summaryrefslogtreecommitdiffstats
path: root/firmware/os/algos/calibration/nano_calibration/nano_calibration.cc
blob: 0471b8d936a449b094ad54e37b865e624e08c223 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "calibration/nano_calibration/nano_calibration.h"

#include <cstdint>
#include <cstring>

#include "chre/util/nanoapp/log.h"

namespace nano_calibration {
namespace {

// Common log message sensor-specific identifiers.
constexpr char kAccelTag[] = {"[NanoSensorCal:ACCEL_MPS2]"};
constexpr char kGyroTag[] = {"[NanoSensorCal:GYRO_RPS]"};
constexpr char kMagTag[] = {"[NanoSensorCal:MAG_UT]"};

// Defines a plan for limiting log messages so that upon initialization there
// begins a period set by 'duration_of_rapid_messages_min' where log messages
// appear at a rate set by 'rapid_message_interval_sec'. Afterwards, log
// messages will be produced at a rate determined by
// 'slow_message_interval_min'.
struct LogMessageRegimen {
  uint8_t rapid_message_interval_sec;   // Assists device verification.
  uint8_t slow_message_interval_min;    // Avoids long-term log spam.
  uint8_t duration_of_rapid_messages_min;
};

constexpr LogMessageRegimen kGyroscopeMessagePlan = {
    /*rapid_message_interval_sec*/ 20,
    /*slow_message_interval_min*/ 5,
    /*duration_of_rapid_messages_min*/ 3
};

using ::online_calibration::CalibrationDataThreeAxis;
using ::online_calibration::CalibrationTypeFlags;
using ::online_calibration::SensorData;
using ::online_calibration::SensorIndex;
using ::online_calibration::SensorType;

// NanoSensorCal logging macros.
#ifdef NANO_SENSOR_CAL_DBG_ENABLED
#ifndef LOG_TAG
#define LOG_TAG "[ImuCal]"
#endif
#define NANO_CAL_LOGD(tag, format, ...) LOGD("%s " format, tag, ##__VA_ARGS__)
#define NANO_CAL_LOGI(tag, format, ...) LOGI("%s " format, tag, ##__VA_ARGS__)
#define NANO_CAL_LOGW(tag, format, ...) LOGW("%s " format, tag, ##__VA_ARGS__)
#define NANO_CAL_LOGE(tag, format, ...) LOGE("%s " format, tag, ##__VA_ARGS__)
#else
#define NANO_CAL_LOGD(tag, format, ...) CHRE_LOG_NULL(format, ##__VA_ARGS__)
#define NANO_CAL_LOGI(tag, format, ...) CHRE_LOG_NULL(format, ##__VA_ARGS__)
#define NANO_CAL_LOGW(tag, format, ...) CHRE_LOG_NULL(format, ##__VA_ARGS__)
#define NANO_CAL_LOGE(tag, format, ...) CHRE_LOG_NULL(format, ##__VA_ARGS__)
#endif  // NANO_SENSOR_CAL_DBG_ENABLED

}  // namespace

void NanoSensorCal::Initialize(OnlineCalibrationThreeAxis *accel_cal,
                               OnlineCalibrationThreeAxis *gyro_cal,
                               OnlineCalibrationThreeAxis *mag_cal) {
  // Loads stored calibration data and initializes the calibration algorithms.
  accel_cal_ = accel_cal;
  if (accel_cal_ != nullptr) {
    if (accel_cal_->get_sensor_type() == SensorType::kAccelerometerMps2) {
      LoadAshCalibration(CHRE_SENSOR_TYPE_ACCELEROMETER, accel_cal_,
                         &accel_cal_update_flags_, kAccelTag);
      NANO_CAL_LOGI(kAccelTag,
                    "Accelerometer runtime calibration initialized.");
    } else {
      accel_cal_ = nullptr;
      NANO_CAL_LOGE(kAccelTag, "Failed to initialize: wrong sensor type.");
    }
  }

  gyro_cal_ = gyro_cal;
  if (gyro_cal_ != nullptr) {
    if (gyro_cal_->get_sensor_type() == SensorType::kGyroscopeRps) {
      LoadAshCalibration(CHRE_SENSOR_TYPE_GYROSCOPE, gyro_cal_,
                         &gyro_cal_update_flags_, kGyroTag);
      NANO_CAL_LOGI(kGyroTag, "Gyroscope runtime calibration initialized.");
    } else {
      gyro_cal_ = nullptr;
      NANO_CAL_LOGE(kGyroTag, "Failed to initialize: wrong sensor type.");
    }
  }

  mag_cal_ = mag_cal;
  if (mag_cal != nullptr) {
    if (mag_cal->get_sensor_type() == SensorType::kMagnetometerUt) {
      LoadAshCalibration(CHRE_SENSOR_TYPE_GEOMAGNETIC_FIELD, mag_cal_,
                         &mag_cal_update_flags_, kMagTag);
      NANO_CAL_LOGI(kMagTag, "Magnetometer runtime calibration initialized.");
    } else {
      mag_cal_ = nullptr;
      NANO_CAL_LOGE(kMagTag, "Failed to initialize: wrong sensor type.");
    }
  }

  // Resets the initialization timestamp. Set below in HandleSensorSamples.
  initialization_start_time_nanos_ = 0;
}

void NanoSensorCal::HandleSensorSamples(
    uint16_t event_type, const chreSensorThreeAxisData *event_data) {
  // Converts CHRE Event -> SensorData::SensorType.
  SensorData sample;
  switch (event_type) {
    case CHRE_EVENT_SENSOR_UNCALIBRATED_ACCELEROMETER_DATA:
      sample.type = SensorType::kAccelerometerMps2;
      break;
    case CHRE_EVENT_SENSOR_UNCALIBRATED_GYROSCOPE_DATA:
      sample.type = SensorType::kGyroscopeRps;
      break;
    case CHRE_EVENT_SENSOR_UNCALIBRATED_GEOMAGNETIC_FIELD_DATA:
      sample.type = SensorType::kMagnetometerUt;
      break;
    default:
      // This sensor type is not used.
      NANO_CAL_LOGW("[NanoSensorCal]",
                    "Unexpected 3-axis sensor type received.");
      return;
  }

  // Sends the sensor payload to the calibration algorithms and checks for
  // calibration updates.
  const auto &header = event_data->header;
  const auto *data = event_data->readings;
  sample.timestamp_nanos = header.baseTimestamp;
  for (size_t i = 0; i < header.readingCount; i++) {
    sample.timestamp_nanos += data[i].timestampDelta;
    memcpy(sample.data, data[i].v, sizeof(sample.data));
    ProcessSample(sample);
  }

  // Starts tracking the time after initialization to help rate limit gyro log
  // messaging.
  if (initialization_start_time_nanos_ == 0) {
    initialization_start_time_nanos_ = header.baseTimestamp;
    gyro_notification_time_nanos_ = 0;
  }
}

void NanoSensorCal::HandleTemperatureSamples(
    uint16_t event_type, const chreSensorFloatData *event_data) {
  // Computes the mean of the batched temperature samples and delivers it to the
  // calibration algorithms. Note, the temperature sensor batch size determines
  // its minimum update interval.
  if (event_type == CHRE_EVENT_SENSOR_ACCELEROMETER_TEMPERATURE_DATA &&
      event_data->header.readingCount > 0) {
    const auto header = event_data->header;
    const auto *data = event_data->readings;

    SensorData sample;
    sample.type = SensorType::kTemperatureCelsius;
    sample.timestamp_nanos = header.baseTimestamp;

    float accum_temperature_celsius = 0.0f;
    for (size_t i = 0; i < header.readingCount; i++) {
      sample.timestamp_nanos += data[i].timestampDelta;
      accum_temperature_celsius += data[i].value;
    }
    sample.data[SensorIndex::kSingleAxis] =
        accum_temperature_celsius / header.readingCount;
    ProcessSample(sample);
  } else {
    NANO_CAL_LOGW("[NanoSensorCal]",
                  "Unexpected single-axis sensor type received.");
  }
}

void NanoSensorCal::ProcessSample(const SensorData &sample) {
  // Sends a new sensor sample to each active calibration algorithm and sends
  // out notifications for new calibration updates.
  if (accel_cal_ != nullptr) {
    const CalibrationTypeFlags new_cal_flags =
        accel_cal_->SetMeasurement(sample);
    if (new_cal_flags != CalibrationTypeFlags::NONE) {
      accel_cal_update_flags_ |= new_cal_flags;
      NotifyAshCalibration(CHRE_SENSOR_TYPE_ACCELEROMETER,
                           accel_cal_->GetSensorCalibration(),
                           accel_cal_update_flags_, kAccelTag);
      PrintCalibration(accel_cal_->GetSensorCalibration(),
                       accel_cal_update_flags_, kAccelTag);
    }
  }

  if (gyro_cal_ != nullptr) {
    const CalibrationTypeFlags new_cal_flags =
        gyro_cal_->SetMeasurement(sample);
    if (new_cal_flags != CalibrationTypeFlags::NONE) {
      gyro_cal_update_flags_ |= new_cal_flags;
      if (NotifyAshCalibration(CHRE_SENSOR_TYPE_GYROSCOPE,
                               gyro_cal_->GetSensorCalibration(),
                               gyro_cal_update_flags_, kGyroTag)) {
        HandleGyroLogMessage(sample.timestamp_nanos);
      }
    }
  }

  if (mag_cal_ != nullptr) {
    const CalibrationTypeFlags new_cal_flags = mag_cal_->SetMeasurement(sample);
    if (new_cal_flags != CalibrationTypeFlags::NONE) {
      mag_cal_update_flags_ |= new_cal_flags;
      NotifyAshCalibration(CHRE_SENSOR_TYPE_GEOMAGNETIC_FIELD,
                           mag_cal_->GetSensorCalibration(),
                           mag_cal_update_flags_, kMagTag);
      PrintCalibration(mag_cal_->GetSensorCalibration(), mag_cal_update_flags_,
                       kMagTag);
    }
  }
}

bool NanoSensorCal::NotifyAshCalibration(
    uint8_t chreSensorType, const CalibrationDataThreeAxis &cal_data,
    CalibrationTypeFlags flags, const char *sensor_tag) {
  // Updates the sensor offset calibration using the ASH API.
  ashCalInfo ash_cal_info;
  memset(&ash_cal_info, 0, sizeof(ashCalInfo));
  ash_cal_info.compMatrix[0] = 1.0f;  // Sets diagonal to unity (scale factor).
  ash_cal_info.compMatrix[4] = 1.0f;
  ash_cal_info.compMatrix[8] = 1.0f;
  memcpy(ash_cal_info.bias, cal_data.offset, sizeof(ash_cal_info.bias));

  // Maps CalibrationQualityLevel to ASH calibration accuracy.
  switch (cal_data.calibration_quality.level) {
    case online_calibration::CalibrationQualityLevel::HIGH_QUALITY:
      ash_cal_info.accuracy = ASH_CAL_ACCURACY_HIGH;
      break;

    case online_calibration::CalibrationQualityLevel::MEDIUM_QUALITY:
      ash_cal_info.accuracy = ASH_CAL_ACCURACY_MEDIUM;
      break;

    case online_calibration::CalibrationQualityLevel::LOW_QUALITY:
      ash_cal_info.accuracy = ASH_CAL_ACCURACY_LOW;
      break;

    default:
      ash_cal_info.accuracy = ASH_CAL_ACCURACY_UNRELIABLE;
      break;
  }

  if (!ashSetCalibration(chreSensorType, &ash_cal_info)) {
    NANO_CAL_LOGE(sensor_tag, "ASH failed to apply calibration update.");
    return false;
  }

  // Uses the ASH API to store all calibration parameters relevant to a given
  // algorithm as indicated by the input calibration type flags.
  ashCalParams ash_cal_parameters;
  memset(&ash_cal_parameters, 0, sizeof(ashCalParams));
  if (flags & CalibrationTypeFlags::BIAS) {
    ash_cal_parameters.offsetTempCelsius = cal_data.offset_temp_celsius;
    memcpy(ash_cal_parameters.offset, cal_data.offset,
           sizeof(ash_cal_parameters.offset));
    ash_cal_parameters.offsetSource = ASH_CAL_PARAMS_SOURCE_RUNTIME;
    ash_cal_parameters.offsetTempCelsiusSource = ASH_CAL_PARAMS_SOURCE_RUNTIME;
  }

  if (flags & CalibrationTypeFlags::OVER_TEMP) {
    memcpy(ash_cal_parameters.tempSensitivity, cal_data.temp_sensitivity,
           sizeof(ash_cal_parameters.tempSensitivity));
    memcpy(ash_cal_parameters.tempIntercept, cal_data.temp_intercept,
           sizeof(ash_cal_parameters.tempIntercept));
    ash_cal_parameters.tempSensitivitySource = ASH_CAL_PARAMS_SOURCE_RUNTIME;
    ash_cal_parameters.tempInterceptSource = ASH_CAL_PARAMS_SOURCE_RUNTIME;
  }

  if (!ashSaveCalibrationParams(chreSensorType, &ash_cal_parameters)) {
    NANO_CAL_LOGE(sensor_tag, "ASH failed to write calibration update.");
    return false;
  }

  return true;
}

bool NanoSensorCal::LoadAshCalibration(uint8_t chreSensorType,
                                       OnlineCalibrationThreeAxis *online_cal,
                                       CalibrationTypeFlags* flags,
                                       const char *sensor_tag) {
  ashCalParams recalled_ash_cal_parameters;
  if (ashLoadCalibrationParams(chreSensorType, ASH_CAL_STORAGE_ASH,
                               &recalled_ash_cal_parameters)) {
    // Checks whether a valid set of runtime calibration parameters was received
    // and can be used for initialization.
    if (DetectRuntimeCalibration(chreSensorType, sensor_tag, flags,
                                 &recalled_ash_cal_parameters)) {
      CalibrationDataThreeAxis cal_data;
      cal_data.type = online_cal->get_sensor_type();
      cal_data.cal_update_time_nanos = chreGetTime();

      // Analyzes the calibration flags and sets only the runtime calibration
      // values that were received.
      if (*flags & CalibrationTypeFlags::BIAS) {
        cal_data.offset_temp_celsius =
            recalled_ash_cal_parameters.offsetTempCelsius;
        memcpy(cal_data.offset, recalled_ash_cal_parameters.offset,
               sizeof(cal_data.offset));
      }

      if (*flags & CalibrationTypeFlags::OVER_TEMP) {
        memcpy(cal_data.temp_sensitivity,
               recalled_ash_cal_parameters.tempSensitivity,
               sizeof(cal_data.temp_sensitivity));
        memcpy(cal_data.temp_intercept,
               recalled_ash_cal_parameters.tempIntercept,
               sizeof(cal_data.temp_intercept));
      }

      // Sets the algorithm's initial calibration data and notifies ASH to apply
      // the recalled calibration data.
      if (online_cal->SetInitialCalibration(cal_data)) {
        return NotifyAshCalibration(chreSensorType,
                                    online_cal->GetSensorCalibration(), *flags,
                                    sensor_tag);
      } else {
        NANO_CAL_LOGE(sensor_tag,
                      "Calibration data failed to initialize algorithm.");
      }
    }
  } else {
    NANO_CAL_LOGE(sensor_tag, "ASH failed to recall calibration data.");
  }

  return false;
}

bool NanoSensorCal::DetectRuntimeCalibration(uint8_t chreSensorType,
                                             const char *sensor_tag,
                                             CalibrationTypeFlags *flags,
                                             ashCalParams *ash_cal_parameters) {
  // Analyzes calibration source flags to determine whether runtime
  // calibration values have been loaded and may be used for initialization. A
  // valid runtime calibration source will include at least an offset.
  *flags = CalibrationTypeFlags::NONE;  // Resets the calibration flags.

  // Uses the ASH calibration source flags to set the appropriate
  // CalibrationTypeFlags. These will be used to determine which values to copy
  // from 'ash_cal_parameters' and provide to the calibration algorithms for
  // initialization.
  bool runtime_cal_detected = false;
  if (ash_cal_parameters->offsetSource == ASH_CAL_PARAMS_SOURCE_RUNTIME &&
      ash_cal_parameters->offsetTempCelsiusSource ==
          ASH_CAL_PARAMS_SOURCE_RUNTIME) {
    runtime_cal_detected = true;
    *flags = CalibrationTypeFlags::BIAS;
  }

  if (ash_cal_parameters->tempSensitivitySource ==
          ASH_CAL_PARAMS_SOURCE_RUNTIME &&
      ash_cal_parameters->tempInterceptSource ==
          ASH_CAL_PARAMS_SOURCE_RUNTIME) {
    *flags |= CalibrationTypeFlags::OVER_TEMP;
  }

  if (runtime_cal_detected) {
    // Prints the retrieved runtime calibration data.
    NANO_CAL_LOGI(sensor_tag, "Runtime calibration data detected.");
    PrintAshCalParams(*ash_cal_parameters, sensor_tag);
  } else {
    // This is a warning (not an error) since the runtime algorithms will
    // function correctly with no recalled calibration values. They will
    // eventually trigger and update the system with valid calibration data.
    NANO_CAL_LOGW(sensor_tag, "No runtime offset calibration data found.");
  }

  return runtime_cal_detected;
}

// Helper functions for logging calibration information.
void NanoSensorCal::PrintAshCalParams(const ashCalParams &cal_params,
                                      const char *sensor_tag) {
  if (cal_params.offsetSource == ASH_CAL_PARAMS_SOURCE_RUNTIME) {
    NANO_CAL_LOGI(sensor_tag,
                  "Offset | Temperature [C]: %.6f, %.6f, %.6f | %.2f",
                  cal_params.offset[0], cal_params.offset[1],
                  cal_params.offset[2], cal_params.offsetTempCelsius);
  }

  if (cal_params.tempSensitivitySource == ASH_CAL_PARAMS_SOURCE_RUNTIME) {
    NANO_CAL_LOGI(sensor_tag, "Temp Sensitivity [units/C]: %.6f, %.6f, %.6f",
                  cal_params.tempSensitivity[0], cal_params.tempSensitivity[1],
                  cal_params.tempSensitivity[2]);
  }

  if (cal_params.tempInterceptSource == ASH_CAL_PARAMS_SOURCE_RUNTIME) {
    NANO_CAL_LOGI(sensor_tag, "Temp Intercept [units]: %.6f, %.6f, %.6f",
                  cal_params.tempIntercept[0], cal_params.tempIntercept[1],
                  cal_params.tempIntercept[2]);
  }

  if (cal_params.scaleFactorSource == ASH_CAL_PARAMS_SOURCE_RUNTIME) {
    NANO_CAL_LOGI(sensor_tag, "Scale Factor: %.6f, %.6f, %.6f",
                  cal_params.scaleFactor[0], cal_params.scaleFactor[1],
                  cal_params.scaleFactor[2]);
  }

  if (cal_params.crossAxisSource == ASH_CAL_PARAMS_SOURCE_RUNTIME) {
    NANO_CAL_LOGI(sensor_tag,
                  "Cross-Axis in [yx, zx, zy] order: %.6f, %.6f, %.6f",
                  cal_params.crossAxis[0], cal_params.crossAxis[1],
                  cal_params.crossAxis[2]);
  }
}

void NanoSensorCal::PrintCalibration(const CalibrationDataThreeAxis &cal_data,
                                     CalibrationTypeFlags flags,
                                     const char *sensor_tag) {
  if (flags & CalibrationTypeFlags::BIAS) {
    NANO_CAL_LOGI(sensor_tag,
                  "Offset | Temperature [C]: %.6f, %.6f, %.6f | %.2f",
                  cal_data.offset[0], cal_data.offset[1], cal_data.offset[2],
                  cal_data.offset_temp_celsius);
  }

  if (flags & CalibrationTypeFlags::OVER_TEMP) {
    NANO_CAL_LOGI(sensor_tag, "Temp Sensitivity: %.6f, %.6f, %.6f",
                  cal_data.temp_sensitivity[0], cal_data.temp_sensitivity[1],
                  cal_data.temp_sensitivity[2]);
    NANO_CAL_LOGI(sensor_tag, "Temp Intercept: %.6f, %.6f, %.6f",
                  cal_data.temp_intercept[0], cal_data.temp_intercept[1],
                  cal_data.temp_intercept[2]);
  }
}

void NanoSensorCal::HandleGyroLogMessage(uint64_t timestamp_nanos) {
  // Limits the log messaging update rate for the gyro calibrations since
  // these can occur frequently with rapid temperature changes.
  const int64_t next_log_interval_nanos =
      (NANO_TIMER_CHECK_T1_GEQUAL_T2_PLUS_DELTA(
          timestamp_nanos, initialization_start_time_nanos_,
          MIN_TO_NANOS(kGyroscopeMessagePlan.duration_of_rapid_messages_min)))
          ? MIN_TO_NANOS(kGyroscopeMessagePlan.slow_message_interval_min)
          : SEC_TO_NANOS(kGyroscopeMessagePlan.rapid_message_interval_sec);

  const bool print_gyro_log = NANO_TIMER_CHECK_T1_GEQUAL_T2_PLUS_DELTA(
        timestamp_nanos, gyro_notification_time_nanos_,
        next_log_interval_nanos);

  if (print_gyro_log) {
    gyro_notification_time_nanos_ = timestamp_nanos;
    PrintCalibration(gyro_cal_->GetSensorCalibration(), gyro_cal_update_flags_,
                     kGyroTag);
  }
}

}  // namespace nano_calibration