1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "metrics_daemon.h"
#include <fcntl.h>
#include <inttypes.h>
#include <math.h>
#include <string.h>
#include <sysexits.h>
#include <time.h>
#include <base/bind.h>
#include <base/files/file_path.h>
#include <base/files/file_util.h>
#include <base/hash.h>
#include <base/logging.h>
#include <base/strings/string_number_conversions.h>
#include <base/strings/string_split.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <cutils/properties.h>
#include <dbus/dbus.h>
#include <dbus/message.h>
#include "constants.h"
#include "uploader/upload_service.h"
using base::FilePath;
using base::StringPrintf;
using base::Time;
using base::TimeDelta;
using base::TimeTicks;
using chromeos_metrics::PersistentInteger;
using std::map;
using std::string;
using std::vector;
namespace {
const char kCrashReporterInterface[] = "org.chromium.CrashReporter";
const char kCrashReporterUserCrashSignal[] = "UserCrash";
const char kCrashReporterMatchRule[] =
"type='signal',interface='%s',path='/',member='%s'";
const int kSecondsPerMinute = 60;
const int kMinutesPerHour = 60;
const int kHoursPerDay = 24;
const int kMinutesPerDay = kHoursPerDay * kMinutesPerHour;
const int kSecondsPerDay = kSecondsPerMinute * kMinutesPerDay;
const int kDaysPerWeek = 7;
const int kSecondsPerWeek = kSecondsPerDay * kDaysPerWeek;
// Interval between calls to UpdateStats().
const uint32_t kUpdateStatsIntervalMs = 300000;
const char kKernelCrashDetectedFile[] = "/var/run/kernel-crash-detected";
const char kUncleanShutdownDetectedFile[] =
"/var/run/unclean-shutdown-detected";
// disk stats metrics
// The {Read,Write}Sectors numbers are in sectors/second.
// A sector is usually 512 bytes.
const char kMetricReadSectorsLongName[] = "Platform.ReadSectors.PerMinute";
const char kMetricWriteSectorsLongName[] = "Platform.WriteSectors.PerMinute";
const char kMetricReadSectorsShortName[] = "Platform.ReadSectors.PerSecond";
const char kMetricWriteSectorsShortName[] = "Platform.WriteSectors.PerSecond";
const int kMetricStatsShortInterval = 1; // seconds
const int kMetricStatsLongInterval = 60; // seconds
const int kMetricMeminfoInterval = 30; // seconds
// Assume a max rate of 250Mb/s for reads (worse for writes) and 512 byte
// sectors.
const int kMetricSectorsIOMax = 500000; // sectors/second
const int kMetricSectorsBuckets = 50; // buckets
// Page size is 4k, sector size is 0.5k. We're not interested in page fault
// rates that the disk cannot sustain.
const int kMetricPageFaultsMax = kMetricSectorsIOMax / 8;
const int kMetricPageFaultsBuckets = 50;
// Major page faults, i.e. the ones that require data to be read from disk.
const char kMetricPageFaultsLongName[] = "Platform.PageFaults.PerMinute";
const char kMetricPageFaultsShortName[] = "Platform.PageFaults.PerSecond";
// Swap in and Swap out
const char kMetricSwapInLongName[] = "Platform.SwapIn.PerMinute";
const char kMetricSwapInShortName[] = "Platform.SwapIn.PerSecond";
const char kMetricSwapOutLongName[] = "Platform.SwapOut.PerMinute";
const char kMetricSwapOutShortName[] = "Platform.SwapOut.PerSecond";
const char kMetricsProcStatFileName[] = "/proc/stat";
const char kVmStatFileName[] = "/proc/vmstat";
const char kMeminfoFileName[] = "/proc/meminfo";
const int kMetricsProcStatFirstLineItemsCount = 11;
const int kDiskMetricsStatItemCount = 11;
// Thermal CPU throttling.
const char kMetricScaledCpuFrequencyName[] =
"Platform.CpuFrequencyThermalScaling";
} // namespace
// Zram sysfs entries.
const char MetricsDaemon::kComprDataSizeName[] = "compr_data_size";
const char MetricsDaemon::kOrigDataSizeName[] = "orig_data_size";
const char MetricsDaemon::kZeroPagesName[] = "zero_pages";
// Memory use stats collection intervals. We collect some memory use interval
// at these intervals after boot, and we stop collecting after the last one,
// with the assumption that in most cases the memory use won't change much
// after that.
static const int kMemuseIntervals[] = {
1 * kSecondsPerMinute, // 1 minute mark
4 * kSecondsPerMinute, // 5 minute mark
25 * kSecondsPerMinute, // 0.5 hour mark
120 * kSecondsPerMinute, // 2.5 hour mark
600 * kSecondsPerMinute, // 12.5 hour mark
};
MetricsDaemon::MetricsDaemon()
: memuse_final_time_(0),
memuse_interval_index_(0),
read_sectors_(0),
write_sectors_(0),
vmstats_(),
stats_state_(kStatsShort),
stats_initial_time_(0),
ticks_per_second_(0),
latest_cpu_use_ticks_(0) {}
MetricsDaemon::~MetricsDaemon() {
}
double MetricsDaemon::GetActiveTime() {
struct timespec ts;
int r = clock_gettime(CLOCK_MONOTONIC, &ts);
if (r < 0) {
PLOG(WARNING) << "clock_gettime(CLOCK_MONOTONIC) failed";
return 0;
} else {
return ts.tv_sec + static_cast<double>(ts.tv_nsec) / (1000 * 1000 * 1000);
}
}
int MetricsDaemon::Run() {
if (CheckSystemCrash(kKernelCrashDetectedFile)) {
ProcessKernelCrash();
}
if (CheckSystemCrash(kUncleanShutdownDetectedFile)) {
ProcessUncleanShutdown();
}
// On OS version change, clear version stats (which are reported daily).
int32_t version = GetOsVersionHash();
if (version_cycle_->Get() != version) {
version_cycle_->Set(version);
kernel_crashes_version_count_->Set(0);
version_cumulative_active_use_->Set(0);
version_cumulative_cpu_use_->Set(0);
}
return chromeos::DBusDaemon::Run();
}
void MetricsDaemon::RunUploaderTest() {
upload_service_.reset(new UploadService(
new SystemProfileCache(true, metrics_directory_),
metrics_lib_,
server_));
upload_service_->Init(upload_interval_, metrics_directory_);
upload_service_->UploadEvent();
}
uint32_t MetricsDaemon::GetOsVersionHash() {
static uint32_t cached_version_hash = 0;
static bool version_hash_is_cached = false;
if (version_hash_is_cached)
return cached_version_hash;
version_hash_is_cached = true;
char version[PROPERTY_VALUE_MAX];
// The version might not be set for development devices. In this case, use the
// zero version.
property_get(metrics::kProductVersionProperty, version,
metrics::kDefaultVersion);
cached_version_hash = base::Hash(version);
if (testing_) {
cached_version_hash = 42; // return any plausible value for the hash
}
return cached_version_hash;
}
void MetricsDaemon::Init(bool testing,
bool uploader_active,
bool dbus_enabled,
MetricsLibraryInterface* metrics_lib,
const string& diskstats_path,
const string& scaling_max_freq_path,
const string& cpuinfo_max_freq_path,
const base::TimeDelta& upload_interval,
const string& server,
const base::FilePath& metrics_directory) {
CHECK(metrics_lib);
testing_ = testing;
uploader_active_ = uploader_active;
dbus_enabled_ = dbus_enabled;
metrics_directory_ = metrics_directory;
metrics_lib_ = metrics_lib;
upload_interval_ = upload_interval;
server_ = server;
// Get ticks per second (HZ) on this system.
// Sysconf cannot fail, so no sanity checks are needed.
ticks_per_second_ = sysconf(_SC_CLK_TCK);
daily_active_use_.reset(
new PersistentInteger("Platform.DailyUseTime"));
version_cumulative_active_use_.reset(
new PersistentInteger("Platform.CumulativeUseTime"));
version_cumulative_cpu_use_.reset(
new PersistentInteger("Platform.CumulativeCpuTime"));
kernel_crash_interval_.reset(
new PersistentInteger("Platform.KernelCrashInterval"));
unclean_shutdown_interval_.reset(
new PersistentInteger("Platform.UncleanShutdownInterval"));
user_crash_interval_.reset(
new PersistentInteger("Platform.UserCrashInterval"));
any_crashes_daily_count_.reset(
new PersistentInteger("Platform.AnyCrashesDaily"));
any_crashes_weekly_count_.reset(
new PersistentInteger("Platform.AnyCrashesWeekly"));
user_crashes_daily_count_.reset(
new PersistentInteger("Platform.UserCrashesDaily"));
user_crashes_weekly_count_.reset(
new PersistentInteger("Platform.UserCrashesWeekly"));
kernel_crashes_daily_count_.reset(
new PersistentInteger("Platform.KernelCrashesDaily"));
kernel_crashes_weekly_count_.reset(
new PersistentInteger("Platform.KernelCrashesWeekly"));
kernel_crashes_version_count_.reset(
new PersistentInteger("Platform.KernelCrashesSinceUpdate"));
unclean_shutdowns_daily_count_.reset(
new PersistentInteger("Platform.UncleanShutdownsDaily"));
unclean_shutdowns_weekly_count_.reset(
new PersistentInteger("Platform.UncleanShutdownsWeekly"));
daily_cycle_.reset(new PersistentInteger("daily.cycle"));
weekly_cycle_.reset(new PersistentInteger("weekly.cycle"));
version_cycle_.reset(new PersistentInteger("version.cycle"));
diskstats_path_ = diskstats_path;
scaling_max_freq_path_ = scaling_max_freq_path;
cpuinfo_max_freq_path_ = cpuinfo_max_freq_path;
// If testing, initialize Stats Reporter without connecting DBus
if (testing_)
StatsReporterInit();
}
int MetricsDaemon::OnInit() {
int return_code = dbus_enabled_ ? chromeos::DBusDaemon::OnInit() :
chromeos::Daemon::OnInit();
if (return_code != EX_OK)
return return_code;
StatsReporterInit();
// Start collecting meminfo stats.
ScheduleMeminfoCallback(kMetricMeminfoInterval);
memuse_final_time_ = GetActiveTime() + kMemuseIntervals[0];
ScheduleMemuseCallback(kMemuseIntervals[0]);
if (testing_)
return EX_OK;
if (dbus_enabled_) {
bus_->AssertOnDBusThread();
CHECK(bus_->SetUpAsyncOperations());
if (bus_->is_connected()) {
const std::string match_rule =
base::StringPrintf(kCrashReporterMatchRule,
kCrashReporterInterface,
kCrashReporterUserCrashSignal);
bus_->AddFilterFunction(&MetricsDaemon::MessageFilter, this);
DBusError error;
dbus_error_init(&error);
bus_->AddMatch(match_rule, &error);
if (dbus_error_is_set(&error)) {
LOG(ERROR) << "Failed to add match rule \"" << match_rule << "\". Got "
<< error.name << ": " << error.message;
return EX_SOFTWARE;
}
} else {
LOG(ERROR) << "DBus isn't connected.";
return EX_UNAVAILABLE;
}
}
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&MetricsDaemon::HandleUpdateStatsTimeout,
base::Unretained(this)),
base::TimeDelta::FromMilliseconds(kUpdateStatsIntervalMs));
if (uploader_active_) {
upload_service_.reset(
new UploadService(new SystemProfileCache(), metrics_lib_, server_));
upload_service_->Init(upload_interval_, metrics_directory_);
}
return EX_OK;
}
void MetricsDaemon::OnShutdown(int* return_code) {
if (!testing_ && dbus_enabled_ && bus_->is_connected()) {
const std::string match_rule =
base::StringPrintf(kCrashReporterMatchRule,
kCrashReporterInterface,
kCrashReporterUserCrashSignal);
bus_->RemoveFilterFunction(&MetricsDaemon::MessageFilter, this);
DBusError error;
dbus_error_init(&error);
bus_->RemoveMatch(match_rule, &error);
if (dbus_error_is_set(&error)) {
LOG(ERROR) << "Failed to remove match rule \"" << match_rule << "\". Got "
<< error.name << ": " << error.message;
}
}
chromeos::DBusDaemon::OnShutdown(return_code);
}
// static
DBusHandlerResult MetricsDaemon::MessageFilter(DBusConnection* connection,
DBusMessage* message,
void* user_data) {
int message_type = dbus_message_get_type(message);
if (message_type != DBUS_MESSAGE_TYPE_SIGNAL) {
DLOG(WARNING) << "unexpected message type " << message_type;
return DBUS_HANDLER_RESULT_NOT_YET_HANDLED;
}
// Signal messages always have interfaces.
const std::string interface(dbus_message_get_interface(message));
const std::string member(dbus_message_get_member(message));
DLOG(INFO) << "Got " << interface << "." << member << " D-Bus signal";
MetricsDaemon* daemon = static_cast<MetricsDaemon*>(user_data);
DBusMessageIter iter;
dbus_message_iter_init(message, &iter);
if (interface == kCrashReporterInterface) {
CHECK_EQ(member, kCrashReporterUserCrashSignal);
daemon->ProcessUserCrash();
} else {
// Ignore messages from the bus itself.
return DBUS_HANDLER_RESULT_NOT_YET_HANDLED;
}
return DBUS_HANDLER_RESULT_HANDLED;
}
// One might argue that parts of this should go into
// chromium/src/base/sys_info_chromeos.c instead, but put it here for now.
TimeDelta MetricsDaemon::GetIncrementalCpuUse() {
FilePath proc_stat_path = FilePath(kMetricsProcStatFileName);
std::string proc_stat_string;
if (!base::ReadFileToString(proc_stat_path, &proc_stat_string)) {
LOG(WARNING) << "cannot open " << kMetricsProcStatFileName;
return TimeDelta();
}
std::vector<std::string> proc_stat_lines;
base::SplitString(proc_stat_string, '\n', &proc_stat_lines);
if (proc_stat_lines.empty()) {
LOG(WARNING) << "cannot parse " << kMetricsProcStatFileName
<< ": " << proc_stat_string;
return TimeDelta();
}
std::vector<std::string> proc_stat_totals;
base::SplitStringAlongWhitespace(proc_stat_lines[0], &proc_stat_totals);
uint64_t user_ticks, user_nice_ticks, system_ticks;
if (proc_stat_totals.size() != kMetricsProcStatFirstLineItemsCount ||
proc_stat_totals[0] != "cpu" ||
!base::StringToUint64(proc_stat_totals[1], &user_ticks) ||
!base::StringToUint64(proc_stat_totals[2], &user_nice_ticks) ||
!base::StringToUint64(proc_stat_totals[3], &system_ticks)) {
LOG(WARNING) << "cannot parse first line: " << proc_stat_lines[0];
return TimeDelta(base::TimeDelta::FromSeconds(0));
}
uint64_t total_cpu_use_ticks = user_ticks + user_nice_ticks + system_ticks;
// Sanity check.
if (total_cpu_use_ticks < latest_cpu_use_ticks_) {
LOG(WARNING) << "CPU time decreasing from " << latest_cpu_use_ticks_
<< " to " << total_cpu_use_ticks;
return TimeDelta();
}
uint64_t diff = total_cpu_use_ticks - latest_cpu_use_ticks_;
latest_cpu_use_ticks_ = total_cpu_use_ticks;
// Use microseconds to avoid significant truncations.
return base::TimeDelta::FromMicroseconds(
diff * 1000 * 1000 / ticks_per_second_);
}
void MetricsDaemon::ProcessUserCrash() {
// Counts the active time up to now.
UpdateStats(TimeTicks::Now(), Time::Now());
// Reports the active use time since the last crash and resets it.
SendAndResetCrashIntervalSample(user_crash_interval_);
any_crashes_daily_count_->Add(1);
any_crashes_weekly_count_->Add(1);
user_crashes_daily_count_->Add(1);
user_crashes_weekly_count_->Add(1);
}
void MetricsDaemon::ProcessKernelCrash() {
// Counts the active time up to now.
UpdateStats(TimeTicks::Now(), Time::Now());
// Reports the active use time since the last crash and resets it.
SendAndResetCrashIntervalSample(kernel_crash_interval_);
any_crashes_daily_count_->Add(1);
any_crashes_weekly_count_->Add(1);
kernel_crashes_daily_count_->Add(1);
kernel_crashes_weekly_count_->Add(1);
kernel_crashes_version_count_->Add(1);
}
void MetricsDaemon::ProcessUncleanShutdown() {
// Counts the active time up to now.
UpdateStats(TimeTicks::Now(), Time::Now());
// Reports the active use time since the last crash and resets it.
SendAndResetCrashIntervalSample(unclean_shutdown_interval_);
unclean_shutdowns_daily_count_->Add(1);
unclean_shutdowns_weekly_count_->Add(1);
any_crashes_daily_count_->Add(1);
any_crashes_weekly_count_->Add(1);
}
bool MetricsDaemon::CheckSystemCrash(const string& crash_file) {
FilePath crash_detected(crash_file);
if (!base::PathExists(crash_detected))
return false;
// Deletes the crash-detected file so that the daemon doesn't report
// another kernel crash in case it's restarted.
base::DeleteFile(crash_detected, false); // not recursive
return true;
}
void MetricsDaemon::StatsReporterInit() {
DiskStatsReadStats(&read_sectors_, &write_sectors_);
VmStatsReadStats(&vmstats_);
// The first time around just run the long stat, so we don't delay boot.
stats_state_ = kStatsLong;
stats_initial_time_ = GetActiveTime();
if (stats_initial_time_ < 0) {
LOG(WARNING) << "not collecting disk stats";
} else {
ScheduleStatsCallback(kMetricStatsLongInterval);
}
}
void MetricsDaemon::ScheduleStatsCallback(int wait) {
if (testing_) {
return;
}
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&MetricsDaemon::StatsCallback, base::Unretained(this)),
base::TimeDelta::FromSeconds(wait));
}
bool MetricsDaemon::DiskStatsReadStats(uint64_t* read_sectors,
uint64_t* write_sectors) {
CHECK(read_sectors);
CHECK(write_sectors);
std::string line;
if (diskstats_path_.empty()) {
return false;
}
if (!base::ReadFileToString(base::FilePath(diskstats_path_), &line)) {
PLOG(WARNING) << "Could not read disk stats from " << diskstats_path_;
return false;
}
std::vector<std::string> parts = base::SplitString(
line, " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
if (parts.size() != kDiskMetricsStatItemCount) {
LOG(ERROR) << "Could not parse disk stat correctly. Expected "
<< kDiskMetricsStatItemCount << " elements but got "
<< parts.size();
return false;
}
if (!base::StringToUint64(parts[2], read_sectors)) {
LOG(ERROR) << "Couldn't convert read sectors " << parts[2] << " to uint64";
return false;
}
if (!base::StringToUint64(parts[6], write_sectors)) {
LOG(ERROR) << "Couldn't convert write sectors " << parts[6] << " to uint64";
return false;
}
return true;
}
bool MetricsDaemon::VmStatsParseStats(const char* stats,
struct VmstatRecord* record) {
CHECK(stats);
CHECK(record);
base::StringPairs pairs;
base::SplitStringIntoKeyValuePairs(stats, ' ', '\n', &pairs);
for (base::StringPairs::iterator it = pairs.begin(); it != pairs.end(); ++it) {
if (it->first == "pgmajfault" &&
!base::StringToUint64(it->second, &record->page_faults_)) {
return false;
}
if (it->first == "pswpin" &&
!base::StringToUint64(it->second, &record->swap_in_)) {
return false;
}
if (it->first == "pswpout" &&
!base::StringToUint64(it->second, &record->swap_out_)) {
return false;
}
}
return true;
}
bool MetricsDaemon::VmStatsReadStats(struct VmstatRecord* stats) {
CHECK(stats);
string value_string;
if (!base::ReadFileToString(base::FilePath(kVmStatFileName), &value_string)) {
LOG(WARNING) << "cannot read " << kVmStatFileName;
return false;
}
return VmStatsParseStats(value_string.c_str(), stats);
}
bool MetricsDaemon::ReadFreqToInt(const string& sysfs_file_name, int* value) {
const FilePath sysfs_path(sysfs_file_name);
string value_string;
if (!base::ReadFileToString(sysfs_path, &value_string)) {
LOG(WARNING) << "cannot read " << sysfs_path.value().c_str();
return false;
}
if (!base::RemoveChars(value_string, "\n", &value_string)) {
LOG(WARNING) << "no newline in " << value_string;
// Continue even though the lack of newline is suspicious.
}
if (!base::StringToInt(value_string, value)) {
LOG(WARNING) << "cannot convert " << value_string << " to int";
return false;
}
return true;
}
void MetricsDaemon::SendCpuThrottleMetrics() {
// |max_freq| is 0 only the first time through.
static int max_freq = 0;
if (max_freq == -1)
// Give up, as sysfs did not report max_freq correctly.
return;
if (max_freq == 0 || testing_) {
// One-time initialization of max_freq. (Every time when testing.)
if (!ReadFreqToInt(cpuinfo_max_freq_path_, &max_freq)) {
max_freq = -1;
return;
}
if (max_freq == 0) {
LOG(WARNING) << "sysfs reports 0 max CPU frequency\n";
max_freq = -1;
return;
}
if (max_freq % 10000 == 1000) {
// Special case: system has turbo mode, and max non-turbo frequency is
// max_freq - 1000. This relies on "normal" (non-turbo) frequencies
// being multiples of (at least) 10 MHz. Although there is no guarantee
// of this, it seems a fairly reasonable assumption. Otherwise we should
// read scaling_available_frequencies, sort the frequencies, compare the
// two highest ones, and check if they differ by 1000 (kHz) (and that's a
// hack too, no telling when it will change).
max_freq -= 1000;
}
}
int scaled_freq = 0;
if (!ReadFreqToInt(scaling_max_freq_path_, &scaled_freq))
return;
// Frequencies are in kHz. If scaled_freq > max_freq, turbo is on, but
// scaled_freq is not the actual turbo frequency. We indicate this situation
// with a 101% value.
int percent = scaled_freq > max_freq ? 101 : scaled_freq / (max_freq / 100);
SendLinearSample(kMetricScaledCpuFrequencyName, percent, 101, 102);
}
// Collects disk and vm stats alternating over a short and a long interval.
void MetricsDaemon::StatsCallback() {
uint64_t read_sectors_now, write_sectors_now;
struct VmstatRecord vmstats_now;
double time_now = GetActiveTime();
double delta_time = time_now - stats_initial_time_;
if (testing_) {
// Fake the time when testing.
delta_time = stats_state_ == kStatsShort ?
kMetricStatsShortInterval : kMetricStatsLongInterval;
}
bool diskstats_success = DiskStatsReadStats(&read_sectors_now,
&write_sectors_now);
int delta_read = read_sectors_now - read_sectors_;
int delta_write = write_sectors_now - write_sectors_;
int read_sectors_per_second = delta_read / delta_time;
int write_sectors_per_second = delta_write / delta_time;
bool vmstats_success = VmStatsReadStats(&vmstats_now);
uint64_t delta_faults = vmstats_now.page_faults_ - vmstats_.page_faults_;
uint64_t delta_swap_in = vmstats_now.swap_in_ - vmstats_.swap_in_;
uint64_t delta_swap_out = vmstats_now.swap_out_ - vmstats_.swap_out_;
uint64_t page_faults_per_second = delta_faults / delta_time;
uint64_t swap_in_per_second = delta_swap_in / delta_time;
uint64_t swap_out_per_second = delta_swap_out / delta_time;
switch (stats_state_) {
case kStatsShort:
if (diskstats_success) {
SendSample(kMetricReadSectorsShortName,
read_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
SendSample(kMetricWriteSectorsShortName,
write_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
}
if (vmstats_success) {
SendSample(kMetricPageFaultsShortName,
page_faults_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
SendSample(kMetricSwapInShortName,
swap_in_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
SendSample(kMetricSwapOutShortName,
swap_out_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
}
// Schedule long callback.
stats_state_ = kStatsLong;
ScheduleStatsCallback(kMetricStatsLongInterval -
kMetricStatsShortInterval);
break;
case kStatsLong:
if (diskstats_success) {
SendSample(kMetricReadSectorsLongName,
read_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
SendSample(kMetricWriteSectorsLongName,
write_sectors_per_second,
1,
kMetricSectorsIOMax,
kMetricSectorsBuckets);
// Reset sector counters.
read_sectors_ = read_sectors_now;
write_sectors_ = write_sectors_now;
}
if (vmstats_success) {
SendSample(kMetricPageFaultsLongName,
page_faults_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
SendSample(kMetricSwapInLongName,
swap_in_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
SendSample(kMetricSwapOutLongName,
swap_out_per_second,
1,
kMetricPageFaultsMax,
kMetricPageFaultsBuckets);
vmstats_ = vmstats_now;
}
SendCpuThrottleMetrics();
// Set start time for new cycle.
stats_initial_time_ = time_now;
// Schedule short callback.
stats_state_ = kStatsShort;
ScheduleStatsCallback(kMetricStatsShortInterval);
break;
default:
LOG(FATAL) << "Invalid stats state";
}
}
void MetricsDaemon::ScheduleMeminfoCallback(int wait) {
if (testing_) {
return;
}
base::TimeDelta waitDelta = base::TimeDelta::FromSeconds(wait);
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&MetricsDaemon::MeminfoCallback, base::Unretained(this),
waitDelta),
waitDelta);
}
void MetricsDaemon::MeminfoCallback(base::TimeDelta wait) {
string meminfo_raw;
const FilePath meminfo_path(kMeminfoFileName);
if (!base::ReadFileToString(meminfo_path, &meminfo_raw)) {
LOG(WARNING) << "cannot read " << meminfo_path.value().c_str();
return;
}
// Make both calls even if the first one fails.
if (ProcessMeminfo(meminfo_raw)) {
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&MetricsDaemon::MeminfoCallback, base::Unretained(this),
wait),
wait);
}
}
// static
bool MetricsDaemon::ReadFileToUint64(const base::FilePath& path,
uint64_t* value) {
std::string content;
if (!base::ReadFileToString(path, &content)) {
PLOG(WARNING) << "cannot read " << path.MaybeAsASCII();
return false;
}
// Remove final newline.
base::TrimWhitespaceASCII(content, base::TRIM_TRAILING, &content);
if (!base::StringToUint64(content, value)) {
LOG(WARNING) << "invalid integer: " << content;
return false;
}
return true;
}
bool MetricsDaemon::ReportZram(const base::FilePath& zram_dir) {
// Data sizes are in bytes. |zero_pages| is in number of pages.
uint64_t compr_data_size, orig_data_size, zero_pages;
const size_t page_size = 4096;
if (!ReadFileToUint64(zram_dir.Append(kComprDataSizeName),
&compr_data_size) ||
!ReadFileToUint64(zram_dir.Append(kOrigDataSizeName), &orig_data_size) ||
!ReadFileToUint64(zram_dir.Append(kZeroPagesName), &zero_pages)) {
return false;
}
// |orig_data_size| does not include zero-filled pages.
orig_data_size += zero_pages * page_size;
const int compr_data_size_mb = compr_data_size >> 20;
const int savings_mb = (orig_data_size - compr_data_size) >> 20;
const int zero_ratio_percent = zero_pages * page_size * 100 / orig_data_size;
// Report compressed size in megabytes. 100 MB or less has little impact.
SendSample("Platform.ZramCompressedSize", compr_data_size_mb, 100, 4000, 50);
SendSample("Platform.ZramSavings", savings_mb, 100, 4000, 50);
// The compression ratio is multiplied by 100 for better resolution. The
// ratios of interest are between 1 and 6 (100% and 600% as reported). We
// don't want samples when very little memory is being compressed.
if (compr_data_size_mb >= 1) {
SendSample("Platform.ZramCompressionRatioPercent",
orig_data_size * 100 / compr_data_size, 100, 600, 50);
}
// The values of interest for zero_pages are between 1MB and 1GB. The units
// are number of pages.
SendSample("Platform.ZramZeroPages", zero_pages, 256, 256 * 1024, 50);
SendSample("Platform.ZramZeroRatioPercent", zero_ratio_percent, 1, 50, 50);
return true;
}
bool MetricsDaemon::ProcessMeminfo(const string& meminfo_raw) {
static const MeminfoRecord fields_array[] = {
{ "MemTotal", "MemTotal" }, // SPECIAL CASE: total system memory
{ "MemFree", "MemFree" },
{ "Buffers", "Buffers" },
{ "Cached", "Cached" },
// { "SwapCached", "SwapCached" },
{ "Active", "Active" },
{ "Inactive", "Inactive" },
{ "ActiveAnon", "Active(anon)" },
{ "InactiveAnon", "Inactive(anon)" },
{ "ActiveFile" , "Active(file)" },
{ "InactiveFile", "Inactive(file)" },
{ "Unevictable", "Unevictable", kMeminfoOp_HistLog },
// { "Mlocked", "Mlocked" },
{ "SwapTotal", "SwapTotal", kMeminfoOp_SwapTotal },
{ "SwapFree", "SwapFree", kMeminfoOp_SwapFree },
// { "Dirty", "Dirty" },
// { "Writeback", "Writeback" },
{ "AnonPages", "AnonPages" },
{ "Mapped", "Mapped" },
{ "Shmem", "Shmem", kMeminfoOp_HistLog },
{ "Slab", "Slab", kMeminfoOp_HistLog },
// { "SReclaimable", "SReclaimable" },
// { "SUnreclaim", "SUnreclaim" },
};
vector<MeminfoRecord> fields(fields_array,
fields_array + arraysize(fields_array));
if (!FillMeminfo(meminfo_raw, &fields)) {
return false;
}
int total_memory = fields[0].value;
if (total_memory == 0) {
// this "cannot happen"
LOG(WARNING) << "borked meminfo parser";
return false;
}
int swap_total = 0;
int swap_free = 0;
// Send all fields retrieved, except total memory.
for (unsigned int i = 1; i < fields.size(); i++) {
string metrics_name = base::StringPrintf("Platform.Meminfo%s",
fields[i].name);
int percent;
switch (fields[i].op) {
case kMeminfoOp_HistPercent:
// report value as percent of total memory
percent = fields[i].value * 100 / total_memory;
SendLinearSample(metrics_name, percent, 100, 101);
break;
case kMeminfoOp_HistLog:
// report value in kbytes, log scale, 4Gb max
SendSample(metrics_name, fields[i].value, 1, 4 * 1000 * 1000, 100);
break;
case kMeminfoOp_SwapTotal:
swap_total = fields[i].value;
case kMeminfoOp_SwapFree:
swap_free = fields[i].value;
break;
}
}
if (swap_total > 0) {
int swap_used = swap_total - swap_free;
int swap_used_percent = swap_used * 100 / swap_total;
SendSample("Platform.MeminfoSwapUsed", swap_used, 1, 8 * 1000 * 1000, 100);
SendLinearSample("Platform.MeminfoSwapUsed.Percent", swap_used_percent,
100, 101);
}
return true;
}
bool MetricsDaemon::FillMeminfo(const string& meminfo_raw,
vector<MeminfoRecord>* fields) {
vector<string> lines;
unsigned int nlines = Tokenize(meminfo_raw, "\n", &lines);
// Scan meminfo output and collect field values. Each field name has to
// match a meminfo entry (case insensitive) after removing non-alpha
// characters from the entry.
unsigned int ifield = 0;
for (unsigned int iline = 0;
iline < nlines && ifield < fields->size();
iline++) {
vector<string> tokens;
Tokenize(lines[iline], ": ", &tokens);
if (strcmp((*fields)[ifield].match, tokens[0].c_str()) == 0) {
// Name matches. Parse value and save.
if (!base::StringToInt(tokens[1], &(*fields)[ifield].value)) {
LOG(WARNING) << "Cound not convert " << tokens[1] << " to int";
return false;
}
ifield++;
}
}
if (ifield < fields->size()) {
// End of input reached while scanning.
LOG(WARNING) << "cannot find field " << (*fields)[ifield].match
<< " and following";
return false;
}
return true;
}
void MetricsDaemon::ScheduleMemuseCallback(double interval) {
if (testing_) {
return;
}
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&MetricsDaemon::MemuseCallback, base::Unretained(this)),
base::TimeDelta::FromSeconds(interval));
}
void MetricsDaemon::MemuseCallback() {
// Since we only care about active time (i.e. uptime minus sleep time) but
// the callbacks are driven by real time (uptime), we check if we should
// reschedule this callback due to intervening sleep periods.
double now = GetActiveTime();
// Avoid intervals of less than one second.
double remaining_time = ceil(memuse_final_time_ - now);
if (remaining_time > 0) {
ScheduleMemuseCallback(remaining_time);
} else {
// Report stats and advance the measurement interval unless there are
// errors or we've completed the last interval.
if (MemuseCallbackWork() &&
memuse_interval_index_ < arraysize(kMemuseIntervals)) {
double interval = kMemuseIntervals[memuse_interval_index_++];
memuse_final_time_ = now + interval;
ScheduleMemuseCallback(interval);
}
}
}
bool MetricsDaemon::MemuseCallbackWork() {
string meminfo_raw;
const FilePath meminfo_path(kMeminfoFileName);
if (!base::ReadFileToString(meminfo_path, &meminfo_raw)) {
LOG(WARNING) << "cannot read " << meminfo_path.value().c_str();
return false;
}
return ProcessMemuse(meminfo_raw);
}
bool MetricsDaemon::ProcessMemuse(const string& meminfo_raw) {
static const MeminfoRecord fields_array[] = {
{ "MemTotal", "MemTotal" }, // SPECIAL CASE: total system memory
{ "ActiveAnon", "Active(anon)" },
{ "InactiveAnon", "Inactive(anon)" },
};
vector<MeminfoRecord> fields(fields_array,
fields_array + arraysize(fields_array));
if (!FillMeminfo(meminfo_raw, &fields)) {
return false;
}
int total = fields[0].value;
int active_anon = fields[1].value;
int inactive_anon = fields[2].value;
if (total == 0) {
// this "cannot happen"
LOG(WARNING) << "borked meminfo parser";
return false;
}
string metrics_name = base::StringPrintf("Platform.MemuseAnon%d",
memuse_interval_index_);
SendLinearSample(metrics_name, (active_anon + inactive_anon) * 100 / total,
100, 101);
return true;
}
void MetricsDaemon::SendSample(const string& name, int sample,
int min, int max, int nbuckets) {
metrics_lib_->SendToUMA(name, sample, min, max, nbuckets);
}
void MetricsDaemon::SendKernelCrashesCumulativeCountStats() {
// Report the number of crashes for this OS version, but don't clear the
// counter. It is cleared elsewhere on version change.
int64_t crashes_count = kernel_crashes_version_count_->Get();
SendSample(kernel_crashes_version_count_->Name(),
crashes_count,
1, // value of first bucket
500, // value of last bucket
100); // number of buckets
int64_t cpu_use_ms = version_cumulative_cpu_use_->Get();
SendSample(version_cumulative_cpu_use_->Name(),
cpu_use_ms / 1000, // stat is in seconds
1, // device may be used very little...
8 * 1000 * 1000, // ... or a lot (a little over 90 days)
100);
// On the first run after an autoupdate, cpu_use_ms and active_use_seconds
// can be zero. Avoid division by zero.
if (cpu_use_ms > 0) {
// Send the crash frequency since update in number of crashes per CPU year.
SendSample("Logging.KernelCrashesPerCpuYear",
crashes_count * kSecondsPerDay * 365 * 1000 / cpu_use_ms,
1,
1000 * 1000, // about one crash every 30s of CPU time
100);
}
int64_t active_use_seconds = version_cumulative_active_use_->Get();
if (active_use_seconds > 0) {
SendSample(version_cumulative_active_use_->Name(),
active_use_seconds,
1, // device may be used very little...
8 * 1000 * 1000, // ... or a lot (about 90 days)
100);
// Same as above, but per year of active time.
SendSample("Logging.KernelCrashesPerActiveYear",
crashes_count * kSecondsPerDay * 365 / active_use_seconds,
1,
1000 * 1000, // about one crash every 30s of active time
100);
}
}
void MetricsDaemon::SendAndResetDailyUseSample(
const scoped_ptr<PersistentInteger>& use) {
SendSample(use->Name(),
use->GetAndClear(),
1, // value of first bucket
kSecondsPerDay, // value of last bucket
50); // number of buckets
}
void MetricsDaemon::SendAndResetCrashIntervalSample(
const scoped_ptr<PersistentInteger>& interval) {
SendSample(interval->Name(),
interval->GetAndClear(),
1, // value of first bucket
4 * kSecondsPerWeek, // value of last bucket
50); // number of buckets
}
void MetricsDaemon::SendAndResetCrashFrequencySample(
const scoped_ptr<PersistentInteger>& frequency) {
SendSample(frequency->Name(),
frequency->GetAndClear(),
1, // value of first bucket
100, // value of last bucket
50); // number of buckets
}
void MetricsDaemon::SendLinearSample(const string& name, int sample,
int max, int nbuckets) {
// TODO(semenzato): add a proper linear histogram to the Chrome external
// metrics API.
LOG_IF(FATAL, nbuckets != max + 1) << "unsupported histogram scale";
metrics_lib_->SendEnumToUMA(name, sample, max);
}
void MetricsDaemon::UpdateStats(TimeTicks now_ticks,
Time now_wall_time) {
const int elapsed_seconds = (now_ticks - last_update_stats_time_).InSeconds();
daily_active_use_->Add(elapsed_seconds);
version_cumulative_active_use_->Add(elapsed_seconds);
user_crash_interval_->Add(elapsed_seconds);
kernel_crash_interval_->Add(elapsed_seconds);
version_cumulative_cpu_use_->Add(GetIncrementalCpuUse().InMilliseconds());
last_update_stats_time_ = now_ticks;
const TimeDelta since_epoch = now_wall_time - Time::UnixEpoch();
const int day = since_epoch.InDays();
const int week = day / 7;
if (daily_cycle_->Get() != day) {
daily_cycle_->Set(day);
SendAndResetDailyUseSample(daily_active_use_);
SendAndResetCrashFrequencySample(any_crashes_daily_count_);
SendAndResetCrashFrequencySample(user_crashes_daily_count_);
SendAndResetCrashFrequencySample(kernel_crashes_daily_count_);
SendAndResetCrashFrequencySample(unclean_shutdowns_daily_count_);
SendKernelCrashesCumulativeCountStats();
}
if (weekly_cycle_->Get() != week) {
weekly_cycle_->Set(week);
SendAndResetCrashFrequencySample(any_crashes_weekly_count_);
SendAndResetCrashFrequencySample(user_crashes_weekly_count_);
SendAndResetCrashFrequencySample(kernel_crashes_weekly_count_);
SendAndResetCrashFrequencySample(unclean_shutdowns_weekly_count_);
}
}
void MetricsDaemon::HandleUpdateStatsTimeout() {
UpdateStats(TimeTicks::Now(), Time::Now());
base::MessageLoop::current()->PostDelayedTask(FROM_HERE,
base::Bind(&MetricsDaemon::HandleUpdateStatsTimeout,
base::Unretained(this)),
base::TimeDelta::FromMilliseconds(kUpdateStatsIntervalMs));
}
|