summaryrefslogtreecommitdiffstats
path: root/storaged/storaged.cpp
blob: 2f020742aa7424c6a041f7e905cb27fe51648442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "storaged"

#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include <android-base/logging.h>
#include <batteryservice/BatteryServiceConstants.h>
#include <batteryservice/IBatteryPropertiesRegistrar.h>
#include <binder/IServiceManager.h>
#include <cutils/properties.h>
#include <log/log.h>

#include <storaged.h>
#include <storaged_utils.h>

/* disk_stats_publisher */
void disk_stats_publisher::publish(void) {
    // Logging
    struct disk_perf perf = get_disk_perf(&mAccumulate);
    log_debug_disk_perf(&perf, "regular");
    log_event_disk_stats(&mAccumulate, "regular");
    // Reset global structures
    memset(&mAccumulate, 0, sizeof(struct disk_stats));
}

void disk_stats_publisher::update(void) {
    struct disk_stats curr;
    if (parse_disk_stats(DISK_STATS_PATH, &curr)) {
        struct disk_stats inc = get_inc_disk_stats(&mPrevious, &curr);
        add_disk_stats(&inc, &mAccumulate);
#ifdef DEBUG
//            log_kernel_disk_stats(&mPrevious, "prev stats");
//            log_kernel_disk_stats(&curr, "curr stats");
//            log_kernel_disk_stats(&inc, "inc stats");
//            log_kernel_disk_stats(&mAccumulate, "accumulated stats");
#endif
        mPrevious = curr;
    }
}

/* disk_stats_monitor */
void disk_stats_monitor::update_mean() {
    CHECK(mValid);
    mMean.read_perf = (uint32_t)mStats.read_perf.get_mean();
    mMean.read_ios = (uint32_t)mStats.read_ios.get_mean();
    mMean.write_perf = (uint32_t)mStats.write_perf.get_mean();
    mMean.write_ios = (uint32_t)mStats.write_ios.get_mean();
    mMean.queue = (uint32_t)mStats.queue.get_mean();
}

void disk_stats_monitor::update_std() {
    CHECK(mValid);
    mStd.read_perf = (uint32_t)mStats.read_perf.get_std();
    mStd.read_ios = (uint32_t)mStats.read_ios.get_std();
    mStd.write_perf = (uint32_t)mStats.write_perf.get_std();
    mStd.write_ios = (uint32_t)mStats.write_ios.get_std();
    mStd.queue = (uint32_t)mStats.queue.get_std();
}

void disk_stats_monitor::add(struct disk_perf* perf) {
    mStats.read_perf.add(perf->read_perf);
    mStats.read_ios.add(perf->read_ios);
    mStats.write_perf.add(perf->write_perf);
    mStats.write_ios.add(perf->write_ios);
    mStats.queue.add(perf->queue);
}

void disk_stats_monitor::evict(struct disk_perf* perf) {
    mStats.read_perf.evict(perf->read_perf);
    mStats.read_ios.evict(perf->read_ios);
    mStats.write_perf.evict(perf->write_perf);
    mStats.write_ios.evict(perf->write_ios);
    mStats.queue.evict(perf->queue);
}

bool disk_stats_monitor::detect(struct disk_perf* perf) {
    return ((double)perf->queue >= (double)mMean.queue + mSigma * (double)mStd.queue) &&
            ((double)perf->read_perf < (double)mMean.read_perf - mSigma * (double)mStd.read_perf) &&
            ((double)perf->write_perf < (double)mMean.write_perf - mSigma * (double)mStd.write_perf);
}

void disk_stats_monitor::update(struct disk_stats* stats) {
    struct disk_stats inc = get_inc_disk_stats(&mPrevious, stats);
    struct disk_perf perf = get_disk_perf(&inc);
    // Update internal data structures
    if (LIKELY(mValid)) {
        CHECK_EQ(mBuffer.size(), mWindow);

        if (UNLIKELY(detect(&perf))) {
            mStall = true;
            add_disk_stats(&inc, &mAccumulate);
            log_debug_disk_perf(&mMean, "stalled_mean");
            log_debug_disk_perf(&mStd, "stalled_std");
        } else {
            if (mStall) {
                struct disk_perf acc_perf = get_disk_perf(&mAccumulate);
                log_debug_disk_perf(&acc_perf, "stalled");
                log_event_disk_stats(&mAccumulate, "stalled");
                mStall = false;
                memset(&mAccumulate, 0, sizeof(mAccumulate));
            }
        }

        evict(&mBuffer.front());
        mBuffer.pop();
        add(&perf);
        mBuffer.push(perf);

        update_mean();
        update_std();

    } else { /* mValid == false */
        CHECK_LT(mBuffer.size(), mWindow);
        add(&perf);
        mBuffer.push(perf);
        if (mBuffer.size() == mWindow) {
            mValid = true;
            update_mean();
            update_std();
        }
    }

    mPrevious = *stats;
}

void disk_stats_monitor::update(void) {
    struct disk_stats curr;
    if (LIKELY(parse_disk_stats(DISK_STATS_PATH, &curr))) {
        update(&curr);
    }
}

/* emmc_info_t */
void emmc_info_t::publish(void) {
    if (mValid) {
        log_event_emmc_info(&mInfo);
    }
}

void emmc_info_t::update(void) {
    if (mFdEmmc >= 0) {
        mValid = parse_emmc_ecsd(mFdEmmc, &mInfo);
    }
}

static sp<IBatteryPropertiesRegistrar> get_battery_properties_service() {
    sp<IServiceManager> sm = defaultServiceManager();
    if (sm == NULL) return NULL;

    sp<IBinder> binder = sm->getService(String16("batteryproperties"));
    if (binder == NULL) return NULL;

    sp<IBatteryPropertiesRegistrar> battery_properties =
        interface_cast<IBatteryPropertiesRegistrar>(binder);

    return battery_properties;
}

static inline charger_stat_t is_charger_on(int64_t prop) {
    return (prop == BATTERY_STATUS_CHARGING || prop == BATTERY_STATUS_FULL) ?
        CHARGER_ON : CHARGER_OFF;
}

void storaged_t::batteryPropertiesChanged(struct BatteryProperties props) {
    mUidm.set_charger_state(is_charger_on(props.batteryStatus));
}

void storaged_t::init_battery_service() {
    sp<IBatteryPropertiesRegistrar> battery_properties = get_battery_properties_service();
    if (battery_properties == NULL) {
        LOG_TO(SYSTEM, WARNING) << "failed to find batteryproperties service";
        return;
    }

    struct BatteryProperty val;
    battery_properties->getProperty(BATTERY_PROP_BATTERY_STATUS, &val);
    mUidm.init(is_charger_on(val.valueInt64));

    // register listener after init uid_monitor
    battery_properties->registerListener(this);
}

/* storaged_t */
storaged_t::storaged_t(void) {
    mConfig.emmc_available = (access(EMMC_ECSD_PATH, R_OK) >= 0);

    if (access(MMC_DISK_STATS_PATH, R_OK) < 0 && access(SDA_DISK_STATS_PATH, R_OK) < 0) {
        mConfig.diskstats_available = false;
    } else {
        mConfig.diskstats_available = true;
    }

    mConfig.proc_uid_io_available = (access(UID_IO_STATS_PATH, R_OK) == 0);

    mConfig.periodic_chores_interval_unit =
        property_get_int32("ro.storaged.event.interval", DEFAULT_PERIODIC_CHORES_INTERVAL_UNIT);

    mConfig.event_time_check_usec =
        property_get_int32("ro.storaged.event.perf_check", 0);

    mConfig.periodic_chores_interval_disk_stats_publish =
        property_get_int32("ro.storaged.disk_stats_pub", DEFAULT_PERIODIC_CHORES_INTERVAL_DISK_STATS_PUBLISH);

    mConfig.periodic_chores_interval_emmc_info_publish =
        property_get_int32("ro.storaged.emmc_info_pub", DEFAULT_PERIODIC_CHORES_INTERVAL_EMMC_INFO_PUBLISH);

    mConfig.periodic_chores_interval_uid_io =
        property_get_int32("ro.storaged.uid_io.interval", DEFAULT_PERIODIC_CHORES_INTERVAL_UID_IO);

    mStarttime = time(NULL);
}

void storaged_t::event(void) {
    if (mConfig.diskstats_available) {
        mDiskStats.update();
        mDsm.update();
        if (mTimer && (mTimer % mConfig.periodic_chores_interval_disk_stats_publish) == 0) {
            mDiskStats.publish();
        }
    }

    if (mConfig.emmc_available && mTimer &&
            (mTimer % mConfig.periodic_chores_interval_emmc_info_publish) == 0) {
        mEmmcInfo.update();
        mEmmcInfo.publish();
    }

    if (mConfig.proc_uid_io_available && mTimer &&
            (mTimer % mConfig.periodic_chores_interval_uid_io) == 0) {
         mUidm.report();
    }

    mTimer += mConfig.periodic_chores_interval_unit;
}

void storaged_t::event_checked(void) {
    struct timespec start_ts, end_ts;
    bool check_time = true;

    if (mConfig.event_time_check_usec &&
        clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start_ts) < 0) {
        check_time = false;
        static time_t state_a;
        IF_ALOG_RATELIMIT_LOCAL(300, &state_a) {
            PLOG_TO(SYSTEM, ERROR) << "clock_gettime() failed";
        }
    }

    event();

    if (mConfig.event_time_check_usec && check_time) {
        if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end_ts) < 0) {
            static time_t state_b;
            IF_ALOG_RATELIMIT_LOCAL(300, &state_b) {
                PLOG_TO(SYSTEM, ERROR) << "clock_gettime() failed";
            }
            return;
        }
        int64_t cost = (end_ts.tv_sec - start_ts.tv_sec) * SEC_TO_USEC +
                       (end_ts.tv_nsec - start_ts.tv_nsec) / USEC_TO_NSEC;
        if (cost > mConfig.event_time_check_usec) {
            LOG_TO(SYSTEM, ERROR)
                << "event loop spent " << cost << " usec, threshold "
                << mConfig.event_time_check_usec << " usec";
        }
    }
}