aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/graphite-clast-to-gimple.c
blob: 134388c14f9030bba22bdc21b0cf1e10ebf8d502 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
/* Translation of CLAST (CLooG AST) to Gimple.
   Copyright (C) 2009-2014 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <sebastian.pop@amd.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"

#ifdef HAVE_cloog
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_map.h>
#include <isl/list.h>
#include <isl/constraint.h>
#include <isl/ilp.h>
#include <isl/aff.h>
#include <cloog/cloog.h>
#include <cloog/isl/domain.h>
#ifdef HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE
#include <isl/deprecated/int.h>
#include <isl/lp.h>
#include <isl/deprecated/ilp_int.h>
#endif
#endif

#include "system.h"
#include "coretypes.h"
#include "diagnostic-core.h"
#include "tree.h"
#include "basic-block.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-ssa.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "sese.h"

#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "graphite-poly.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-htab.h"

typedef const struct clast_expr *clast_name_p;

#ifndef CLOOG_LANGUAGE_C
#define CLOOG_LANGUAGE_C LANGUAGE_C
#endif


/* Converts a GMP constant VAL to a tree and returns it.  */

static tree
gmp_cst_to_tree (tree type, mpz_t val)
{
  tree t = type ? type : integer_type_node;
  mpz_t tmp;
  double_int di;

  mpz_init (tmp);
  mpz_set (tmp, val);
  di = mpz_get_double_int (t, tmp, true);
  mpz_clear (tmp);

  return double_int_to_tree (t, di);
}

/* Sets RES to the min of V1 and V2.  */

static void
value_min (mpz_t res, mpz_t v1, mpz_t v2)
{
  if (mpz_cmp (v1, v2) < 0)
    mpz_set (res, v1);
  else
    mpz_set (res, v2);
}

/* Sets RES to the max of V1 and V2.  */

static void
value_max (mpz_t res, mpz_t v1, mpz_t v2)
{
  if (mpz_cmp (v1, v2) < 0)
    mpz_set (res, v2);
  else
    mpz_set (res, v1);
}


/* This flag is set when an error occurred during the translation of
   CLAST to Gimple.  */
static bool gloog_error;

/* Verifies properties that GRAPHITE should maintain during translation.  */

static inline void
graphite_verify (void)
{
#ifdef ENABLE_CHECKING
  verify_loop_structure ();
  verify_loop_closed_ssa (true);
#endif
}

/* Stores the INDEX in a vector and the loop nesting LEVEL for a given
   clast NAME.  BOUND_ONE and BOUND_TWO represent the exact lower and
   upper bounds that can be inferred from the polyhedral representation.  */

typedef struct clast_name_index {
  int index;
  int level;
  mpz_t bound_one, bound_two;
  const char *name;
  /* If free_name is set, the content of name was allocated by us and needs
     to be freed.  */
  char *free_name;
} *clast_name_index_p;

/* Helper for hashing clast_name_index.  */

struct clast_index_hasher
{
  typedef clast_name_index value_type;
  typedef clast_name_index compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
  static inline void remove (value_type *);
};

/* Computes a hash function for database element E.  */

inline hashval_t
clast_index_hasher::hash (const value_type *e)
{
  hashval_t hash = 0;

  int length = strlen (e->name);
  int i;

  for (i = 0; i < length; ++i)
    hash = hash | (e->name[i] << (i % 4));

  return hash;
}

/* Compares database elements ELT1 and ELT2.  */

inline bool
clast_index_hasher::equal (const value_type *elt1, const compare_type *elt2)
{
  return strcmp (elt1->name, elt2->name) == 0;
}

/* Free the memory taken by a clast_name_index struct.  */

inline void
clast_index_hasher::remove (value_type *c)
{
  if (c->free_name)
    free (c->free_name);
  mpz_clear (c->bound_one);
  mpz_clear (c->bound_two);
  free (c);
}

typedef hash_table <clast_index_hasher> clast_index_htab_type;

/* Returns a pointer to a new element of type clast_name_index_p built
   from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO.  */

static inline clast_name_index_p
new_clast_name_index (const char *name, int index, int level,
		      mpz_t bound_one, mpz_t bound_two)
{
  clast_name_index_p res = XNEW (struct clast_name_index);
  char *new_name = XNEWVEC (char, strlen (name) + 1);
  strcpy (new_name, name);

  res->name = new_name;
  res->free_name = new_name;
  res->level = level;
  res->index = index;
  mpz_init (res->bound_one);
  mpz_init (res->bound_two);
  mpz_set (res->bound_one, bound_one);
  mpz_set (res->bound_two, bound_two);
  return res;
}

/* For a given clast NAME, returns -1 if NAME is not in the
   INDEX_TABLE, otherwise returns the loop level for the induction
   variable NAME, or if it is a parameter, the parameter number in the
   vector of parameters.  */

static inline int
clast_name_to_level (clast_name_p name, clast_index_htab_type index_table)
{
  struct clast_name_index tmp;
  clast_name_index **slot;

  gcc_assert (name->type == clast_expr_name);
  tmp.name = ((const struct clast_name *) name)->name;
  tmp.free_name = NULL;

  slot = index_table.find_slot (&tmp, NO_INSERT);

  if (slot && *slot)
    return ((struct clast_name_index *) *slot)->level;

  return -1;
}

/* For a given clast NAME, returns -1 if it does not correspond to any
   parameter, or otherwise, returns the index in the PARAMS or
   SCATTERING_DIMENSIONS vector.  */

static inline int
clast_name_to_index (struct clast_name *name, clast_index_htab_type index_table)
{
  struct clast_name_index tmp;
  clast_name_index **slot;

  tmp.name = ((const struct clast_name *) name)->name;
  tmp.free_name = NULL;

  slot = index_table.find_slot (&tmp, NO_INSERT);

  if (slot && *slot)
    return (*slot)->index;

  return -1;
}

/* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE
   and BOUND_TWO stored in the INDEX_TABLE.  Returns true when NAME has been
   found in the INDEX_TABLE, false otherwise.  */

static inline bool
clast_name_to_lb_ub (struct clast_name *name, clast_index_htab_type index_table,
		     mpz_t bound_one, mpz_t bound_two)
{
  struct clast_name_index tmp;
  clast_name_index **slot;

  tmp.name = name->name;
  tmp.free_name = NULL;

  slot = index_table.find_slot (&tmp, NO_INSERT);

  if (slot && *slot)
    {
      mpz_set (bound_one, ((struct clast_name_index *) *slot)->bound_one);
      mpz_set (bound_two, ((struct clast_name_index *) *slot)->bound_two);
      return true;
    }

  return false;
}

/* Records in INDEX_TABLE the INDEX and LEVEL for NAME.  */

static inline void
save_clast_name_index (clast_index_htab_type index_table, const char *name,
		       int index, int level, mpz_t bound_one, mpz_t bound_two)
{
  struct clast_name_index tmp;
  clast_name_index **slot;

  tmp.name = name;
  tmp.free_name = NULL;
  slot = index_table.find_slot (&tmp, INSERT);

  if (slot)
    {
      free (*slot);

      *slot = new_clast_name_index (name, index, level, bound_one, bound_two);
    }
}


/* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree
   induction variable in NEWIVS.

   PARAMS_INDEX binds CLooG's parameter name to the index of the tree
   parameter in PARAMS.  */

typedef struct ivs_params {
  vec<tree> params, *newivs;
  clast_index_htab_type newivs_index, params_index;
  sese region;
} *ivs_params_p;

/* Returns the tree variable from the name NAME that was given in
   Cloog representation.  */

static tree
clast_name_to_gcc (struct clast_name *name, ivs_params_p ip)
{
  int index;

  if (ip->params.exists () && ip->params_index.is_created ())
    {
      index = clast_name_to_index (name, ip->params_index);

      if (index >= 0)
	return ip->params[index];
    }

  gcc_assert (ip->newivs && ip->newivs_index.is_created ());
  index = clast_name_to_index (name, ip->newivs_index);
  gcc_assert (index >= 0);

  return (*ip->newivs)[index];
}

/* Returns the maximal precision type for expressions TYPE1 and TYPE2.  */

static tree
max_precision_type (tree type1, tree type2)
{
  enum machine_mode mode;
  int p1, p2, precision;
  tree type;

  if (POINTER_TYPE_P (type1))
    return type1;

  if (POINTER_TYPE_P (type2))
    return type2;

  if (TYPE_UNSIGNED (type1)
      && TYPE_UNSIGNED (type2))
    return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;

  p1 = TYPE_PRECISION (type1);
  p2 = TYPE_PRECISION (type2);

  if (p1 > p2)
    precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
  else
    precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;

  if (precision > BITS_PER_WORD)
    {
      gloog_error = true;
      return integer_type_node;
    }

  mode = smallest_mode_for_size (precision, MODE_INT);
  precision = GET_MODE_PRECISION (mode);
  type = build_nonstandard_integer_type (precision, false);

  if (!type)
    {
      gloog_error = true;
      return integer_type_node;
    }

  return type;
}

static tree
clast_to_gcc_expression (tree, struct clast_expr *, ivs_params_p);

/* Converts a Cloog reduction expression R with reduction operation OP
   to a GCC expression tree of type TYPE.  */

static tree
clast_to_gcc_expression_red (tree type, enum tree_code op,
			     struct clast_reduction *r, ivs_params_p ip)
{
  int i;
  tree res = clast_to_gcc_expression (type, r->elts[0], ip);
  tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;

  for (i = 1; i < r->n; i++)
    {
      tree t = clast_to_gcc_expression (operand_type, r->elts[i], ip);
      res = fold_build2 (op, type, res, t);
    }

  return res;
}

/* Converts a Cloog AST expression E back to a GCC expression tree of
   type TYPE.  */

static tree
clast_to_gcc_expression (tree type, struct clast_expr *e, ivs_params_p ip)
{
  switch (e->type)
    {
    case clast_expr_name:
      {
	return clast_name_to_gcc ((struct clast_name *) e, ip);
      }
    case clast_expr_term:
      {
	struct clast_term *t = (struct clast_term *) e;

	if (t->var)
	  {
	    if (mpz_cmp_si (t->val, 1) == 0)
	      {
		tree name = clast_to_gcc_expression (type, t->var, ip);

		if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
		  name = convert_to_ptrofftype (name);

		name = fold_convert (type, name);
		return name;
	      }

	    else if (mpz_cmp_si (t->val, -1) == 0)
	      {
		tree name = clast_to_gcc_expression (type, t->var, ip);

		if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
		  name = convert_to_ptrofftype (name);

		name = fold_convert (type, name);

		return fold_build1 (NEGATE_EXPR, type, name);
	      }
	    else
	      {
		tree name = clast_to_gcc_expression (type, t->var, ip);
		tree cst = gmp_cst_to_tree (type, t->val);

		if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
		  name = convert_to_ptrofftype (name);

		name = fold_convert (type, name);

		if (!POINTER_TYPE_P (type))
		  return fold_build2 (MULT_EXPR, type, cst, name);

		gloog_error = true;
		return cst;
	      }
	  }
	else
	  return gmp_cst_to_tree (type, t->val);
      }

    case clast_expr_red:
      {
        struct clast_reduction *r = (struct clast_reduction *) e;

        switch (r->type)
          {
	  case clast_red_sum:
	    return clast_to_gcc_expression_red
	      (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
	       r, ip);

	  case clast_red_min:
	    return clast_to_gcc_expression_red (type, MIN_EXPR, r, ip);

	  case clast_red_max:
	    return clast_to_gcc_expression_red (type, MAX_EXPR, r, ip);

	  default:
	    gcc_unreachable ();
          }
        break;
      }

    case clast_expr_bin:
      {
	struct clast_binary *b = (struct clast_binary *) e;
	struct clast_expr *lhs = (struct clast_expr *) b->LHS;
	tree tl = clast_to_gcc_expression (type, lhs, ip);
	tree tr = gmp_cst_to_tree (type, b->RHS);

	switch (b->type)
	  {
	  case clast_bin_fdiv:
	    return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);

	  case clast_bin_cdiv:
	    return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);

	  case clast_bin_div:
	    return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);

	  case clast_bin_mod:
	    return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);

	  default:
	    gcc_unreachable ();
	  }
      }

    default:
      gcc_unreachable ();
    }

  return NULL_TREE;
}

/* Return a type that could represent the values between BOUND_ONE and
   BOUND_TWO.  */

static tree
type_for_interval (mpz_t bound_one, mpz_t bound_two)
{
  bool unsigned_p;
  tree type;
  enum machine_mode mode;
  int wider_precision;
  int precision = MAX (mpz_sizeinbase (bound_one, 2),
		       mpz_sizeinbase (bound_two, 2));

  if (precision > BITS_PER_WORD)
    {
      gloog_error = true;
      return integer_type_node;
    }

  if (mpz_cmp (bound_one, bound_two) <= 0)
    unsigned_p = (mpz_sgn (bound_one) >= 0);
  else
    unsigned_p = (mpz_sgn (bound_two) >= 0);

  mode = smallest_mode_for_size (precision, MODE_INT);
  wider_precision = GET_MODE_PRECISION (mode);

  /* As we want to generate signed types as much as possible, try to
     fit the interval [bound_one, bound_two] in a signed type.  For example,
     supposing that we have the interval [0, 100], instead of
     generating unsigned char, we want to generate a signed char.  */
  if (unsigned_p && precision < wider_precision)
    unsigned_p = false;

  type = build_nonstandard_integer_type (wider_precision, unsigned_p);

  if (!type)
    {
      gloog_error = true;
      return integer_type_node;
    }

  return type;
}

/* Return a type that could represent the integer value VAL, or
   otherwise return NULL_TREE.  */

static tree
type_for_value (mpz_t val)
{
  return type_for_interval (val, val);
}

static tree
type_for_clast_expr (struct clast_expr *, ivs_params_p, mpz_t, mpz_t);

/* Return the type for the clast_term T.  Initializes BOUND_ONE and
   BOUND_TWO to the bounds of the term.  */

static tree
type_for_clast_term (struct clast_term *t, ivs_params_p ip, mpz_t bound_one,
		     mpz_t bound_two)
{
  tree type;
  gcc_assert (t->expr.type == clast_expr_term);

  if (!t->var)
    {
      mpz_set (bound_one, t->val);
      mpz_set (bound_two, t->val);
      return type_for_value (t->val);
    }

  type = type_for_clast_expr (t->var, ip, bound_one, bound_two);

  mpz_mul (bound_one, bound_one, t->val);
  mpz_mul (bound_two, bound_two, t->val);

  return max_precision_type (type, type_for_interval (bound_one, bound_two));
}

/* Return the type for the clast_reduction R.  Initializes BOUND_ONE
   and BOUND_TWO to the bounds of the reduction expression.  */

static tree
type_for_clast_red (struct clast_reduction *r, ivs_params_p ip,
		    mpz_t bound_one, mpz_t bound_two)
{
  int i;
  tree type = type_for_clast_expr (r->elts[0], ip, bound_one, bound_two);
  mpz_t b1, b2, m1, m2;

  if (r->n == 1)
    return type;

  mpz_init (b1);
  mpz_init (b2);
  mpz_init (m1);
  mpz_init (m2);

  for (i = 1; i < r->n; i++)
    {
      tree t = type_for_clast_expr (r->elts[i], ip, b1, b2);
      type = max_precision_type (type, t);

      switch (r->type)
	{
	case clast_red_sum:
	  value_min (m1, bound_one, bound_two);
	  value_min (m2, b1, b2);
	  mpz_add (bound_one, m1, m2);

	  value_max (m1, bound_one, bound_two);
	  value_max (m2, b1, b2);
	  mpz_add (bound_two, m1, m2);
	  break;

	case clast_red_min:
	  value_min (bound_one, bound_one, bound_two);
	  value_min (bound_two, b1, b2);
	  break;

	case clast_red_max:
	  value_max (bound_one, bound_one, bound_two);
	  value_max (bound_two, b1, b2);
	  break;

	default:
	  gcc_unreachable ();
	  break;
	}
    }

  mpz_clear (b1);
  mpz_clear (b2);
  mpz_clear (m1);
  mpz_clear (m2);

  /* Return a type that can represent the result of the reduction.  */
  return max_precision_type (type, type_for_interval (bound_one, bound_two));
}

/* Return the type for the clast_binary B used in STMT.  */

static tree
type_for_clast_bin (struct clast_binary *b, ivs_params_p ip, mpz_t bound_one,
		    mpz_t bound_two)
{
  mpz_t one;
  tree l = type_for_clast_expr ((struct clast_expr *) b->LHS, ip,
				bound_one, bound_two);
  tree r = type_for_value (b->RHS);
  tree type = max_precision_type (l, r);

  switch (b->type)
    {
    case clast_bin_fdiv:
      mpz_mdiv (bound_one, bound_one, b->RHS);
      mpz_mdiv (bound_two, bound_two, b->RHS);
      break;

    case clast_bin_cdiv:
      mpz_mdiv (bound_one, bound_one, b->RHS);
      mpz_mdiv (bound_two, bound_two, b->RHS);
      mpz_init (one);
      mpz_add (bound_one, bound_one, one);
      mpz_add (bound_two, bound_two, one);
      mpz_clear (one);
      break;

    case clast_bin_div:
      mpz_div (bound_one, bound_one, b->RHS);
      mpz_div (bound_two, bound_two, b->RHS);
      break;

    case clast_bin_mod:
      mpz_mod (bound_one, bound_one, b->RHS);
      mpz_mod (bound_two, bound_two, b->RHS);
      break;

    default:
      gcc_unreachable ();
    }

  /* Return a type that can represent the result of the reduction.  */
  return max_precision_type (type, type_for_interval (bound_one, bound_two));
}

/* Return the type for the clast_name NAME.  Initializes BOUND_ONE and
   BOUND_TWO to the bounds of the term.  */

static tree
type_for_clast_name (struct clast_name *name, ivs_params_p ip, mpz_t bound_one,
		     mpz_t bound_two)
{
  bool found = false;

  if (ip->params.exists () && ip->params_index.is_created ())
    found = clast_name_to_lb_ub (name, ip->params_index, bound_one, bound_two);

  if (!found)
    {
      gcc_assert (ip->newivs && ip->newivs_index.is_created ());
      found = clast_name_to_lb_ub (name, ip->newivs_index, bound_one,
				   bound_two);
      gcc_assert (found);
    }

    return TREE_TYPE (clast_name_to_gcc (name, ip));
}

/* Returns the type for the CLAST expression E when used in statement
   STMT.  */

static tree
type_for_clast_expr (struct clast_expr *e, ivs_params_p ip, mpz_t bound_one,
		     mpz_t bound_two)
{
  switch (e->type)
    {
    case clast_expr_term:
      return type_for_clast_term ((struct clast_term *) e, ip,
				  bound_one, bound_two);

    case clast_expr_red:
      return type_for_clast_red ((struct clast_reduction *) e, ip,
				 bound_one, bound_two);

    case clast_expr_bin:
      return type_for_clast_bin ((struct clast_binary *) e, ip,
				 bound_one, bound_two);

    case clast_expr_name:
      return type_for_clast_name ((struct clast_name *) e, ip,
				 bound_one, bound_two);

    default:
      gcc_unreachable ();
    }

  return NULL_TREE;
}

/* Returns true if the clast expression E is a constant with VALUE.  */

static bool
clast_expr_const_value_p (struct clast_expr *e, int value)
{
  struct clast_term *t;
  if (e->type != clast_expr_term)
    return false;
  t = (struct clast_term *)e;
  if (t->var)
    return false;
  return 0 == mpz_cmp_si (t->val, value);
}

/* Translates a clast equation CLEQ to a tree.  */

static tree
graphite_translate_clast_equation (struct clast_equation *cleq,
				   ivs_params_p ip)
{
  enum tree_code comp;
  tree type, lhs, rhs, ltype, rtype;
  mpz_t bound_one, bound_two;
  struct clast_expr *clhs, *crhs;

  clhs = cleq->LHS;
  crhs = cleq->RHS;
  if (cleq->sign == 0)
    comp = EQ_EXPR;
  else if (cleq->sign > 0)
    comp = GE_EXPR;
  else
    comp = LE_EXPR;

  /* Special cases to reduce range of arguments to hopefully
     don't need types with larger precision than the input.  */
  if (crhs->type == clast_expr_red
      && comp != EQ_EXPR)
    {
      struct clast_reduction *r = (struct clast_reduction *) crhs;
      /* X >= A+1 --> X > A and
         X <= A-1 --> X < A  */
      if (r->n == 2
	  && r->type == clast_red_sum
	  && clast_expr_const_value_p (r->elts[1], comp == GE_EXPR ? 1 : -1))
	{
	  crhs = r->elts[0];
	  comp = comp == GE_EXPR ? GT_EXPR : LT_EXPR;
	}
    }

  mpz_init (bound_one);
  mpz_init (bound_two);

  ltype = type_for_clast_expr (clhs, ip, bound_one, bound_two);
  rtype = type_for_clast_expr (crhs, ip, bound_one, bound_two);

  mpz_clear (bound_one);
  mpz_clear (bound_two);
  type = max_precision_type (ltype, rtype);

  lhs = clast_to_gcc_expression (type, clhs, ip);
  rhs = clast_to_gcc_expression (type, crhs, ip);

  return fold_build2 (comp, boolean_type_node, lhs, rhs);
}

/* Creates the test for the condition in STMT.  */

static tree
graphite_create_guard_cond_expr (struct clast_guard *stmt,
				 ivs_params_p ip)
{
  tree cond = NULL;
  int i;

  for (i = 0; i < stmt->n; i++)
    {
      tree eq = graphite_translate_clast_equation (&stmt->eq[i], ip);

      if (cond)
	cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
      else
	cond = eq;
    }

  return cond;
}

/* Creates a new if region corresponding to Cloog's guard.  */

static edge
graphite_create_new_guard (edge entry_edge, struct clast_guard *stmt,
			   ivs_params_p ip)
{
  tree cond_expr = graphite_create_guard_cond_expr (stmt, ip);
  edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
  return exit_edge;
}

/* Compute the lower bound LOW and upper bound UP for the parameter
   PARAM in scop SCOP based on the constraints in the context.  */

static void
compute_bounds_for_param (scop_p scop, int param, mpz_t low, mpz_t up)
{
  isl_int v;
  isl_aff *aff = isl_aff_zero_on_domain
    (isl_local_space_from_space (isl_set_get_space (scop->context)));

  aff = isl_aff_add_coefficient_si (aff, isl_dim_param, param, 1);

  isl_int_init (v);
  isl_set_min (scop->context, aff, &v);
  isl_int_get_gmp (v, low);
  isl_set_max (scop->context, aff, &v);
  isl_int_get_gmp (v, up);
  isl_int_clear (v);
  isl_aff_free (aff);
}

/* Compute the lower bound LOW and upper bound UP for the induction
   variable of loop LOOP.

   FIXME: This one is not entirely correct, as min/max expressions in the
	  calculation can yield to incorrect results. To be completely
	  correct, we need to evaluate each subexpression generated by
          CLooG. CLooG does not yet support this, so this is as good as
	  it can be. */

static void
compute_bounds_for_loop (struct clast_for *loop, mpz_t low, mpz_t up)
{
  isl_set *domain;
  isl_aff *dimension;
  isl_local_space *local_space;
  isl_int isl_value;
  enum isl_lp_result lp_result;

  domain = isl_set_copy (isl_set_from_cloog_domain (loop->domain));
  local_space = isl_local_space_from_space (isl_set_get_space (domain));
  dimension = isl_aff_zero_on_domain (local_space);
  dimension = isl_aff_add_coefficient_si (dimension, isl_dim_in,
					  isl_set_dim (domain, isl_dim_set) - 1,
					  1);

  isl_int_init (isl_value);

  lp_result = isl_set_min (domain, dimension, &isl_value);
  assert (lp_result == isl_lp_ok);
  isl_int_get_gmp (isl_value, low);

  lp_result = isl_set_max (domain, dimension, &isl_value);
  assert (lp_result == isl_lp_ok);
  isl_int_get_gmp (isl_value, up);

  isl_int_clear (isl_value);
  isl_set_free (domain);
  isl_aff_free (dimension);
}

/* Returns the type for the induction variable for the loop translated
   from STMT_FOR.  */

static tree
type_for_clast_for (struct clast_for *stmt_for, ivs_params_p ip)
{
  mpz_t bound_one, bound_two;
  tree lb_type, ub_type;

  mpz_init (bound_one);
  mpz_init (bound_two);

  lb_type = type_for_clast_expr (stmt_for->LB, ip, bound_one, bound_two);
  ub_type = type_for_clast_expr (stmt_for->UB, ip, bound_one, bound_two);

  mpz_clear (bound_one);
  mpz_clear (bound_two);

  return max_precision_type (lb_type, ub_type);
}

/* Creates a new LOOP corresponding to Cloog's STMT.  Inserts an
   induction variable for the new LOOP.  New LOOP is attached to CFG
   starting at ENTRY_EDGE.  LOOP is inserted into the loop tree and
   becomes the child loop of the OUTER_LOOP.  NEWIVS_INDEX binds
   CLooG's scattering name to the induction variable created for the
   loop of STMT.  The new induction variable is inserted in the NEWIVS
   vector and is of type TYPE.  */

static struct loop *
graphite_create_new_loop (edge entry_edge, struct clast_for *stmt,
			  loop_p outer, tree type, tree lb, tree ub,
			  int level, ivs_params_p ip)
{
  mpz_t low, up;

  tree stride = gmp_cst_to_tree (type, stmt->stride);
  tree ivvar = create_tmp_var (type, "graphite_IV");
  tree iv, iv_after_increment;
  loop_p loop = create_empty_loop_on_edge
    (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
     outer ? outer : entry_edge->src->loop_father);

  mpz_init (low);
  mpz_init (up);
  compute_bounds_for_loop (stmt, low, up);
  save_clast_name_index (ip->newivs_index, stmt->iterator,
			 (*ip->newivs).length (), level, low, up);
  mpz_clear (low);
  mpz_clear (up);
  (*ip->newivs).safe_push (iv);
  return loop;
}

/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
   induction variables of the loops around GBB in SESE.  */

static void
build_iv_mapping (vec<tree> iv_map, struct clast_user_stmt *user_stmt,
		  ivs_params_p ip)
{
  struct clast_stmt *t;
  int depth = 0;
  CloogStatement *cs = user_stmt->statement;
  poly_bb_p pbb = (poly_bb_p) cs->usr;
  gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
  mpz_t bound_one, bound_two;

  mpz_init (bound_one);
  mpz_init (bound_two);

  for (t = user_stmt->substitutions; t; t = t->next, depth++)
    {
      struct clast_expr *expr = (struct clast_expr *)
       ((struct clast_assignment *)t)->RHS;
      tree type = type_for_clast_expr (expr, ip, bound_one, bound_two);
      tree new_name = clast_to_gcc_expression (type, expr, ip);
      loop_p old_loop = gbb_loop_at_index (gbb, ip->region, depth);

      iv_map[old_loop->num] = new_name;
    }

  mpz_clear (bound_one);
  mpz_clear (bound_two);
}

/* Construct bb_pbb_def with BB and PBB.  */

static bb_pbb_def *
new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
{
  bb_pbb_def *bb_pbb_p;

  bb_pbb_p = XNEW (bb_pbb_def);
  bb_pbb_p->bb = bb;
  bb_pbb_p->pbb = pbb;

  return bb_pbb_p;
}

/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING.  */

static void
mark_bb_with_pbb (poly_bb_p pbb, basic_block bb,
		  bb_pbb_htab_type bb_pbb_mapping)
{
  bb_pbb_def tmp;
  bb_pbb_def **x;

  tmp.bb = bb;
  x = bb_pbb_mapping.find_slot (&tmp, INSERT);

  if (x && !*x)
    *x = new_bb_pbb_def (bb, pbb);
}

/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING.  */

poly_bb_p
find_pbb_via_hash (bb_pbb_htab_type bb_pbb_mapping, basic_block bb)
{
  bb_pbb_def tmp;
  bb_pbb_def **slot;

  tmp.bb = bb;
  slot = bb_pbb_mapping.find_slot (&tmp, NO_INSERT);

  if (slot && *slot)
    return ((bb_pbb_def *) *slot)->pbb;

  return NULL;
}

/* Return the scop of the loop and initialize PBBS the set of
   poly_bb_p that belong to the LOOP.  BB_PBB_MAPPING is a map created
   by the CLAST code generator between a generated basic_block and its
   related poly_bb_p.  */

scop_p
get_loop_body_pbbs (loop_p loop, bb_pbb_htab_type bb_pbb_mapping,
		    vec<poly_bb_p> *pbbs)
{
  unsigned i;
  basic_block *bbs = get_loop_body_in_dom_order (loop);
  scop_p scop = NULL;

  for (i = 0; i < loop->num_nodes; i++)
    {
      poly_bb_p pbb = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);

      if (pbb == NULL)
	continue;

      scop = PBB_SCOP (pbb);
      (*pbbs).safe_push (pbb);
    }

  free (bbs);
  return scop;
}

/* Translates a clast user statement STMT to gimple.

   - NEXT_E is the edge where new generated code should be attached.
   - CONTEXT_LOOP is the loop in which the generated code will be placed
   - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.  */

static edge
translate_clast_user (struct clast_user_stmt *stmt, edge next_e,
		      bb_pbb_htab_type bb_pbb_mapping, ivs_params_p ip)
{
  int i, nb_loops;
  basic_block new_bb;
  poly_bb_p pbb = (poly_bb_p) stmt->statement->usr;
  gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
  vec<tree> iv_map;

  if (GBB_BB (gbb) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
    return next_e;

  nb_loops = number_of_loops (cfun);
  iv_map.create (nb_loops);
  for (i = 0; i < nb_loops; i++)
    iv_map.quick_push (NULL_TREE);

  build_iv_mapping (iv_map, stmt, ip);
  next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), ip->region,
					   next_e, iv_map, &gloog_error);
  iv_map.release ();

  new_bb = next_e->src;
  mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
  mark_virtual_operands_for_renaming (cfun);
  update_ssa (TODO_update_ssa);

  return next_e;
}

/* Creates a new if region protecting the loop to be executed, if the execution
   count is zero (lb > ub).  */

static edge
graphite_create_new_loop_guard (edge entry_edge, struct clast_for *stmt,
				tree *type, tree *lb, tree *ub,
				ivs_params_p ip)
{
  tree cond_expr;
  edge exit_edge;

  *type = type_for_clast_for (stmt, ip);
  *lb = clast_to_gcc_expression (*type, stmt->LB, ip);
  *ub = clast_to_gcc_expression (*type, stmt->UB, ip);

  /* When ub is simply a constant or a parameter, use lb <= ub.  */
  if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME)
    cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub);
  else
    {
      tree one = (POINTER_TYPE_P (*type)
		  ? convert_to_ptrofftype (integer_one_node)
		  : fold_convert (*type, integer_one_node));
      /* Adding +1 and using LT_EXPR helps with loop latches that have a
	 loop iteration count of "PARAMETER - 1".  For PARAMETER == 0 this becomes
	 2^k-1 due to integer overflow, and the condition lb <= ub is true,
	 even if we do not want this.  However lb < ub + 1 is false, as
	 expected.  */
      tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR
				 : PLUS_EXPR, *type, *ub, one);

      cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one);
    }

  exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);

  return exit_edge;
}

static edge
translate_clast (loop_p, struct clast_stmt *, edge, bb_pbb_htab_type,
		 int, ivs_params_p);

/* Create the loop for a clast for statement.

   - NEXT_E is the edge where new generated code should be attached.
   - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.  */

static edge
translate_clast_for_loop (loop_p context_loop, struct clast_for *stmt,
			  edge next_e, bb_pbb_htab_type bb_pbb_mapping,
			  int level, tree type, tree lb, tree ub,
			  ivs_params_p ip)
{
  struct loop *loop = graphite_create_new_loop (next_e, stmt, context_loop,
						type, lb, ub, level, ip);
  edge last_e = single_exit (loop);
  edge to_body = single_succ_edge (loop->header);
  basic_block after = to_body->dest;

  /* Create a basic block for loop close phi nodes.  */
  last_e = single_succ_edge (split_edge (last_e));

  /* Translate the body of the loop.  */
  next_e = translate_clast (loop, stmt->body, to_body, bb_pbb_mapping,
			    level + 1, ip);
  redirect_edge_succ_nodup (next_e, after);
  set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);

  isl_set *domain = isl_set_from_cloog_domain (stmt->domain);
  int scheduling_dim = isl_set_n_dim (domain);

  if (flag_loop_parallelize_all
      && loop_is_parallel_p (loop, bb_pbb_mapping, scheduling_dim))
    loop->can_be_parallel = true;

  return last_e;
}

/* Translates a clast for statement STMT to gimple.  First a guard is created
   protecting the loop, if it is executed zero times.  In this guard we create
   the real loop structure.

   - NEXT_E is the edge where new generated code should be attached.
   - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.  */

static edge
translate_clast_for (loop_p context_loop, struct clast_for *stmt, edge next_e,
		     bb_pbb_htab_type bb_pbb_mapping, int level,
		     ivs_params_p ip)
{
  tree type, lb, ub;
  edge last_e = graphite_create_new_loop_guard (next_e, stmt, &type,
						&lb, &ub, ip);
  edge true_e = get_true_edge_from_guard_bb (next_e->dest);

  translate_clast_for_loop (context_loop, stmt, true_e, bb_pbb_mapping, level,
			    type, lb, ub, ip);
  return last_e;
}

/* Translates a clast assignment STMT to gimple.

   - NEXT_E is the edge where new generated code should be attached.
   - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.  */

static edge
translate_clast_assignment (struct clast_assignment *stmt, edge next_e,
			    int level, ivs_params_p ip)
{
  gimple_seq stmts;
  mpz_t bound_one, bound_two;
  tree type, new_name, var;
  edge res = single_succ_edge (split_edge (next_e));
  struct clast_expr *expr = (struct clast_expr *) stmt->RHS;

  mpz_init (bound_one);
  mpz_init (bound_two);
  type = type_for_clast_expr (expr, ip, bound_one, bound_two);
  var = create_tmp_var (type, "graphite_var");
  new_name = force_gimple_operand (clast_to_gcc_expression (type, expr, ip),
				   &stmts, true, var);
  if (stmts)
    {
      gsi_insert_seq_on_edge (next_e, stmts);
      gsi_commit_edge_inserts ();
    }

  save_clast_name_index (ip->newivs_index, stmt->LHS,
			 (*ip->newivs).length (), level,
			 bound_one, bound_two);
  (*ip->newivs).safe_push (new_name);

  mpz_clear (bound_one);
  mpz_clear (bound_two);

  return res;
}

/* Translates a clast guard statement STMT to gimple.

   - NEXT_E is the edge where new generated code should be attached.
   - CONTEXT_LOOP is the loop in which the generated code will be placed
   - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.  */

static edge
translate_clast_guard (loop_p context_loop, struct clast_guard *stmt,
		       edge next_e, bb_pbb_htab_type bb_pbb_mapping, int level,
		       ivs_params_p ip)
{
  edge last_e = graphite_create_new_guard (next_e, stmt, ip);
  edge true_e = get_true_edge_from_guard_bb (next_e->dest);

  translate_clast (context_loop, stmt->then, true_e, bb_pbb_mapping, level, ip);
  return last_e;
}

/* Translates a CLAST statement STMT to GCC representation in the
   context of a SESE.

   - NEXT_E is the edge where new generated code should be attached.
   - CONTEXT_LOOP is the loop in which the generated code will be placed
   - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.  */

static edge
translate_clast (loop_p context_loop, struct clast_stmt *stmt, edge next_e,
		 bb_pbb_htab_type bb_pbb_mapping, int level, ivs_params_p ip)
{
  if (!stmt)
    return next_e;

  if (CLAST_STMT_IS_A (stmt, stmt_root))
    ; /* Do nothing.  */

  else if (CLAST_STMT_IS_A (stmt, stmt_user))
    next_e = translate_clast_user ((struct clast_user_stmt *) stmt,
				   next_e, bb_pbb_mapping, ip);

  else if (CLAST_STMT_IS_A (stmt, stmt_for))
    next_e = translate_clast_for (context_loop, (struct clast_for *) stmt,
				  next_e, bb_pbb_mapping, level, ip);

  else if (CLAST_STMT_IS_A (stmt, stmt_guard))
    next_e = translate_clast_guard (context_loop, (struct clast_guard *) stmt,
				    next_e, bb_pbb_mapping, level, ip);

  else if (CLAST_STMT_IS_A (stmt, stmt_block))
    next_e = translate_clast (context_loop, ((struct clast_block *) stmt)->body,
			      next_e, bb_pbb_mapping, level, ip);

  else if (CLAST_STMT_IS_A (stmt, stmt_ass))
    next_e = translate_clast_assignment ((struct clast_assignment *) stmt,
					 next_e, level, ip);
  else
    gcc_unreachable ();

  recompute_all_dominators ();
  graphite_verify ();

  return translate_clast (context_loop, stmt->next, next_e, bb_pbb_mapping,
			  level, ip);
}

/* Add parameter and iterator names to the CloogUnionDomain.  */

static CloogUnionDomain *
add_names_to_union_domain (scop_p scop, CloogUnionDomain *union_domain,
			   int nb_scattering_dims,
			   clast_index_htab_type params_index)
{
  sese region = SCOP_REGION (scop);
  int i;
  int nb_iterators = scop_max_loop_depth (scop);
  int nb_parameters = SESE_PARAMS (region).length ();
  mpz_t bound_one, bound_two;

  mpz_init (bound_one);
  mpz_init (bound_two);

  for (i = 0; i < nb_parameters; i++)
    {
      tree param = SESE_PARAMS (region)[i];
      const char *name = get_name (param);
      int len;
      char *parameter;

      if (!name)
	name = "T";

      len = strlen (name);
      len += 17;
      parameter = XNEWVEC (char, len + 1);
      snprintf (parameter, len, "%s_%d", name, SSA_NAME_VERSION (param));
      save_clast_name_index (params_index, parameter, i, i, bound_one,
			     bound_two);
      union_domain = cloog_union_domain_set_name (union_domain, CLOOG_PARAM, i,
						  parameter);
      compute_bounds_for_param (scop, i, bound_one, bound_two);
      free (parameter);
    }

  mpz_clear (bound_one);
  mpz_clear (bound_two);

  for (i = 0; i < nb_iterators; i++)
    {
      int len = 4 + 16;
      char *iterator;
      iterator = XNEWVEC (char, len);
      snprintf (iterator, len, "git_%d", i);
      union_domain = cloog_union_domain_set_name (union_domain, CLOOG_ITER, i,
						  iterator);
      free (iterator);
    }

  for (i = 0; i < nb_scattering_dims; i++)
    {
      int len = 5 + 16;
      char *scattering;
      scattering = XNEWVEC (char, len);
      snprintf (scattering, len, "scat_%d", i);
      union_domain = cloog_union_domain_set_name (union_domain, CLOOG_SCAT, i,
						  scattering);
      free (scattering);
    }

  return union_domain;
}

/* Initialize a CLooG input file.  */

static FILE *
init_cloog_input_file (int scop_number)
{
  FILE *graphite_out_file;
  int len = strlen (dump_base_name);
  char *dumpname = XNEWVEC (char, len + 25);
  char *s_scop_number = XNEWVEC (char, 15);

  memcpy (dumpname, dump_base_name, len + 1);
  strip_off_ending (dumpname, len);
  sprintf (s_scop_number, ".%d", scop_number);
  strcat (dumpname, s_scop_number);
  strcat (dumpname, ".cloog");
  graphite_out_file = fopen (dumpname, "w+b");

  if (graphite_out_file == 0)
    fatal_error ("can%'t open %s for writing: %m", dumpname);

  free (dumpname);

  return graphite_out_file;
}

/* Extend the scattering to NEW_DIMS scattering dimensions.  */

static
isl_map *extend_scattering (isl_map *scattering, int new_dims)
{
  int old_dims, i;
  isl_space *space;
  isl_basic_map *change_scattering;
  isl_map *change_scattering_map;

  old_dims = isl_map_dim (scattering, isl_dim_out);

  space = isl_space_alloc (isl_map_get_ctx (scattering), 0, old_dims, new_dims);
  change_scattering = isl_basic_map_universe (isl_space_copy (space));

  for (i = 0; i < old_dims; i++)
    {
      isl_constraint *c;
      c = isl_equality_alloc
	(isl_local_space_from_space (isl_space_copy (space)));
      isl_constraint_set_coefficient_si (c, isl_dim_in, i, 1);
      isl_constraint_set_coefficient_si (c, isl_dim_out, i, -1);
      change_scattering = isl_basic_map_add_constraint (change_scattering, c);
    }

  for (i = old_dims; i < new_dims; i++)
    {
      isl_constraint *c;
      c = isl_equality_alloc
	(isl_local_space_from_space (isl_space_copy (space)));
      isl_constraint_set_coefficient_si (c, isl_dim_out, i, 1);
      change_scattering = isl_basic_map_add_constraint (change_scattering, c);
    }

  change_scattering_map = isl_map_from_basic_map (change_scattering);
  change_scattering_map = isl_map_align_params (change_scattering_map, space);
  return isl_map_apply_range (scattering, change_scattering_map);
}

/* Build cloog union domain for SCoP.  */

static CloogUnionDomain *
build_cloog_union_domain (scop_p scop, int nb_scattering_dims)
{
  int i;
  poly_bb_p pbb;
  CloogUnionDomain *union_domain =
    cloog_union_domain_alloc (scop_nb_params (scop));

  FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
    {
      CloogDomain *domain;
      CloogScattering *scattering;

      /* Dead code elimination: when the domain of a PBB is empty,
	 don't generate code for the PBB.  */
      if (isl_set_is_empty (pbb->domain))
	continue;

      domain = cloog_domain_from_isl_set (isl_set_copy (pbb->domain));
      scattering = cloog_scattering_from_isl_map
	(extend_scattering (isl_map_copy (pbb->transformed),
			    nb_scattering_dims));

      union_domain = cloog_union_domain_add_domain (union_domain, "", domain,
						    scattering, pbb);
    }

  return union_domain;
}

/* Return the options that will be used in GLOOG.  */

static CloogOptions *
set_cloog_options (void)
{
  CloogOptions *options = cloog_options_malloc (cloog_state);

  /* Change cloog output language to C.  If we do use FORTRAN instead, cloog
     will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
     we pass an incomplete program to cloog.  */
  options->language = CLOOG_LANGUAGE_C;

  /* Enable complex equality spreading: removes dummy statements
     (assignments) in the generated code which repeats the
     substitution equations for statements.  This is useless for
     GLooG.  */
  options->esp = 1;

  /* Silence CLooG to avoid failing tests due to debug output to stderr.  */
  options->quiet = 1;

  /* Allow cloog to build strides with a stride width different to one.
     This example has stride = 4:

     for (i = 0; i < 20; i += 4)
       A  */
  options->strides = 1;

  /* We want the clast to provide the iteration domains of the executed loops.
     This allows us to derive minimal/maximal values for the induction
     variables.  */
  options->save_domains = 1;

  /* Do not remove scalar dimensions.  CLooG by default removes scalar 
     dimensions very early from the input schedule.  However, they are 
     necessary to correctly derive from the saved domains 
     (options->save_domains) the relationship between the generated loops 
     and the schedule dimensions they are generated from.  */ 
  options->noscalars = 1;

  /* Disable optimizations and make cloog generate source code closer to the
     input.  This is useful for debugging,  but later we want the optimized
     code.

     XXX: We can not disable optimizations, as loop blocking is not working
     without them.  */
  if (0)
    {
      options->f = -1;
      options->l = INT_MAX;
    }

  return options;
}

/* Prints STMT to STDERR.  */

void
print_clast_stmt (FILE *file, struct clast_stmt *stmt)
{
  CloogOptions *options = set_cloog_options ();

  clast_pprint (file, stmt, 0, options);
  cloog_options_free (options);
}

/* Prints STMT to STDERR.  */

DEBUG_FUNCTION void
debug_clast_stmt (struct clast_stmt *stmt)
{
  print_clast_stmt (stderr, stmt);
}

/* Get the maximal number of scattering dimensions in the scop SCOP.  */

static
int get_max_scattering_dimensions (scop_p scop)
{
  int i;
  poly_bb_p pbb;
  int scattering_dims = 0;

  FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
    {
      int pbb_scatt_dims = isl_map_dim (pbb->transformed, isl_dim_out);
      if (pbb_scatt_dims > scattering_dims)
	scattering_dims = pbb_scatt_dims;
    }

  return scattering_dims;
}

static CloogInput *
generate_cloog_input (scop_p scop, clast_index_htab_type params_index)
{
  CloogUnionDomain *union_domain;
  CloogInput *cloog_input;
  CloogDomain *context;
  int nb_scattering_dims = get_max_scattering_dimensions (scop);

  union_domain = build_cloog_union_domain (scop, nb_scattering_dims);
  union_domain = add_names_to_union_domain (scop, union_domain,
					    nb_scattering_dims,
					    params_index);
  context = cloog_domain_from_isl_set (isl_set_copy (scop->context));

  cloog_input = cloog_input_alloc (context, union_domain);

  return cloog_input;
}

/* Translate SCOP to a CLooG program and clast.  These two
   representations should be freed together: a clast cannot be used
   without a program.  */

static struct clast_stmt *
scop_to_clast (scop_p scop, clast_index_htab_type params_index)
{
  CloogInput *cloog_input;
  struct clast_stmt *clast;
  CloogOptions *options = set_cloog_options ();

  cloog_input = generate_cloog_input (scop, params_index);

  /* Dump a .cloog input file, if requested.  This feature is only
     enabled in the Graphite branch.  */
  if (0)
  {
    static size_t file_scop_number = 0;
    FILE *cloog_file = init_cloog_input_file (file_scop_number);
    cloog_input_dump_cloog (cloog_file, cloog_input, options);
  }

  clast = cloog_clast_create_from_input (cloog_input, options);

  cloog_options_free (options);
  return clast;
}

/* Prints to FILE the code generated by CLooG for SCOP.  */

void
print_generated_program (FILE *file, scop_p scop)
{
  CloogOptions *options = set_cloog_options ();
  clast_index_htab_type params_index;
  struct clast_stmt *clast;

  params_index.create (10);

  clast = scop_to_clast (scop, params_index);

  fprintf (file, "       (clast: \n");
  clast_pprint (file, clast, 0, options);
  fprintf (file, "       )\n");

  cloog_options_free (options);
  cloog_clast_free (clast);
}

/* Prints to STDERR the code generated by CLooG for SCOP.  */

DEBUG_FUNCTION void
debug_generated_program (scop_p scop)
{
  print_generated_program (stderr, scop);
}

/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
   the given SCOP.  Return true if code generation succeeded.
   BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
*/

bool
gloog (scop_p scop, bb_pbb_htab_type bb_pbb_mapping)
{
  auto_vec<tree, 10> newivs;
  loop_p context_loop;
  sese region = SCOP_REGION (scop);
  ifsese if_region = NULL;
  clast_index_htab_type newivs_index, params_index;
  struct clast_stmt *clast;
  struct ivs_params ip;

  timevar_push (TV_GRAPHITE_CODE_GEN);
  gloog_error = false;

  params_index.create (10);

  clast = scop_to_clast (scop, params_index);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nCLAST generated by CLooG: \n");
      print_clast_stmt (dump_file, clast);
      fprintf (dump_file, "\n");
    }

  recompute_all_dominators ();
  graphite_verify ();

  if_region = move_sese_in_condition (region);
  sese_insert_phis_for_liveouts (region,
				 if_region->region->exit->src,
				 if_region->false_region->exit,
				 if_region->true_region->exit);
  recompute_all_dominators ();
  graphite_verify ();

  context_loop = SESE_ENTRY (region)->src->loop_father;
  newivs_index.create (10);

  ip.newivs = &newivs;
  ip.newivs_index = newivs_index;
  ip.params = SESE_PARAMS (region);
  ip.params_index = params_index;
  ip.region = region;

  translate_clast (context_loop, clast, if_region->true_region->entry,
		   bb_pbb_mapping, 0, &ip);
  graphite_verify ();
  scev_reset ();
  recompute_all_dominators ();
  graphite_verify ();

  if (gloog_error)
    set_ifsese_condition (if_region, integer_zero_node);

  free (if_region->true_region);
  free (if_region->region);
  free (if_region);

  newivs_index.dispose ();
  params_index.dispose ();
  cloog_clast_free (clast);
  timevar_pop (TV_GRAPHITE_CODE_GEN);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      loop_p loop;
      int num_no_dependency = 0;

      FOR_EACH_LOOP (loop, 0)
	if (loop->can_be_parallel)
	  num_no_dependency++;

      fprintf (dump_file, "\n%d loops carried no dependency.\n",
	       num_no_dependency);
    }

  return !gloog_error;
}
#endif