aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/libstdc++-v3/include/bits/hashtable.h
blob: 588e69c9d4d3e0be9b12ee031e9d52fb49615cd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
// hashtable.h header -*- C++ -*-

// Copyright (C) 2007-2014 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file bits/hashtable.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
 */

#ifndef _HASHTABLE_H
#define _HASHTABLE_H 1

#pragma GCC system_header

#include <bits/hashtable_policy.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  template<typename _Tp, typename _Hash>
    using __cache_default
      =  __not_<__and_<// Do not cache for fast hasher.
		       __is_fast_hash<_Hash>,
		       // Mandatory to have erase not throwing.
		       __detail::__is_noexcept_hash<_Tp, _Hash>>>;

  /**
   *  Primary class template _Hashtable.
   *
   *  @ingroup hashtable-detail
   *
   *  @tparam _Value  CopyConstructible type.
   *
   *  @tparam _Key    CopyConstructible type.
   *
   *  @tparam _Alloc  An allocator type
   *  ([lib.allocator.requirements]) whose _Alloc::value_type is
   *  _Value.  As a conforming extension, we allow for
   *  _Alloc::value_type != _Value.
   *
   *  @tparam _ExtractKey  Function object that takes an object of type
   *  _Value and returns a value of type _Key.
   *
   *  @tparam _Equal  Function object that takes two objects of type k
   *  and returns a bool-like value that is true if the two objects
   *  are considered equal.
   *
   *  @tparam _H1  The hash function. A unary function object with
   *  argument type _Key and result type size_t. Return values should
   *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
   *
   *  @tparam _H2  The range-hashing function (in the terminology of
   *  Tavori and Dreizin).  A binary function object whose argument
   *  types and result type are all size_t.  Given arguments r and N,
   *  the return value is in the range [0, N).
   *
   *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
   *  binary function whose argument types are _Key and size_t and
   *  whose result type is size_t.  Given arguments k and N, the
   *  return value is in the range [0, N).  Default: hash(k, N) =
   *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
   *  and _H2 are ignored.
   *
   *  @tparam _RehashPolicy  Policy class with three members, all of
   *  which govern the bucket count. _M_next_bkt(n) returns a bucket
   *  count no smaller than n.  _M_bkt_for_elements(n) returns a
   *  bucket count appropriate for an element count of n.
   *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
   *  current bucket count is n_bkt and the current element count is
   *  n_elt, we need to increase the bucket count.  If so, returns
   *  make_pair(true, n), where n is the new bucket count.  If not,
   *  returns make_pair(false, <anything>)
   *
   *  @tparam _Traits  Compile-time class with three boolean
   *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
   *   __unique_keys.
   *
   *  Each _Hashtable data structure has:
   *
   *  - _Bucket[]       _M_buckets
   *  - _Hash_node_base _M_before_begin
   *  - size_type       _M_bucket_count
   *  - size_type       _M_element_count
   *
   *  with _Bucket being _Hash_node* and _Hash_node containing:
   *
   *  - _Hash_node*   _M_next
   *  - Tp            _M_value
   *  - size_t        _M_hash_code if cache_hash_code is true
   *
   *  In terms of Standard containers the hashtable is like the aggregation of:
   *
   *  - std::forward_list<_Node> containing the elements
   *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
   *
   *  The non-empty buckets contain the node before the first node in the
   *  bucket. This design makes it possible to implement something like a
   *  std::forward_list::insert_after on container insertion and
   *  std::forward_list::erase_after on container erase
   *  calls. _M_before_begin is equivalent to
   *  std::forward_list::before_begin. Empty buckets contain
   *  nullptr.  Note that one of the non-empty buckets contains
   *  &_M_before_begin which is not a dereferenceable node so the
   *  node pointer in a bucket shall never be dereferenced, only its
   *  next node can be.
   *
   *  Walking through a bucket's nodes requires a check on the hash code to
   *  see if each node is still in the bucket. Such a design assumes a
   *  quite efficient hash functor and is one of the reasons it is
   *  highly advisable to set __cache_hash_code to true.
   *
   *  The container iterators are simply built from nodes. This way
   *  incrementing the iterator is perfectly efficient independent of
   *  how many empty buckets there are in the container.
   *
   *  On insert we compute the element's hash code and use it to find the
   *  bucket index. If the element must be inserted in an empty bucket
   *  we add it at the beginning of the singly linked list and make the
   *  bucket point to _M_before_begin. The bucket that used to point to
   *  _M_before_begin, if any, is updated to point to its new before
   *  begin node.
   *
   *  On erase, the simple iterator design requires using the hash
   *  functor to get the index of the bucket to update. For this
   *  reason, when __cache_hash_code is set to false the hash functor must
   *  not throw and this is enforced by a static assertion.
   *
   *  Functionality is implemented by decomposition into base classes,
   *  where the derived _Hashtable class is used in _Map_base,
   *  _Insert, _Rehash_base, and _Equality base classes to access the
   *  "this" pointer. _Hashtable_base is used in the base classes as a
   *  non-recursive, fully-completed-type so that detailed nested type
   *  information, such as iterator type and node type, can be
   *  used. This is similar to the "Curiously Recurring Template
   *  Pattern" (CRTP) technique, but uses a reconstructed, not
   *  explicitly passed, template pattern.
   *
   *  Base class templates are: 
   *    - __detail::_Hashtable_base
   *    - __detail::_Map_base
   *    - __detail::_Insert
   *    - __detail::_Rehash_base
   *    - __detail::_Equality
   */
  template<typename _Key, typename _Value, typename _Alloc,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy, typename _Traits>
    class _Hashtable
    : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
				       _H1, _H2, _Hash, _Traits>,
      public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
      public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
      public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
      public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
      private __detail::_Hashtable_alloc<
	typename __alloctr_rebind<_Alloc,
	  __detail::_Hash_node<_Value,
			       _Traits::__hash_cached::value> >::__type>
    {
      using __traits_type = _Traits;
      using __hash_cached = typename __traits_type::__hash_cached;
      using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
      using __node_alloc_type =
	typename __alloctr_rebind<_Alloc, __node_type>::__type;

      using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;

      using __value_alloc_traits =
	typename __hashtable_alloc::__value_alloc_traits;
      using __node_alloc_traits =
	typename __hashtable_alloc::__node_alloc_traits;
      using __node_base = typename __hashtable_alloc::__node_base;
      using __bucket_type = typename __hashtable_alloc::__bucket_type;

    public:
      typedef _Key						key_type;
      typedef _Value						value_type;
      typedef _Alloc						allocator_type;
      typedef _Equal						key_equal;

      // mapped_type, if present, comes from _Map_base.
      // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
      typedef typename __value_alloc_traits::pointer		pointer;
      typedef typename __value_alloc_traits::const_pointer	const_pointer;
      typedef value_type&					reference;
      typedef const value_type&					const_reference;

    private:
      using __rehash_type = _RehashPolicy;
      using __rehash_state = typename __rehash_type::_State;

      using __constant_iterators = typename __traits_type::__constant_iterators;
      using __unique_keys = typename __traits_type::__unique_keys;

      using __key_extract = typename std::conditional<
					     __constant_iterators::value,
				       	     __detail::_Identity,
					     __detail::_Select1st>::type;

      using __hashtable_base = __detail::
			       _Hashtable_base<_Key, _Value, _ExtractKey,
					      _Equal, _H1, _H2, _Hash, _Traits>;

      using __hash_code_base =  typename __hashtable_base::__hash_code_base;
      using __hash_code =  typename __hashtable_base::__hash_code;
      using __ireturn_type = typename __hashtable_base::__ireturn_type;

      using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
					     _Equal, _H1, _H2, _Hash,
					     _RehashPolicy, _Traits>;

      using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
						   _ExtractKey, _Equal,
						   _H1, _H2, _Hash,
						   _RehashPolicy, _Traits>;

      using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
					    _Equal, _H1, _H2, _Hash,
					    _RehashPolicy, _Traits>;

      using __reuse_or_alloc_node_type =
	__detail::_ReuseOrAllocNode<__node_alloc_type>;

      // Metaprogramming for picking apart hash caching.
      template<typename _Cond>
	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;

      template<typename _Cond>
	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;

      // Compile-time diagnostics.

      // _Hash_code_base has everything protected, so use this derived type to
      // access it.
      struct __hash_code_base_access : __hash_code_base
      { using __hash_code_base::_M_bucket_index; };

      // Getting a bucket index from a node shall not throw because it is used
      // in methods (erase, swap...) that shall not throw.
      static_assert(noexcept(declval<const __hash_code_base_access&>()
			     ._M_bucket_index((const __node_type*)nullptr,
					      (std::size_t)0)),
		    "Cache the hash code or qualify your functors involved"
		    " in hash code and bucket index computation with noexcept");

      // Following two static assertions are necessary to guarantee
      // that local_iterator will be default constructible.

      // When hash codes are cached local iterator inherits from H2 functor
      // which must then be default constructible.
      static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
		    "Functor used to map hash code to bucket index"
		    " must be default constructible");

      template<typename _Keya, typename _Valuea, typename _Alloca,
	       typename _ExtractKeya, typename _Equala,
	       typename _H1a, typename _H2a, typename _Hasha,
	       typename _RehashPolicya, typename _Traitsa,
	       bool _Unique_keysa>
	friend struct __detail::_Map_base;

      template<typename _Keya, typename _Valuea, typename _Alloca,
	       typename _ExtractKeya, typename _Equala,
	       typename _H1a, typename _H2a, typename _Hasha,
	       typename _RehashPolicya, typename _Traitsa>
	friend struct __detail::_Insert_base;

      template<typename _Keya, typename _Valuea, typename _Alloca,
	       typename _ExtractKeya, typename _Equala,
	       typename _H1a, typename _H2a, typename _Hasha,
	       typename _RehashPolicya, typename _Traitsa,
	       bool _Constant_iteratorsa, bool _Unique_keysa>
	friend struct __detail::_Insert;

    public:
      using size_type = typename __hashtable_base::size_type;
      using difference_type = typename __hashtable_base::difference_type;

      using iterator = typename __hashtable_base::iterator;
      using const_iterator = typename __hashtable_base::const_iterator;

      using local_iterator = typename __hashtable_base::local_iterator;
      using const_local_iterator = typename __hashtable_base::
				   const_local_iterator;

    private:
      __bucket_type*		_M_buckets;
      size_type			_M_bucket_count;
      __node_base		_M_before_begin;
      size_type			_M_element_count;
      _RehashPolicy		_M_rehash_policy;

      // A single bucket used when only need for 1 bucket. Especially
      // interesting in move semantic to leave hashtable with only 1 buckets
      // which is not allocated so that we can have those operations noexcept
      // qualified.
      // Note that we can't leave hashtable with 0 bucket without adding
      // numerous checks in the code to avoid 0 modulus.
      __bucket_type		_M_single_bucket;

      bool
      _M_uses_single_bucket(__bucket_type* __bkts) const
      { return __builtin_expect(_M_buckets == &_M_single_bucket, false); }

      bool
      _M_uses_single_bucket() const
      { return _M_uses_single_bucket(_M_buckets); }

      __hashtable_alloc&
      _M_base_alloc() { return *this; }

      __bucket_type*
      _M_allocate_buckets(size_type __n)
      {
	if (__builtin_expect(__n == 1, false))
	  {
	    _M_single_bucket = nullptr;
	    return &_M_single_bucket;
	  }

	return __hashtable_alloc::_M_allocate_buckets(__n);
      }

      void
      _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
      {
	if (_M_uses_single_bucket(__bkts))
	  return;

	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
      }

      void
      _M_deallocate_buckets()
      { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }

      // Gets bucket begin, deals with the fact that non-empty buckets contain
      // their before begin node.
      __node_type*
      _M_bucket_begin(size_type __bkt) const;

      __node_type*
      _M_begin() const
      { return static_cast<__node_type*>(_M_before_begin._M_nxt); }

      template<typename _NodeGenerator>
	void
	_M_assign(const _Hashtable&, const _NodeGenerator&);

      void
      _M_move_assign(_Hashtable&&, std::true_type);

      void
      _M_move_assign(_Hashtable&&, std::false_type);

      void
      _M_reset() noexcept;

    public:
      // Constructor, destructor, assignment, swap
      _Hashtable(size_type __bucket_hint,
		 const _H1&, const _H2&, const _Hash&,
		 const _Equal&, const _ExtractKey&,
		 const allocator_type&);

      template<typename _InputIterator>
	_Hashtable(_InputIterator __first, _InputIterator __last,
		   size_type __bucket_hint,
		   const _H1&, const _H2&, const _Hash&,
		   const _Equal&, const _ExtractKey&,
		   const allocator_type&);

      _Hashtable(const _Hashtable&);

      _Hashtable(_Hashtable&&) noexcept;

      _Hashtable(const _Hashtable&, const allocator_type&);

      _Hashtable(_Hashtable&&, const allocator_type&);

      // Use delegating constructors.
      explicit
      _Hashtable(const allocator_type& __a)
      : _Hashtable(10, _H1(), _H2(), _Hash(), key_equal(),
		   __key_extract(), __a)
      { }

      explicit
      _Hashtable(size_type __n = 10,
		 const _H1& __hf = _H1(),
		 const key_equal& __eql = key_equal(),
		 const allocator_type& __a = allocator_type())
      : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
		   __key_extract(), __a)
      { }

      template<typename _InputIterator>
	_Hashtable(_InputIterator __f, _InputIterator __l,
		   size_type __n = 0,
		   const _H1& __hf = _H1(),
		   const key_equal& __eql = key_equal(),
		   const allocator_type& __a = allocator_type())
	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
		     __key_extract(), __a)
	{ }

      _Hashtable(initializer_list<value_type> __l,
		 size_type __n = 0,
		 const _H1& __hf = _H1(),
		 const key_equal& __eql = key_equal(),
		 const allocator_type& __a = allocator_type())
      : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
		   __key_extract(), __a)
      { }

      _Hashtable&
      operator=(const _Hashtable& __ht);

      _Hashtable&
      operator=(_Hashtable&& __ht)
      noexcept(__node_alloc_traits::_S_nothrow_move())
      {
        constexpr bool __move_storage =
          __node_alloc_traits::_S_propagate_on_move_assign()
          || __node_alloc_traits::_S_always_equal();
        _M_move_assign(std::move(__ht),
                       integral_constant<bool, __move_storage>());
	return *this;
      }

      _Hashtable&
      operator=(initializer_list<value_type> __l)
      {
	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
	_M_before_begin._M_nxt = nullptr;
	clear();
	this->_M_insert_range(__l.begin(), __l.end(), __roan);
	return *this;
      }

      ~_Hashtable() noexcept;

      void
      swap(_Hashtable&)
      noexcept(__node_alloc_traits::_S_nothrow_swap());

      // Basic container operations
      iterator
      begin() noexcept
      { return iterator(_M_begin()); }

      const_iterator
      begin() const noexcept
      { return const_iterator(_M_begin()); }

      iterator
      end() noexcept
      { return iterator(nullptr); }

      const_iterator
      end() const noexcept
      { return const_iterator(nullptr); }

      const_iterator
      cbegin() const noexcept
      { return const_iterator(_M_begin()); }

      const_iterator
      cend() const noexcept
      { return const_iterator(nullptr); }

      size_type
      size() const noexcept
      { return _M_element_count; }

      bool
      empty() const noexcept
      { return size() == 0; }

      allocator_type
      get_allocator() const noexcept
      { return allocator_type(this->_M_node_allocator()); }

      size_type
      max_size() const noexcept
      { return __node_alloc_traits::max_size(this->_M_node_allocator()); }

      // Observers
      key_equal
      key_eq() const
      { return this->_M_eq(); }

      // hash_function, if present, comes from _Hash_code_base.

      // Bucket operations
      size_type
      bucket_count() const noexcept
      { return _M_bucket_count; }

      size_type
      max_bucket_count() const noexcept
      { return max_size(); }

      size_type
      bucket_size(size_type __n) const
      { return std::distance(begin(__n), end(__n)); }

      size_type
      bucket(const key_type& __k) const
      { return _M_bucket_index(__k, this->_M_hash_code(__k)); }

      local_iterator
      begin(size_type __n)
      {
	return local_iterator(*this, _M_bucket_begin(__n),
			      __n, _M_bucket_count);
      }

      local_iterator
      end(size_type __n)
      { return local_iterator(*this, nullptr, __n, _M_bucket_count); }

      const_local_iterator
      begin(size_type __n) const
      {
	return const_local_iterator(*this, _M_bucket_begin(__n),
				    __n, _M_bucket_count);
      }

      const_local_iterator
      end(size_type __n) const
      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }

      // DR 691.
      const_local_iterator
      cbegin(size_type __n) const
      {
	return const_local_iterator(*this, _M_bucket_begin(__n),
				    __n, _M_bucket_count);
      }

      const_local_iterator
      cend(size_type __n) const
      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }

      float
      load_factor() const noexcept
      {
	return static_cast<float>(size()) / static_cast<float>(bucket_count());
      }

      // max_load_factor, if present, comes from _Rehash_base.

      // Generalization of max_load_factor.  Extension, not found in
      // TR1.  Only useful if _RehashPolicy is something other than
      // the default.
      const _RehashPolicy&
      __rehash_policy() const
      { return _M_rehash_policy; }

      void
      __rehash_policy(const _RehashPolicy&);

      // Lookup.
      iterator
      find(const key_type& __k);

      const_iterator
      find(const key_type& __k) const;

      size_type
      count(const key_type& __k) const;

      std::pair<iterator, iterator>
      equal_range(const key_type& __k);

      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __k) const;

    protected:
      // Bucket index computation helpers.
      size_type
      _M_bucket_index(__node_type* __n) const noexcept
      { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }

      size_type
      _M_bucket_index(const key_type& __k, __hash_code __c) const
      { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }

      // Find and insert helper functions and types
      // Find the node before the one matching the criteria.
      __node_base*
      _M_find_before_node(size_type, const key_type&, __hash_code) const;

      __node_type*
      _M_find_node(size_type __bkt, const key_type& __key,
		   __hash_code __c) const
      {
	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
	if (__before_n)
	  return static_cast<__node_type*>(__before_n->_M_nxt);
	return nullptr;
      }

      // Insert a node at the beginning of a bucket.
      void
      _M_insert_bucket_begin(size_type, __node_type*);

      // Remove the bucket first node
      void
      _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
			     size_type __next_bkt);

      // Get the node before __n in the bucket __bkt
      __node_base*
      _M_get_previous_node(size_type __bkt, __node_base* __n);

      // Insert node with hash code __code, in bucket bkt if no rehash (assumes
      // no element with its key already present). Take ownership of the node,
      // deallocate it on exception.
      iterator
      _M_insert_unique_node(size_type __bkt, __hash_code __code,
			    __node_type* __n);

      // Insert node with hash code __code. Take ownership of the node,
      // deallocate it on exception.
      iterator
      _M_insert_multi_node(__node_type* __hint,
			   __hash_code __code, __node_type* __n);

      template<typename... _Args>
	std::pair<iterator, bool>
	_M_emplace(std::true_type, _Args&&... __args);

      template<typename... _Args>
	iterator
	_M_emplace(std::false_type __uk, _Args&&... __args)
	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }

      // Emplace with hint, useless when keys are unique.
      template<typename... _Args>
	iterator
	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }

      template<typename... _Args>
	iterator
	_M_emplace(const_iterator, std::false_type, _Args&&... __args);

      template<typename _Arg, typename _NodeGenerator>
	std::pair<iterator, bool>
	_M_insert(_Arg&&, const _NodeGenerator&, std::true_type);

      template<typename _Arg, typename _NodeGenerator>
	iterator
	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
		  std::false_type __uk)
	{
	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
			   __uk);
	}

      // Insert with hint, not used when keys are unique.
      template<typename _Arg, typename _NodeGenerator>
	iterator
	_M_insert(const_iterator, _Arg&& __arg, const _NodeGenerator& __node_gen,
		  std::true_type __uk)
	{
	  return
	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
	}

      // Insert with hint when keys are not unique.
      template<typename _Arg, typename _NodeGenerator>
	iterator
	_M_insert(const_iterator, _Arg&&, const _NodeGenerator&, std::false_type);

      size_type
      _M_erase(std::true_type, const key_type&);

      size_type
      _M_erase(std::false_type, const key_type&);

      iterator
      _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);

    public:
      // Emplace
      template<typename... _Args>
	__ireturn_type
	emplace(_Args&&... __args)
	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }

      template<typename... _Args>
	iterator
	emplace_hint(const_iterator __hint, _Args&&... __args)
	{
	  return _M_emplace(__hint, __unique_keys(),
			    std::forward<_Args>(__args)...);
	}

      // Insert member functions via inheritance.

      // Erase
      iterator
      erase(const_iterator);

      // LWG 2059.
      iterator
      erase(iterator __it)
      { return erase(const_iterator(__it)); }

      size_type
      erase(const key_type& __k)
      { return _M_erase(__unique_keys(), __k); }

      iterator
      erase(const_iterator, const_iterator);

      void
      clear() noexcept;

      // Set number of buckets to be appropriate for container of n element.
      void rehash(size_type __n);

      // DR 1189.
      // reserve, if present, comes from _Rehash_base.

    private:
      // Helper rehash method used when keys are unique.
      void _M_rehash_aux(size_type __n, std::true_type);

      // Helper rehash method used when keys can be non-unique.
      void _M_rehash_aux(size_type __n, std::false_type);

      // Unconditionally change size of bucket array to n, restore
      // hash policy state to __state on exception.
      void _M_rehash(size_type __n, const __rehash_state& __state);
    };


  // Definitions of class template _Hashtable's out-of-line member functions.
  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
			_Equal, _H1, _H2, _Hash, _RehashPolicy,
			_Traits>::__node_type*
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_bucket_begin(size_type __bkt) const
    {
      __node_base* __n = _M_buckets[__bkt];
      return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _Hashtable(size_type __bucket_hint,
	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
	       const _Equal& __eq, const _ExtractKey& __exk,
	       const allocator_type& __a)
    : __hashtable_base(__exk, __h1, __h2, __h, __eq),
      __map_base(),
      __rehash_base(),
      __hashtable_alloc(__node_alloc_type(__a)),
      _M_element_count(0),
      _M_rehash_policy()
    {
      _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
      _M_buckets = _M_allocate_buckets(_M_bucket_count);
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    template<typename _InputIterator>
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
      _Hashtable(_InputIterator __f, _InputIterator __l,
		 size_type __bucket_hint,
		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
		 const _Equal& __eq, const _ExtractKey& __exk,
		 const allocator_type& __a)
      : __hashtable_base(__exk, __h1, __h2, __h, __eq),
	__map_base(),
	__rehash_base(),
	__hashtable_alloc(__node_alloc_type(__a)),
	_M_element_count(0),
	_M_rehash_policy()
      {
	auto __nb_elems = __detail::__distance_fw(__f, __l);
	_M_bucket_count =
	  _M_rehash_policy._M_next_bkt(
	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
		     __bucket_hint));

	_M_buckets = _M_allocate_buckets(_M_bucket_count);
	__try
	  {
	    for (; __f != __l; ++__f)
	      this->insert(*__f);
	  }
	__catch(...)
	  {
	    clear();
	    _M_deallocate_buckets();
	    __throw_exception_again;
	  }
      }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>&
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::operator=(
		const _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
				 _H1, _H2, _Hash, _RehashPolicy, _Traits>& __ht)
      {
	if (&__ht == this)
	  return *this;

	if (__node_alloc_traits::_S_propagate_on_copy_assign())
	  {
	    auto& __this_alloc = this->_M_node_allocator();
	    auto& __that_alloc = __ht._M_node_allocator();
	    if (!__node_alloc_traits::_S_always_equal()
		&& __this_alloc != __that_alloc)
	      {
		// Replacement allocator cannot free existing storage.
		this->_M_deallocate_nodes(_M_begin());
		_M_before_begin._M_nxt = nullptr;
		_M_deallocate_buckets();
		_M_buckets = nullptr;
		std::__alloc_on_copy(__this_alloc, __that_alloc);
		__hashtable_base::operator=(__ht);
		_M_bucket_count = __ht._M_bucket_count;
		_M_element_count = __ht._M_element_count;
		_M_rehash_policy = __ht._M_rehash_policy;
		__try
		  {
		    _M_assign(__ht,
			      [this](const __node_type* __n)
			      { return this->_M_allocate_node(__n->_M_v()); });
		  }
		__catch(...)
		  {
		    // _M_assign took care of deallocating all memory. Now we
		    // must make sure this instance remains in a usable state.
		    _M_reset();
		    __throw_exception_again;
		  }
		return *this;
	      }
	    std::__alloc_on_copy(__this_alloc, __that_alloc);
	  }

	// Reuse allocated buckets and nodes.
	__bucket_type* __former_buckets = nullptr;
	std::size_t __former_bucket_count = _M_bucket_count;
	const __rehash_state& __former_state = _M_rehash_policy._M_state();
	
	if (_M_bucket_count != __ht._M_bucket_count)
	  {
	    __former_buckets = _M_buckets;
	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
	    _M_bucket_count = __ht._M_bucket_count;
	  }
	else
	  __builtin_memset(_M_buckets, 0,
			   _M_bucket_count * sizeof(__bucket_type));

	__try
	  {
	    __hashtable_base::operator=(__ht);
	    _M_element_count = __ht._M_element_count;
	    _M_rehash_policy = __ht._M_rehash_policy;
	    __reuse_or_alloc_node_type __roan(_M_begin(), *this);
	    _M_before_begin._M_nxt = nullptr;
	    _M_assign(__ht, 
		      [&__roan](const __node_type* __n)
		      { return __roan(__n->_M_v()); });
	    if (__former_buckets)
	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
	  }
	__catch(...)
	  {
	    if (__former_buckets)
	      {
		// Restore previous buckets.
		_M_deallocate_buckets();
		_M_rehash_policy._M_reset(__former_state);
		_M_buckets = __former_buckets;
		_M_bucket_count = __former_bucket_count;
	      }
	    __builtin_memset(_M_buckets, 0,
			     _M_bucket_count * sizeof(__bucket_type));
	    __throw_exception_again;
	  }
	return *this;
      }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    template<typename _NodeGenerator>
      void
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
      _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
      {
	__bucket_type* __buckets = nullptr;
	if (!_M_buckets)
	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);

	__try
	  {
	    if (!__ht._M_before_begin._M_nxt)
	      return;

	    // First deal with the special first node pointed to by
	    // _M_before_begin.
	    __node_type* __ht_n = __ht._M_begin();
	    __node_type* __this_n = __node_gen(__ht_n);
	    this->_M_copy_code(__this_n, __ht_n);
	    _M_before_begin._M_nxt = __this_n;
	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;

	    // Then deal with other nodes.
	    __node_base* __prev_n = __this_n;
	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
	      {
		__this_n = __node_gen(__ht_n);
		__prev_n->_M_nxt = __this_n;
		this->_M_copy_code(__this_n, __ht_n);
		size_type __bkt = _M_bucket_index(__this_n);
		if (!_M_buckets[__bkt])
		  _M_buckets[__bkt] = __prev_n;
		__prev_n = __this_n;
	      }
	  }
	__catch(...)
	  {
	    clear();
	    if (__buckets)
	      _M_deallocate_buckets();
	    __throw_exception_again;
	  }
      }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_reset() noexcept
    {
      _M_rehash_policy._M_reset();
      _M_bucket_count = 1;
      _M_single_bucket = nullptr;
      _M_buckets = &_M_single_bucket;
      _M_before_begin._M_nxt = nullptr;
      _M_element_count = 0;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_move_assign(_Hashtable&& __ht, std::true_type)
    {
      this->_M_deallocate_nodes(_M_begin());
      _M_deallocate_buckets();
      __hashtable_base::operator=(std::move(__ht));
      _M_rehash_policy = __ht._M_rehash_policy;
      if (!__ht._M_uses_single_bucket())
	_M_buckets = __ht._M_buckets;
      else
	{
	  _M_buckets = &_M_single_bucket;
	  _M_single_bucket = __ht._M_single_bucket;
	}
      _M_bucket_count = __ht._M_bucket_count;
      _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
      _M_element_count = __ht._M_element_count;
      std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());

      // Fix buckets containing the _M_before_begin pointers that can't be
      // moved.
      if (_M_begin())
	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
      __ht._M_reset();
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_move_assign(_Hashtable&& __ht, std::false_type)
    {
      if (__ht._M_node_allocator() == this->_M_node_allocator())
	_M_move_assign(std::move(__ht), std::true_type());
      else
	{
	  // Can't move memory, move elements then.
	  __bucket_type* __former_buckets = nullptr;
	  size_type __former_bucket_count = _M_bucket_count;
	  const __rehash_state& __former_state = _M_rehash_policy._M_state();

	  if (_M_bucket_count != __ht._M_bucket_count)
	    {
	      __former_buckets = _M_buckets;
	      _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
	      _M_bucket_count = __ht._M_bucket_count;
	    }
	  else
	    __builtin_memset(_M_buckets, 0,
			     _M_bucket_count * sizeof(__bucket_type));

	  __try
	    {
	      __hashtable_base::operator=(std::move(__ht));
	      _M_element_count = __ht._M_element_count;
	      _M_rehash_policy = __ht._M_rehash_policy;
	      __reuse_or_alloc_node_type __roan(_M_begin(), *this);
	      _M_before_begin._M_nxt = nullptr;
	      _M_assign(__ht,
			[&__roan](__node_type* __n)
			{ return __roan(std::move_if_noexcept(__n->_M_v())); });
	      __ht.clear();
	    }
	  __catch(...)
	    {
	      if (__former_buckets)
		{
		  _M_deallocate_buckets();
		  _M_rehash_policy._M_reset(__former_state);
		  _M_buckets = __former_buckets;
		  _M_bucket_count = __former_bucket_count;
		}
	      __builtin_memset(_M_buckets, 0,
			       _M_bucket_count * sizeof(__bucket_type));
	      __throw_exception_again;
	    }
	}
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _Hashtable(const _Hashtable& __ht)
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(
	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
      _M_buckets(),
      _M_bucket_count(__ht._M_bucket_count),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      _M_assign(__ht,
		[this](const __node_type* __n)
		{ return this->_M_allocate_node(__n->_M_v()); });
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _Hashtable(_Hashtable&& __ht) noexcept
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(std::move(__ht._M_base_alloc())),
      _M_buckets(__ht._M_buckets),
      _M_bucket_count(__ht._M_bucket_count),
      _M_before_begin(__ht._M_before_begin._M_nxt),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      // Update, if necessary, buckets if __ht is using its single bucket.
      if (__ht._M_uses_single_bucket())
	{
	  _M_buckets = &_M_single_bucket;
	  _M_single_bucket = __ht._M_single_bucket;
	}

      // Update, if necessary, bucket pointing to before begin that hasn't
      // moved.
      if (_M_begin())
	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;

      __ht._M_reset();
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(__node_alloc_type(__a)),
      _M_buckets(),
      _M_bucket_count(__ht._M_bucket_count),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      _M_assign(__ht,
		[this](const __node_type* __n)
		{ return this->_M_allocate_node(__n->_M_v()); });
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
    : __hashtable_base(__ht),
      __map_base(__ht),
      __rehash_base(__ht),
      __hashtable_alloc(__node_alloc_type(__a)),
      _M_buckets(),
      _M_bucket_count(__ht._M_bucket_count),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      if (__ht._M_node_allocator() == this->_M_node_allocator())
	{
	  if (__ht._M_uses_single_bucket())
	    {
	      _M_buckets = &_M_single_bucket;
	      _M_single_bucket = __ht._M_single_bucket;
	    }
	  else
	    _M_buckets = __ht._M_buckets;

	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
	  // Update, if necessary, bucket pointing to before begin that hasn't
	  // moved.
	  if (_M_begin())
	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
	  __ht._M_reset();
	}
      else
	{
	  _M_assign(__ht,
		    [this](__node_type* __n)
		    {
		      return this->_M_allocate_node(
					std::move_if_noexcept(__n->_M_v()));
		    });
	  __ht.clear();
	}
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    ~_Hashtable() noexcept
    {
      clear();
      if (_M_buckets)
	_M_deallocate_buckets();
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    swap(_Hashtable& __x)
    noexcept(__node_alloc_traits::_S_nothrow_swap())
    {
      // The only base class with member variables is hash_code_base.
      // We define _Hash_code_base::_M_swap because different
      // specializations have different members.
      this->_M_swap(__x);

      std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
      std::swap(_M_rehash_policy, __x._M_rehash_policy);

      // Deal properly with potentially moved instances.
      if (this->_M_uses_single_bucket())
	{
	  if (!__x._M_uses_single_bucket())
	    {
	      _M_buckets = __x._M_buckets;
	      __x._M_buckets = &__x._M_single_bucket;
	    }
	}
      else if (__x._M_uses_single_bucket())
	{
	  __x._M_buckets = _M_buckets;
	  _M_buckets = &_M_single_bucket;
	}	
      else
	std::swap(_M_buckets, __x._M_buckets);

      std::swap(_M_bucket_count, __x._M_bucket_count);
      std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
      std::swap(_M_element_count, __x._M_element_count);
      std::swap(_M_single_bucket, __x._M_single_bucket);

      // Fix buckets containing the _M_before_begin pointers that can't be
      // swapped.
      if (_M_begin())
	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;

      if (__x._M_begin())
	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
	  = &__x._M_before_begin;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    __rehash_policy(const _RehashPolicy& __pol)
    {
      auto __do_rehash =
	__pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
      if (__do_rehash.first)
	_M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
      _M_rehash_policy = __pol;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::iterator
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    find(const key_type& __k)
    {
      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __n = _M_bucket_index(__k, __code);
      __node_type* __p = _M_find_node(__n, __k, __code);
      return __p ? iterator(__p) : end();
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::const_iterator
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    find(const key_type& __k) const
    {
      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __n = _M_bucket_index(__k, __code);
      __node_type* __p = _M_find_node(__n, __k, __code);
      return __p ? const_iterator(__p) : end();
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::size_type
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    count(const key_type& __k) const
    {
      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __n = _M_bucket_index(__k, __code);
      __node_type* __p = _M_bucket_begin(__n);
      if (!__p)
	return 0;

      std::size_t __result = 0;
      for (;; __p = __p->_M_next())
	{
	  if (this->_M_equals(__k, __code, __p))
	    ++__result;
	  else if (__result)
	    // All equivalent values are next to each other, if we
	    // found a non-equivalent value after an equivalent one it
	    // means that we won't find any new equivalent value.
	    break;
	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
	    break;
	}
      return __result;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    std::pair<typename _Hashtable<_Key, _Value, _Alloc,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  _Traits>::iterator,
	      typename _Hashtable<_Key, _Value, _Alloc,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  _Traits>::iterator>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    equal_range(const key_type& __k)
    {
      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __n = _M_bucket_index(__k, __code);
      __node_type* __p = _M_find_node(__n, __k, __code);

      if (__p)
	{
	  __node_type* __p1 = __p->_M_next();
	  while (__p1 && _M_bucket_index(__p1) == __n
		 && this->_M_equals(__k, __code, __p1))
	    __p1 = __p1->_M_next();

	  return std::make_pair(iterator(__p), iterator(__p1));
	}
      else
	return std::make_pair(end(), end());
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    std::pair<typename _Hashtable<_Key, _Value, _Alloc,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  _Traits>::const_iterator,
	      typename _Hashtable<_Key, _Value, _Alloc,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  _Traits>::const_iterator>
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    equal_range(const key_type& __k) const
    {
      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __n = _M_bucket_index(__k, __code);
      __node_type* __p = _M_find_node(__n, __k, __code);

      if (__p)
	{
	  __node_type* __p1 = __p->_M_next();
	  while (__p1 && _M_bucket_index(__p1) == __n
		 && this->_M_equals(__k, __code, __p1))
	    __p1 = __p1->_M_next();

	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
	}
      else
	return std::make_pair(end(), end());
    }

  // Find the node whose key compares equal to k in the bucket n.
  // Return nullptr if no node is found.
  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
			_Equal, _H1, _H2, _Hash, _RehashPolicy,
			_Traits>::__node_base*
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_find_before_node(size_type __n, const key_type& __k,
			__hash_code __code) const
    {
      __node_base* __prev_p = _M_buckets[__n];
      if (!__prev_p)
	return nullptr;

      for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
	   __p = __p->_M_next())
	{
	  if (this->_M_equals(__k, __code, __p))
	    return __prev_p;

	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
	    break;
	  __prev_p = __p;
	}
      return nullptr;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
    {
      if (_M_buckets[__bkt])
	{
	  // Bucket is not empty, we just need to insert the new node
	  // after the bucket before begin.
	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
	  _M_buckets[__bkt]->_M_nxt = __node;
	}
      else
	{
	  // The bucket is empty, the new node is inserted at the
	  // beginning of the singly-linked list and the bucket will
	  // contain _M_before_begin pointer.
	  __node->_M_nxt = _M_before_begin._M_nxt;
	  _M_before_begin._M_nxt = __node;
	  if (__node->_M_nxt)
	    // We must update former begin bucket that is pointing to
	    // _M_before_begin.
	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
	  _M_buckets[__bkt] = &_M_before_begin;
	}
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
			   size_type __next_bkt)
    {
      if (!__next || __next_bkt != __bkt)
	{
	  // Bucket is now empty
	  // First update next bucket if any
	  if (__next)
	    _M_buckets[__next_bkt] = _M_buckets[__bkt];

	  // Second update before begin node if necessary
	  if (&_M_before_begin == _M_buckets[__bkt])
	    _M_before_begin._M_nxt = __next;
	  _M_buckets[__bkt] = nullptr;
	}
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
			_Equal, _H1, _H2, _Hash, _RehashPolicy,
			_Traits>::__node_base*
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_get_previous_node(size_type __bkt, __node_base* __n)
    {
      __node_base* __prev_n = _M_buckets[__bkt];
      while (__prev_n->_M_nxt != __n)
	__prev_n = __prev_n->_M_nxt;
      return __prev_n;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    template<typename... _Args>
      std::pair<typename _Hashtable<_Key, _Value, _Alloc,
				    _ExtractKey, _Equal, _H1,
				    _H2, _Hash, _RehashPolicy,
				    _Traits>::iterator, bool>
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
      _M_emplace(std::true_type, _Args&&... __args)
      {
	// First build the node to get access to the hash code
	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
	const key_type& __k = this->_M_extract()(__node->_M_v());
	__hash_code __code;
	__try
	  {
	    __code = this->_M_hash_code(__k);
	  }
	__catch(...)
	  {
	    this->_M_deallocate_node(__node);
	    __throw_exception_again;
	  }

	size_type __bkt = _M_bucket_index(__k, __code);
	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
	  {
	    // There is already an equivalent node, no insertion
	    this->_M_deallocate_node(__node);
	    return std::make_pair(iterator(__p), false);
	  }

	// Insert the node
	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
			      true);
      }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    template<typename... _Args>
      typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			  _H1, _H2, _Hash, _RehashPolicy,
			  _Traits>::iterator
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
      _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
      {
	// First build the node to get its hash code.
	__node_type* __node =
	  this->_M_allocate_node(std::forward<_Args>(__args)...);

	__hash_code __code;
	__try
	  {
	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
	  }
	__catch(...)
	  {
	    this->_M_deallocate_node(__node);
	    __throw_exception_again;
	  }

	return _M_insert_multi_node(__hint._M_cur, __code, __node);
      }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::iterator
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_insert_unique_node(size_type __bkt, __hash_code __code,
			  __node_type* __node)
    {
      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
      std::pair<bool, std::size_t> __do_rehash
	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);

      __try
	{
	  if (__do_rehash.first)
	    {
	      _M_rehash(__do_rehash.second, __saved_state);
	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
	    }

	  this->_M_store_code(__node, __code);

	  // Always insert at the beginning of the bucket.
	  _M_insert_bucket_begin(__bkt, __node);
	  ++_M_element_count;
	  return iterator(__node);
	}
      __catch(...)
	{
	  this->_M_deallocate_node(__node);
	  __throw_exception_again;
	}
    }

  // Insert node, in bucket bkt if no rehash (assumes no element with its key
  // already present). Take ownership of the node, deallocate it on exception.
  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::iterator
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_insert_multi_node(__node_type* __hint, __hash_code __code,
			 __node_type* __node)
    {
      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
      std::pair<bool, std::size_t> __do_rehash
	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);

      __try
	{
	  if (__do_rehash.first)
	    _M_rehash(__do_rehash.second, __saved_state);

	  this->_M_store_code(__node, __code);
	  const key_type& __k = this->_M_extract()(__node->_M_v());
	  size_type __bkt = _M_bucket_index(__k, __code);

	  // Find the node before an equivalent one or use hint if it exists and
	  // if it is equivalent.
	  __node_base* __prev
	    = __builtin_expect(__hint != nullptr, false)
	      && this->_M_equals(__k, __code, __hint)
		? __hint
		: _M_find_before_node(__bkt, __k, __code);
	  if (__prev)
	    {
	      // Insert after the node before the equivalent one.
	      __node->_M_nxt = __prev->_M_nxt;
	      __prev->_M_nxt = __node;
	      if (__builtin_expect(__prev == __hint, false))
	      	// hint might be the last bucket node, in this case we need to
	      	// update next bucket.
	      	if (__node->_M_nxt
	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
	      	  {
	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
	      	    if (__next_bkt != __bkt)
	      	      _M_buckets[__next_bkt] = __node;
	      	  }
	    }
	  else
	    // The inserted node has no equivalent in the
	    // hashtable. We must insert the new node at the
	    // beginning of the bucket to preserve equivalent
	    // elements' relative positions.
	    _M_insert_bucket_begin(__bkt, __node);
	  ++_M_element_count;
	  return iterator(__node);
	}
      __catch(...)
	{
	  this->_M_deallocate_node(__node);
	  __throw_exception_again;
	}
    }

  // Insert v if no element with its key is already present.
  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    template<typename _Arg, typename _NodeGenerator>
      std::pair<typename _Hashtable<_Key, _Value, _Alloc,
				    _ExtractKey, _Equal, _H1,
				    _H2, _Hash, _RehashPolicy,
				    _Traits>::iterator, bool>
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
      _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
      {
	const key_type& __k = this->_M_extract()(__v);
	__hash_code __code = this->_M_hash_code(__k);
	size_type __bkt = _M_bucket_index(__k, __code);

	__node_type* __n = _M_find_node(__bkt, __k, __code);
	if (__n)
	  return std::make_pair(iterator(__n), false);

	__n = __node_gen(std::forward<_Arg>(__v));
	return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
      }

  // Insert v unconditionally.
  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    template<typename _Arg, typename _NodeGenerator>
      typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			  _H1, _H2, _Hash, _RehashPolicy,
			  _Traits>::iterator
      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
      _M_insert(const_iterator __hint, _Arg&& __v,
		const _NodeGenerator& __node_gen,
		std::false_type)
      {
	// First compute the hash code so that we don't do anything if it
	// throws.
	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));

	// Second allocate new node so that we don't rehash if it throws.
	__node_type* __node = __node_gen(std::forward<_Arg>(__v));

	return _M_insert_multi_node(__hint._M_cur, __code, __node);
      }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::iterator
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    erase(const_iterator __it)
    {
      __node_type* __n = __it._M_cur;
      std::size_t __bkt = _M_bucket_index(__n);

      // Look for previous node to unlink it from the erased one, this
      // is why we need buckets to contain the before begin to make
      // this search fast.
      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
      return _M_erase(__bkt, __prev_n, __n);
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::iterator
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
    {
      if (__prev_n == _M_buckets[__bkt])
	_M_remove_bucket_begin(__bkt, __n->_M_next(),
	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
      else if (__n->_M_nxt)
	{
	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
	  if (__next_bkt != __bkt)
	    _M_buckets[__next_bkt] = __prev_n;
	}

      __prev_n->_M_nxt = __n->_M_nxt;
      iterator __result(__n->_M_next());
      this->_M_deallocate_node(__n);
      --_M_element_count;

      return __result;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::size_type
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_erase(std::true_type, const key_type& __k)
    {
      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __bkt = _M_bucket_index(__k, __code);

      // Look for the node before the first matching node.
      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
      if (!__prev_n)
	return 0;

      // We found a matching node, erase it.
      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
      _M_erase(__bkt, __prev_n, __n);
      return 1;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::size_type
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_erase(std::false_type, const key_type& __k)
    {
      __hash_code __code = this->_M_hash_code(__k);
      std::size_t __bkt = _M_bucket_index(__k, __code);

      // Look for the node before the first matching node.
      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
      if (!__prev_n)
	return 0;

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 526. Is it undefined if a function in the standard changes
      // in parameters?
      // We use one loop to find all matching nodes and another to deallocate
      // them so that the key stays valid during the first loop. It might be
      // invalidated indirectly when destroying nodes.
      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
      __node_type* __n_last = __n;
      std::size_t __n_last_bkt = __bkt;
      do
	{
	  __n_last = __n_last->_M_next();
	  if (!__n_last)
	    break;
	  __n_last_bkt = _M_bucket_index(__n_last);
	}
      while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));

      // Deallocate nodes.
      size_type __result = 0;
      do
	{
	  __node_type* __p = __n->_M_next();
	  this->_M_deallocate_node(__n);
	  __n = __p;
	  ++__result;
	  --_M_element_count;
	}
      while (__n != __n_last);

      if (__prev_n == _M_buckets[__bkt])
	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
      else if (__n_last && __n_last_bkt != __bkt)
	_M_buckets[__n_last_bkt] = __prev_n;
      __prev_n->_M_nxt = __n_last;
      return __result;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			_Traits>::iterator
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    erase(const_iterator __first, const_iterator __last)
    {
      __node_type* __n = __first._M_cur;
      __node_type* __last_n = __last._M_cur;
      if (__n == __last_n)
	return iterator(__n);

      std::size_t __bkt = _M_bucket_index(__n);

      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
      bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
      std::size_t __n_bkt = __bkt;
      for (;;)
	{
	  do
	    {
	      __node_type* __tmp = __n;
	      __n = __n->_M_next();
	      this->_M_deallocate_node(__tmp);
	      --_M_element_count;
	      if (!__n)
		break;
	      __n_bkt = _M_bucket_index(__n);
	    }
	  while (__n != __last_n && __n_bkt == __bkt);
	  if (__is_bucket_begin)
	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
	  if (__n == __last_n)
	    break;
	  __is_bucket_begin = true;
	  __bkt = __n_bkt;
	}

      if (__n && (__n_bkt != __bkt || __is_bucket_begin))
	_M_buckets[__n_bkt] = __prev_n;
      __prev_n->_M_nxt = __n;
      return iterator(__n);
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    clear() noexcept
    {
      this->_M_deallocate_nodes(_M_begin());
      __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
      _M_element_count = 0;
      _M_before_begin._M_nxt = nullptr;
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    rehash(size_type __n)
    {
      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
      std::size_t __buckets
	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
		   __n);
      __buckets = _M_rehash_policy._M_next_bkt(__buckets);

      if (__buckets != _M_bucket_count)
	_M_rehash(__buckets, __saved_state);
      else
	// No rehash, restore previous state to keep a consistent state.
	_M_rehash_policy._M_reset(__saved_state);
    }

  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_rehash(size_type __n, const __rehash_state& __state)
    {
      __try
	{
	  _M_rehash_aux(__n, __unique_keys());
	}
      __catch(...)
	{
	  // A failure here means that buckets allocation failed.  We only
	  // have to restore hash policy previous state.
	  _M_rehash_policy._M_reset(__state);
	  __throw_exception_again;
	}
    }

  // Rehash when there is no equivalent elements.
  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_rehash_aux(size_type __n, std::true_type)
    {
      __bucket_type* __new_buckets = _M_allocate_buckets(__n);
      __node_type* __p = _M_begin();
      _M_before_begin._M_nxt = nullptr;
      std::size_t __bbegin_bkt = 0;
      while (__p)
	{
	  __node_type* __next = __p->_M_next();
	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
	  if (!__new_buckets[__bkt])
	    {
	      __p->_M_nxt = _M_before_begin._M_nxt;
	      _M_before_begin._M_nxt = __p;
	      __new_buckets[__bkt] = &_M_before_begin;
	      if (__p->_M_nxt)
		__new_buckets[__bbegin_bkt] = __p;
	      __bbegin_bkt = __bkt;
	    }
	  else
	    {
	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
	      __new_buckets[__bkt]->_M_nxt = __p;
	    }
	  __p = __next;
	}

      _M_deallocate_buckets();
      _M_bucket_count = __n;
      _M_buckets = __new_buckets;
    }

  // Rehash when there can be equivalent elements, preserve their relative
  // order.
  template<typename _Key, typename _Value,
	   typename _Alloc, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   typename _Traits>
    void
    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
    _M_rehash_aux(size_type __n, std::false_type)
    {
      __bucket_type* __new_buckets = _M_allocate_buckets(__n);

      __node_type* __p = _M_begin();
      _M_before_begin._M_nxt = nullptr;
      std::size_t __bbegin_bkt = 0;
      std::size_t __prev_bkt = 0;
      __node_type* __prev_p = nullptr;
      bool __check_bucket = false;

      while (__p)
	{
	  __node_type* __next = __p->_M_next();
	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);

	  if (__prev_p && __prev_bkt == __bkt)
	    {
	      // Previous insert was already in this bucket, we insert after
	      // the previously inserted one to preserve equivalent elements
	      // relative order.
	      __p->_M_nxt = __prev_p->_M_nxt;
	      __prev_p->_M_nxt = __p;

	      // Inserting after a node in a bucket require to check that we
	      // haven't change the bucket last node, in this case next
	      // bucket containing its before begin node must be updated. We
	      // schedule a check as soon as we move out of the sequence of
	      // equivalent nodes to limit the number of checks.
	      __check_bucket = true;
	    }
	  else
	    {
	      if (__check_bucket)
		{
		  // Check if we shall update the next bucket because of
		  // insertions into __prev_bkt bucket.
		  if (__prev_p->_M_nxt)
		    {
		      std::size_t __next_bkt
			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
							    __n);
		      if (__next_bkt != __prev_bkt)
			__new_buckets[__next_bkt] = __prev_p;
		    }
		  __check_bucket = false;
		}

	      if (!__new_buckets[__bkt])
		{
		  __p->_M_nxt = _M_before_begin._M_nxt;
		  _M_before_begin._M_nxt = __p;
		  __new_buckets[__bkt] = &_M_before_begin;
		  if (__p->_M_nxt)
		    __new_buckets[__bbegin_bkt] = __p;
		  __bbegin_bkt = __bkt;
		}
	      else
		{
		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
		  __new_buckets[__bkt]->_M_nxt = __p;
		}
	    }
	  __prev_p = __p;
	  __prev_bkt = __bkt;
	  __p = __next;
	}

      if (__check_bucket && __prev_p->_M_nxt)
	{
	  std::size_t __next_bkt
	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
	  if (__next_bkt != __prev_bkt)
	    __new_buckets[__next_bkt] = __prev_p;
	}

      _M_deallocate_buckets();
      _M_bucket_count = __n;
      _M_buckets = __new_buckets;
    }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // _HASHTABLE_H