aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/libgo/runtime/lock_futex.c
blob: fa2701328958ae94a9b0891b883cc350a1baf7dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build dragonfly freebsd linux

#include "runtime.h"

// This implementation depends on OS-specific implementations of
//
//	runtime_futexsleep(uint32 *addr, uint32 val, int64 ns)
//		Atomically,
//			if(*addr == val) sleep
//		Might be woken up spuriously; that's allowed.
//		Don't sleep longer than ns; ns < 0 means forever.
//
//	runtime_futexwakeup(uint32 *addr, uint32 cnt)
//		If any procs are sleeping on addr, wake up at most cnt.

enum
{
	MUTEX_UNLOCKED = 0,
	MUTEX_LOCKED = 1,
	MUTEX_SLEEPING = 2,

	ACTIVE_SPIN = 4,
	ACTIVE_SPIN_CNT = 30,
	PASSIVE_SPIN = 1,
};

// Possible lock states are MUTEX_UNLOCKED, MUTEX_LOCKED and MUTEX_SLEEPING.
// MUTEX_SLEEPING means that there is presumably at least one sleeping thread.
// Note that there can be spinning threads during all states - they do not
// affect mutex's state.
void
runtime_lock(Lock *l)
{
	uint32 i, v, wait, spin;

	if(runtime_m()->locks++ < 0)
		runtime_throw("runtime_lock: lock count");

	// Speculative grab for lock.
	v = runtime_xchg((uint32*)&l->key, MUTEX_LOCKED);
	if(v == MUTEX_UNLOCKED)
		return;

	// wait is either MUTEX_LOCKED or MUTEX_SLEEPING
	// depending on whether there is a thread sleeping
	// on this mutex.  If we ever change l->key from
	// MUTEX_SLEEPING to some other value, we must be
	// careful to change it back to MUTEX_SLEEPING before
	// returning, to ensure that the sleeping thread gets
	// its wakeup call.
	wait = v;

	// On uniprocessor's, no point spinning.
	// On multiprocessors, spin for ACTIVE_SPIN attempts.
	spin = 0;
	if(runtime_ncpu > 1)
		spin = ACTIVE_SPIN;

	for(;;) {
		// Try for lock, spinning.
		for(i = 0; i < spin; i++) {
			while(l->key == MUTEX_UNLOCKED)
				if(runtime_cas((uint32*)&l->key, MUTEX_UNLOCKED, wait))
					return;
			runtime_procyield(ACTIVE_SPIN_CNT);
		}

		// Try for lock, rescheduling.
		for(i=0; i < PASSIVE_SPIN; i++) {
			while(l->key == MUTEX_UNLOCKED)
				if(runtime_cas((uint32*)&l->key, MUTEX_UNLOCKED, wait))
					return;
			runtime_osyield();
		}

		// Sleep.
		v = runtime_xchg((uint32*)&l->key, MUTEX_SLEEPING);
		if(v == MUTEX_UNLOCKED)
			return;
		wait = MUTEX_SLEEPING;
		runtime_futexsleep((uint32*)&l->key, MUTEX_SLEEPING, -1);
	}
}

void
runtime_unlock(Lock *l)
{
	uint32 v;

	v = runtime_xchg((uint32*)&l->key, MUTEX_UNLOCKED);
	if(v == MUTEX_UNLOCKED)
		runtime_throw("unlock of unlocked lock");
	if(v == MUTEX_SLEEPING)
		runtime_futexwakeup((uint32*)&l->key, 1);

	if(--runtime_m()->locks < 0)
		runtime_throw("runtime_unlock: lock count");
}

// One-time notifications.
void
runtime_noteclear(Note *n)
{
	n->key = 0;
}

void
runtime_notewakeup(Note *n)
{
	uint32 old;

	old = runtime_xchg((uint32*)&n->key, 1);
	if(old != 0) {
		runtime_printf("notewakeup - double wakeup (%d)\n", old);
		runtime_throw("notewakeup - double wakeup");
	}
	runtime_futexwakeup((uint32*)&n->key, 1);
}

void
runtime_notesleep(Note *n)
{
  /* For gccgo it's OK to sleep in non-g0, and it happens in
     stoptheworld because we have not implemented preemption.

	if(runtime_g() != runtime_m()->g0)
		runtime_throw("notesleep not on g0");
  */
	while(runtime_atomicload((uint32*)&n->key) == 0)
		runtime_futexsleep((uint32*)&n->key, 0, -1);
}

static bool
notetsleep(Note *n, int64 ns, int64 deadline, int64 now)
{
	// Conceptually, deadline and now are local variables.
	// They are passed as arguments so that the space for them
	// does not count against our nosplit stack sequence.

	if(ns < 0) {
		while(runtime_atomicload((uint32*)&n->key) == 0)
			runtime_futexsleep((uint32*)&n->key, 0, -1);
		return true;
	}

	if(runtime_atomicload((uint32*)&n->key) != 0)
		return true;

	deadline = runtime_nanotime() + ns;
	for(;;) {
		runtime_futexsleep((uint32*)&n->key, 0, ns);
		if(runtime_atomicload((uint32*)&n->key) != 0)
			break;
		now = runtime_nanotime();
		if(now >= deadline)
			break;
		ns = deadline - now;
	}
	return runtime_atomicload((uint32*)&n->key) != 0;
}

bool
runtime_notetsleep(Note *n, int64 ns)
{
	bool res;

	if(runtime_g() != runtime_m()->g0 && !runtime_m()->gcing)
		runtime_throw("notetsleep not on g0");

	res = notetsleep(n, ns, 0, 0);
	return res;
}

// same as runtime_notetsleep, but called on user g (not g0)
// calls only nosplit functions between entersyscallblock/exitsyscall
bool
runtime_notetsleepg(Note *n, int64 ns)
{
	bool res;

	if(runtime_g() == runtime_m()->g0)
		runtime_throw("notetsleepg on g0");

	runtime_entersyscallblock();
	res = notetsleep(n, ns, 0, 0);
	runtime_exitsyscall();
	return res;
}