptool/fiptool unpack <path-to-linaro-release>/fip.bin + + The unpack operation will result in a set of binary images extracted to the + current working directory. The SCP_BL2 image corresponds to + ``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``. + + Note: The fiptool will complain if the images to be unpacked already + exist in the current directory. If that is the case, either delete those + files or use the ``--force`` option to overwrite. + + Note: For AArch32, the instructions below assume that nt-fw.bin is a normal + world boot loader that supports AArch32. + +#. Build TF-A images and create a new FIP for FVP + + :: + + # AArch64 + make PLAT=fvp BL33=nt-fw.bin all fip + + # AArch32 + make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip + +#. Build TF-A images and create a new FIP for Juno + + For AArch64: + + Building for AArch64 on Juno simply requires the addition of ``SCP_BL2`` + as a build parameter. + + :: + + make PLAT=juno BL33=nt-fw.bin SCP_BL2=scp-fw.bin all fip + + For AArch32: + + Hardware restrictions on Juno prevent cold reset into AArch32 execution mode, + therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled + separately for AArch32. + + - Before building BL32, the environment variable ``CROSS_COMPILE`` must point + to the AArch32 Linaro cross compiler. + + :: + + export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf- + + - Build BL32 in AArch32. + + :: + + make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \ + RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32 + + - Save ``bl32.bin`` to a temporary location and clean the build products. + + :: + + cp <path-to-build>/bl32.bin <path-to-temporary> + make realclean + + - Before building BL1 and BL2, the environment variable ``CROSS_COMPILE`` + must point to the AArch64 Linaro cross compiler. + + :: + + export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- + + - The following parameters should be used to build BL1 and BL2 in AArch64 + and point to the BL32 file. + + :: + + make ARCH=aarch64 PLAT=juno JUNO_AARCH32_EL3_RUNTIME=1 \ + BL33=nt-fw.bin SCP_BL2=scp-fw.bin \ + BL32=<path-to-temporary>/bl32.bin all fip + +The resulting BL1 and FIP images may be found in: + +:: + + # Juno + ./build/juno/release/bl1.bin + ./build/juno/release/fip.bin + + # FVP + ./build/fvp/release/bl1.bin + ./build/fvp/release/fip.bin + + +Booting Firmware Update images +------------------------------------- + +When Firmware Update (FWU) is enabled there are at least 2 new images +that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the +FWU FIP. + +Juno +~~~~ + +The new images must be programmed in flash memory by adding +an entry in the ``SITE1/HBI0262x/images.txt`` configuration file +on the Juno SD card (where ``x`` depends on the revision of the Juno board). +Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory +programming" for more information. User should ensure these do not +overlap with any other entries in the file. + +:: + + NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE + NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address] + NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name + NOR10LOAD: 00000000 ;Image Load Address + NOR10ENTRY: 00000000 ;Image Entry Point + + NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE + NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address] + NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name + NOR11LOAD: 00000000 ;Image Load Address + +The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000. +In the same way, the address ns_bl2u_base_address is the value of +NS_BL2U_BASE - 0x8000000. + +FVP +~~~ + +The additional fip images must be loaded with: + +:: + + --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address] + --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address] + +The address ns_bl1u_base_address is the value of NS_BL1U_BASE. +In the same way, the address ns_bl2u_base_address is the value of +NS_BL2U_BASE. + + +EL3 payloads alternative boot flow +---------------------------------- + +On a pre-production system, the ability to execute arbitrary, bare-metal code at +the highest exception level is required. It allows full, direct access to the +hardware, for example to run silicon soak tests. + +Although it is possible to implement some baremetal secure firmware from +scratch, this is a complex task on some platforms, depending on the level of +configuration required to put the system in the expected state. + +Rather than booting a baremetal application, a possible compromise is to boot +``EL3 payloads`` through TF-A instead. This is implemented as an alternative +boot flow, where a modified BL2 boots an EL3 payload, instead of loading the +other BL images and passing control to BL31. It reduces the complexity of +developing EL3 baremetal code by: + +- putting the system into a known architectural state; +- taking care of platform secure world initialization; +- loading the SCP_BL2 image if required by the platform. + +When booting an EL3 payload on Arm standard platforms, the configuration of the +TrustZone controller is simplified such that only region 0 is enabled and is +configured to permit secure access only. This gives full access to the whole +DRAM to the EL3 payload. + +The system is left in the same state as when entering BL31 in the default boot +flow. In particular: + +- Running in EL3; +- Current state is AArch64; +- Little-endian data access; +- All exceptions disabled; +- MMU disabled; +- Caches disabled. + +Booting an EL3 payload +~~~~~~~~~~~~~~~~~~~~~~ + +The EL3 payload image is a standalone image and is not part of the FIP. It is +not loaded by TF-A. Therefore, there are 2 possible scenarios: + +- The EL3 payload may reside in non-volatile memory (NVM) and execute in + place. In this case, booting it is just a matter of specifying the right + address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A. + +- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at + run-time. + +To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be +used. The infinite loop that it introduces in BL1 stops execution at the right +moment for a debugger to take control of the target and load the payload (for +example, over JTAG). + +It is expected that this loading method will work in most cases, as a debugger +connection is usually available in a pre-production system. The user is free to +use any other platform-specific mechanism to load the EL3 payload, though. + +Booting an EL3 payload on FVP +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for +the secondary CPUs holding pen to work properly. Unfortunately, its reset value +is undefined on the FVP platform and the FVP platform code doesn't clear it. +Therefore, one must modify the way the model is normally invoked in order to +clear the mailbox at start-up. + +One way to do that is to create an 8-byte file containing all zero bytes using +the following command: + +:: + + dd if=/dev/zero of=mailbox.dat bs=1 count=8 + +and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``) +using the following model parameters: + +:: + + --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs] + --data=mailbox.dat@0x04000000 [Foundation FVP] + +To provide the model with the EL3 payload image, the following methods may be +used: + +#. If the EL3 payload is able to execute in place, it may be programmed into + flash memory. On Base Cortex and AEM FVPs, the following model parameter + loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already + used for the FIP): + + :: + + -C bp.flashloader1.fname="<path-to>/<el3-payload>" + + On Foundation FVP, there is no flash loader component and the EL3 payload + may be programmed anywhere in flash using method 3 below. + +#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5 + command may be used to load the EL3 payload ELF image over JTAG: + + :: + + load <path-to>/el3-payload.elf + +#. The EL3 payload may be pre-loaded in volatile memory using the following + model parameters: + + :: + + --data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs] + --data="<path-to>/<el3-payload>"@address [Foundation FVP] + + The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address + used when building TF-A. + +Booting an EL3 payload on Juno +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +If the EL3 payload is able to execute in place, it may be programmed in flash +memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file +on the Juno SD card (where ``x`` depends on the revision of the Juno board). +Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory +programming" for more information. + +Alternatively, the same DS-5 command mentioned in the FVP section above can +be used to load the EL3 payload's ELF file over JTAG on Juno. + +Preloaded BL33 alternative boot flow +------------------------------------ + +Some platforms have the ability to preload BL33 into memory instead of relying +on TF-A to load it. This may simplify packaging of the normal world code and +improve performance in a development environment. When secure world cold boot +is complete, TF-A simply jumps to a BL33 base address provided at build time. + +For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be +used when compiling TF-A. For example, the following command will create a FIP +without a BL33 and prepare to jump to a BL33 image loaded at address +0x80000000: + +:: + + make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip + +Boot of a preloaded kernel image on Base FVP +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following example uses a simplified boot flow by directly jumping from the +TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be +useful if both the kernel and the device tree blob (DTB) are already present in +memory (like in FVP). + +For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at +address ``0x82000000``, the firmware can be built like this: + +:: + + CROSS_COMPILE=aarch64-linux-gnu- \ + make PLAT=fvp DEBUG=1 \ + RESET_TO_BL31=1 \ + ARM_LINUX_KERNEL_AS_BL33=1 \ + PRELOADED_BL33_BASE=0x80080000 \ + ARM_PRELOADED_DTB_BASE=0x82000000 \ + all fip + +Now, it is needed to modify the DTB so that the kernel knows the address of the +ramdisk. The following script generates a patched DTB from the provided one, +assuming that the ramdisk is loaded at address ``0x84000000``. Note that this +script assumes that the user is using a ramdisk image prepared for U-Boot, like +the ones provided by Linaro. If using a ramdisk without this header,the ``0x40`` +offset in ``INITRD_START`` has to be removed. + +.. code:: bash + + #!/bin/bash + + # Path to the input DTB + KERNEL_DTB=<path-to>/<fdt> + # Path to the output DTB + PATCHED_KERNEL_DTB=<path-to>/<patched-fdt> + # Base address of the ramdisk + INITRD_BASE=0x84000000 + # Path to the ramdisk + INITRD=<path-to>/<ramdisk.img> + + # Skip uboot header (64 bytes) + INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) ) + INITRD_SIZE=$(stat -Lc %s ${INITRD}) + INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) ) + + CHOSEN_NODE=$(echo \ + "/ { \ + chosen { \ + linux,initrd-start = <${INITRD_START}>; \ + linux,initrd-end = <${INITRD_END}>; \ + }; \ + };") + + echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \ + dtc -O dtb -o ${PATCHED_KERNEL_DTB} - + +And the FVP binary can be run with the following command: + +:: + + <path-to>/FVP_Base_AEMv8A-AEMv8A \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C cluster0.NUM_CORES=4 \ + -C cluster1.NUM_CORES=4 \ + -C cache_state_modelled=1 \ + -C cluster0.cpu0.RVBAR=0x04020000 \ + -C cluster0.cpu1.RVBAR=0x04020000 \ + -C cluster0.cpu2.RVBAR=0x04020000 \ + -C cluster0.cpu3.RVBAR=0x04020000 \ + -C cluster1.cpu0.RVBAR=0x04020000 \ + -C cluster1.cpu1.RVBAR=0x04020000 \ + -C cluster1.cpu2.RVBAR=0x04020000 \ + -C cluster1.cpu3.RVBAR=0x04020000 \ + --data cluster0.cpu0="<path-to>/bl31.bin"@0x04020000 \ + --data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000 + +Boot of a preloaded kernel image on Juno +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The Trusted Firmware must be compiled in a similar way as for FVP explained +above. The process to load binaries to memory is the one explained in +`Booting an EL3 payload on Juno`_. + +Running the software on FVP +--------------------------- + +The latest version of the AArch64 build of TF-A has been tested on the following +Arm FVPs without shifted affinities, and that do not support threaded CPU cores +(64-bit host machine only). + +The FVP models used are Version 11.6 Build 45, unless otherwise stated. + +- ``FVP_Base_AEMv8A-AEMv8A`` +- ``FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502`` +- ``FVP_Base_RevC-2xAEMv8A`` +- ``FVP_Base_Cortex-A32x4`` +- ``FVP_Base_Cortex-A35x4`` +- ``FVP_Base_Cortex-A53x4`` +- ``FVP_Base_Cortex-A55x4+Cortex-A75x4`` +- ``FVP_Base_Cortex-A55x4`` +- ``FVP_Base_Cortex-A57x1-A53x1`` +- ``FVP_Base_Cortex-A57x2-A53x4`` +- ``FVP_Base_Cortex-A57x4-A53x4`` +- ``FVP_Base_Cortex-A57x4`` +- ``FVP_Base_Cortex-A72x4-A53x4`` +- ``FVP_Base_Cortex-A72x4`` +- ``FVP_Base_Cortex-A73x4-A53x4`` +- ``FVP_Base_Cortex-A73x4`` +- ``FVP_Base_Cortex-A75x4`` +- ``FVP_Base_Cortex-A76x4`` +- ``FVP_Base_Cortex-A76AEx4`` +- ``FVP_Base_Cortex-A76AEx8`` +- ``FVP_Base_Neoverse-N1x4`` +- ``FVP_Base_Deimos`` +- ``FVP_CSS_SGI-575`` (Version 11.3 build 42) +- ``FVP_CSS_SGM-775`` (Version 11.3 build 42) +- ``FVP_RD_E1Edge`` (Version 11.3 build 42) +- ``FVP_RD_N1Edge`` +- ``Foundation_Platform`` + +The latest version of the AArch32 build of TF-A has been tested on the following +Arm FVPs without shifted affinities, and that do not support threaded CPU cores +(64-bit host machine only). + +- ``FVP_Base_AEMv8A-AEMv8A`` +- ``FVP_Base_Cortex-A32x4`` + +NOTE: The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which +is not compatible with legacy GIC configurations. Therefore this FVP does not +support these legacy GIC configurations. + +NOTE: The build numbers quoted above are those reported by launching the FVP +with the ``--version`` parameter. + +NOTE: Linaro provides a ramdisk image in prebuilt FVP configurations and full +file systems that can be downloaded separately. To run an FVP with a virtio +file system image an additional FVP configuration option +``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be +used. + +NOTE: The software will not work on Version 1.0 of the Foundation FVP. +The commands below would report an ``unhandled argument`` error in this case. + +NOTE: FVPs can be launched with ``--cadi-server`` option such that a +CADI-compliant debugger (for example, Arm DS-5) can connect to and control its +execution. + +NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202 +the internal synchronisation timings changed compared to older versions of the +models. The models can be launched with ``-Q 100`` option if they are required +to match the run time characteristics of the older versions. + +The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be +downloaded for free from `Arm's website`_. + +The Cortex-A models listed above are also available to download from +`Arm's website`_. + +Please refer to the FVP documentation for a detailed description of the model +parameter options. A brief description of the important ones that affect TF-A +and normal world software behavior is provided below. + +Obtaining the Flattened Device Trees +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Depending on the FVP configuration and Linux configuration used, different +FDT files are required. FDT source files for the Foundation and Base FVPs can +be found in the TF-A source directory under ``fdts/``. The Foundation FVP has +a subset of the Base FVP components. For example, the Foundation FVP lacks +CLCD and MMC support, and has only one CPU cluster. + +Note: It is not recommended to use the FDTs built along the kernel because not +all FDTs are available from there. + +The dynamic configuration capability is enabled in the firmware for FVPs. +This means that the firmware can authenticate and load the FDT if present in +FIP. A default FDT is packaged into FIP during the build based on +the build configuration. This can be overridden by using the ``FVP_HW_CONFIG`` +or ``FVP_HW_CONFIG_DTS`` build options (refer to the +`Arm FVP platform specific build options`_ section for detail on the options). + +- ``fvp-base-gicv2-psci.dts`` + + For use with models such as the Cortex-A57-A53 Base FVPs without shifted + affinities and with Base memory map configuration. + +- ``fvp-base-gicv2-psci-aarch32.dts`` + + For use with models such as the Cortex-A32 Base FVPs without shifted + affinities and running Linux in AArch32 state with Base memory map + configuration. + +- ``fvp-base-gicv3-psci.dts`` + + For use with models such as the Cortex-A57-A53 Base FVPs without shifted + affinities and with Base memory map configuration and Linux GICv3 support. + +- ``fvp-base-gicv3-psci-1t.dts`` + + For use with models such as the AEMv8-RevC Base FVP with shifted affinities, + single threaded CPUs, Base memory map configuration and Linux GICv3 support. + +- ``fvp-base-gicv3-psci-dynamiq.dts`` + + For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities, + single cluster, single threaded CPUs, Base memory map configuration and Linux + GICv3 support. + +- ``fvp-base-gicv3-psci-aarch32.dts`` + + For use with models such as the Cortex-A32 Base FVPs without shifted + affinities and running Linux in AArch32 state with Base memory map + configuration and Linux GICv3 support. + +- ``fvp-foundation-gicv2-psci.dts`` + + For use with Foundation FVP with Base memory map configuration. + +- ``fvp-foundation-gicv3-psci.dts`` + + (Default) For use with Foundation FVP with Base memory map configuration + and Linux GICv3 support. + +Running on the Foundation FVP with reset to BL1 entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``Foundation_Platform`` parameters should be used to boot Linux with +4 CPUs using the AArch64 build of TF-A. + +:: + + <path-to>/Foundation_Platform \ + --cores=4 \ + --arm-v8.0 \ + --secure-memory \ + --visualization \ + --gicv3 \ + --data="<path-to>/<bl1-binary>"@0x0 \ + --data="<path-to>/<FIP-binary>"@0x08000000 \ + --data="<path-to>/<kernel-binary>"@0x80080000 \ + --data="<path-to>/<ramdisk-binary>"@0x84000000 + +Notes: + +- BL1 is loaded at the start of the Trusted ROM. +- The Firmware Image Package is loaded at the start of NOR FLASH0. +- The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address + is specified via the ``hw_config_addr`` property in `TB_FW_CONFIG for FVP`_. +- The default use-case for the Foundation FVP is to use the ``--gicv3`` option + and enable the GICv3 device in the model. Note that without this option, + the Foundation FVP defaults to legacy (Versatile Express) memory map which + is not supported by TF-A. +- In order for TF-A to run correctly on the Foundation FVP, the architecture + versions must match. The Foundation FVP defaults to the highest v8.x + version it supports but the default build for TF-A is for v8.0. To avoid + issues either start the Foundation FVP to use v8.0 architecture using the + ``--arm-v8.0`` option, or build TF-A with an appropriate value for + ``ARM_ARCH_MINOR``. + +Running on the AEMv8 Base FVP with reset to BL1 entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux +with 8 CPUs using the AArch64 build of TF-A. + +:: + + <path-to>/FVP_Base_RevC-2xAEMv8A \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cluster0.NUM_CORES=4 \ + -C cluster1.NUM_CORES=4 \ + -C cache_state_modelled=1 \ + -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \ + -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Note: The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a +specific DTS for all the CPUs to be loaded. + +Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux +with 8 CPUs using the AArch32 build of TF-A. + +:: + + <path-to>/FVP_Base_AEMv8A-AEMv8A \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cluster0.NUM_CORES=4 \ + -C cluster1.NUM_CORES=4 \ + -C cache_state_modelled=1 \ + -C cluster0.cpu0.CONFIG64=0 \ + -C cluster0.cpu1.CONFIG64=0 \ + -C cluster0.cpu2.CONFIG64=0 \ + -C cluster0.cpu3.CONFIG64=0 \ + -C cluster1.cpu0.CONFIG64=0 \ + -C cluster1.cpu1.CONFIG64=0 \ + -C cluster1.cpu2.CONFIG64=0 \ + -C cluster1.cpu3.CONFIG64=0 \ + -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \ + -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to +boot Linux with 8 CPUs using the AArch64 build of TF-A. + +:: + + <path-to>/FVP_Base_Cortex-A57x4-A53x4 \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cache_state_modelled=1 \ + -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \ + -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to +boot Linux with 4 CPUs using the AArch32 build of TF-A. + +:: + + <path-to>/FVP_Base_Cortex-A32x4 \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cache_state_modelled=1 \ + -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \ + -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Running on the AEMv8 Base FVP with reset to BL31 entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux +with 8 CPUs using the AArch64 build of TF-A. + +:: + + <path-to>/FVP_Base_RevC-2xAEMv8A \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cluster0.NUM_CORES=4 \ + -C cluster1.NUM_CORES=4 \ + -C cache_state_modelled=1 \ + -C cluster0.cpu0.RVBAR=0x04010000 \ + -C cluster0.cpu1.RVBAR=0x04010000 \ + -C cluster0.cpu2.RVBAR=0x04010000 \ + -C cluster0.cpu3.RVBAR=0x04010000 \ + -C cluster1.cpu0.RVBAR=0x04010000 \ + -C cluster1.cpu1.RVBAR=0x04010000 \ + -C cluster1.cpu2.RVBAR=0x04010000 \ + -C cluster1.cpu3.RVBAR=0x04010000 \ + --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \ + --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \ + --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \ + --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Notes: + +- If Position Independent Executable (PIE) support is enabled for BL31 + in this config, it can be loaded at any valid address for execution. + +- Since a FIP is not loaded when using BL31 as reset entrypoint, the + ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`` + parameter is needed to load the individual bootloader images in memory. + BL32 image is only needed if BL31 has been built to expect a Secure-EL1 + Payload. For the same reason, the FDT needs to be compiled from the DT source + and loaded via the ``--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000`` + parameter. + +- The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a + specific DTS for all the CPUs to be loaded. + +- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where + X and Y are the cluster and CPU numbers respectively, is used to set the + reset vector for each core. + +- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require + changing the value of + ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of + ``BL32_BASE``. + +Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux +with 8 CPUs using the AArch32 build of TF-A. + +:: + + <path-to>/FVP_Base_AEMv8A-AEMv8A \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cluster0.NUM_CORES=4 \ + -C cluster1.NUM_CORES=4 \ + -C cache_state_modelled=1 \ + -C cluster0.cpu0.CONFIG64=0 \ + -C cluster0.cpu1.CONFIG64=0 \ + -C cluster0.cpu2.CONFIG64=0 \ + -C cluster0.cpu3.CONFIG64=0 \ + -C cluster1.cpu0.CONFIG64=0 \ + -C cluster1.cpu1.CONFIG64=0 \ + -C cluster1.cpu2.CONFIG64=0 \ + -C cluster1.cpu3.CONFIG64=0 \ + -C cluster0.cpu0.RVBAR=0x04002000 \ + -C cluster0.cpu1.RVBAR=0x04002000 \ + -C cluster0.cpu2.RVBAR=0x04002000 \ + -C cluster0.cpu3.RVBAR=0x04002000 \ + -C cluster1.cpu0.RVBAR=0x04002000 \ + -C cluster1.cpu1.RVBAR=0x04002000 \ + -C cluster1.cpu2.RVBAR=0x04002000 \ + -C cluster1.cpu3.RVBAR=0x04002000 \ + --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \ + --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \ + --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Note: The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``. +It should match the address programmed into the RVBAR register as well. + +Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to +boot Linux with 8 CPUs using the AArch64 build of TF-A. + +:: + + <path-to>/FVP_Base_Cortex-A57x4-A53x4 \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cache_state_modelled=1 \ + -C cluster0.cpu0.RVBARADDR=0x04010000 \ + -C cluster0.cpu1.RVBARADDR=0x04010000 \ + -C cluster0.cpu2.RVBARADDR=0x04010000 \ + -C cluster0.cpu3.RVBARADDR=0x04010000 \ + -C cluster1.cpu0.RVBARADDR=0x04010000 \ + -C cluster1.cpu1.RVBARADDR=0x04010000 \ + -C cluster1.cpu2.RVBARADDR=0x04010000 \ + -C cluster1.cpu3.RVBARADDR=0x04010000 \ + --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \ + --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \ + --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \ + --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to +boot Linux with 4 CPUs using the AArch32 build of TF-A. + +:: + + <path-to>/FVP_Base_Cortex-A32x4 \ + -C pctl.startup=0.0.0.0 \ + -C bp.secure_memory=1 \ + -C bp.tzc_400.diagnostics=1 \ + -C cache_state_modelled=1 \ + -C cluster0.cpu0.RVBARADDR=0x04002000 \ + -C cluster0.cpu1.RVBARADDR=0x04002000 \ + -C cluster0.cpu2.RVBARADDR=0x04002000 \ + -C cluster0.cpu3.RVBARADDR=0x04002000 \ + --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \ + --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \ + --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \ + --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \ + --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000 + +Running the software on Juno +---------------------------- + +This version of TF-A has been tested on variants r0, r1 and r2 of Juno. + +To execute the software stack on Juno, the version of the Juno board recovery +image indicated in the `Linaro Release Notes`_ must be installed. If you have an +earlier version installed or are unsure which version is installed, please +re-install the recovery image by following the +`Instructions for using Linaro's deliverables on Juno`_. + +Preparing TF-A images +~~~~~~~~~~~~~~~~~~~~~ + +After building TF-A, the files ``bl1.bin`` and ``fip.bin`` need copying to the +``SOFTWARE/`` directory of the Juno SD card. + +Other Juno software information +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno +software information. Please also refer to the `Juno Getting Started Guide`_ to +get more detailed information about the Juno Arm development platform and how to +configure it. + +Testing SYSTEM SUSPEND on Juno +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend +to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend +on Juno, at the linux shell prompt, issue the following command: + +:: + + echo +10 > /sys/class/rtc/rtc0/wakealarm + echo -n mem > /sys/power/state + +The Juno board should suspend to RAM and then wakeup after 10 seconds due to +wakeup interrupt from RTC. + +-------------- + +*Copyright (c) 2013-2019, Arm Limited and Contributors. All rights reserved.* + +.. _arm Developer page: https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads +.. _Linaro: `Linaro Release Notes`_ +.. _Linaro Release: `Linaro Release Notes`_ +.. _Linaro Release Notes: https://community.arm.com/dev-platforms/w/docs/226/old-release-notes +.. _Linaro instructions: https://community.arm.com/dev-platforms/w/docs/304/arm-reference-platforms-deliverables +.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/w/docs/303/juno +.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/ +.. _Development Studio 5 (DS-5): https://developer.arm.com/products/software-development-tools/ds-5-development-studio +.. _arm-trusted-firmware-a project page: https://review.trustedfirmware.org/admin/projects/TF-A/trusted-firmware-a +.. _`Linux Coding Style`: https://www.kernel.org/doc/html/latest/process/coding-style.html +.. _Linux master tree: https://github.com/torvalds/linux/tree/master/ +.. _Dia: https://wiki.gnome.org/Apps/Dia/Download +.. _here: psci-lib-integration-guide.rst +.. _Trusted Board Boot: trusted-board-boot.rst +.. _TB_FW_CONFIG for FVP: ../plat/arm/board/fvp/fdts/fvp_tb_fw_config.dts +.. _Secure-EL1 Payloads and Dispatchers: firmware-design.rst#user-content-secure-el1-payloads-and-dispatchers +.. _Firmware Update: firmware-update.rst +.. _Firmware Design: firmware-design.rst +.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git +.. _mbed TLS Security Center: https://tls.mbed.org/security +.. _Arm's website: `FVP models`_ +.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms +.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf +.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf +.. _Secure Partition Manager Design guide: secure-partition-manager-design.rst +.. _`Trusted Firmware-A Coding Guidelines`: coding-guidelines.rst +.. _`Library at ROM`: romlib-design.rst |