aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/libgo/runtime/mheap.c
blob: 1b8ab79160610b9cbb5b7acd069fd69949786457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Page heap.
//
// See malloc.h for overview.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.

#include "runtime.h"
#include "arch.h"
#include "malloc.h"

static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
static bool MHeap_Grow(MHeap*, uintptr);
static void MHeap_FreeLocked(MHeap*, MSpan*);
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
static MSpan *BestFit(MSpan*, uintptr, MSpan*);

static void
RecordSpan(void *vh, byte *p)
{
	MHeap *h;
	MSpan *s;
	MSpan **all;
	uint32 cap;

	h = vh;
	s = (MSpan*)p;
	if(h->nspan >= h->nspancap) {
		cap = 64*1024/sizeof(all[0]);
		if(cap < h->nspancap*3/2)
			cap = h->nspancap*3/2;
		all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats.other_sys);
		if(all == nil)
			runtime_throw("runtime: cannot allocate memory");
		if(h->allspans) {
			runtime_memmove(all, h->allspans, h->nspancap*sizeof(all[0]));
			runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys);
		}
		h->allspans = all;
		h->nspancap = cap;
	}
	h->allspans[h->nspan++] = s;
}

// Initialize the heap; fetch memory using alloc.
void
runtime_MHeap_Init(MHeap *h)
{
	uint32 i;

	runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys);
	runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys);
	// h->mapcache needs no init
	for(i=0; i<nelem(h->free); i++)
		runtime_MSpanList_Init(&h->free[i]);
	runtime_MSpanList_Init(&h->large);
	for(i=0; i<nelem(h->central); i++)
		runtime_MCentral_Init(&h->central[i], i);
}

void
runtime_MHeap_MapSpans(MHeap *h)
{
	uintptr pagesize;
	uintptr n;

	// Map spans array, PageSize at a time.
	n = (uintptr)h->arena_used;
	n -= (uintptr)h->arena_start;
	n = n / PageSize * sizeof(h->spans[0]);
	n = ROUND(n, PageSize);
	pagesize = getpagesize();
	n = ROUND(n, pagesize);
	if(h->spans_mapped >= n)
		return;
	runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, &mstats.other_sys);
	h->spans_mapped = n;
}

// Allocate a new span of npage pages from the heap
// and record its size class in the HeapMap and HeapMapCache.
MSpan*
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct, int32 zeroed)
{
	MSpan *s;

	runtime_lock(h);
	mstats.heap_alloc += runtime_m()->mcache->local_cachealloc;
	runtime_m()->mcache->local_cachealloc = 0;
	s = MHeap_AllocLocked(h, npage, sizeclass);
	if(s != nil) {
		mstats.heap_inuse += npage<<PageShift;
		if(acct) {
			mstats.heap_objects++;
			mstats.heap_alloc += npage<<PageShift;
		}
	}
	runtime_unlock(h);
	if(s != nil && *(uintptr*)(s->start<<PageShift) != 0 && zeroed)
		runtime_memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
	return s;
}

static MSpan*
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
{
	uintptr n;
	MSpan *s, *t;
	PageID p;

	// Try in fixed-size lists up to max.
	for(n=npage; n < nelem(h->free); n++) {
		if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
			s = h->free[n].next;
			goto HaveSpan;
		}
	}

	// Best fit in list of large spans.
	if((s = MHeap_AllocLarge(h, npage)) == nil) {
		if(!MHeap_Grow(h, npage))
			return nil;
		if((s = MHeap_AllocLarge(h, npage)) == nil)
			return nil;
	}

HaveSpan:
	// Mark span in use.
	if(s->state != MSpanFree)
		runtime_throw("MHeap_AllocLocked - MSpan not free");
	if(s->npages < npage)
		runtime_throw("MHeap_AllocLocked - bad npages");
	runtime_MSpanList_Remove(s);
	s->state = MSpanInUse;
	mstats.heap_idle -= s->npages<<PageShift;
	mstats.heap_released -= s->npreleased<<PageShift;
	if(s->npreleased > 0) {
		// We have called runtime_SysUnused with these pages, and on
		// Unix systems it called madvise.  At this point at least
		// some BSD-based kernels will return these pages either as
		// zeros or with the old data.  For our caller, the first word
		// in the page indicates whether the span contains zeros or
		// not (this word was set when the span was freed by
		// MCentral_Free or runtime_MCentral_FreeSpan).  If the first
		// page in the span is returned as zeros, and some subsequent
		// page is returned with the old data, then we will be
		// returning a span that is assumed to be all zeros, but the
		// actual data will not be all zeros.  Avoid that problem by
		// explicitly marking the span as not being zeroed, just in
		// case.  The beadbead constant we use here means nothing, it
		// is just a unique constant not seen elsewhere in the
		// runtime, as a clue in case it turns up unexpectedly in
		// memory or in a stack trace.
		runtime_SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
		*(uintptr*)(s->start<<PageShift) = (uintptr)0xbeadbeadbeadbeadULL;
	}
	s->npreleased = 0;

	if(s->npages > npage) {
		// Trim extra and put it back in the heap.
		t = runtime_FixAlloc_Alloc(&h->spanalloc);
		runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
		s->npages = npage;
		p = t->start;
		p -= ((uintptr)h->arena_start>>PageShift);
		if(p > 0)
			h->spans[p-1] = s;
		h->spans[p] = t;
		h->spans[p+t->npages-1] = t;
		*(uintptr*)(t->start<<PageShift) = *(uintptr*)(s->start<<PageShift);  // copy "needs zeroing" mark
		t->state = MSpanInUse;
		MHeap_FreeLocked(h, t);
		t->unusedsince = s->unusedsince; // preserve age
	}
	s->unusedsince = 0;

	// Record span info, because gc needs to be
	// able to map interior pointer to containing span.
	s->sizeclass = sizeclass;
	s->elemsize = (sizeclass==0 ? s->npages<<PageShift : (uintptr)runtime_class_to_size[sizeclass]);
	s->types.compression = MTypes_Empty;
	p = s->start;
	p -= ((uintptr)h->arena_start>>PageShift);
	for(n=0; n<npage; n++)
		h->spans[p+n] = s;
	return s;
}

// Allocate a span of exactly npage pages from the list of large spans.
static MSpan*
MHeap_AllocLarge(MHeap *h, uintptr npage)
{
	return BestFit(&h->large, npage, nil);
}

// Search list for smallest span with >= npage pages.
// If there are multiple smallest spans, take the one
// with the earliest starting address.
static MSpan*
BestFit(MSpan *list, uintptr npage, MSpan *best)
{
	MSpan *s;

	for(s=list->next; s != list; s=s->next) {
		if(s->npages < npage)
			continue;
		if(best == nil
		|| s->npages < best->npages
		|| (s->npages == best->npages && s->start < best->start))
			best = s;
	}
	return best;
}

// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
static bool
MHeap_Grow(MHeap *h, uintptr npage)
{
	uintptr ask;
	void *v;
	MSpan *s;
	PageID p;

	// Ask for a big chunk, to reduce the number of mappings
	// the operating system needs to track; also amortizes
	// the overhead of an operating system mapping.
	// Allocate a multiple of 64kB (16 pages).
	npage = (npage+15)&~15;
	ask = npage<<PageShift;
	if(ask < HeapAllocChunk)
		ask = HeapAllocChunk;

	v = runtime_MHeap_SysAlloc(h, ask);
	if(v == nil) {
		if(ask > (npage<<PageShift)) {
			ask = npage<<PageShift;
			v = runtime_MHeap_SysAlloc(h, ask);
		}
		if(v == nil) {
			runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
			return false;
		}
	}

	// Create a fake "in use" span and free it, so that the
	// right coalescing happens.
	s = runtime_FixAlloc_Alloc(&h->spanalloc);
	runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
	p = s->start;
	p -= ((uintptr)h->arena_start>>PageShift);
	h->spans[p] = s;
	h->spans[p + s->npages - 1] = s;
	s->state = MSpanInUse;
	MHeap_FreeLocked(h, s);
	return true;
}

// Look up the span at the given address.
// Address is guaranteed to be in map
// and is guaranteed to be start or end of span.
MSpan*
runtime_MHeap_Lookup(MHeap *h, void *v)
{
	uintptr p;
	
	p = (uintptr)v;
	p -= (uintptr)h->arena_start;
	return h->spans[p >> PageShift];
}

// Look up the span at the given address.
// Address is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans.  Free spans may have
// other garbage in their middles, so we have to
// check for that.
MSpan*
runtime_MHeap_LookupMaybe(MHeap *h, void *v)
{
	MSpan *s;
	PageID p, q;

	if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
		return nil;
	p = (uintptr)v>>PageShift;
	q = p;
	q -= (uintptr)h->arena_start >> PageShift;
	s = h->spans[q];
	if(s == nil || p < s->start || (byte*)v >= s->limit || s->state != MSpanInUse)
		return nil;
	return s;
}

// Free the span back into the heap.
void
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
{
	runtime_lock(h);
	mstats.heap_alloc += runtime_m()->mcache->local_cachealloc;
	runtime_m()->mcache->local_cachealloc = 0;
	mstats.heap_inuse -= s->npages<<PageShift;
	if(acct) {
		mstats.heap_alloc -= s->npages<<PageShift;
		mstats.heap_objects--;
	}
	MHeap_FreeLocked(h, s);
	runtime_unlock(h);
}

static void
MHeap_FreeLocked(MHeap *h, MSpan *s)
{
	uintptr *sp, *tp;
	MSpan *t;
	PageID p;

	s->types.compression = MTypes_Empty;

	if(s->state != MSpanInUse || s->ref != 0) {
		runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref);
		runtime_throw("MHeap_FreeLocked - invalid free");
	}
	mstats.heap_idle += s->npages<<PageShift;
	s->state = MSpanFree;
	runtime_MSpanList_Remove(s);
	sp = (uintptr*)(s->start<<PageShift);
	// Stamp newly unused spans. The scavenger will use that
	// info to potentially give back some pages to the OS.
	s->unusedsince = runtime_nanotime();
	s->npreleased = 0;

	// Coalesce with earlier, later spans.
	p = s->start;
	p -= (uintptr)h->arena_start >> PageShift;
	if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse) {
		if(t->npreleased == 0) {  // cant't touch this otherwise
			tp = (uintptr*)(t->start<<PageShift);
			*tp |= *sp;	// propagate "needs zeroing" mark
		}
		s->start = t->start;
		s->npages += t->npages;
		s->npreleased = t->npreleased; // absorb released pages
		p -= t->npages;
		h->spans[p] = s;
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
	}
	if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse) {
		if(t->npreleased == 0) {  // cant't touch this otherwise
			tp = (uintptr*)(t->start<<PageShift);
			*sp |= *tp;	// propagate "needs zeroing" mark
		}
		s->npages += t->npages;
		s->npreleased += t->npreleased;
		h->spans[p + s->npages - 1] = s;
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
	}

	// Insert s into appropriate list.
	if(s->npages < nelem(h->free))
		runtime_MSpanList_Insert(&h->free[s->npages], s);
	else
		runtime_MSpanList_Insert(&h->large, s);
}

static void
forcegchelper(void *vnote)
{
	Note *note = (Note*)vnote;

	runtime_gc(1);
	runtime_notewakeup(note);
}

static uintptr
scavengelist(MSpan *list, uint64 now, uint64 limit)
{
	uintptr released, sumreleased, start, end, pagesize;
	MSpan *s;

	if(runtime_MSpanList_IsEmpty(list))
		return 0;

	sumreleased = 0;
	for(s=list->next; s != list; s=s->next) {
		if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
			released = (s->npages - s->npreleased) << PageShift;
			mstats.heap_released += released;
			sumreleased += released;
			s->npreleased = s->npages;

			start = s->start << PageShift;
			end = start + (s->npages << PageShift);

			// Round start up and end down to ensure we
			// are acting on entire pages.
			pagesize = getpagesize();
			start = ROUND(start, pagesize);
			end &= ~(pagesize - 1);
			if(end > start)
				runtime_SysUnused((void*)start, end - start);
		}
	}
	return sumreleased;
}

static void
scavenge(int32 k, uint64 now, uint64 limit)
{
	uint32 i;
	uintptr sumreleased;
	MHeap *h;
	
	h = &runtime_mheap;
	sumreleased = 0;
	for(i=0; i < nelem(h->free); i++)
		sumreleased += scavengelist(&h->free[i], now, limit);
	sumreleased += scavengelist(&h->large, now, limit);

	if(runtime_debug.gctrace > 0) {
		if(sumreleased > 0)
			runtime_printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
		runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
			k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
			mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
	}
}

// Release (part of) unused memory to OS.
// Goroutine created at startup.
// Loop forever.
void
runtime_MHeap_Scavenger(void* dummy)
{
	G *g;
	MHeap *h;
	uint64 tick, now, forcegc, limit;
	uint32 k;
	Note note, *notep;

	USED(dummy);

	g = runtime_g();
	g->issystem = true;
	g->isbackground = true;

	// If we go two minutes without a garbage collection, force one to run.
	forcegc = 2*60*1e9;
	// If a span goes unused for 5 minutes after a garbage collection,
	// we hand it back to the operating system.
	limit = 5*60*1e9;
	// Make wake-up period small enough for the sampling to be correct.
	if(forcegc < limit)
		tick = forcegc/2;
	else
		tick = limit/2;

	h = &runtime_mheap;
	for(k=0;; k++) {
		runtime_noteclear(&note);
		runtime_notetsleepg(&note, tick);

		runtime_lock(h);
		now = runtime_nanotime();
		if(now - mstats.last_gc > forcegc) {
			runtime_unlock(h);
			// The scavenger can not block other goroutines,
			// otherwise deadlock detector can fire spuriously.
			// GC blocks other goroutines via the runtime_worldsema.
			runtime_noteclear(&note);
			notep = &note;
			__go_go(forcegchelper, (void*)notep);
			runtime_notetsleepg(&note, -1);
			if(runtime_debug.gctrace > 0)
				runtime_printf("scvg%d: GC forced\n", k);
			runtime_lock(h);
			now = runtime_nanotime();
		}
		scavenge(k, now, limit);
		runtime_unlock(h);
	}
}

void runtime_debug_freeOSMemory(void) __asm__("runtime_debug.freeOSMemory");

void
runtime_debug_freeOSMemory(void)
{
	runtime_gc(1);
	runtime_lock(&runtime_mheap);
	scavenge(-1, ~(uintptr)0, 0);
	runtime_unlock(&runtime_mheap);
}

// Initialize a new span with the given start and npages.
void
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
{
	span->next = nil;
	span->prev = nil;
	span->start = start;
	span->npages = npages;
	span->freelist = nil;
	span->ref = 0;
	span->sizeclass = 0;
	span->elemsize = 0;
	span->state = 0;
	span->unusedsince = 0;
	span->npreleased = 0;
	span->types.compression = MTypes_Empty;
}

// Initialize an empty doubly-linked list.
void
runtime_MSpanList_Init(MSpan *list)
{
	list->state = MSpanListHead;
	list->next = list;
	list->prev = list;
}

void
runtime_MSpanList_Remove(MSpan *span)
{
	if(span->prev == nil && span->next == nil)
		return;
	span->prev->next = span->next;
	span->next->prev = span->prev;
	span->prev = nil;
	span->next = nil;
}

bool
runtime_MSpanList_IsEmpty(MSpan *list)
{
	return list->next == list;
}

void
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
{
	if(span->next != nil || span->prev != nil) {
		runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
		runtime_throw("MSpanList_Insert");
	}
	span->next = list->next;
	span->prev = list;
	span->next->prev = span;
	span->prev->next = span;
}