diff options
Diffstat (limited to 'libpixelflinger/trap.cpp')
-rw-r--r-- | libpixelflinger/trap.cpp | 1173 |
1 files changed, 1173 insertions, 0 deletions
diff --git a/libpixelflinger/trap.cpp b/libpixelflinger/trap.cpp new file mode 100644 index 000000000..30b633f1b --- /dev/null +++ b/libpixelflinger/trap.cpp @@ -0,0 +1,1173 @@ +/* libs/pixelflinger/trap.cpp +** +** Copyright 2006, The Android Open Source Project +** +** Licensed under the Apache License, Version 2.0 (the "License"); +** you may not use this file except in compliance with the License. +** You may obtain a copy of the License at +** +** http://www.apache.org/licenses/LICENSE-2.0 +** +** Unless required by applicable law or agreed to in writing, software +** distributed under the License is distributed on an "AS IS" BASIS, +** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +** See the License for the specific language governing permissions and +** limitations under the License. +*/ + +#include <assert.h> +#include <stdio.h> +#include <stdlib.h> + +#include "trap.h" +#include "picker.h" + +#include <cutils/log.h> +#include <cutils/memory.h> + +namespace android { + +// ---------------------------------------------------------------------------- + +// enable to see triangles edges +#define DEBUG_TRANGLES 0 + +// ---------------------------------------------------------------------------- + +static void pointx_validate(void *con, const GGLcoord* c, GGLcoord r); +static void pointx(void *con, const GGLcoord* c, GGLcoord r); +static void aa_pointx(void *con, const GGLcoord* c, GGLcoord r); +static void aa_nice_pointx(void *con, const GGLcoord* c, GGLcoord r); + +static void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); +static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); +static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); + +static void recti_validate(void* c, GGLint l, GGLint t, GGLint r, GGLint b); +static void recti(void* c, GGLint l, GGLint t, GGLint r, GGLint b); + +static void trianglex_validate(void*, + const GGLcoord*, const GGLcoord*, const GGLcoord*); +static void trianglex_small(void*, + const GGLcoord*, const GGLcoord*, const GGLcoord*); +static void trianglex_big(void*, + const GGLcoord*, const GGLcoord*, const GGLcoord*); +static void aa_trianglex(void*, + const GGLcoord*, const GGLcoord*, const GGLcoord*); +static void trianglex_debug(void* con, + const GGLcoord*, const GGLcoord*, const GGLcoord*); + +static void aapolyx(void* con, + const GGLcoord* pts, int count); + +static inline int min(int a, int b) CONST; +static inline int max(int a, int b) CONST; +static inline int min(int a, int b, int c) CONST; +static inline int max(int a, int b, int c) CONST; + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#pragma mark Tools +#endif + +inline int min(int a, int b) { + return a<b ? a : b; +} +inline int max(int a, int b) { + return a<b ? b : a; +} +inline int min(int a, int b, int c) { + return min(a,min(b,c)); +} +inline int max(int a, int b, int c) { + return max(a,max(b,c)); +} + +template <typename T> +static inline void swap(T& a, T& b) { + T t(a); + a = b; + b = t; +} + +static void +triangle_dump_points( const GGLcoord* v0, + const GGLcoord* v1, + const GGLcoord* v2 ) +{ + float tri = 1.0f / TRI_ONE; + LOGD( " P0=(%.3f, %.3f) [%08x, %08x]\n" + " P1=(%.3f, %.3f) [%08x, %08x]\n" + " P2=(%.3f, %.3f) [%08x, %08x]\n", + v0[0]*tri, v0[1]*tri, v0[0], v0[1], + v1[0]*tri, v1[1]*tri, v1[0], v1[1], + v2[0]*tri, v2[1]*tri, v2[0], v2[1] ); +} + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#pragma mark Misc +#endif + +void ggl_init_trap(context_t* c) +{ + ggl_state_changed(c, GGL_PIXEL_PIPELINE_STATE|GGL_TMU_STATE|GGL_CB_STATE); +} + +void ggl_state_changed(context_t* c, int flags) +{ + if (ggl_likely(!c->dirty)) { + c->procs.pointx = pointx_validate; + c->procs.linex = linex_validate; + c->procs.recti = recti_validate; + c->procs.trianglex = trianglex_validate; + } + c->dirty |= uint32_t(flags); +} + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#pragma mark Point +#endif + +void pointx_validate(void *con, const GGLcoord* v, GGLcoord rad) +{ + GGL_CONTEXT(c, con); + ggl_pick(c); + if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { + if (c->state.enables & GGL_ENABLE_POINT_AA_NICE) { + c->procs.pointx = aa_nice_pointx; + } else { + c->procs.pointx = aa_pointx; + } + } else { + c->procs.pointx = pointx; + } + c->procs.pointx(con, v, rad); +} + +void pointx(void *con, const GGLcoord* v, GGLcoord rad) +{ + GGL_CONTEXT(c, con); + GGLcoord halfSize = TRI_ROUND(rad) >> 1; + if (halfSize == 0) + halfSize = TRI_HALF; + GGLcoord xc = v[0]; + GGLcoord yc = v[1]; + if (halfSize & TRI_HALF) { // size odd + xc = TRI_FLOOR(xc) + TRI_HALF; + yc = TRI_FLOOR(yc) + TRI_HALF; + } else { // size even + xc = TRI_ROUND(xc); + yc = TRI_ROUND(yc); + } + GGLint l = (xc - halfSize) >> TRI_FRACTION_BITS; + GGLint t = (yc - halfSize) >> TRI_FRACTION_BITS; + GGLint r = (xc + halfSize) >> TRI_FRACTION_BITS; + GGLint b = (yc + halfSize) >> TRI_FRACTION_BITS; + recti(c, l, t, r, b); +} + +// This way of computing the coverage factor, is more accurate and gives +// better results for small circles, but it is also a lot slower. +// Here we use super-sampling. +static int32_t coverageNice(GGLcoord x, GGLcoord y, + GGLcoord rmin, GGLcoord rmax, GGLcoord rr) +{ + const GGLcoord d2 = x*x + y*y; + if (d2 >= rmax) return 0; + if (d2 < rmin) return 0x7FFF; + + const int kSamples = 4; + const int kInc = 4; // 1/4 = 0.25 + const int kCoverageUnit = 1; // 1/(4^2) = 0.0625 + const GGLcoord kCoordOffset = -6; // -0.375 + + int hits = 0; + int x_sample = x + kCoordOffset; + for (int i=0 ; i<kSamples ; i++, x_sample += kInc) { + const int xval = rr - (x_sample * x_sample); + int y_sample = y + kCoordOffset; + for (int j=0 ; j<kSamples ; j++, y_sample += kInc) { + if (xval - (y_sample * y_sample) > 0) + hits += kCoverageUnit; + } + } + return min(0x7FFF, hits << (15 - kSamples)); +} + + +void aa_nice_pointx(void *con, const GGLcoord* v, GGLcoord size) +{ + GGL_CONTEXT(c, con); + + GGLcoord rad = ((size + 1)>>1); + GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; + GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; + GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; + GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; + GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF; + GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF; + + // scissor... + if (l < GGLint(c->state.scissor.left)) { + xstart += TRI_FROM_INT(c->state.scissor.left-l); + l = GGLint(c->state.scissor.left); + } + if (t < GGLint(c->state.scissor.top)) { + ystart += TRI_FROM_INT(c->state.scissor.top-t); + t = GGLint(c->state.scissor.top); + } + if (r > GGLint(c->state.scissor.right)) { + r = GGLint(c->state.scissor.right); + } + if (b > GGLint(c->state.scissor.bottom)) { + b = GGLint(c->state.scissor.bottom); + } + + int xc = r - l; + int yc = b - t; + if (xc>0 && yc>0) { + int16_t* covPtr = c->state.buffers.coverage; + const int32_t sqr2Over2 = 0xC; // rounded up + GGLcoord rr = rad*rad; + GGLcoord rmin = (rad - sqr2Over2)*(rad - sqr2Over2); + GGLcoord rmax = (rad + sqr2Over2)*(rad + sqr2Over2); + GGLcoord y = ystart; + c->iterators.xl = l; + c->iterators.xr = r; + c->init_y(c, t); + do { + // compute coverage factors for each pixel + GGLcoord x = xstart; + for (int i=l ; i<r ; i++) { + covPtr[i] = coverageNice(x, y, rmin, rmax, rr); + x += TRI_ONE; + } + y += TRI_ONE; + c->scanline(c); + c->step_y(c); + } while (--yc); + } +} + +// This is a cheap way of computing the coverage factor for a circle. +// We just lerp between the circles of radii r-sqrt(2)/2 and r+sqrt(2)/2 +static inline int32_t coverageFast(GGLcoord x, GGLcoord y, + GGLcoord rmin, GGLcoord rmax, GGLcoord scale) +{ + const GGLcoord d2 = x*x + y*y; + if (d2 >= rmax) return 0; + if (d2 < rmin) return 0x7FFF; + return 0x7FFF - (d2-rmin)*scale; +} + +void aa_pointx(void *con, const GGLcoord* v, GGLcoord size) +{ + GGL_CONTEXT(c, con); + + GGLcoord rad = ((size + 1)>>1); + GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; + GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; + GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; + GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; + GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF; + GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF; + + // scissor... + if (l < GGLint(c->state.scissor.left)) { + xstart += TRI_FROM_INT(c->state.scissor.left-l); + l = GGLint(c->state.scissor.left); + } + if (t < GGLint(c->state.scissor.top)) { + ystart += TRI_FROM_INT(c->state.scissor.top-t); + t = GGLint(c->state.scissor.top); + } + if (r > GGLint(c->state.scissor.right)) { + r = GGLint(c->state.scissor.right); + } + if (b > GGLint(c->state.scissor.bottom)) { + b = GGLint(c->state.scissor.bottom); + } + + int xc = r - l; + int yc = b - t; + if (xc>0 && yc>0) { + int16_t* covPtr = c->state.buffers.coverage; + rad <<= 4; + const int32_t sqr2Over2 = 0xB5; // fixed-point 24.8 + GGLcoord rmin = rad - sqr2Over2; + GGLcoord rmax = rad + sqr2Over2; + GGLcoord scale; + rmin *= rmin; + rmax *= rmax; + scale = 0x800000 / (rmax - rmin); + rmin >>= 8; + rmax >>= 8; + + GGLcoord y = ystart; + c->iterators.xl = l; + c->iterators.xr = r; + c->init_y(c, t); + + do { + // compute coverage factors for each pixel + GGLcoord x = xstart; + for (int i=l ; i<r ; i++) { + covPtr[i] = coverageFast(x, y, rmin, rmax, scale); + x += TRI_ONE; + } + y += TRI_ONE; + c->scanline(c); + c->step_y(c); + } while (--yc); + } +} + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#pragma mark Line +#endif + +void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w) +{ + GGL_CONTEXT(c, con); + ggl_pick(c); + if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { + c->procs.linex = aa_linex; + } else { + c->procs.linex = linex; + } + c->procs.linex(con, v0, v1, w); +} + +static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) +{ + GGL_CONTEXT(c, con); + GGLcoord v[4][2]; + v[0][0] = v0[0]; v[0][1] = v0[1]; + v[1][0] = v1[0]; v[1][1] = v1[1]; + v0 = v[0]; + v1 = v[1]; + const GGLcoord dx = abs(v0[0] - v1[0]); + const GGLcoord dy = abs(v0[1] - v1[1]); + GGLcoord nx, ny; + nx = ny = 0; + + GGLcoord halfWidth = TRI_ROUND(width) >> 1; + if (halfWidth == 0) + halfWidth = TRI_HALF; + + ((dx > dy) ? ny : nx) = halfWidth; + v[2][0] = v1[0]; v[2][1] = v1[1]; + v[3][0] = v0[0]; v[3][1] = v0[1]; + v[0][0] += nx; v[0][1] += ny; + v[1][0] += nx; v[1][1] += ny; + v[2][0] -= nx; v[2][1] -= ny; + v[3][0] -= nx; v[3][1] -= ny; + trianglex_big(con, v[0], v[1], v[2]); + trianglex_big(con, v[0], v[2], v[3]); +} + +static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) +{ + GGL_CONTEXT(c, con); + GGLcoord v[4][2]; + v[0][0] = v0[0]; v[0][1] = v0[1]; + v[1][0] = v1[0]; v[1][1] = v1[1]; + v0 = v[0]; + v1 = v[1]; + + const GGLcoord dx = v0[0] - v1[0]; + const GGLcoord dy = v0[1] - v1[1]; + GGLcoord nx = -dy; + GGLcoord ny = dx; + + // generally, this will be well below 1.0 + const GGLfixed norm = gglMulx(width, gglSqrtRecipx(nx*nx+ny*ny), 4); + nx = gglMulx(nx, norm, 21); + ny = gglMulx(ny, norm, 21); + + v[2][0] = v1[0]; v[2][1] = v1[1]; + v[3][0] = v0[0]; v[3][1] = v0[1]; + v[0][0] += nx; v[0][1] += ny; + v[1][0] += nx; v[1][1] += ny; + v[2][0] -= nx; v[2][1] -= ny; + v[3][0] -= nx; v[3][1] -= ny; + aapolyx(con, v[0], 4); +} + + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#pragma mark Rect +#endif + +void recti_validate(void *con, GGLint l, GGLint t, GGLint r, GGLint b) +{ + GGL_CONTEXT(c, con); + ggl_pick(c); + c->procs.recti = recti; + c->procs.recti(con, l, t, r, b); +} + +void recti(void* con, GGLint l, GGLint t, GGLint r, GGLint b) +{ + GGL_CONTEXT(c, con); + + // scissor... + if (l < GGLint(c->state.scissor.left)) + l = GGLint(c->state.scissor.left); + if (t < GGLint(c->state.scissor.top)) + t = GGLint(c->state.scissor.top); + if (r > GGLint(c->state.scissor.right)) + r = GGLint(c->state.scissor.right); + if (b > GGLint(c->state.scissor.bottom)) + b = GGLint(c->state.scissor.bottom); + + int xc = r - l; + int yc = b - t; + if (xc>0 && yc>0) { + c->iterators.xl = l; + c->iterators.xr = r; + c->init_y(c, t); + c->rect(c, yc); + } +} + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#pragma mark Triangle / Debugging +#endif + +static void scanline_set(context_t* c) +{ + int32_t x = c->iterators.xl; + size_t ct = c->iterators.xr - x; + int32_t y = c->iterators.y; + surface_t* cb = &(c->state.buffers.color); + const GGLFormat* fp = &(c->formats[cb->format]); + uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + + (x + (cb->stride * y)) * fp->size; + const size_t size = ct * fp->size; + memset(dst, 0xFF, size); +} + +static void trianglex_debug(void* con, + const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) +{ + GGL_CONTEXT(c, con); + if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { + aa_trianglex(con,v0,v1,v2); + } else { + trianglex_big(con,v0,v1,v2); + } + void (*save_scanline)(context_t*) = c->scanline; + c->scanline = scanline_set; + linex(con, v0, v1, TRI_ONE); + linex(con, v1, v2, TRI_ONE); + linex(con, v2, v0, TRI_ONE); + c->scanline = save_scanline; +} + +static void trianglex_xor(void* con, + const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) +{ + trianglex_big(con,v0,v1,v2); + trianglex_small(con,v0,v1,v2); +} + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#pragma mark Triangle +#endif + +void trianglex_validate(void *con, + const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) +{ + GGL_CONTEXT(c, con); + ggl_pick(c); + if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { + c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : aa_trianglex; + } else { + c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : trianglex_big; + } + c->procs.trianglex(con, v0, v1, v2); +} + +// ---------------------------------------------------------------------------- + +void trianglex_small(void* con, + const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) +{ + GGL_CONTEXT(c, con); + + // vertices are in 28.4 fixed point, which allows + // us to use 32 bits multiplies below. + int32_t x0 = v0[0]; + int32_t y0 = v0[1]; + int32_t x1 = v1[0]; + int32_t y1 = v1[1]; + int32_t x2 = v2[0]; + int32_t y2 = v2[1]; + + int32_t dx01 = x0 - x1; + int32_t dy20 = y2 - y0; + int32_t dy01 = y0 - y1; + int32_t dx20 = x2 - x0; + + // The code below works only with CCW triangles + // so if we get a CW triangle, we need to swap two of its vertices + if (dx01*dy20 < dy01*dx20) { + swap(x0, x1); + swap(y0, y1); + dx01 = x0 - x1; + dy01 = y0 - y1; + dx20 = x2 - x0; + dy20 = y2 - y0; + } + int32_t dx12 = x1 - x2; + int32_t dy12 = y1 - y2; + + // bounding box & scissor + const int32_t bminx = TRI_FLOOR(min(x0, x1, x2)) >> TRI_FRACTION_BITS; + const int32_t bminy = TRI_FLOOR(min(y0, y1, y2)) >> TRI_FRACTION_BITS; + const int32_t bmaxx = TRI_CEIL( max(x0, x1, x2)) >> TRI_FRACTION_BITS; + const int32_t bmaxy = TRI_CEIL( max(y0, y1, y2)) >> TRI_FRACTION_BITS; + const int32_t minx = max(bminx, c->state.scissor.left); + const int32_t miny = max(bminy, c->state.scissor.top); + const int32_t maxx = min(bmaxx, c->state.scissor.right); + const int32_t maxy = min(bmaxy, c->state.scissor.bottom); + if ((minx >= maxx) || (miny >= maxy)) + return; // too small or clipped out... + + // step equations to the bounding box and snap to pixel center + const int32_t my = (miny << TRI_FRACTION_BITS) + TRI_HALF; + const int32_t mx = (minx << TRI_FRACTION_BITS) + TRI_HALF; + int32_t ey0 = dy01 * (x0 - mx) - dx01 * (y0 - my); + int32_t ey1 = dy12 * (x1 - mx) - dx12 * (y1 - my); + int32_t ey2 = dy20 * (x2 - mx) - dx20 * (y2 - my); + + // right-exclusive fill rule, to avoid rare cases + // of over drawing + if (dy01<0 || (dy01 == 0 && dx01>0)) ey0++; + if (dy12<0 || (dy12 == 0 && dx12>0)) ey1++; + if (dy20<0 || (dy20 == 0 && dx20>0)) ey2++; + + c->init_y(c, miny); + for (int32_t y = miny; y < maxy; y++) { + register int32_t ex0 = ey0; + register int32_t ex1 = ey1; + register int32_t ex2 = ey2; + register int32_t xl, xr; + for (xl=minx ; xl<maxx ; xl++) { + if (ex0>0 && ex1>0 && ex2>0) + break; // all strictly positive + ex0 -= dy01 << TRI_FRACTION_BITS; + ex1 -= dy12 << TRI_FRACTION_BITS; + ex2 -= dy20 << TRI_FRACTION_BITS; + } + xr = xl; + for ( ; xr<maxx ; xr++) { + if (!(ex0>0 && ex1>0 && ex2>0)) + break; // not all strictly positive + ex0 -= dy01 << TRI_FRACTION_BITS; + ex1 -= dy12 << TRI_FRACTION_BITS; + ex2 -= dy20 << TRI_FRACTION_BITS; + } + + if (xl < xr) { + c->iterators.xl = xl; + c->iterators.xr = xr; + c->scanline(c); + } + c->step_y(c); + + ey0 += dx01 << TRI_FRACTION_BITS; + ey1 += dx12 << TRI_FRACTION_BITS; + ey2 += dx20 << TRI_FRACTION_BITS; + } +} + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#endif + +// the following routine fills a triangle via edge stepping, which +// unfortunately requires divisions in the setup phase to get right, +// it should probably only be used for relatively large trianges + + +// x = y*DX/DY (ou DX and DY are constants, DY > 0, et y >= 0) +// +// for an equation of the type: +// x' = y*K/2^p (with K and p constants "carefully chosen") +// +// We can now do a DDA without precision loss. We define 'e' by: +// x' - x = y*(DX/DY - K/2^p) = y*e +// +// If we choose K = round(DX*2^p/DY) then, +// abs(e) <= 1/2^(p+1) by construction +// +// therefore abs(x'-x) = y*abs(e) <= y/2^(p+1) <= DY/2^(p+1) <= DMAX/2^(p+1) +// +// which means that if DMAX <= 2^p, therefore abs(x-x') <= 1/2, including +// at the last line. In fact, it's even a strict inequality except in one +// extrem case (DY == DMAX et e = +/- 1/2) +// +// Applying that to our coordinates, we need 2^p >= 4096*16 = 65536 +// so p = 16 is enough, we're so lucky! + +const int TRI_ITERATORS_BITS = 16; + +struct Edge +{ + int32_t x; // edge position in 16.16 coordinates + int32_t x_incr; // on each step, increment x by that amount + int32_t y_top; // starting scanline, 16.4 format + int32_t y_bot; +}; + +static void +edge_dump( Edge* edge ) +{ + LOGI( " top=%d (%.3f) bot=%d (%.3f) x=%d (%.3f) ix=%d (%.3f)", + edge->y_top, edge->y_top/float(TRI_ONE), + edge->y_bot, edge->y_bot/float(TRI_ONE), + edge->x, edge->x/float(FIXED_ONE), + edge->x_incr, edge->x_incr/float(FIXED_ONE) ); +} + +static void +triangle_dump_edges( Edge* edges, + int count ) +{ + LOGI( "%d edge%s:\n", count, count == 1 ? "" : "s" ); + for ( ; count > 0; count--, edges++ ) + edge_dump( edges ); +} + +// the following function sets up an edge, it assumes +// that ymin and ymax are in already in the 'reduced' +// format +static __attribute__((noinline)) +void edge_setup( + Edge* edges, + int* pcount, + const GGLcoord* p1, + const GGLcoord* p2, + int32_t ymin, + int32_t ymax ) +{ + const GGLfixed* top = p1; + const GGLfixed* bot = p2; + Edge* edge = edges + *pcount; + + if (top[1] > bot[1]) { + swap(top, bot); + } + + int y1 = top[1] | 1; + int y2 = bot[1] | 1; + int dy = y2 - y1; + + if ( dy == 0 || y1 > ymax || y2 < ymin ) + return; + + if ( y1 > ymin ) + ymin = TRI_SNAP_NEXT_HALF(y1); + + if ( y2 < ymax ) + ymax = TRI_SNAP_PREV_HALF(y2); + + if ( ymin > ymax ) // when the edge doesn't cross any scanline + return; + + const int x1 = top[0]; + const int dx = bot[0] - x1; + const int shift = TRI_ITERATORS_BITS - TRI_FRACTION_BITS; + + // setup edge fields + // We add 0.5 to edge->x here because it simplifies the rounding + // in triangle_sweep_edges() -- this doesn't change the ordering of 'x' + edge->x = (x1 << shift) + (1LU << (TRI_ITERATORS_BITS-1)); + edge->x_incr = 0; + edge->y_top = ymin; + edge->y_bot = ymax; + + if (ggl_likely(ymin <= ymax && dx)) { + edge->x_incr = gglDivQ16(dx, dy); + } + if (ggl_likely(y1 < ymin)) { + int32_t xadjust = (edge->x_incr * (ymin-y1)) >> TRI_FRACTION_BITS; + edge->x += xadjust; + } + + ++*pcount; +} + + +static void +triangle_sweep_edges( Edge* left, + Edge* right, + int ytop, + int ybot, + context_t* c ) +{ + int count = ((ybot - ytop)>>TRI_FRACTION_BITS) + 1; + if (count<=0) return; + + // sort the edges horizontally + if ((left->x > right->x) || + ((left->x == right->x) && (left->x_incr > right->x_incr))) { + swap(left, right); + } + + int left_x = left->x; + int right_x = right->x; + const int left_xi = left->x_incr; + const int right_xi = right->x_incr; + left->x += left_xi * count; + right->x += right_xi * count; + + const int xmin = c->state.scissor.left; + const int xmax = c->state.scissor.right; + do { + // horizontal scissoring + const int32_t xl = max(left_x >> TRI_ITERATORS_BITS, xmin); + const int32_t xr = min(right_x >> TRI_ITERATORS_BITS, xmax); + left_x += left_xi; + right_x += right_xi; + // invoke the scanline rasterizer + if (ggl_likely(xl < xr)) { + c->iterators.xl = xl; + c->iterators.xr = xr; + c->scanline(c); + } + c->step_y(c); + } while (--count); +} + + +void trianglex_big(void* con, + const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) +{ + GGL_CONTEXT(c, con); + + Edge edges[3]; + int num_edges = 0; + int32_t ymin = TRI_FROM_INT(c->state.scissor.top) + TRI_HALF; + int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom) - TRI_HALF; + + edge_setup( edges, &num_edges, v0, v1, ymin, ymax ); + edge_setup( edges, &num_edges, v0, v2, ymin, ymax ); + edge_setup( edges, &num_edges, v1, v2, ymin, ymax ); + + if (ggl_unlikely(num_edges<2)) // for really tiny triangles that don't + return; // cross any scanline centers + + Edge* left = &edges[0]; + Edge* right = &edges[1]; + Edge* other = &edges[2]; + int32_t y_top = min(left->y_top, right->y_top); + int32_t y_bot = max(left->y_bot, right->y_bot); + + if (ggl_likely(num_edges==3)) { + y_top = min(y_top, edges[2].y_top); + y_bot = max(y_bot, edges[2].y_bot); + if (edges[0].y_top > y_top) { + other = &edges[0]; + left = &edges[2]; + } else if (edges[1].y_top > y_top) { + other = &edges[1]; + right = &edges[2]; + } + } + + c->init_y(c, y_top >> TRI_FRACTION_BITS); + + int32_t y_mid = min(left->y_bot, right->y_bot); + triangle_sweep_edges( left, right, y_top, y_mid, c ); + + // second scanline sweep loop, if necessary + y_mid += TRI_ONE; + if (y_mid <= y_bot) { + ((left->y_bot == y_bot) ? right : left) = other; + if (other->y_top < y_mid) { + other->x += other->x_incr; + } + triangle_sweep_edges( left, right, y_mid, y_bot, c ); + } +} + +void aa_trianglex(void* con, + const GGLcoord* a, const GGLcoord* b, const GGLcoord* c) +{ + GGLcoord pts[6] = { a[0], a[1], b[0], b[1], c[0], c[1] }; + aapolyx(con, pts, 3); +} + +// ---------------------------------------------------------------------------- +#if 0 +#pragma mark - +#endif + +struct AAEdge +{ + GGLfixed x; // edge position in 12.16 coordinates + GGLfixed x_incr; // on each y step, increment x by that amount + GGLfixed y_incr; // on each x step, increment y by that amount + int16_t y_top; // starting scanline, 12.4 format + int16_t y_bot; // starting scanline, 12.4 format + void dump(); +}; + +void AAEdge::dump() +{ + float tri = 1.0f / TRI_ONE; + float iter = 1.0f / (1<<TRI_ITERATORS_BITS); + float fix = 1.0f / FIXED_ONE; + LOGD( "x=%08x (%.3f), " + "x_incr=%08x (%.3f), y_incr=%08x (%.3f), " + "y_top=%08x (%.3f), y_bot=%08x (%.3f) ", + x, x*fix, + x_incr, x_incr*iter, + y_incr, y_incr*iter, + y_top, y_top*tri, + y_bot, y_bot*tri ); +} + +// the following function sets up an edge, it assumes +// that ymin and ymax are in already in the 'reduced' +// format +static __attribute__((noinline)) +void aa_edge_setup( + AAEdge* edges, + int* pcount, + const GGLcoord* p1, + const GGLcoord* p2, + int32_t ymin, + int32_t ymax ) +{ + const GGLfixed* top = p1; + const GGLfixed* bot = p2; + AAEdge* edge = edges + *pcount; + + if (top[1] > bot[1]) + swap(top, bot); + + int y1 = top[1]; + int y2 = bot[1]; + int dy = y2 - y1; + + if (dy==0 || y1>ymax || y2<ymin) + return; + + if (y1 > ymin) + ymin = y1; + + if (y2 < ymax) + ymax = y2; + + const int x1 = top[0]; + const int dx = bot[0] - x1; + const int shift = FIXED_BITS - TRI_FRACTION_BITS; + + // setup edge fields + edge->x = x1 << shift; + edge->x_incr = 0; + edge->y_top = ymin; + edge->y_bot = ymax; + edge->y_incr = 0x7FFFFFFF; + + if (ggl_likely(ymin <= ymax && dx)) { + edge->x_incr = gglDivQ16(dx, dy); + if (dx != 0) { + edge->y_incr = abs(gglDivQ16(dy, dx)); + } + } + if (ggl_likely(y1 < ymin)) { + int32_t xadjust = (edge->x_incr * (ymin-y1)) + >> (TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS); + edge->x += xadjust; + } + + ++*pcount; +} + + +typedef int (*compar_t)(const void*, const void*); +static int compare_edges(const AAEdge *e0, const AAEdge *e1) { + if (e0->y_top > e1->y_top) return 1; + if (e0->y_top < e1->y_top) return -1; + if (e0->x > e1->x) return 1; + if (e0->x < e1->x) return -1; + if (e0->x_incr > e1->x_incr) return 1; + if (e0->x_incr < e1->x_incr) return -1; + return 0; // same edges, should never happen +} + +static inline +void SET_COVERAGE(int16_t*& p, int32_t value, ssize_t n) +{ + android_memset16((uint16_t*)p, value, n*2); + p += n; +} + +static inline +void ADD_COVERAGE(int16_t*& p, int32_t value) +{ + value = *p + value; + if (value >= 0x8000) + value = 0x7FFF; + *p++ = value; +} + +static inline +void SUB_COVERAGE(int16_t*& p, int32_t value) +{ + value = *p - value; + value &= ~(value>>31); + *p++ = value; +} + +void aapolyx(void* con, + const GGLcoord* pts, int count) +{ + /* + * NOTE: This routine assumes that the polygon has been clipped to the + * viewport already, that is, no vertex lies outside of the framebuffer. + * If this happens, the code below won't corrupt memory but the + * coverage values may not be correct. + */ + + GGL_CONTEXT(c, con); + + // we do only quads for now (it's used for thick lines) + if ((count>4) || (count<2)) return; + + // take scissor into account + const int xmin = c->state.scissor.left; + const int xmax = c->state.scissor.right; + if (xmin >= xmax) return; + + // generate edges from the vertices + int32_t ymin = TRI_FROM_INT(c->state.scissor.top); + int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom); + if (ymin >= ymax) return; + + AAEdge edges[4]; + int num_edges = 0; + GGLcoord const * p = pts; + for (int i=0 ; i<count-1 ; i++, p+=2) { + aa_edge_setup(edges, &num_edges, p, p+2, ymin, ymax); + } + aa_edge_setup(edges, &num_edges, p, pts, ymin, ymax ); + if (ggl_unlikely(num_edges<2)) + return; + + // sort the edge list top to bottom, left to right. + qsort(edges, num_edges, sizeof(AAEdge), (compar_t)compare_edges); + + int16_t* const covPtr = c->state.buffers.coverage; + memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); + + // now, sweep all edges in order + // start with the 2 first edges. We know that they share their top + // vertex, by construction. + int i = 2; + AAEdge* left = &edges[0]; + AAEdge* right = &edges[1]; + int32_t yt = left->y_top; + GGLfixed l = left->x; + GGLfixed r = right->x; + int retire = 0; + int16_t* coverage; + + // at this point we can initialize the rasterizer + c->init_y(c, yt>>TRI_FRACTION_BITS); + c->iterators.xl = xmax; + c->iterators.xr = xmin; + + do { + int32_t y = min(min(left->y_bot, right->y_bot), TRI_FLOOR(yt + TRI_ONE)); + const int32_t shift = TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS; + const int cf_shift = (1 + TRI_FRACTION_BITS*2 + TRI_ITERATORS_BITS - 15); + + // compute xmin and xmax for the left edge + GGLfixed l_min = gglMulAddx(left->x_incr, y - left->y_top, left->x, shift); + GGLfixed l_max = l; + l = l_min; + if (l_min > l_max) + swap(l_min, l_max); + + // compute xmin and xmax for the right edge + GGLfixed r_min = gglMulAddx(right->x_incr, y - right->y_top, right->x, shift); + GGLfixed r_max = r; + r = r_min; + if (r_min > r_max) + swap(r_min, r_max); + + // make sure we're not touching coverage values outside of the + // framebuffer + l_min &= ~(l_min>>31); + r_min &= ~(r_min>>31); + l_max &= ~(l_max>>31); + r_max &= ~(r_max>>31); + if (gglFixedToIntFloor(l_min) >= xmax) l_min = gglIntToFixed(xmax)-1; + if (gglFixedToIntFloor(r_min) >= xmax) r_min = gglIntToFixed(xmax)-1; + if (gglFixedToIntCeil(l_max) >= xmax) l_max = gglIntToFixed(xmax)-1; + if (gglFixedToIntCeil(r_max) >= xmax) r_max = gglIntToFixed(xmax)-1; + + // compute the integer versions of the above + const GGLfixed l_min_i = gglFloorx(l_min); + const GGLfixed l_max_i = gglCeilx (l_max); + const GGLfixed r_min_i = gglFloorx(r_min); + const GGLfixed r_max_i = gglCeilx (r_max); + + // clip horizontally using the scissor + const int xml = max(xmin, gglFixedToIntFloor(l_min_i)); + const int xmr = min(xmax, gglFixedToIntFloor(r_max_i)); + + // if we just stepped to a new scanline, render the previous one. + // and clear the coverage buffer + if (retire) { + if (c->iterators.xl < c->iterators.xr) + c->scanline(c); + c->step_y(c); + memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); + c->iterators.xl = xml; + c->iterators.xr = xmr; + } else { + // update the horizontal range of this scanline + c->iterators.xl = min(c->iterators.xl, xml); + c->iterators.xr = max(c->iterators.xr, xmr); + } + + coverage = covPtr + gglFixedToIntFloor(l_min_i); + if (l_min_i == gglFloorx(l_max)) { + + /* + * fully traverse this pixel vertically + * l_max + * +-----/--+ yt + * | / | + * | / | + * | / | + * +-/------+ y + * l_min (l_min_i + TRI_ONE) + */ + + GGLfixed dx = l_max - l_min; + int32_t dy = y - yt; + int cf = gglMulx((dx >> 1) + (l_min_i + FIXED_ONE - l_max), dy, + FIXED_BITS + TRI_FRACTION_BITS - 15); + ADD_COVERAGE(coverage, cf); + // all pixels on the right have cf = 1.0 + } else { + /* + * spans several pixels in one scanline + * l_max + * +--------+--/-----+ yt + * | |/ | + * | /| | + * | / | | + * +---/----+--------+ y + * l_min (l_min_i + TRI_ONE) + */ + + // handle the first pixel separately... + const int32_t y_incr = left->y_incr; + int32_t dx = TRI_FROM_FIXED(l_min_i - l_min) + TRI_ONE; + int32_t cf = (dx * dx * y_incr) >> cf_shift; + ADD_COVERAGE(coverage, cf); + + // following pixels get covered by y_incr, but we need + // to fix-up the cf to account for previous partial pixel + dx = TRI_FROM_FIXED(l_min - l_min_i); + cf -= (dx * dx * y_incr) >> cf_shift; + for (int x = l_min_i+FIXED_ONE ; x < l_max_i-FIXED_ONE ; x += FIXED_ONE) { + cf += y_incr >> (TRI_ITERATORS_BITS-15); + ADD_COVERAGE(coverage, cf); + } + + // and the last pixel + dx = TRI_FROM_FIXED(l_max - l_max_i) - TRI_ONE; + cf += (dx * dx * y_incr) >> cf_shift; + ADD_COVERAGE(coverage, cf); + } + + // now, fill up all fully covered pixels + coverage = covPtr + gglFixedToIntFloor(l_max_i); + int cf = ((y - yt) << (15 - TRI_FRACTION_BITS)); + if (ggl_likely(cf >= 0x8000)) { + SET_COVERAGE(coverage, 0x7FFF, ((r_max - l_max_i)>>FIXED_BITS)+1); + } else { + for (int x=l_max_i ; x<r_max ; x+=FIXED_ONE) { + ADD_COVERAGE(coverage, cf); + } + } + + // subtract the coverage of the right edge + coverage = covPtr + gglFixedToIntFloor(r_min_i); + if (r_min_i == gglFloorx(r_max)) { + GGLfixed dx = r_max - r_min; + int32_t dy = y - yt; + int cf = gglMulx((dx >> 1) + (r_min_i + FIXED_ONE - r_max), dy, + FIXED_BITS + TRI_FRACTION_BITS - 15); + SUB_COVERAGE(coverage, cf); + // all pixels on the right have cf = 1.0 + } else { + // handle the first pixel separately... + const int32_t y_incr = right->y_incr; + int32_t dx = TRI_FROM_FIXED(r_min_i - r_min) + TRI_ONE; + int32_t cf = (dx * dx * y_incr) >> cf_shift; + SUB_COVERAGE(coverage, cf); + + // following pixels get covered by y_incr, but we need + // to fix-up the cf to account for previous partial pixel + dx = TRI_FROM_FIXED(r_min - r_min_i); + cf -= (dx * dx * y_incr) >> cf_shift; + for (int x = r_min_i+FIXED_ONE ; x < r_max_i-FIXED_ONE ; x += FIXED_ONE) { + cf += y_incr >> (TRI_ITERATORS_BITS-15); + SUB_COVERAGE(coverage, cf); + } + + // and the last pixel + dx = TRI_FROM_FIXED(r_max - r_max_i) - TRI_ONE; + cf += (dx * dx * y_incr) >> cf_shift; + SUB_COVERAGE(coverage, cf); + } + + // did we reach the end of an edge? if so, get a new one. + if (y == left->y_bot || y == right->y_bot) { + // bail out if we're done + if (i>=num_edges) + break; + if (y == left->y_bot) + left = &edges[i++]; + if (y == right->y_bot) + right = &edges[i++]; + } + + // next scanline + yt = y; + + // did we just finish a scanline? + retire = (y << (32-TRI_FRACTION_BITS)) == 0; + } while (true); + + // render the last scanline + if (c->iterators.xl < c->iterators.xr) + c->scanline(c); +} + +}; // namespace android |