aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/arm/arm.c
blob: 83763555c5db865ad77c203dc8ac7a832b53947b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
/* Output routines for GCC for ARM.
   Copyright (C) 1991-2014 Free Software Foundation, Inc.
   Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
   and Martin Simmons (@harleqn.co.uk).
   More major hacks by Richard Earnshaw (rearnsha@arm.com).

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hash-table.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "stringpool.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "obstack.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "reload.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "diagnostic-core.h"
#include "recog.h"
#include "cgraph.h"
#include "ggc.h"
#include "except.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
#include "debug.h"
#include "langhooks.h"
#include "df.h"
#include "intl.h"
#include "libfuncs.h"
#include "params.h"
#include "opts.h"
#include "dumpfile.h"

/* Forward definitions of types.  */
typedef struct minipool_node    Mnode;
typedef struct minipool_fixup   Mfix;

void (*arm_lang_output_object_attributes_hook)(void);

struct four_ints
{
  int i[4];
};

/* Forward function declarations.  */
static bool arm_const_not_ok_for_debug_p (rtx);
static bool arm_lra_p (void);
static bool arm_needs_doubleword_align (enum machine_mode, const_tree);
static int arm_compute_static_chain_stack_bytes (void);
static arm_stack_offsets *arm_get_frame_offsets (void);
static void arm_add_gc_roots (void);
static int arm_gen_constant (enum rtx_code, enum machine_mode, rtx,
			     HOST_WIDE_INT, rtx, rtx, int, int);
static unsigned bit_count (unsigned long);
static int arm_address_register_rtx_p (rtx, int);
static int arm_legitimate_index_p (enum machine_mode, rtx, RTX_CODE, int);
static int thumb2_legitimate_index_p (enum machine_mode, rtx, int);
static int thumb1_base_register_rtx_p (rtx, enum machine_mode, int);
static rtx arm_legitimize_address (rtx, rtx, enum machine_mode);
static reg_class_t arm_preferred_reload_class (rtx, reg_class_t);
static rtx thumb_legitimize_address (rtx, rtx, enum machine_mode);
inline static int thumb1_index_register_rtx_p (rtx, int);
static bool arm_legitimate_address_p (enum machine_mode, rtx, bool);
static int thumb_far_jump_used_p (void);
static bool thumb_force_lr_save (void);
static unsigned arm_size_return_regs (void);
static bool arm_assemble_integer (rtx, unsigned int, int);
static void arm_print_operand (FILE *, rtx, int);
static void arm_print_operand_address (FILE *, rtx);
static bool arm_print_operand_punct_valid_p (unsigned char code);
static const char *fp_const_from_val (REAL_VALUE_TYPE *);
static arm_cc get_arm_condition_code (rtx);
static HOST_WIDE_INT int_log2 (HOST_WIDE_INT);
static const char *output_multi_immediate (rtx *, const char *, const char *,
					   int, HOST_WIDE_INT);
static const char *shift_op (rtx, HOST_WIDE_INT *);
static struct machine_function *arm_init_machine_status (void);
static void thumb_exit (FILE *, int);
static HOST_WIDE_INT get_jump_table_size (rtx);
static Mnode *move_minipool_fix_forward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
static Mnode *add_minipool_forward_ref (Mfix *);
static Mnode *move_minipool_fix_backward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
static Mnode *add_minipool_backward_ref (Mfix *);
static void assign_minipool_offsets (Mfix *);
static void arm_print_value (FILE *, rtx);
static void dump_minipool (rtx);
static int arm_barrier_cost (rtx);
static Mfix *create_fix_barrier (Mfix *, HOST_WIDE_INT);
static void push_minipool_barrier (rtx, HOST_WIDE_INT);
static void push_minipool_fix (rtx, HOST_WIDE_INT, rtx *, enum machine_mode,
			       rtx);
static void arm_reorg (void);
static void note_invalid_constants (rtx, HOST_WIDE_INT, int);
static unsigned long arm_compute_save_reg0_reg12_mask (void);
static unsigned long arm_compute_save_reg_mask (void);
static unsigned long arm_isr_value (tree);
static unsigned long arm_compute_func_type (void);
static tree arm_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
static tree arm_handle_pcs_attribute (tree *, tree, tree, int, bool *);
static tree arm_handle_isr_attribute (tree *, tree, tree, int, bool *);
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
static tree arm_handle_notshared_attribute (tree *, tree, tree, int, bool *);
#endif
static void arm_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void arm_output_function_prologue (FILE *, HOST_WIDE_INT);
static int arm_comp_type_attributes (const_tree, const_tree);
static void arm_set_default_type_attributes (tree);
static int arm_adjust_cost (rtx, rtx, rtx, int);
static int arm_sched_reorder (FILE *, int, rtx *, int *, int);
static int optimal_immediate_sequence (enum rtx_code code,
				       unsigned HOST_WIDE_INT val,
				       struct four_ints *return_sequence);
static int optimal_immediate_sequence_1 (enum rtx_code code,
					 unsigned HOST_WIDE_INT val,
					 struct four_ints *return_sequence,
					 int i);
static int arm_get_strip_length (int);
static bool arm_function_ok_for_sibcall (tree, tree);
static enum machine_mode arm_promote_function_mode (const_tree,
						    enum machine_mode, int *,
						    const_tree, int);
static bool arm_return_in_memory (const_tree, const_tree);
static rtx arm_function_value (const_tree, const_tree, bool);
static rtx arm_libcall_value_1 (enum machine_mode);
static rtx arm_libcall_value (enum machine_mode, const_rtx);
static bool arm_function_value_regno_p (const unsigned int);
static void arm_internal_label (FILE *, const char *, unsigned long);
static void arm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
				 tree);
static bool arm_have_conditional_execution (void);
static bool arm_cannot_force_const_mem (enum machine_mode, rtx);
static bool arm_legitimate_constant_p (enum machine_mode, rtx);
static bool arm_rtx_costs_1 (rtx, enum rtx_code, int*, bool);
static bool arm_size_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *);
static bool arm_slowmul_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
static bool arm_fastmul_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
static bool arm_xscale_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
static bool arm_9e_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
static bool arm_rtx_costs (rtx, int, int, int, int *, bool);
static int arm_address_cost (rtx, enum machine_mode, addr_space_t, bool);
static int arm_register_move_cost (enum machine_mode, reg_class_t, reg_class_t);
static int arm_memory_move_cost (enum machine_mode, reg_class_t, bool);
static void arm_init_builtins (void);
static void arm_init_iwmmxt_builtins (void);
static rtx safe_vector_operand (rtx, enum machine_mode);
static rtx arm_expand_binop_builtin (enum insn_code, tree, rtx);
static rtx arm_expand_unop_builtin (enum insn_code, tree, rtx, int);
static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
static tree arm_builtin_decl (unsigned, bool);
static void emit_constant_insn (rtx cond, rtx pattern);
static rtx emit_set_insn (rtx, rtx);
static rtx emit_multi_reg_push (unsigned long, unsigned long);
static int arm_arg_partial_bytes (cumulative_args_t, enum machine_mode,
				  tree, bool);
static rtx arm_function_arg (cumulative_args_t, enum machine_mode,
			     const_tree, bool);
static void arm_function_arg_advance (cumulative_args_t, enum machine_mode,
				      const_tree, bool);
static unsigned int arm_function_arg_boundary (enum machine_mode, const_tree);
static rtx aapcs_allocate_return_reg (enum machine_mode, const_tree,
				      const_tree);
static rtx aapcs_libcall_value (enum machine_mode);
static int aapcs_select_return_coproc (const_tree, const_tree);

#ifdef OBJECT_FORMAT_ELF
static void arm_elf_asm_constructor (rtx, int) ATTRIBUTE_UNUSED;
static void arm_elf_asm_destructor (rtx, int) ATTRIBUTE_UNUSED;
#endif
#ifndef ARM_PE
static void arm_encode_section_info (tree, rtx, int);
#endif

static void arm_file_end (void);
static void arm_file_start (void);

static void arm_setup_incoming_varargs (cumulative_args_t, enum machine_mode,
					tree, int *, int);
static bool arm_pass_by_reference (cumulative_args_t,
				   enum machine_mode, const_tree, bool);
static bool arm_promote_prototypes (const_tree);
static bool arm_default_short_enums (void);
static bool arm_align_anon_bitfield (void);
static bool arm_return_in_msb (const_tree);
static bool arm_must_pass_in_stack (enum machine_mode, const_tree);
static bool arm_return_in_memory (const_tree, const_tree);
#if ARM_UNWIND_INFO
static void arm_unwind_emit (FILE *, rtx);
static bool arm_output_ttype (rtx);
static void arm_asm_emit_except_personality (rtx);
static void arm_asm_init_sections (void);
#endif
static rtx arm_dwarf_register_span (rtx);

static tree arm_cxx_guard_type (void);
static bool arm_cxx_guard_mask_bit (void);
static tree arm_get_cookie_size (tree);
static bool arm_cookie_has_size (void);
static bool arm_cxx_cdtor_returns_this (void);
static bool arm_cxx_key_method_may_be_inline (void);
static void arm_cxx_determine_class_data_visibility (tree);
static bool arm_cxx_class_data_always_comdat (void);
static bool arm_cxx_use_aeabi_atexit (void);
static void arm_init_libfuncs (void);
static tree arm_build_builtin_va_list (void);
static void arm_expand_builtin_va_start (tree, rtx);
static tree arm_gimplify_va_arg_expr (tree, tree, gimple_seq *, gimple_seq *);
static void arm_option_override (void);
static unsigned HOST_WIDE_INT arm_shift_truncation_mask (enum machine_mode);
static bool arm_cannot_copy_insn_p (rtx);
static int arm_issue_rate (void);
static void arm_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
static bool arm_output_addr_const_extra (FILE *, rtx);
static bool arm_allocate_stack_slots_for_args (void);
static bool arm_warn_func_return (tree);
static const char *arm_invalid_parameter_type (const_tree t);
static const char *arm_invalid_return_type (const_tree t);
static tree arm_promoted_type (const_tree t);
static tree arm_convert_to_type (tree type, tree expr);
static bool arm_scalar_mode_supported_p (enum machine_mode);
static bool arm_frame_pointer_required (void);
static bool arm_can_eliminate (const int, const int);
static void arm_asm_trampoline_template (FILE *);
static void arm_trampoline_init (rtx, tree, rtx);
static rtx arm_trampoline_adjust_address (rtx);
static rtx arm_pic_static_addr (rtx orig, rtx reg);
static bool cortex_a9_sched_adjust_cost (rtx, rtx, rtx, int *);
static bool xscale_sched_adjust_cost (rtx, rtx, rtx, int *);
static bool fa726te_sched_adjust_cost (rtx, rtx, rtx, int *);
static bool arm_array_mode_supported_p (enum machine_mode,
					unsigned HOST_WIDE_INT);
static enum machine_mode arm_preferred_simd_mode (enum machine_mode);
static bool arm_class_likely_spilled_p (reg_class_t);
static HOST_WIDE_INT arm_vector_alignment (const_tree type);
static bool arm_vector_alignment_reachable (const_tree type, bool is_packed);
static bool arm_builtin_support_vector_misalignment (enum machine_mode mode,
						     const_tree type,
						     int misalignment,
						     bool is_packed);
static void arm_conditional_register_usage (void);
static reg_class_t arm_preferred_rename_class (reg_class_t rclass);
static unsigned int arm_autovectorize_vector_sizes (void);
static int arm_default_branch_cost (bool, bool);
static int arm_cortex_a5_branch_cost (bool, bool);
static int arm_cortex_m_branch_cost (bool, bool);

static bool arm_vectorize_vec_perm_const_ok (enum machine_mode vmode,
					     const unsigned char *sel);

static int arm_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
					   tree vectype,
					   int misalign ATTRIBUTE_UNUSED);
static unsigned arm_add_stmt_cost (void *data, int count,
				   enum vect_cost_for_stmt kind,
				   struct _stmt_vec_info *stmt_info,
				   int misalign,
				   enum vect_cost_model_location where);

static void arm_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
					 bool op0_preserve_value);

static unsigned HOST_WIDE_INT arm_asan_shadow_offset (void);

static rtx arm_get_pic_reg (void);
static void arm_clear_pic_reg (void);
static bool arm_can_simplify_got_access (int, int);
static rtx arm_loaded_global_var (rtx, rtx *, rtx *);
static void arm_load_global_address (rtx, rtx, rtx, rtx, rtx);


/* Table of machine attributes.  */
static const struct attribute_spec arm_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
       affects_type_identity } */
  /* Function calls made to this symbol must be done indirectly, because
     it may lie outside of the 26 bit addressing range of a normal function
     call.  */
  { "long_call",    0, 0, false, true,  true,  NULL, false },
  /* Whereas these functions are always known to reside within the 26 bit
     addressing range.  */
  { "short_call",   0, 0, false, true,  true,  NULL, false },
  /* Specify the procedure call conventions for a function.  */
  { "pcs",          1, 1, false, true,  true,  arm_handle_pcs_attribute,
    false },
  /* Interrupt Service Routines have special prologue and epilogue requirements.  */
  { "isr",          0, 1, false, false, false, arm_handle_isr_attribute,
    false },
  { "interrupt",    0, 1, false, false, false, arm_handle_isr_attribute,
    false },
  { "naked",        0, 0, true,  false, false, arm_handle_fndecl_attribute,
    false },
#ifdef ARM_PE
  /* ARM/PE has three new attributes:
     interfacearm - ?
     dllexport - for exporting a function/variable that will live in a dll
     dllimport - for importing a function/variable from a dll

     Microsoft allows multiple declspecs in one __declspec, separating
     them with spaces.  We do NOT support this.  Instead, use __declspec
     multiple times.
  */
  { "dllimport",    0, 0, true,  false, false, NULL, false },
  { "dllexport",    0, 0, true,  false, false, NULL, false },
  { "interfacearm", 0, 0, true,  false, false, arm_handle_fndecl_attribute,
    false },
#elif TARGET_DLLIMPORT_DECL_ATTRIBUTES
  { "dllimport",    0, 0, false, false, false, handle_dll_attribute, false },
  { "dllexport",    0, 0, false, false, false, handle_dll_attribute, false },
  { "notshared",    0, 0, false, true, false, arm_handle_notshared_attribute,
    false },
#endif
  { NULL,           0, 0, false, false, false, NULL, false }
};

/* Initialize the GCC target structure.  */
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
#undef  TARGET_MERGE_DECL_ATTRIBUTES
#define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
#endif

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS arm_legitimize_address

#undef TARGET_LRA_P
#define TARGET_LRA_P arm_lra_p

#undef  TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE arm_attribute_table

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START arm_file_start
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END arm_file_end

#undef  TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP NULL
#undef  TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER arm_assemble_integer

#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND arm_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS arm_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P arm_print_operand_punct_valid_p

#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA arm_output_addr_const_extra

#undef  TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE arm_output_function_prologue

#undef  TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE arm_output_function_epilogue

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE arm_option_override

#undef  TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES arm_comp_type_attributes

#undef  TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
#define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES arm_set_default_type_attributes

#undef  TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST arm_adjust_cost

#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER arm_sched_reorder

#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST arm_register_move_cost

#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST arm_memory_move_cost

#undef TARGET_ENCODE_SECTION_INFO
#ifdef ARM_PE
#define TARGET_ENCODE_SECTION_INFO  arm_pe_encode_section_info
#else
#define TARGET_ENCODE_SECTION_INFO  arm_encode_section_info
#endif

#undef  TARGET_STRIP_NAME_ENCODING
#define TARGET_STRIP_NAME_ENCODING arm_strip_name_encoding

#undef  TARGET_ASM_INTERNAL_LABEL
#define TARGET_ASM_INTERNAL_LABEL arm_internal_label

#undef  TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL arm_function_ok_for_sibcall

#undef  TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE arm_function_value

#undef  TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE arm_libcall_value

#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P arm_function_value_regno_p

#undef  TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK arm_output_mi_thunk
#undef  TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall

#undef  TARGET_RTX_COSTS
#define TARGET_RTX_COSTS arm_rtx_costs
#undef  TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST arm_address_cost

#undef TARGET_SHIFT_TRUNCATION_MASK
#define TARGET_SHIFT_TRUNCATION_MASK arm_shift_truncation_mask
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P arm_vector_mode_supported_p
#undef TARGET_ARRAY_MODE_SUPPORTED_P
#define TARGET_ARRAY_MODE_SUPPORTED_P arm_array_mode_supported_p
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE arm_preferred_simd_mode
#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \
  arm_autovectorize_vector_sizes

#undef  TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG arm_reorg

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS  arm_init_builtins
#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN arm_expand_builtin
#undef  TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL arm_builtin_decl

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS arm_init_libfuncs

#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE arm_promote_function_mode
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES arm_promote_prototypes
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE arm_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES arm_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG arm_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE arm_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY arm_function_arg_boundary

#undef  TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS arm_setup_incoming_varargs

#undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS arm_allocate_stack_slots_for_args

#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE arm_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT arm_trampoline_init
#undef TARGET_TRAMPOLINE_ADJUST_ADDRESS
#define TARGET_TRAMPOLINE_ADJUST_ADDRESS arm_trampoline_adjust_address

#undef TARGET_WARN_FUNC_RETURN
#define TARGET_WARN_FUNC_RETURN arm_warn_func_return

#undef TARGET_DEFAULT_SHORT_ENUMS
#define TARGET_DEFAULT_SHORT_ENUMS arm_default_short_enums

#undef TARGET_ALIGN_ANON_BITFIELD
#define TARGET_ALIGN_ANON_BITFIELD arm_align_anon_bitfield

#undef TARGET_NARROW_VOLATILE_BITFIELD
#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false

#undef TARGET_CXX_GUARD_TYPE
#define TARGET_CXX_GUARD_TYPE arm_cxx_guard_type

#undef TARGET_CXX_GUARD_MASK_BIT
#define TARGET_CXX_GUARD_MASK_BIT arm_cxx_guard_mask_bit

#undef TARGET_CXX_GET_COOKIE_SIZE
#define TARGET_CXX_GET_COOKIE_SIZE arm_get_cookie_size

#undef TARGET_CXX_COOKIE_HAS_SIZE
#define TARGET_CXX_COOKIE_HAS_SIZE arm_cookie_has_size

#undef TARGET_CXX_CDTOR_RETURNS_THIS
#define TARGET_CXX_CDTOR_RETURNS_THIS arm_cxx_cdtor_returns_this

#undef TARGET_CXX_KEY_METHOD_MAY_BE_INLINE
#define TARGET_CXX_KEY_METHOD_MAY_BE_INLINE arm_cxx_key_method_may_be_inline

#undef TARGET_CXX_USE_AEABI_ATEXIT
#define TARGET_CXX_USE_AEABI_ATEXIT arm_cxx_use_aeabi_atexit

#undef TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY
#define TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY \
  arm_cxx_determine_class_data_visibility

#undef TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT
#define TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT arm_cxx_class_data_always_comdat

#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB arm_return_in_msb

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY arm_return_in_memory

#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK arm_must_pass_in_stack

#if ARM_UNWIND_INFO
#undef TARGET_ASM_UNWIND_EMIT
#define TARGET_ASM_UNWIND_EMIT arm_unwind_emit

/* EABI unwinding tables use a different format for the typeinfo tables.  */
#undef TARGET_ASM_TTYPE
#define TARGET_ASM_TTYPE arm_output_ttype

#undef TARGET_ARM_EABI_UNWINDER
#define TARGET_ARM_EABI_UNWINDER true

#undef TARGET_ASM_EMIT_EXCEPT_PERSONALITY
#define TARGET_ASM_EMIT_EXCEPT_PERSONALITY arm_asm_emit_except_personality

#undef TARGET_ASM_INIT_SECTIONS
#define TARGET_ASM_INIT_SECTIONS arm_asm_init_sections
#endif /* ARM_UNWIND_INFO */

#undef TARGET_DWARF_REGISTER_SPAN
#define TARGET_DWARF_REGISTER_SPAN arm_dwarf_register_span

#undef  TARGET_CANNOT_COPY_INSN_P
#define TARGET_CANNOT_COPY_INSN_P arm_cannot_copy_insn_p

#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif

#undef TARGET_HAVE_CONDITIONAL_EXECUTION
#define TARGET_HAVE_CONDITIONAL_EXECUTION arm_have_conditional_execution

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P arm_legitimate_constant_p

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM arm_cannot_force_const_mem

#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 4095

/* The minimum is set such that the total size of the block
   for a particular anchor is -4088 + 1 + 4095 bytes, which is
   divisible by eight, ensuring natural spacing of anchors.  */
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -4088

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE arm_issue_rate

#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE arm_mangle_type

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST arm_build_builtin_va_list
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START arm_expand_builtin_va_start
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR arm_gimplify_va_arg_expr

#ifdef HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL arm_output_dwarf_dtprel
#endif

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P	arm_legitimate_address_p

#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS arm_preferred_reload_class

#undef TARGET_INVALID_PARAMETER_TYPE
#define TARGET_INVALID_PARAMETER_TYPE arm_invalid_parameter_type

#undef TARGET_INVALID_RETURN_TYPE
#define TARGET_INVALID_RETURN_TYPE arm_invalid_return_type

#undef TARGET_PROMOTED_TYPE
#define TARGET_PROMOTED_TYPE arm_promoted_type

#undef TARGET_CONVERT_TO_TYPE
#define TARGET_CONVERT_TO_TYPE arm_convert_to_type

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P arm_scalar_mode_supported_p

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED arm_frame_pointer_required

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE arm_can_eliminate

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE arm_conditional_register_usage

#undef TARGET_CLASS_LIKELY_SPILLED_P
#define TARGET_CLASS_LIKELY_SPILLED_P arm_class_likely_spilled_p

#undef TARGET_VECTORIZE_BUILTINS
#define TARGET_VECTORIZE_BUILTINS

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
  arm_builtin_vectorized_function

#undef TARGET_VECTOR_ALIGNMENT
#define TARGET_VECTOR_ALIGNMENT arm_vector_alignment

#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
  arm_vector_alignment_reachable

#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
  arm_builtin_support_vector_misalignment

#undef TARGET_PREFERRED_RENAME_CLASS
#define TARGET_PREFERRED_RENAME_CLASS \
  arm_preferred_rename_class

#undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
#define TARGET_VECTORIZE_VEC_PERM_CONST_OK \
  arm_vectorize_vec_perm_const_ok

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
  arm_builtin_vectorization_cost
#undef TARGET_VECTORIZE_ADD_STMT_COST
#define TARGET_VECTORIZE_ADD_STMT_COST arm_add_stmt_cost

#undef TARGET_GET_PIC_REG
#define TARGET_GET_PIC_REG arm_get_pic_reg

#undef TARGET_CLEAR_PIC_REG
#define TARGET_CLEAR_PIC_REG arm_clear_pic_reg

#undef TARGET_LOADED_GLOBAL_VAR
#define TARGET_LOADED_GLOBAL_VAR arm_loaded_global_var

#undef TARGET_CAN_SIMPLIFY_GOT_ACCESS
#define TARGET_CAN_SIMPLIFY_GOT_ACCESS arm_can_simplify_got_access

#undef TARGET_LOAD_GLOBAL_ADDRESS
#define TARGET_LOAD_GLOBAL_ADDRESS arm_load_global_address

#undef TARGET_CANONICALIZE_COMPARISON
#define TARGET_CANONICALIZE_COMPARISON \
  arm_canonicalize_comparison

#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET arm_asan_shadow_offset

#undef MAX_INSN_PER_IT_BLOCK
#define MAX_INSN_PER_IT_BLOCK (arm_restrict_it ? 1 : 4)

#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost

#undef TARGET_CONST_NOT_OK_FOR_DEBUG_P
#define TARGET_CONST_NOT_OK_FOR_DEBUG_P arm_const_not_ok_for_debug_p

struct gcc_target targetm = TARGET_INITIALIZER;

/* Obstack for minipool constant handling.  */
static struct obstack minipool_obstack;
static char *         minipool_startobj;

/* The maximum number of insns skipped which
   will be conditionalised if possible.  */
static int max_insns_skipped = 5;

extern FILE * asm_out_file;

/* True if we are currently building a constant table.  */
int making_const_table;

/* The processor for which instructions should be scheduled.  */
enum processor_type arm_tune = arm_none;

/* The current tuning set.  */
const struct tune_params *current_tune;

/* Which floating point hardware to schedule for.  */
int arm_fpu_attr;

/* Which floating popint hardware to use.  */
const struct arm_fpu_desc *arm_fpu_desc;

/* Used for Thumb call_via trampolines.  */
rtx thumb_call_via_label[14];
static int thumb_call_reg_needed;

/* Bit values used to identify processor capabilities.  */
#define FL_CO_PROC    (1 << 0)        /* Has external co-processor bus */
#define FL_ARCH3M     (1 << 1)        /* Extended multiply */
#define FL_MODE26     (1 << 2)        /* 26-bit mode support */
#define FL_MODE32     (1 << 3)        /* 32-bit mode support */
#define FL_ARCH4      (1 << 4)        /* Architecture rel 4 */
#define FL_ARCH5      (1 << 5)        /* Architecture rel 5 */
#define FL_THUMB      (1 << 6)        /* Thumb aware */
#define FL_LDSCHED    (1 << 7)	      /* Load scheduling necessary */
#define FL_STRONG     (1 << 8)	      /* StrongARM */
#define FL_ARCH5E     (1 << 9)        /* DSP extensions to v5 */
#define FL_XSCALE     (1 << 10)	      /* XScale */
/* spare	      (1 << 11)	*/
#define FL_ARCH6      (1 << 12)       /* Architecture rel 6.  Adds
					 media instructions.  */
#define FL_VFPV2      (1 << 13)       /* Vector Floating Point V2.  */
#define FL_WBUF	      (1 << 14)	      /* Schedule for write buffer ops.
					 Note: ARM6 & 7 derivatives only.  */
#define FL_ARCH6K     (1 << 15)       /* Architecture rel 6 K extensions.  */
#define FL_THUMB2     (1 << 16)	      /* Thumb-2.  */
#define FL_NOTM	      (1 << 17)	      /* Instructions not present in the 'M'
					 profile.  */
#define FL_THUMB_DIV  (1 << 18)	      /* Hardware divide (Thumb mode).  */
#define FL_VFPV3      (1 << 19)       /* Vector Floating Point V3.  */
#define FL_NEON       (1 << 20)       /* Neon instructions.  */
#define FL_ARCH7EM    (1 << 21)	      /* Instructions present in the ARMv7E-M
					 architecture.  */
#define FL_ARCH7      (1 << 22)       /* Architecture 7.  */
#define FL_ARM_DIV    (1 << 23)	      /* Hardware divide (ARM mode).  */
#define FL_ARCH8      (1 << 24)       /* Architecture 8.  */
#define FL_CRC32      (1 << 25)	      /* ARMv8 CRC32 instructions.  */

#define FL_IWMMXT     (1 << 29)	      /* XScale v2 or "Intel Wireless MMX technology".  */
#define FL_IWMMXT2    (1 << 30)       /* "Intel Wireless MMX2 technology".  */

/* Flags that only effect tuning, not available instructions.  */
#define FL_TUNE		(FL_WBUF | FL_VFPV2 | FL_STRONG | FL_LDSCHED \
			 | FL_CO_PROC)

#define FL_FOR_ARCH2	FL_NOTM
#define FL_FOR_ARCH3	(FL_FOR_ARCH2 | FL_MODE32)
#define FL_FOR_ARCH3M	(FL_FOR_ARCH3 | FL_ARCH3M)
#define FL_FOR_ARCH4	(FL_FOR_ARCH3M | FL_ARCH4)
#define FL_FOR_ARCH4T	(FL_FOR_ARCH4 | FL_THUMB)
#define FL_FOR_ARCH5	(FL_FOR_ARCH4 | FL_ARCH5)
#define FL_FOR_ARCH5T	(FL_FOR_ARCH5 | FL_THUMB)
#define FL_FOR_ARCH5E	(FL_FOR_ARCH5 | FL_ARCH5E)
#define FL_FOR_ARCH5TE	(FL_FOR_ARCH5E | FL_THUMB)
#define FL_FOR_ARCH5TEJ	FL_FOR_ARCH5TE
#define FL_FOR_ARCH6	(FL_FOR_ARCH5TE | FL_ARCH6)
#define FL_FOR_ARCH6J	FL_FOR_ARCH6
#define FL_FOR_ARCH6K	(FL_FOR_ARCH6 | FL_ARCH6K)
#define FL_FOR_ARCH6Z	FL_FOR_ARCH6
#define FL_FOR_ARCH6ZK	FL_FOR_ARCH6K
#define FL_FOR_ARCH6T2	(FL_FOR_ARCH6 | FL_THUMB2)
#define FL_FOR_ARCH6M	(FL_FOR_ARCH6 & ~FL_NOTM)
#define FL_FOR_ARCH7	((FL_FOR_ARCH6T2 & ~FL_NOTM) | FL_ARCH7)
#define FL_FOR_ARCH7A	(FL_FOR_ARCH7 | FL_NOTM | FL_ARCH6K)
#define FL_FOR_ARCH7VE	(FL_FOR_ARCH7A | FL_THUMB_DIV | FL_ARM_DIV)
#define FL_FOR_ARCH7R	(FL_FOR_ARCH7A | FL_THUMB_DIV)
#define FL_FOR_ARCH7M	(FL_FOR_ARCH7 | FL_THUMB_DIV)
#define FL_FOR_ARCH7EM  (FL_FOR_ARCH7M | FL_ARCH7EM)
#define FL_FOR_ARCH8A	(FL_FOR_ARCH7VE | FL_ARCH8)

/* The bits in this mask specify which
   instructions we are allowed to generate.  */
static unsigned long insn_flags = 0;

/* The bits in this mask specify which instruction scheduling options should
   be used.  */
static unsigned long tune_flags = 0;

/* The highest ARM architecture version supported by the
   target.  */
enum base_architecture arm_base_arch = BASE_ARCH_0;

/* The following are used in the arm.md file as equivalents to bits
   in the above two flag variables.  */

/* Nonzero if this chip supports the ARM Architecture 3M extensions.  */
int arm_arch3m = 0;

/* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
int arm_arch4 = 0;

/* Nonzero if this chip supports the ARM Architecture 4t extensions.  */
int arm_arch4t = 0;

/* Nonzero if this chip supports the ARM Architecture 5 extensions.  */
int arm_arch5 = 0;

/* Nonzero if this chip supports the ARM Architecture 5E extensions.  */
int arm_arch5e = 0;

/* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
int arm_arch6 = 0;

/* Nonzero if this chip supports the ARM 6K extensions.  */
int arm_arch6k = 0;

/* Nonzero if instructions present in ARMv6-M can be used.  */
int arm_arch6m = 0;

/* Nonzero if this chip supports the ARM 7 extensions.  */
int arm_arch7 = 0;

/* Nonzero if instructions not present in the 'M' profile can be used.  */
int arm_arch_notm = 0;

/* Nonzero if instructions present in ARMv7E-M can be used.  */
int arm_arch7em = 0;

/* Nonzero if instructions present in ARMv8 can be used.  */
int arm_arch8 = 0;

/* Nonzero if this chip can benefit from load scheduling.  */
int arm_ld_sched = 0;

/* Nonzero if this chip is a StrongARM.  */
int arm_tune_strongarm = 0;

/* Nonzero if this chip supports Intel Wireless MMX technology.  */
int arm_arch_iwmmxt = 0;

/* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
int arm_arch_iwmmxt2 = 0;

/* Nonzero if this chip is an XScale.  */
int arm_arch_xscale = 0;

/* Nonzero if tuning for XScale  */
int arm_tune_xscale = 0;

/* Nonzero if we want to tune for stores that access the write-buffer.
   This typically means an ARM6 or ARM7 with MMU or MPU.  */
int arm_tune_wbuf = 0;

/* Nonzero if tuning for Cortex-A9.  */
int arm_tune_cortex_a9 = 0;

/* Nonzero if generating Thumb instructions.  */
int thumb_code = 0;

/* Nonzero if generating Thumb-1 instructions.  */
int thumb1_code = 0;

/* Nonzero if we should define __THUMB_INTERWORK__ in the
   preprocessor.
   XXX This is a bit of a hack, it's intended to help work around
   problems in GLD which doesn't understand that armv5t code is
   interworking clean.  */
int arm_cpp_interwork = 0;

/* Nonzero if chip supports Thumb 2.  */
int arm_arch_thumb2;

/* Nonzero if chip supports integer division instruction.  */
int arm_arch_arm_hwdiv;
int arm_arch_thumb_hwdiv;

/* Nonzero if we should use Neon to handle 64-bits operations rather
   than core registers.  */
int prefer_neon_for_64bits = 0;

/* Nonzero if we shouldn't use literal pools.  */
bool arm_disable_literal_pool = false;

/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference,
   we must report the mode of the memory reference from
   TARGET_PRINT_OPERAND to TARGET_PRINT_OPERAND_ADDRESS.  */
enum machine_mode output_memory_reference_mode;

/* The register number to be used for the PIC offset register.  */
unsigned arm_pic_register = INVALID_REGNUM;

/* Set to 1 after arm_reorg has started.  Reset to start at the start of
   the next function.  */
static int after_arm_reorg = 0;

enum arm_pcs arm_pcs_default;

/* For an explanation of these variables, see final_prescan_insn below.  */
int arm_ccfsm_state;
/* arm_current_cc is also used for Thumb-2 cond_exec blocks.  */
enum arm_cond_code arm_current_cc;

rtx arm_target_insn;
int arm_target_label;
/* The number of conditionally executed insns, including the current insn.  */
int arm_condexec_count = 0;
/* A bitmask specifying the patterns for the IT block.
   Zero means do not output an IT block before this insn. */
int arm_condexec_mask = 0;
/* The number of bits used in arm_condexec_mask.  */
int arm_condexec_masklen = 0;

/* Nonzero if chip supports the ARMv8 CRC instructions.  */
int arm_arch_crc = 0;

/* The condition codes of the ARM, and the inverse function.  */
static const char * const arm_condition_codes[] =
{
  "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
  "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
};

/* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
int arm_regs_in_sequence[] =
{
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};

#define ARM_LSL_NAME (TARGET_UNIFIED_ASM ? "lsl" : "asl")
#define streq(string1, string2) (strcmp (string1, string2) == 0)

#define THUMB2_WORK_REGS (0xff & ~(  (1 << THUMB_HARD_FRAME_POINTER_REGNUM) \
				   | (1 << SP_REGNUM) | (1 << PC_REGNUM) \
				   | (1 << PIC_OFFSET_TABLE_REGNUM)))

/* Initialization code.  */

struct processors
{
  const char *const name;
  enum processor_type core;
  const char *arch;
  enum base_architecture base_arch;
  const unsigned long flags;
  const struct tune_params *const tune;
};


#define ARM_PREFETCH_NOT_BENEFICIAL 0, -1, -1
#define ARM_PREFETCH_BENEFICIAL(prefetch_slots,l1_size,l1_line_size) \
  prefetch_slots, \
  l1_size, \
  l1_line_size

/* arm generic vectorizer costs.  */
static const
struct cpu_vec_costs arm_default_vec_cost = {
  1,					/* scalar_stmt_cost.  */
  1,					/* scalar load_cost.  */
  1,					/* scalar_store_cost.  */
  1,					/* vec_stmt_cost.  */
  1,					/* vec_to_scalar_cost.  */
  1,					/* scalar_to_vec_cost.  */
  1,					/* vec_align_load_cost.  */
  1,					/* vec_unalign_load_cost.  */
  1,					/* vec_unalign_store_cost.  */
  1,					/* vec_store_cost.  */
  3,					/* cond_taken_branch_cost.  */
  1,					/* cond_not_taken_branch_cost.  */
};

/* Cost tables for AArch32 + AArch64 cores should go in aarch-cost-tables.h  */
#include "aarch-cost-tables.h"



const struct cpu_cost_table cortexa9_extra_costs =
{
  /* ALU */
  {
    0,			/* arith.  */
    0,			/* logical.  */
    0,			/* shift.  */
    COSTS_N_INSNS (1),	/* shift_reg.  */
    COSTS_N_INSNS (1),	/* arith_shift.  */
    COSTS_N_INSNS (2),	/* arith_shift_reg.  */
    0,			/* log_shift.  */
    COSTS_N_INSNS (1),	/* log_shift_reg.  */
    COSTS_N_INSNS (1),	/* extend.  */
    COSTS_N_INSNS (2),	/* extend_arith.  */
    COSTS_N_INSNS (1),	/* bfi.  */
    COSTS_N_INSNS (1),	/* bfx.  */
    0,			/* clz.  */
    0,			/* non_exec.  */
    true		/* non_exec_costs_exec.  */
  },
  {
    /* MULT SImode */
    {
      COSTS_N_INSNS (3),	/* simple.  */
      COSTS_N_INSNS (3),	/* flag_setting.  */
      COSTS_N_INSNS (2),	/* extend.  */
      COSTS_N_INSNS (3),	/* add.  */
      COSTS_N_INSNS (2),	/* extend_add.  */
      COSTS_N_INSNS (30)	/* idiv.  No HW div on Cortex A9.  */
    },
    /* MULT DImode */
    {
      0,			/* simple (N/A).  */
      0,			/* flag_setting (N/A).  */
      COSTS_N_INSNS (4),	/* extend.  */
      0,			/* add (N/A).  */
      COSTS_N_INSNS (4),	/* extend_add.  */
      0				/* idiv (N/A).  */
    }
  },
  /* LD/ST */
  {
    COSTS_N_INSNS (2),	/* load.  */
    COSTS_N_INSNS (2),	/* load_sign_extend.  */
    COSTS_N_INSNS (2),	/* ldrd.  */
    COSTS_N_INSNS (2),	/* ldm_1st.  */
    1,			/* ldm_regs_per_insn_1st.  */
    2,			/* ldm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (5),	/* loadf.  */
    COSTS_N_INSNS (5),	/* loadd.  */
    COSTS_N_INSNS (1),  /* load_unaligned.  */
    COSTS_N_INSNS (2),	/* store.  */
    COSTS_N_INSNS (2),	/* strd.  */
    COSTS_N_INSNS (2),	/* stm_1st.  */
    1,			/* stm_regs_per_insn_1st.  */
    2,			/* stm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (1),	/* storef.  */
    COSTS_N_INSNS (1),	/* stored.  */
    COSTS_N_INSNS (1)	/* store_unaligned.  */
  },
  {
    /* FP SFmode */
    {
      COSTS_N_INSNS (14),	/* div.  */
      COSTS_N_INSNS (4),	/* mult.  */
      COSTS_N_INSNS (7),	/* mult_addsub. */
      COSTS_N_INSNS (30),	/* fma.  */
      COSTS_N_INSNS (3),	/* addsub.  */
      COSTS_N_INSNS (1),	/* fpconst.  */
      COSTS_N_INSNS (1),	/* neg.  */
      COSTS_N_INSNS (3),	/* compare.  */
      COSTS_N_INSNS (3),	/* widen.  */
      COSTS_N_INSNS (3),	/* narrow.  */
      COSTS_N_INSNS (3),	/* toint.  */
      COSTS_N_INSNS (3),	/* fromint.  */
      COSTS_N_INSNS (3)		/* roundint.  */
    },
    /* FP DFmode */
    {
      COSTS_N_INSNS (24),	/* div.  */
      COSTS_N_INSNS (5),	/* mult.  */
      COSTS_N_INSNS (8),	/* mult_addsub.  */
      COSTS_N_INSNS (30),	/* fma.  */
      COSTS_N_INSNS (3),	/* addsub.  */
      COSTS_N_INSNS (1),	/* fpconst.  */
      COSTS_N_INSNS (1),	/* neg.  */
      COSTS_N_INSNS (3),	/* compare.  */
      COSTS_N_INSNS (3),	/* widen.  */
      COSTS_N_INSNS (3),	/* narrow.  */
      COSTS_N_INSNS (3),	/* toint.  */
      COSTS_N_INSNS (3),	/* fromint.  */
      COSTS_N_INSNS (3)		/* roundint.  */
    }
  },
  /* Vector */
  {
    COSTS_N_INSNS (1)	/* alu.  */
  }
};


const struct cpu_cost_table cortexa7_extra_costs =
{
  /* ALU */
  {
    0,			/* arith.  */
    0,			/* logical.  */
    COSTS_N_INSNS (1),	/* shift.  */
    COSTS_N_INSNS (1),	/* shift_reg.  */
    COSTS_N_INSNS (1),	/* arith_shift.  */
    COSTS_N_INSNS (1),	/* arith_shift_reg.  */
    COSTS_N_INSNS (1),	/* log_shift.  */
    COSTS_N_INSNS (1),	/* log_shift_reg.  */
    COSTS_N_INSNS (1),	/* extend.  */
    COSTS_N_INSNS (1),	/* extend_arith.  */
    COSTS_N_INSNS (1),	/* bfi.  */
    COSTS_N_INSNS (1),	/* bfx.  */
    COSTS_N_INSNS (1),	/* clz.  */
    0,			/* non_exec.  */
    true		/* non_exec_costs_exec.  */
  },

  {
    /* MULT SImode */
    {
      0,			/* simple.  */
      COSTS_N_INSNS (1),	/* flag_setting.  */
      COSTS_N_INSNS (1),	/* extend.  */
      COSTS_N_INSNS (1),	/* add.  */
      COSTS_N_INSNS (1),	/* extend_add.  */
      COSTS_N_INSNS (7)		/* idiv.  */
    },
    /* MULT DImode */
    {
      0,			/* simple (N/A).  */
      0,			/* flag_setting (N/A).  */
      COSTS_N_INSNS (1),	/* extend.  */
      0,			/* add.  */
      COSTS_N_INSNS (2),	/* extend_add.  */
      0				/* idiv (N/A).  */
    }
  },
  /* LD/ST */
  {
    COSTS_N_INSNS (1),	/* load.  */
    COSTS_N_INSNS (1),	/* load_sign_extend.  */
    COSTS_N_INSNS (3),	/* ldrd.  */
    COSTS_N_INSNS (1),	/* ldm_1st.  */
    1,			/* ldm_regs_per_insn_1st.  */
    2,			/* ldm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (2),	/* loadf.  */
    COSTS_N_INSNS (2),	/* loadd.  */
    COSTS_N_INSNS (1),	/* load_unaligned.  */
    COSTS_N_INSNS (1),	/* store.  */
    COSTS_N_INSNS (3),	/* strd.  */
    COSTS_N_INSNS (1),	/* stm_1st.  */
    1,			/* stm_regs_per_insn_1st.  */
    2,			/* stm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (2),	/* storef.  */
    COSTS_N_INSNS (2),	/* stored.  */
    COSTS_N_INSNS (1)	/* store_unaligned.  */
  },
  {
    /* FP SFmode */
    {
      COSTS_N_INSNS (15),	/* div.  */
      COSTS_N_INSNS (3),	/* mult.  */
      COSTS_N_INSNS (7),	/* mult_addsub. */
      COSTS_N_INSNS (7),	/* fma.  */
      COSTS_N_INSNS (3),	/* addsub.  */
      COSTS_N_INSNS (3),	/* fpconst.  */
      COSTS_N_INSNS (3),	/* neg.  */
      COSTS_N_INSNS (3),	/* compare.  */
      COSTS_N_INSNS (3),	/* widen.  */
      COSTS_N_INSNS (3),	/* narrow.  */
      COSTS_N_INSNS (3),	/* toint.  */
      COSTS_N_INSNS (3),	/* fromint.  */
      COSTS_N_INSNS (3)		/* roundint.  */
    },
    /* FP DFmode */
    {
      COSTS_N_INSNS (30),	/* div.  */
      COSTS_N_INSNS (6),	/* mult.  */
      COSTS_N_INSNS (10),	/* mult_addsub.  */
      COSTS_N_INSNS (7),	/* fma.  */
      COSTS_N_INSNS (3),	/* addsub.  */
      COSTS_N_INSNS (3),	/* fpconst.  */
      COSTS_N_INSNS (3),	/* neg.  */
      COSTS_N_INSNS (3),	/* compare.  */
      COSTS_N_INSNS (3),	/* widen.  */
      COSTS_N_INSNS (3),	/* narrow.  */
      COSTS_N_INSNS (3),	/* toint.  */
      COSTS_N_INSNS (3),	/* fromint.  */
      COSTS_N_INSNS (3)		/* roundint.  */
    }
  },
  /* Vector */
  {
    COSTS_N_INSNS (1)	/* alu.  */
  }
};

const struct cpu_cost_table cortexa12_extra_costs =
{
  /* ALU */
  {
    0,			/* arith.  */
    0,			/* logical.  */
    0,			/* shift.  */
    COSTS_N_INSNS (1),	/* shift_reg.  */
    COSTS_N_INSNS (1),	/* arith_shift.  */
    COSTS_N_INSNS (1),	/* arith_shift_reg.  */
    COSTS_N_INSNS (1),	/* log_shift.  */
    COSTS_N_INSNS (1),	/* log_shift_reg.  */
    0,			/* extend.  */
    COSTS_N_INSNS (1),	/* extend_arith.  */
    0,			/* bfi.  */
    COSTS_N_INSNS (1),	/* bfx.  */
    COSTS_N_INSNS (1),	/* clz.  */
    0,			/* non_exec.  */
    true		/* non_exec_costs_exec.  */
  },
  /* MULT SImode */
  {
    {
      COSTS_N_INSNS (2),	/* simple.  */
      COSTS_N_INSNS (3),	/* flag_setting.  */
      COSTS_N_INSNS (2),	/* extend.  */
      COSTS_N_INSNS (3),	/* add.  */
      COSTS_N_INSNS (2),	/* extend_add.  */
      COSTS_N_INSNS (18)	/* idiv.  */
    },
    /* MULT DImode */
    {
      0,			/* simple (N/A).  */
      0,			/* flag_setting (N/A).  */
      COSTS_N_INSNS (3),	/* extend.  */
      0,			/* add (N/A).  */
      COSTS_N_INSNS (3),	/* extend_add.  */
      0				/* idiv (N/A).  */
    }
  },
  /* LD/ST */
  {
    COSTS_N_INSNS (3),	/* load.  */
    COSTS_N_INSNS (3),	/* load_sign_extend.  */
    COSTS_N_INSNS (3),	/* ldrd.  */
    COSTS_N_INSNS (3),	/* ldm_1st.  */
    1,			/* ldm_regs_per_insn_1st.  */
    2,			/* ldm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (3),	/* loadf.  */
    COSTS_N_INSNS (3),	/* loadd.  */
    0,			/* load_unaligned.  */
    0,			/* store.  */
    0,			/* strd.  */
    0,			/* stm_1st.  */
    1,			/* stm_regs_per_insn_1st.  */
    2,			/* stm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (2),	/* storef.  */
    COSTS_N_INSNS (2),	/* stored.  */
    0			/* store_unaligned.  */
  },
  {
    /* FP SFmode */
    {
      COSTS_N_INSNS (17),	/* div.  */
      COSTS_N_INSNS (4),	/* mult.  */
      COSTS_N_INSNS (8),	/* mult_addsub. */
      COSTS_N_INSNS (8),	/* fma.  */
      COSTS_N_INSNS (4),	/* addsub.  */
      COSTS_N_INSNS (2),	/* fpconst. */
      COSTS_N_INSNS (2),	/* neg.  */
      COSTS_N_INSNS (2),	/* compare.  */
      COSTS_N_INSNS (4),	/* widen.  */
      COSTS_N_INSNS (4),	/* narrow.  */
      COSTS_N_INSNS (4),	/* toint.  */
      COSTS_N_INSNS (4),	/* fromint.  */
      COSTS_N_INSNS (4)		/* roundint.  */
    },
    /* FP DFmode */
    {
      COSTS_N_INSNS (31),	/* div.  */
      COSTS_N_INSNS (4),	/* mult.  */
      COSTS_N_INSNS (8),	/* mult_addsub.  */
      COSTS_N_INSNS (8),	/* fma.  */
      COSTS_N_INSNS (4),	/* addsub.  */
      COSTS_N_INSNS (2),	/* fpconst.  */
      COSTS_N_INSNS (2),	/* neg.  */
      COSTS_N_INSNS (2),	/* compare.  */
      COSTS_N_INSNS (4),	/* widen.  */
      COSTS_N_INSNS (4),	/* narrow.  */
      COSTS_N_INSNS (4),	/* toint.  */
      COSTS_N_INSNS (4),	/* fromint.  */
      COSTS_N_INSNS (4)		/* roundint.  */
    }
  },
  /* Vector */
  {
    COSTS_N_INSNS (1)	/* alu.  */
  }
};

const struct cpu_cost_table cortexa15_extra_costs =
{
  /* ALU */
  {
    0,			/* arith.  */
    0,			/* logical.  */
    0,			/* shift.  */
    0,			/* shift_reg.  */
    COSTS_N_INSNS (1),	/* arith_shift.  */
    COSTS_N_INSNS (1),	/* arith_shift_reg.  */
    COSTS_N_INSNS (1),	/* log_shift.  */
    COSTS_N_INSNS (1),	/* log_shift_reg.  */
    0,			/* extend.  */
    COSTS_N_INSNS (1),	/* extend_arith.  */
    COSTS_N_INSNS (1),	/* bfi.  */
    0,			/* bfx.  */
    0,			/* clz.  */
    0,			/* non_exec.  */
    true		/* non_exec_costs_exec.  */
  },
  /* MULT SImode */
  {
    {
      COSTS_N_INSNS (2),	/* simple.  */
      COSTS_N_INSNS (3),	/* flag_setting.  */
      COSTS_N_INSNS (2),	/* extend.  */
      COSTS_N_INSNS (2),	/* add.  */
      COSTS_N_INSNS (2),	/* extend_add.  */
      COSTS_N_INSNS (18)	/* idiv.  */
    },
    /* MULT DImode */
    {
      0,			/* simple (N/A).  */
      0,			/* flag_setting (N/A).  */
      COSTS_N_INSNS (3),	/* extend.  */
      0,			/* add (N/A).  */
      COSTS_N_INSNS (3),	/* extend_add.  */
      0				/* idiv (N/A).  */
    }
  },
  /* LD/ST */
  {
    COSTS_N_INSNS (3),	/* load.  */
    COSTS_N_INSNS (3),	/* load_sign_extend.  */
    COSTS_N_INSNS (3),	/* ldrd.  */
    COSTS_N_INSNS (4),	/* ldm_1st.  */
    1,			/* ldm_regs_per_insn_1st.  */
    2,			/* ldm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (4),	/* loadf.  */
    COSTS_N_INSNS (4),	/* loadd.  */
    0,			/* load_unaligned.  */
    0,			/* store.  */
    0,			/* strd.  */
    COSTS_N_INSNS (1),	/* stm_1st.  */
    1,			/* stm_regs_per_insn_1st.  */
    2,			/* stm_regs_per_insn_subsequent.  */
    0,			/* storef.  */
    0,			/* stored.  */
    0			/* store_unaligned.  */
  },
  {
    /* FP SFmode */
    {
      COSTS_N_INSNS (17),	/* div.  */
      COSTS_N_INSNS (4),	/* mult.  */
      COSTS_N_INSNS (8),	/* mult_addsub. */
      COSTS_N_INSNS (8),	/* fma.  */
      COSTS_N_INSNS (4),	/* addsub.  */
      COSTS_N_INSNS (2),	/* fpconst. */
      COSTS_N_INSNS (2),	/* neg.  */
      COSTS_N_INSNS (5),	/* compare.  */
      COSTS_N_INSNS (4),	/* widen.  */
      COSTS_N_INSNS (4),	/* narrow.  */
      COSTS_N_INSNS (4),	/* toint.  */
      COSTS_N_INSNS (4),	/* fromint.  */
      COSTS_N_INSNS (4)		/* roundint.  */
    },
    /* FP DFmode */
    {
      COSTS_N_INSNS (31),	/* div.  */
      COSTS_N_INSNS (4),	/* mult.  */
      COSTS_N_INSNS (8),	/* mult_addsub.  */
      COSTS_N_INSNS (8),	/* fma.  */
      COSTS_N_INSNS (4),	/* addsub.  */
      COSTS_N_INSNS (2),	/* fpconst.  */
      COSTS_N_INSNS (2),	/* neg.  */
      COSTS_N_INSNS (2),	/* compare.  */
      COSTS_N_INSNS (4),	/* widen.  */
      COSTS_N_INSNS (4),	/* narrow.  */
      COSTS_N_INSNS (4),	/* toint.  */
      COSTS_N_INSNS (4),	/* fromint.  */
      COSTS_N_INSNS (4)		/* roundint.  */
    }
  },
  /* Vector */
  {
    COSTS_N_INSNS (1)	/* alu.  */
  }
};

const struct cpu_cost_table v7m_extra_costs =
{
  /* ALU */
  {
    0,			/* arith.  */
    0,			/* logical.  */
    0,			/* shift.  */
    0,			/* shift_reg.  */
    0,			/* arith_shift.  */
    COSTS_N_INSNS (1),	/* arith_shift_reg.  */
    0,			/* log_shift.  */
    COSTS_N_INSNS (1),	/* log_shift_reg.  */
    0,			/* extend.  */
    COSTS_N_INSNS (1),	/* extend_arith.  */
    0,			/* bfi.  */
    0,			/* bfx.  */
    0,			/* clz.  */
    COSTS_N_INSNS (1),	/* non_exec.  */
    false		/* non_exec_costs_exec.  */
  },
  {
    /* MULT SImode */
    {
      COSTS_N_INSNS (1),	/* simple.  */
      COSTS_N_INSNS (1),	/* flag_setting.  */
      COSTS_N_INSNS (2),	/* extend.  */
      COSTS_N_INSNS (1),	/* add.  */
      COSTS_N_INSNS (3),	/* extend_add.  */
      COSTS_N_INSNS (8)		/* idiv.  */
    },
    /* MULT DImode */
    {
      0,			/* simple (N/A).  */
      0,			/* flag_setting (N/A).  */
      COSTS_N_INSNS (2),	/* extend.  */
      0,			/* add (N/A).  */
      COSTS_N_INSNS (3),	/* extend_add.  */
      0				/* idiv (N/A).  */
    }
  },
  /* LD/ST */
  {
    COSTS_N_INSNS (2),	/* load.  */
    0,			/* load_sign_extend.  */
    COSTS_N_INSNS (3),	/* ldrd.  */
    COSTS_N_INSNS (2),	/* ldm_1st.  */
    1,			/* ldm_regs_per_insn_1st.  */
    1,			/* ldm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (2),	/* loadf.  */
    COSTS_N_INSNS (3),	/* loadd.  */
    COSTS_N_INSNS (1),  /* load_unaligned.  */
    COSTS_N_INSNS (2),	/* store.  */
    COSTS_N_INSNS (3),	/* strd.  */
    COSTS_N_INSNS (2),	/* stm_1st.  */
    1,			/* stm_regs_per_insn_1st.  */
    1,			/* stm_regs_per_insn_subsequent.  */
    COSTS_N_INSNS (2),	/* storef.  */
    COSTS_N_INSNS (3),	/* stored.  */
    COSTS_N_INSNS (1)  /* store_unaligned.  */
  },
  {
    /* FP SFmode */
    {
      COSTS_N_INSNS (7),	/* div.  */
      COSTS_N_INSNS (2),	/* mult.  */
      COSTS_N_INSNS (5),	/* mult_addsub.  */
      COSTS_N_INSNS (3),	/* fma.  */
      COSTS_N_INSNS (1),	/* addsub.  */
      0,			/* fpconst.  */
      0,			/* neg.  */
      0,			/* compare.  */
      0,			/* widen.  */
      0,			/* narrow.  */
      0,			/* toint.  */
      0,			/* fromint.  */
      0				/* roundint.  */
    },
    /* FP DFmode */
    {
      COSTS_N_INSNS (15),	/* div.  */
      COSTS_N_INSNS (5),	/* mult.  */
      COSTS_N_INSNS (7),	/* mult_addsub.  */
      COSTS_N_INSNS (7),	/* fma.  */
      COSTS_N_INSNS (3),	/* addsub.  */
      0,			/* fpconst.  */
      0,			/* neg.  */
      0,			/* compare.  */
      0,			/* widen.  */
      0,			/* narrow.  */
      0,			/* toint.  */
      0,			/* fromint.  */
      0				/* roundint.  */
    }
  },
  /* Vector */
  {
    COSTS_N_INSNS (1)	/* alu.  */
  }
};

const struct tune_params arm_slowmul_tune =
{
  arm_slowmul_rtx_costs,
  NULL,
  NULL,						/* Sched adj cost.  */
  3,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  true,						/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_fastmul_tune =
{
  arm_fastmul_rtx_costs,
  NULL,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  true,						/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

/* StrongARM has early execution of branches, so a sequence that is worth
   skipping is shorter.  Set max_insns_skipped to a lower value.  */

const struct tune_params arm_strongarm_tune =
{
  arm_fastmul_rtx_costs,
  NULL,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  3,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  true,						/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_xscale_tune =
{
  arm_xscale_rtx_costs,
  NULL,
  xscale_sched_adjust_cost,
  2,						/* Constant limit.  */
  3,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  true,						/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_9e_tune =
{
  arm_9e_rtx_costs,
  NULL,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  true,						/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_v6t2_tune =
{
  arm_9e_rtx_costs,
  NULL,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

/* Generic Cortex tuning.  Use more specific tunings if appropriate.  */
const struct tune_params arm_cortex_tune =
{
  arm_9e_rtx_costs,
  &generic_extra_costs,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_cortex_a7_tune =
{
  arm_9e_rtx_costs,
  &cortexa7_extra_costs,
  NULL,
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,			/* Vectorizer costs.  */
  false						/* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_cortex_a15_tune =
{
  arm_9e_rtx_costs,
  &cortexa15_extra_costs,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  2,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  true,						/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_cortex_a53_tune =
{
  arm_9e_rtx_costs,
  &cortexa53_extra_costs,
  NULL,						/* Scheduler cost adjustment.  */
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,			/* Vectorizer costs.  */
  false						/* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_cortex_a57_tune =
{
  arm_9e_rtx_costs,
  &cortexa57_extra_costs,
  NULL,                                         /* Scheduler cost adjustment.  */
  1,                                           /* Constant limit.  */
  2,                                           /* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,                                       /* Prefer constant pool.  */
  arm_default_branch_cost,
  true,                                       /* Prefer LDRD/STRD.  */
  {true, true},                                /* Prefer non short circuit.  */
  &arm_default_vec_cost,                       /* Vectorizer costs.  */
  false                                        /* Prefer Neon for 64-bits bitops.  */
};

/* Branches can be dual-issued on Cortex-A5, so conditional execution is
   less appealing.  Set max_insns_skipped to a low value.  */

const struct tune_params arm_cortex_a5_tune =
{
  arm_9e_rtx_costs,
  NULL,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  1,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,					/* Prefer constant pool.  */
  arm_cortex_a5_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {false, false},				/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_cortex_a9_tune =
{
  arm_9e_rtx_costs,
  &cortexa9_extra_costs,
  cortex_a9_sched_adjust_cost,
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_BENEFICIAL(4,32,32),
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_cortex_a12_tune =
{
  arm_9e_rtx_costs,
  &cortexa12_extra_costs,
  NULL,
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_BENEFICIAL(4,32,32),
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  true,						/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

/* armv7m tuning.  On Cortex-M4 cores for example, MOVW/MOVT take a single
   cycle to execute each.  An LDR from the constant pool also takes two cycles
   to execute, but mildly increases pipelining opportunity (consecutive
   loads/stores can be pipelined together, saving one cycle), and may also
   improve icache utilisation.  Hence we prefer the constant pool for such
   processors.  */

const struct tune_params arm_v7m_tune =
{
  arm_9e_rtx_costs,
  &v7m_extra_costs,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  2,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  true,						/* Prefer constant pool.  */
  arm_cortex_m_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {false, false},				/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

/* The arm_v6m_tune is duplicated from arm_cortex_tune, rather than
   arm_v6t2_tune. It is used for cortex-m0, cortex-m1 and cortex-m0plus.  */
const struct tune_params arm_v6m_tune =
{
  arm_9e_rtx_costs,
  NULL,
  NULL,						/* Sched adj cost.  */
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  false,					/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {false, false},				/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};

const struct tune_params arm_fa726te_tune =
{
  arm_9e_rtx_costs,
  NULL,
  fa726te_sched_adjust_cost,
  1,						/* Constant limit.  */
  5,						/* Max cond insns.  */
  ARM_PREFETCH_NOT_BENEFICIAL,
  true,						/* Prefer constant pool.  */
  arm_default_branch_cost,
  false,					/* Prefer LDRD/STRD.  */
  {true, true},					/* Prefer non short circuit.  */
  &arm_default_vec_cost,                        /* Vectorizer costs.  */
  false                                         /* Prefer Neon for 64-bits bitops.  */
};


/* Not all of these give usefully different compilation alternatives,
   but there is no simple way of generalizing them.  */
static const struct processors all_cores[] =
{
  /* ARM Cores */
#define ARM_CORE(NAME, X, IDENT, ARCH, FLAGS, COSTS) \
  {NAME, IDENT, #ARCH, BASE_ARCH_##ARCH,	  \
    FLAGS | FL_FOR_ARCH##ARCH, &arm_##COSTS##_tune},
#include "arm-cores.def"
#undef ARM_CORE
  {NULL, arm_none, NULL, BASE_ARCH_0, 0, NULL}
};

static const struct processors all_architectures[] =
{
  /* ARM Architectures */
  /* We don't specify tuning costs here as it will be figured out
     from the core.  */

#define ARM_ARCH(NAME, CORE, ARCH, FLAGS) \
  {NAME, CORE, #ARCH, BASE_ARCH_##ARCH, FLAGS, NULL},
#include "arm-arches.def"
#undef ARM_ARCH
  {NULL, arm_none, NULL, BASE_ARCH_0, 0, NULL}
};


/* These are populated as commandline arguments are processed, or NULL
   if not specified.  */
static const struct processors *arm_selected_arch;
static const struct processors *arm_selected_cpu;
static const struct processors *arm_selected_tune;

/* The name of the preprocessor macro to define for this architecture.  */

char arm_arch_name[] = "__ARM_ARCH_0UNK__";

/* Available values for -mfpu=.  */

static const struct arm_fpu_desc all_fpus[] =
{
#define ARM_FPU(NAME, MODEL, REV, VFP_REGS, NEON, FP16, CRYPTO) \
  { NAME, MODEL, REV, VFP_REGS, NEON, FP16, CRYPTO },
#include "arm-fpus.def"
#undef ARM_FPU
};


/* Supported TLS relocations.  */

enum tls_reloc {
  TLS_GD32,
  TLS_LDM32,
  TLS_LDO32,
  TLS_IE32,
  TLS_LE32,
  TLS_DESCSEQ	/* GNU scheme */
};

/* The maximum number of insns to be used when loading a constant.  */
inline static int
arm_constant_limit (bool size_p)
{
  return size_p ? 1 : current_tune->constant_limit;
}

/* Emit an insn that's a simple single-set.  Both the operands must be known
   to be valid.  */
inline static rtx
emit_set_insn (rtx x, rtx y)
{
  return emit_insn (gen_rtx_SET (VOIDmode, x, y));
}

/* Return the number of bits set in VALUE.  */
static unsigned
bit_count (unsigned long value)
{
  unsigned long count = 0;

  while (value)
    {
      count++;
      value &= value - 1;  /* Clear the least-significant set bit.  */
    }

  return count;
}

typedef struct
{
  enum machine_mode mode;
  const char *name;
} arm_fixed_mode_set;

/* A small helper for setting fixed-point library libfuncs.  */

static void
arm_set_fixed_optab_libfunc (optab optable, enum machine_mode mode,
			     const char *funcname, const char *modename,
			     int num_suffix)
{
  char buffer[50];

  if (num_suffix == 0)
    sprintf (buffer, "__gnu_%s%s", funcname, modename);
  else
    sprintf (buffer, "__gnu_%s%s%d", funcname, modename, num_suffix);

  set_optab_libfunc (optable, mode, buffer);
}

static void
arm_set_fixed_conv_libfunc (convert_optab optable, enum machine_mode to,
			    enum machine_mode from, const char *funcname,
			    const char *toname, const char *fromname)
{
  char buffer[50];
  const char *maybe_suffix_2 = "";

  /* Follow the logic for selecting a "2" suffix in fixed-bit.h.  */
  if (ALL_FIXED_POINT_MODE_P (from) && ALL_FIXED_POINT_MODE_P (to)
      && UNSIGNED_FIXED_POINT_MODE_P (from) == UNSIGNED_FIXED_POINT_MODE_P (to)
      && ALL_FRACT_MODE_P (from) == ALL_FRACT_MODE_P (to))
    maybe_suffix_2 = "2";

  sprintf (buffer, "__gnu_%s%s%s%s", funcname, fromname, toname,
	   maybe_suffix_2);

  set_conv_libfunc (optable, to, from, buffer);
}

/* Set up library functions unique to ARM.  */

static void
arm_init_libfuncs (void)
{
  /* For Linux, we have access to kernel support for atomic operations.  */
  if (arm_abi == ARM_ABI_AAPCS_LINUX)
    init_sync_libfuncs (2 * UNITS_PER_WORD);

  /* There are no special library functions unless we are using the
     ARM BPABI.  */
  if (!TARGET_BPABI)
    return;

  /* The functions below are described in Section 4 of the "Run-Time
     ABI for the ARM architecture", Version 1.0.  */

  /* Double-precision floating-point arithmetic.  Table 2.  */
  set_optab_libfunc (add_optab, DFmode, "__aeabi_dadd");
  set_optab_libfunc (sdiv_optab, DFmode, "__aeabi_ddiv");
  set_optab_libfunc (smul_optab, DFmode, "__aeabi_dmul");
  set_optab_libfunc (neg_optab, DFmode, "__aeabi_dneg");
  set_optab_libfunc (sub_optab, DFmode, "__aeabi_dsub");

  /* Double-precision comparisons.  Table 3.  */
  set_optab_libfunc (eq_optab, DFmode, "__aeabi_dcmpeq");
  set_optab_libfunc (ne_optab, DFmode, NULL);
  set_optab_libfunc (lt_optab, DFmode, "__aeabi_dcmplt");
  set_optab_libfunc (le_optab, DFmode, "__aeabi_dcmple");
  set_optab_libfunc (ge_optab, DFmode, "__aeabi_dcmpge");
  set_optab_libfunc (gt_optab, DFmode, "__aeabi_dcmpgt");
  set_optab_libfunc (unord_optab, DFmode, "__aeabi_dcmpun");

  /* Single-precision floating-point arithmetic.  Table 4.  */
  set_optab_libfunc (add_optab, SFmode, "__aeabi_fadd");
  set_optab_libfunc (sdiv_optab, SFmode, "__aeabi_fdiv");
  set_optab_libfunc (smul_optab, SFmode, "__aeabi_fmul");
  set_optab_libfunc (neg_optab, SFmode, "__aeabi_fneg");
  set_optab_libfunc (sub_optab, SFmode, "__aeabi_fsub");

  /* Single-precision comparisons.  Table 5.  */
  set_optab_libfunc (eq_optab, SFmode, "__aeabi_fcmpeq");
  set_optab_libfunc (ne_optab, SFmode, NULL);
  set_optab_libfunc (lt_optab, SFmode, "__aeabi_fcmplt");
  set_optab_libfunc (le_optab, SFmode, "__aeabi_fcmple");
  set_optab_libfunc (ge_optab, SFmode, "__aeabi_fcmpge");
  set_optab_libfunc (gt_optab, SFmode, "__aeabi_fcmpgt");
  set_optab_libfunc (unord_optab, SFmode, "__aeabi_fcmpun");

  /* Floating-point to integer conversions.  Table 6.  */
  set_conv_libfunc (sfix_optab, SImode, DFmode, "__aeabi_d2iz");
  set_conv_libfunc (ufix_optab, SImode, DFmode, "__aeabi_d2uiz");
  set_conv_libfunc (sfix_optab, DImode, DFmode, "__aeabi_d2lz");
  set_conv_libfunc (ufix_optab, DImode, DFmode, "__aeabi_d2ulz");
  set_conv_libfunc (sfix_optab, SImode, SFmode, "__aeabi_f2iz");
  set_conv_libfunc (ufix_optab, SImode, SFmode, "__aeabi_f2uiz");
  set_conv_libfunc (sfix_optab, DImode, SFmode, "__aeabi_f2lz");
  set_conv_libfunc (ufix_optab, DImode, SFmode, "__aeabi_f2ulz");

  /* Conversions between floating types.  Table 7.  */
  set_conv_libfunc (trunc_optab, SFmode, DFmode, "__aeabi_d2f");
  set_conv_libfunc (sext_optab, DFmode, SFmode, "__aeabi_f2d");

  /* Integer to floating-point conversions.  Table 8.  */
  set_conv_libfunc (sfloat_optab, DFmode, SImode, "__aeabi_i2d");
  set_conv_libfunc (ufloat_optab, DFmode, SImode, "__aeabi_ui2d");
  set_conv_libfunc (sfloat_optab, DFmode, DImode, "__aeabi_l2d");
  set_conv_libfunc (ufloat_optab, DFmode, DImode, "__aeabi_ul2d");
  set_conv_libfunc (sfloat_optab, SFmode, SImode, "__aeabi_i2f");
  set_conv_libfunc (ufloat_optab, SFmode, SImode, "__aeabi_ui2f");
  set_conv_libfunc (sfloat_optab, SFmode, DImode, "__aeabi_l2f");
  set_conv_libfunc (ufloat_optab, SFmode, DImode, "__aeabi_ul2f");

  /* Long long.  Table 9.  */
  set_optab_libfunc (smul_optab, DImode, "__aeabi_lmul");
  set_optab_libfunc (sdivmod_optab, DImode, "__aeabi_ldivmod");
  set_optab_libfunc (udivmod_optab, DImode, "__aeabi_uldivmod");
  set_optab_libfunc (ashl_optab, DImode, "__aeabi_llsl");
  set_optab_libfunc (lshr_optab, DImode, "__aeabi_llsr");
  set_optab_libfunc (ashr_optab, DImode, "__aeabi_lasr");
  set_optab_libfunc (cmp_optab, DImode, "__aeabi_lcmp");
  set_optab_libfunc (ucmp_optab, DImode, "__aeabi_ulcmp");

  /* Integer (32/32->32) division.  \S 4.3.1.  */
  set_optab_libfunc (sdivmod_optab, SImode, "__aeabi_idivmod");
  set_optab_libfunc (udivmod_optab, SImode, "__aeabi_uidivmod");

  /* The divmod functions are designed so that they can be used for
     plain division, even though they return both the quotient and the
     remainder.  The quotient is returned in the usual location (i.e.,
     r0 for SImode, {r0, r1} for DImode), just as would be expected
     for an ordinary division routine.  Because the AAPCS calling
     conventions specify that all of { r0, r1, r2, r3 } are
     callee-saved registers, there is no need to tell the compiler
     explicitly that those registers are clobbered by these
     routines.  */
  set_optab_libfunc (sdiv_optab, DImode, "__aeabi_ldivmod");
  set_optab_libfunc (udiv_optab, DImode, "__aeabi_uldivmod");

  /* For SImode division the ABI provides div-without-mod routines,
     which are faster.  */
  set_optab_libfunc (sdiv_optab, SImode, "__aeabi_idiv");
  set_optab_libfunc (udiv_optab, SImode, "__aeabi_uidiv");

  /* We don't have mod libcalls.  Fortunately gcc knows how to use the
     divmod libcalls instead.  */
  set_optab_libfunc (smod_optab, DImode, NULL);
  set_optab_libfunc (umod_optab, DImode, NULL);
  set_optab_libfunc (smod_optab, SImode, NULL);
  set_optab_libfunc (umod_optab, SImode, NULL);

  /* Half-precision float operations.  The compiler handles all operations
     with NULL libfuncs by converting the SFmode.  */
  switch (arm_fp16_format)
    {
    case ARM_FP16_FORMAT_IEEE:
    case ARM_FP16_FORMAT_ALTERNATIVE:

      /* Conversions.  */
      set_conv_libfunc (trunc_optab, HFmode, SFmode,
			(arm_fp16_format == ARM_FP16_FORMAT_IEEE
			 ? "__gnu_f2h_ieee"
			 : "__gnu_f2h_alternative"));
      set_conv_libfunc (sext_optab, SFmode, HFmode,
			(arm_fp16_format == ARM_FP16_FORMAT_IEEE
			 ? "__gnu_h2f_ieee"
			 : "__gnu_h2f_alternative"));

      /* Arithmetic.  */
      set_optab_libfunc (add_optab, HFmode, NULL);
      set_optab_libfunc (sdiv_optab, HFmode, NULL);
      set_optab_libfunc (smul_optab, HFmode, NULL);
      set_optab_libfunc (neg_optab, HFmode, NULL);
      set_optab_libfunc (sub_optab, HFmode, NULL);

      /* Comparisons.  */
      set_optab_libfunc (eq_optab, HFmode, NULL);
      set_optab_libfunc (ne_optab, HFmode, NULL);
      set_optab_libfunc (lt_optab, HFmode, NULL);
      set_optab_libfunc (le_optab, HFmode, NULL);
      set_optab_libfunc (ge_optab, HFmode, NULL);
      set_optab_libfunc (gt_optab, HFmode, NULL);
      set_optab_libfunc (unord_optab, HFmode, NULL);
      break;

    default:
      break;
    }

  /* Use names prefixed with __gnu_ for fixed-point helper functions.  */
  {
    const arm_fixed_mode_set fixed_arith_modes[] =
      {
	{ QQmode, "qq" },
	{ UQQmode, "uqq" },
	{ HQmode, "hq" },
	{ UHQmode, "uhq" },
	{ SQmode, "sq" },
	{ USQmode, "usq" },
	{ DQmode, "dq" },
	{ UDQmode, "udq" },
	{ TQmode, "tq" },
	{ UTQmode, "utq" },
	{ HAmode, "ha" },
	{ UHAmode, "uha" },
	{ SAmode, "sa" },
	{ USAmode, "usa" },
	{ DAmode, "da" },
	{ UDAmode, "uda" },
	{ TAmode, "ta" },
	{ UTAmode, "uta" }
      };
    const arm_fixed_mode_set fixed_conv_modes[] =
      {
	{ QQmode, "qq" },
	{ UQQmode, "uqq" },
	{ HQmode, "hq" },
	{ UHQmode, "uhq" },
	{ SQmode, "sq" },
	{ USQmode, "usq" },
	{ DQmode, "dq" },
	{ UDQmode, "udq" },
	{ TQmode, "tq" },
	{ UTQmode, "utq" },
	{ HAmode, "ha" },
	{ UHAmode, "uha" },
	{ SAmode, "sa" },
	{ USAmode, "usa" },
	{ DAmode, "da" },
	{ UDAmode, "uda" },
	{ TAmode, "ta" },
	{ UTAmode, "uta" },
	{ QImode, "qi" },
	{ HImode, "hi" },
	{ SImode, "si" },
	{ DImode, "di" },
	{ TImode, "ti" },
	{ SFmode, "sf" },
	{ DFmode, "df" }
      };
    unsigned int i, j;

    for (i = 0; i < ARRAY_SIZE (fixed_arith_modes); i++)
      {
	arm_set_fixed_optab_libfunc (add_optab, fixed_arith_modes[i].mode,
				     "add", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (ssadd_optab, fixed_arith_modes[i].mode,
				     "ssadd", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (usadd_optab, fixed_arith_modes[i].mode,
				     "usadd", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (sub_optab, fixed_arith_modes[i].mode,
				     "sub", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (sssub_optab, fixed_arith_modes[i].mode,
				     "sssub", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (ussub_optab, fixed_arith_modes[i].mode,
				     "ussub", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (smul_optab, fixed_arith_modes[i].mode,
				     "mul", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (ssmul_optab, fixed_arith_modes[i].mode,
				     "ssmul", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (usmul_optab, fixed_arith_modes[i].mode,
				     "usmul", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (sdiv_optab, fixed_arith_modes[i].mode,
				     "div", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (udiv_optab, fixed_arith_modes[i].mode,
				     "udiv", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (ssdiv_optab, fixed_arith_modes[i].mode,
				     "ssdiv", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (usdiv_optab, fixed_arith_modes[i].mode,
				     "usdiv", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (neg_optab, fixed_arith_modes[i].mode,
				     "neg", fixed_arith_modes[i].name, 2);
	arm_set_fixed_optab_libfunc (ssneg_optab, fixed_arith_modes[i].mode,
				     "ssneg", fixed_arith_modes[i].name, 2);
	arm_set_fixed_optab_libfunc (usneg_optab, fixed_arith_modes[i].mode,
				     "usneg", fixed_arith_modes[i].name, 2);
	arm_set_fixed_optab_libfunc (ashl_optab, fixed_arith_modes[i].mode,
				     "ashl", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (ashr_optab, fixed_arith_modes[i].mode,
				     "ashr", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (lshr_optab, fixed_arith_modes[i].mode,
				     "lshr", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (ssashl_optab, fixed_arith_modes[i].mode,
				     "ssashl", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (usashl_optab, fixed_arith_modes[i].mode,
				     "usashl", fixed_arith_modes[i].name, 3);
	arm_set_fixed_optab_libfunc (cmp_optab, fixed_arith_modes[i].mode,
				     "cmp", fixed_arith_modes[i].name, 2);
      }

    for (i = 0; i < ARRAY_SIZE (fixed_conv_modes); i++)
      for (j = 0; j < ARRAY_SIZE (fixed_conv_modes); j++)
	{
	  if (i == j
	      || (!ALL_FIXED_POINT_MODE_P (fixed_conv_modes[i].mode)
		  && !ALL_FIXED_POINT_MODE_P (fixed_conv_modes[j].mode)))
	    continue;

	  arm_set_fixed_conv_libfunc (fract_optab, fixed_conv_modes[i].mode,
				      fixed_conv_modes[j].mode, "fract",
				      fixed_conv_modes[i].name,
				      fixed_conv_modes[j].name);
	  arm_set_fixed_conv_libfunc (satfract_optab,
				      fixed_conv_modes[i].mode,
				      fixed_conv_modes[j].mode, "satfract",
				      fixed_conv_modes[i].name,
				      fixed_conv_modes[j].name);
	  arm_set_fixed_conv_libfunc (fractuns_optab,
				      fixed_conv_modes[i].mode,
				      fixed_conv_modes[j].mode, "fractuns",
				      fixed_conv_modes[i].name,
				      fixed_conv_modes[j].name);
	  arm_set_fixed_conv_libfunc (satfractuns_optab,
				      fixed_conv_modes[i].mode,
				      fixed_conv_modes[j].mode, "satfractuns",
				      fixed_conv_modes[i].name,
				      fixed_conv_modes[j].name);
	}
  }

  if (TARGET_AAPCS_BASED)
    synchronize_libfunc = init_one_libfunc ("__sync_synchronize");
}

/* On AAPCS systems, this is the "struct __va_list".  */
static GTY(()) tree va_list_type;

/* Return the type to use as __builtin_va_list.  */
static tree
arm_build_builtin_va_list (void)
{
  tree va_list_name;
  tree ap_field;

  if (!TARGET_AAPCS_BASED)
    return std_build_builtin_va_list ();

  /* AAPCS \S 7.1.4 requires that va_list be a typedef for a type
     defined as:

       struct __va_list
       {
	 void *__ap;
       };

     The C Library ABI further reinforces this definition in \S
     4.1.

     We must follow this definition exactly.  The structure tag
     name is visible in C++ mangled names, and thus forms a part
     of the ABI.  The field name may be used by people who
     #include <stdarg.h>.  */
  /* Create the type.  */
  va_list_type = lang_hooks.types.make_type (RECORD_TYPE);
  /* Give it the required name.  */
  va_list_name = build_decl (BUILTINS_LOCATION,
			     TYPE_DECL,
			     get_identifier ("__va_list"),
			     va_list_type);
  DECL_ARTIFICIAL (va_list_name) = 1;
  TYPE_NAME (va_list_type) = va_list_name;
  TYPE_STUB_DECL (va_list_type) = va_list_name;
  /* Create the __ap field.  */
  ap_field = build_decl (BUILTINS_LOCATION,
			 FIELD_DECL,
			 get_identifier ("__ap"),
			 ptr_type_node);
  DECL_ARTIFICIAL (ap_field) = 1;
  DECL_FIELD_CONTEXT (ap_field) = va_list_type;
  TYPE_FIELDS (va_list_type) = ap_field;
  /* Compute its layout.  */
  layout_type (va_list_type);

  return va_list_type;
}

/* Return an expression of type "void *" pointing to the next
   available argument in a variable-argument list.  VALIST is the
   user-level va_list object, of type __builtin_va_list.  */
static tree
arm_extract_valist_ptr (tree valist)
{
  if (TREE_TYPE (valist) == error_mark_node)
    return error_mark_node;

  /* On an AAPCS target, the pointer is stored within "struct
     va_list".  */
  if (TARGET_AAPCS_BASED)
    {
      tree ap_field = TYPE_FIELDS (TREE_TYPE (valist));
      valist = build3 (COMPONENT_REF, TREE_TYPE (ap_field),
		       valist, ap_field, NULL_TREE);
    }

  return valist;
}

/* Implement TARGET_EXPAND_BUILTIN_VA_START.  */
static void
arm_expand_builtin_va_start (tree valist, rtx nextarg)
{
  valist = arm_extract_valist_ptr (valist);
  std_expand_builtin_va_start (valist, nextarg);
}

/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR.  */
static tree
arm_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
			  gimple_seq *post_p)
{
  valist = arm_extract_valist_ptr (valist);
  return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
}

/* Fix up any incompatible options that the user has specified.  */
static void
arm_option_override (void)
{
  if (global_options_set.x_arm_arch_option)
    arm_selected_arch = &all_architectures[arm_arch_option];

  if (global_options_set.x_arm_cpu_option)
    {
      arm_selected_cpu = &all_cores[(int) arm_cpu_option];
      arm_selected_tune = &all_cores[(int) arm_cpu_option];
    }

  if (global_options_set.x_arm_tune_option)
    arm_selected_tune = &all_cores[(int) arm_tune_option];

#ifdef SUBTARGET_OVERRIDE_OPTIONS
  SUBTARGET_OVERRIDE_OPTIONS;
#endif

  if (arm_selected_arch)
    {
      if (arm_selected_cpu)
	{
	  /* Check for conflict between mcpu and march.  */
	  if ((arm_selected_cpu->flags ^ arm_selected_arch->flags) & ~FL_TUNE)
	    {
	      warning (0, "switch -mcpu=%s conflicts with -march=%s switch",
		       arm_selected_cpu->name, arm_selected_arch->name);
	      /* -march wins for code generation.
	         -mcpu wins for default tuning.  */
	      if (!arm_selected_tune)
		arm_selected_tune = arm_selected_cpu;

	      arm_selected_cpu = arm_selected_arch;
	    }
	  else
	    /* -mcpu wins.  */
	    arm_selected_arch = NULL;
	}
      else
	/* Pick a CPU based on the architecture.  */
	arm_selected_cpu = arm_selected_arch;
    }

  /* If the user did not specify a processor, choose one for them.  */
  if (!arm_selected_cpu)
    {
      const struct processors * sel;
      unsigned int        sought;

      arm_selected_cpu = &all_cores[TARGET_CPU_DEFAULT];
      if (!arm_selected_cpu->name)
	{
#ifdef SUBTARGET_CPU_DEFAULT
	  /* Use the subtarget default CPU if none was specified by
	     configure.  */
	  arm_selected_cpu = &all_cores[SUBTARGET_CPU_DEFAULT];
#endif
	  /* Default to ARM6.  */
	  if (!arm_selected_cpu->name)
	    arm_selected_cpu = &all_cores[arm6];
	}

      sel = arm_selected_cpu;
      insn_flags = sel->flags;

      /* Now check to see if the user has specified some command line
	 switch that require certain abilities from the cpu.  */
      sought = 0;

      if (TARGET_INTERWORK || TARGET_THUMB)
	{
	  sought |= (FL_THUMB | FL_MODE32);

	  /* There are no ARM processors that support both APCS-26 and
	     interworking.  Therefore we force FL_MODE26 to be removed
	     from insn_flags here (if it was set), so that the search
	     below will always be able to find a compatible processor.  */
	  insn_flags &= ~FL_MODE26;
	}

      if (sought != 0 && ((sought & insn_flags) != sought))
	{
	  /* Try to locate a CPU type that supports all of the abilities
	     of the default CPU, plus the extra abilities requested by
	     the user.  */
	  for (sel = all_cores; sel->name != NULL; sel++)
	    if ((sel->flags & sought) == (sought | insn_flags))
	      break;

	  if (sel->name == NULL)
	    {
	      unsigned current_bit_count = 0;
	      const struct processors * best_fit = NULL;

	      /* Ideally we would like to issue an error message here
		 saying that it was not possible to find a CPU compatible
		 with the default CPU, but which also supports the command
		 line options specified by the programmer, and so they
		 ought to use the -mcpu=<name> command line option to
		 override the default CPU type.

		 If we cannot find a cpu that has both the
		 characteristics of the default cpu and the given
		 command line options we scan the array again looking
		 for a best match.  */
	      for (sel = all_cores; sel->name != NULL; sel++)
		if ((sel->flags & sought) == sought)
		  {
		    unsigned count;

		    count = bit_count (sel->flags & insn_flags);

		    if (count >= current_bit_count)
		      {
			best_fit = sel;
			current_bit_count = count;
		      }
		  }

	      gcc_assert (best_fit);
	      sel = best_fit;
	    }

	  arm_selected_cpu = sel;
	}
    }

  gcc_assert (arm_selected_cpu);
  /* The selected cpu may be an architecture, so lookup tuning by core ID.  */
  if (!arm_selected_tune)
    arm_selected_tune = &all_cores[arm_selected_cpu->core];

  sprintf (arm_arch_name, "__ARM_ARCH_%s__", arm_selected_cpu->arch);
  insn_flags = arm_selected_cpu->flags;
  arm_base_arch = arm_selected_cpu->base_arch;

  arm_tune = arm_selected_tune->core;
  tune_flags = arm_selected_tune->flags;
  current_tune = arm_selected_tune->tune;

  /* Make sure that the processor choice does not conflict with any of the
     other command line choices.  */
  if (TARGET_ARM && !(insn_flags & FL_NOTM))
    error ("target CPU does not support ARM mode");

  /* BPABI targets use linker tricks to allow interworking on cores
     without thumb support.  */
  if (TARGET_INTERWORK && !((insn_flags & FL_THUMB) || TARGET_BPABI))
    {
      warning (0, "target CPU does not support interworking" );
      target_flags &= ~MASK_INTERWORK;
    }

  if (TARGET_THUMB && !(insn_flags & FL_THUMB))
    {
      warning (0, "target CPU does not support THUMB instructions");
      target_flags &= ~MASK_THUMB;
    }

  if (TARGET_APCS_FRAME && TARGET_THUMB)
    {
      /* warning (0, "ignoring -mapcs-frame because -mthumb was used"); */
      target_flags &= ~MASK_APCS_FRAME;
    }

  /* Callee super interworking implies thumb interworking.  Adding
     this to the flags here simplifies the logic elsewhere.  */
  if (TARGET_THUMB && TARGET_CALLEE_INTERWORKING)
    target_flags |= MASK_INTERWORK;

  /* TARGET_BACKTRACE calls leaf_function_p, which causes a crash if done
     from here where no function is being compiled currently.  */
  if ((TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) && TARGET_ARM)
    warning (0, "enabling backtrace support is only meaningful when compiling for the Thumb");

  if (TARGET_ARM && TARGET_CALLEE_INTERWORKING)
    warning (0, "enabling callee interworking support is only meaningful when compiling for the Thumb");

  if (TARGET_APCS_STACK && !TARGET_APCS_FRAME)
    {
      warning (0, "-mapcs-stack-check incompatible with -mno-apcs-frame");
      target_flags |= MASK_APCS_FRAME;
    }

  if (TARGET_POKE_FUNCTION_NAME)
    target_flags |= MASK_APCS_FRAME;

  if (TARGET_APCS_REENT && flag_pic)
    error ("-fpic and -mapcs-reent are incompatible");

  if (TARGET_APCS_REENT)
    warning (0, "APCS reentrant code not supported.  Ignored");

  /* If this target is normally configured to use APCS frames, warn if they
     are turned off and debugging is turned on.  */
  if (TARGET_ARM
      && write_symbols != NO_DEBUG
      && !TARGET_APCS_FRAME
      && (TARGET_DEFAULT & MASK_APCS_FRAME))
    warning (0, "-g with -mno-apcs-frame may not give sensible debugging");

  if (TARGET_APCS_FLOAT)
    warning (0, "passing floating point arguments in fp regs not yet supported");

  if (TARGET_LITTLE_WORDS)
    warning (OPT_Wdeprecated, "%<mwords-little-endian%> is deprecated and "
	     "will be removed in a future release");

  /* Initialize boolean versions of the flags, for use in the arm.md file.  */
  arm_arch3m = (insn_flags & FL_ARCH3M) != 0;
  arm_arch4 = (insn_flags & FL_ARCH4) != 0;
  arm_arch4t = arm_arch4 & ((insn_flags & FL_THUMB) != 0);
  arm_arch5 = (insn_flags & FL_ARCH5) != 0;
  arm_arch5e = (insn_flags & FL_ARCH5E) != 0;
  arm_arch6 = (insn_flags & FL_ARCH6) != 0;
  arm_arch6k = (insn_flags & FL_ARCH6K) != 0;
  arm_arch_notm = (insn_flags & FL_NOTM) != 0;
  arm_arch6m = arm_arch6 && !arm_arch_notm;
  arm_arch7 = (insn_flags & FL_ARCH7) != 0;
  arm_arch7em = (insn_flags & FL_ARCH7EM) != 0;
  arm_arch8 = (insn_flags & FL_ARCH8) != 0;
  arm_arch_thumb2 = (insn_flags & FL_THUMB2) != 0;
  arm_arch_xscale = (insn_flags & FL_XSCALE) != 0;

  arm_ld_sched = (tune_flags & FL_LDSCHED) != 0;
  arm_tune_strongarm = (tune_flags & FL_STRONG) != 0;
  thumb_code = TARGET_ARM == 0;
  thumb1_code = TARGET_THUMB1 != 0;
  arm_tune_wbuf = (tune_flags & FL_WBUF) != 0;
  arm_tune_xscale = (tune_flags & FL_XSCALE) != 0;
  arm_arch_iwmmxt = (insn_flags & FL_IWMMXT) != 0;
  arm_arch_iwmmxt2 = (insn_flags & FL_IWMMXT2) != 0;
  arm_arch_thumb_hwdiv = (insn_flags & FL_THUMB_DIV) != 0;
  arm_arch_arm_hwdiv = (insn_flags & FL_ARM_DIV) != 0;
  arm_tune_cortex_a9 = (arm_tune == cortexa9) != 0;
  arm_arch_crc = (insn_flags & FL_CRC32) != 0;
  if (arm_restrict_it == 2)
    arm_restrict_it = arm_arch8 && TARGET_THUMB2;

  if (!TARGET_THUMB2)
    arm_restrict_it = 0;

  /* If we are not using the default (ARM mode) section anchor offset
     ranges, then set the correct ranges now.  */
  if (TARGET_THUMB1)
    {
      /* Thumb-1 LDR instructions cannot have negative offsets.
         Permissible positive offset ranges are 5-bit (for byte loads),
         6-bit (for halfword loads), or 7-bit (for word loads).
         Empirical results suggest a 7-bit anchor range gives the best
         overall code size.  */
      targetm.min_anchor_offset = 0;
      targetm.max_anchor_offset = 127;
    }
  else if (TARGET_THUMB2)
    {
      /* The minimum is set such that the total size of the block
         for a particular anchor is 248 + 1 + 4095 bytes, which is
         divisible by eight, ensuring natural spacing of anchors.  */
      targetm.min_anchor_offset = -248;
      targetm.max_anchor_offset = 4095;
    }

  /* V5 code we generate is completely interworking capable, so we turn off
     TARGET_INTERWORK here to avoid many tests later on.  */

  /* XXX However, we must pass the right pre-processor defines to CPP
     or GLD can get confused.  This is a hack.  */
  if (TARGET_INTERWORK)
    arm_cpp_interwork = 1;

  if (arm_arch5)
    target_flags &= ~MASK_INTERWORK;

  if (TARGET_IWMMXT && !ARM_DOUBLEWORD_ALIGN)
    error ("iwmmxt requires an AAPCS compatible ABI for proper operation");

  if (TARGET_IWMMXT_ABI && !TARGET_IWMMXT)
    error ("iwmmxt abi requires an iwmmxt capable cpu");

  if (!global_options_set.x_arm_fpu_index)
    {
      const char *target_fpu_name;
      bool ok;

#ifdef FPUTYPE_DEFAULT
      target_fpu_name = FPUTYPE_DEFAULT;
#else
      target_fpu_name = "vfp";
#endif

      ok = opt_enum_arg_to_value (OPT_mfpu_, target_fpu_name, &arm_fpu_index,
				  CL_TARGET);
      gcc_assert (ok);
    }

  arm_fpu_desc = &all_fpus[arm_fpu_index];

  switch (arm_fpu_desc->model)
    {
    case ARM_FP_MODEL_VFP:
      arm_fpu_attr = FPU_VFP;
      break;

    default:
      gcc_unreachable();
    }

  if (TARGET_AAPCS_BASED)
    {
      if (TARGET_CALLER_INTERWORKING)
	error ("AAPCS does not support -mcaller-super-interworking");
      else
	if (TARGET_CALLEE_INTERWORKING)
	  error ("AAPCS does not support -mcallee-super-interworking");
    }

  /* iWMMXt and NEON are incompatible.  */
  if (TARGET_IWMMXT && TARGET_NEON)
    error ("iWMMXt and NEON are incompatible");

  /* iWMMXt unsupported under Thumb mode.  */
  if (TARGET_THUMB && TARGET_IWMMXT)
    error ("iWMMXt unsupported under Thumb mode");

  /* __fp16 support currently assumes the core has ldrh.  */
  if (!arm_arch4 && arm_fp16_format != ARM_FP16_FORMAT_NONE)
    sorry ("__fp16 and no ldrh");

  /* If soft-float is specified then don't use FPU.  */
  if (TARGET_SOFT_FLOAT)
    arm_fpu_attr = FPU_NONE;

  if (TARGET_AAPCS_BASED)
    {
      if (arm_abi == ARM_ABI_IWMMXT)
	arm_pcs_default = ARM_PCS_AAPCS_IWMMXT;
      else if (arm_float_abi == ARM_FLOAT_ABI_HARD
	       && TARGET_HARD_FLOAT
	       && TARGET_VFP)
	arm_pcs_default = ARM_PCS_AAPCS_VFP;
      else
	arm_pcs_default = ARM_PCS_AAPCS;
    }
  else
    {
      if (arm_float_abi == ARM_FLOAT_ABI_HARD && TARGET_VFP)
	sorry ("-mfloat-abi=hard and VFP");

      if (arm_abi == ARM_ABI_APCS)
	arm_pcs_default = ARM_PCS_APCS;
      else
	arm_pcs_default = ARM_PCS_ATPCS;
    }

  /* For arm2/3 there is no need to do any scheduling if we are doing
     software floating-point.  */
  if (TARGET_SOFT_FLOAT && (tune_flags & FL_MODE32) == 0)
    flag_schedule_insns = flag_schedule_insns_after_reload = 0;

  /* Use the cp15 method if it is available.  */
  if (target_thread_pointer == TP_AUTO)
    {
      if (arm_arch6k && !TARGET_THUMB1)
	target_thread_pointer = TP_CP15;
      else
	target_thread_pointer = TP_SOFT;
    }

  if (TARGET_HARD_TP && TARGET_THUMB1)
    error ("can not use -mtp=cp15 with 16-bit Thumb");

  /* Override the default structure alignment for AAPCS ABI.  */
  if (!global_options_set.x_arm_structure_size_boundary)
    {
      if (TARGET_AAPCS_BASED)
	arm_structure_size_boundary = 8;
    }
  else
    {
      if (arm_structure_size_boundary != 8
	  && arm_structure_size_boundary != 32
	  && !(ARM_DOUBLEWORD_ALIGN && arm_structure_size_boundary == 64))
	{
	  if (ARM_DOUBLEWORD_ALIGN)
	    warning (0,
		     "structure size boundary can only be set to 8, 32 or 64");
	  else
	    warning (0, "structure size boundary can only be set to 8 or 32");
	  arm_structure_size_boundary
	    = (TARGET_AAPCS_BASED ? 8 : DEFAULT_STRUCTURE_SIZE_BOUNDARY);
	}
    }

  if (!TARGET_ARM && TARGET_VXWORKS_RTP && flag_pic)
    {
      error ("RTP PIC is incompatible with Thumb");
      flag_pic = 0;
    }

  /* If stack checking is disabled, we can use r10 as the PIC register,
     which keeps r9 available.  The EABI specifies r9 as the PIC register.  */
  if (flag_pic && TARGET_SINGLE_PIC_BASE)
    {
      if (TARGET_VXWORKS_RTP)
	warning (0, "RTP PIC is incompatible with -msingle-pic-base");
      arm_pic_register = (TARGET_APCS_STACK || TARGET_AAPCS_BASED) ? 9 : 10;
    }

  if (flag_pic && TARGET_VXWORKS_RTP)
    arm_pic_register = 9;

  if (arm_pic_register_string != NULL)
    {
      int pic_register = decode_reg_name (arm_pic_register_string);

      if (!flag_pic)
	warning (0, "-mpic-register= is useless without -fpic");

      /* Prevent the user from choosing an obviously stupid PIC register.  */
      else if (pic_register < 0 || call_used_regs[pic_register]
	       || pic_register == HARD_FRAME_POINTER_REGNUM
	       || pic_register == STACK_POINTER_REGNUM
	       || pic_register >= PC_REGNUM
	       || (TARGET_VXWORKS_RTP
		   && (unsigned int) pic_register != arm_pic_register))
	error ("unable to use '%s' for PIC register", arm_pic_register_string);
      else
	arm_pic_register = pic_register;
    }

  if (TARGET_VXWORKS_RTP
      && !global_options_set.x_arm_pic_data_is_text_relative)
    arm_pic_data_is_text_relative = 0;

  /* Enable -mfix-cortex-m3-ldrd by default for Cortex-M3 cores.  */
  if (fix_cm3_ldrd == 2)
    {
      if (arm_selected_cpu->core == cortexm3)
	fix_cm3_ldrd = 1;
      else
	fix_cm3_ldrd = 0;
    }

  /* Enable -munaligned-access by default for
     - all ARMv6 architecture-based processors
     - ARMv7-A, ARMv7-R, and ARMv7-M architecture-based processors.
     - ARMv8 architecture-base processors.

     Disable -munaligned-access by default for
     - all pre-ARMv6 architecture-based processors
     - ARMv6-M architecture-based processors.  */

  if (unaligned_access == 2)
    {
      if (arm_arch6 && (arm_arch_notm || arm_arch7))
	unaligned_access = 1;
      else
	unaligned_access = 0;
    }
  else if (unaligned_access == 1
	   && !(arm_arch6 && (arm_arch_notm || arm_arch7)))
    {
      warning (0, "target CPU does not support unaligned accesses");
      unaligned_access = 0;
    }

  if (TARGET_THUMB1 && flag_schedule_insns)
    {
      /* Don't warn since it's on by default in -O2.  */
      flag_schedule_insns = 0;
    }

  if (optimize_size)
    {
      /* If optimizing for size, bump the number of instructions that we
         are prepared to conditionally execute (even on a StrongARM).  */
      max_insns_skipped = 6;
    }
  else
    max_insns_skipped = current_tune->max_insns_skipped;

  /* Hot/Cold partitioning is not currently supported, since we can't
     handle literal pool placement in that case.  */
  if (flag_reorder_blocks_and_partition)
    {
      inform (input_location,
	      "-freorder-blocks-and-partition not supported on this architecture");
      flag_reorder_blocks_and_partition = 0;
      flag_reorder_blocks = 1;
    }

  if (flag_pic)
    /* Hoisting PIC address calculations more aggressively provides a small,
       but measurable, size reduction for PIC code.  Therefore, we decrease
       the bar for unrestricted expression hoisting to the cost of PIC address
       calculation, which is 2 instructions.  */
    maybe_set_param_value (PARAM_GCSE_UNRESTRICTED_COST, 2,
			   global_options.x_param_values,
			   global_options_set.x_param_values);

  /* ARM EABI defaults to strict volatile bitfields.  */
  if (TARGET_AAPCS_BASED && flag_strict_volatile_bitfields < 0
      && abi_version_at_least(2))
    flag_strict_volatile_bitfields = 1;

  /* Enable sw prefetching at -O3 for CPUS that have prefetch, and we have deemed
     it beneficial (signified by setting num_prefetch_slots to 1 or more.)  */
  if (flag_prefetch_loop_arrays < 0
      && HAVE_prefetch
      && optimize >= 3
      && current_tune->num_prefetch_slots > 0)
    flag_prefetch_loop_arrays = 1;

  /* Set up parameters to be used in prefetching algorithm.  Do not override the
     defaults unless we are tuning for a core we have researched values for.  */
  if (current_tune->num_prefetch_slots > 0)
    maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
                           current_tune->num_prefetch_slots,
                           global_options.x_param_values,
                           global_options_set.x_param_values);
  if (current_tune->l1_cache_line_size >= 0)
    maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
                           current_tune->l1_cache_line_size,
                           global_options.x_param_values,
                           global_options_set.x_param_values);
  if (current_tune->l1_cache_size >= 0)
    maybe_set_param_value (PARAM_L1_CACHE_SIZE,
                           current_tune->l1_cache_size,
                           global_options.x_param_values,
                           global_options_set.x_param_values);

  /* Use Neon to perform 64-bits operations rather than core
     registers.  */
  prefer_neon_for_64bits = current_tune->prefer_neon_for_64bits;
  if (use_neon_for_64bits == 1)
     prefer_neon_for_64bits = true;

  /* Use the alternative scheduling-pressure algorithm by default.  */
  maybe_set_param_value (PARAM_SCHED_PRESSURE_ALGORITHM, 2,
                         global_options.x_param_values,
                         global_options_set.x_param_values);

  /* Disable shrink-wrap when optimizing function for size, since it tends to
     generate additional returns.  */
  if (optimize_function_for_size_p (cfun) && TARGET_THUMB2)
    flag_shrink_wrap = false;
  /* TBD: Dwarf info for apcs frame is not handled yet.  */
  if (TARGET_APCS_FRAME)
    flag_shrink_wrap = false;

  /* We only support -mslow-flash-data on armv7-m targets.  */
  if (target_slow_flash_data
      && ((!(arm_arch7 && !arm_arch_notm) && !arm_arch7em)
	  || (TARGET_THUMB1 || flag_pic || TARGET_NEON)))
    error ("-mslow-flash-data only supports non-pic code on armv7-m targets");

  /* Currently, for slow flash data, we just disable literal pools.  */
  if (target_slow_flash_data)
    arm_disable_literal_pool = true;

  /* Register global variables with the garbage collector.  */
  arm_add_gc_roots ();
}

static void
arm_add_gc_roots (void)
{
  gcc_obstack_init(&minipool_obstack);
  minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
}

/* A table of known ARM exception types.
   For use with the interrupt function attribute.  */

typedef struct
{
  const char *const arg;
  const unsigned long return_value;
}
isr_attribute_arg;

static const isr_attribute_arg isr_attribute_args [] =
{
  { "IRQ",   ARM_FT_ISR },
  { "irq",   ARM_FT_ISR },
  { "FIQ",   ARM_FT_FIQ },
  { "fiq",   ARM_FT_FIQ },
  { "ABORT", ARM_FT_ISR },
  { "abort", ARM_FT_ISR },
  { "ABORT", ARM_FT_ISR },
  { "abort", ARM_FT_ISR },
  { "UNDEF", ARM_FT_EXCEPTION },
  { "undef", ARM_FT_EXCEPTION },
  { "SWI",   ARM_FT_EXCEPTION },
  { "swi",   ARM_FT_EXCEPTION },
  { NULL,    ARM_FT_NORMAL }
};

/* Returns the (interrupt) function type of the current
   function, or ARM_FT_UNKNOWN if the type cannot be determined.  */

static unsigned long
arm_isr_value (tree argument)
{
  const isr_attribute_arg * ptr;
  const char *              arg;

  if (!arm_arch_notm)
    return ARM_FT_NORMAL | ARM_FT_STACKALIGN;

  /* No argument - default to IRQ.  */
  if (argument == NULL_TREE)
    return ARM_FT_ISR;

  /* Get the value of the argument.  */
  if (TREE_VALUE (argument) == NULL_TREE
      || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
    return ARM_FT_UNKNOWN;

  arg = TREE_STRING_POINTER (TREE_VALUE (argument));

  /* Check it against the list of known arguments.  */
  for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
    if (streq (arg, ptr->arg))
      return ptr->return_value;

  /* An unrecognized interrupt type.  */
  return ARM_FT_UNKNOWN;
}

/* Computes the type of the current function.  */

static unsigned long
arm_compute_func_type (void)
{
  unsigned long type = ARM_FT_UNKNOWN;
  tree a;
  tree attr;

  gcc_assert (TREE_CODE (current_function_decl) == FUNCTION_DECL);

  /* Decide if the current function is volatile.  Such functions
     never return, and many memory cycles can be saved by not storing
     register values that will never be needed again.  This optimization
     was added to speed up context switching in a kernel application.  */
  if (optimize > 0
      && (TREE_NOTHROW (current_function_decl)
          || !(flag_unwind_tables
               || (flag_exceptions
		   && arm_except_unwind_info (&global_options) != UI_SJLJ)))
      && TREE_THIS_VOLATILE (current_function_decl))
    type |= ARM_FT_VOLATILE;

  if (cfun->static_chain_decl != NULL)
    type |= ARM_FT_NESTED;

  attr = DECL_ATTRIBUTES (current_function_decl);

  a = lookup_attribute ("naked", attr);
  if (a != NULL_TREE)
    type |= ARM_FT_NAKED;

  a = lookup_attribute ("isr", attr);
  if (a == NULL_TREE)
    a = lookup_attribute ("interrupt", attr);

  if (a == NULL_TREE)
    type |= TARGET_INTERWORK ? ARM_FT_INTERWORKED : ARM_FT_NORMAL;
  else
    type |= arm_isr_value (TREE_VALUE (a));

  return type;
}

/* Returns the type of the current function.  */

unsigned long
arm_current_func_type (void)
{
  if (ARM_FUNC_TYPE (cfun->machine->func_type) == ARM_FT_UNKNOWN)
    cfun->machine->func_type = arm_compute_func_type ();

  return cfun->machine->func_type;
}

bool
arm_allocate_stack_slots_for_args (void)
{
  /* Naked functions should not allocate stack slots for arguments.  */
  return !IS_NAKED (arm_current_func_type ());
}

static bool
arm_warn_func_return (tree decl)
{
  /* Naked functions are implemented entirely in assembly, including the
     return sequence, so suppress warnings about this.  */
  return lookup_attribute ("naked", DECL_ATTRIBUTES (decl)) == NULL_TREE;
}


/* Output assembler code for a block containing the constant parts
   of a trampoline, leaving space for the variable parts.

   On the ARM, (if r8 is the static chain regnum, and remembering that
   referencing pc adds an offset of 8) the trampoline looks like:
	   ldr 		r8, [pc, #0]
	   ldr		pc, [pc]
	   .word	static chain value
	   .word	function's address
   XXX FIXME: When the trampoline returns, r8 will be clobbered.  */

static void
arm_asm_trampoline_template (FILE *f)
{
  if (TARGET_ARM)
    {
      asm_fprintf (f, "\tldr\t%r, [%r, #0]\n", STATIC_CHAIN_REGNUM, PC_REGNUM);
      asm_fprintf (f, "\tldr\t%r, [%r, #0]\n", PC_REGNUM, PC_REGNUM);
    }
  else if (TARGET_THUMB2)
    {
      /* The Thumb-2 trampoline is similar to the arm implementation.
	 Unlike 16-bit Thumb, we enter the stub in thumb mode.  */
      asm_fprintf (f, "\tldr.w\t%r, [%r, #4]\n",
		   STATIC_CHAIN_REGNUM, PC_REGNUM);
      asm_fprintf (f, "\tldr.w\t%r, [%r, #4]\n", PC_REGNUM, PC_REGNUM);
    }
  else
    {
      ASM_OUTPUT_ALIGN (f, 2);
      fprintf (f, "\t.code\t16\n");
      fprintf (f, ".Ltrampoline_start:\n");
      asm_fprintf (f, "\tpush\t{r0, r1}\n");
      asm_fprintf (f, "\tldr\tr0, [%r, #8]\n", PC_REGNUM);
      asm_fprintf (f, "\tmov\t%r, r0\n", STATIC_CHAIN_REGNUM);
      asm_fprintf (f, "\tldr\tr0, [%r, #8]\n", PC_REGNUM);
      asm_fprintf (f, "\tstr\tr0, [%r, #4]\n", SP_REGNUM);
      asm_fprintf (f, "\tpop\t{r0, %r}\n", PC_REGNUM);
    }
  assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
  assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
}

/* Emit RTL insns to initialize the variable parts of a trampoline.  */

static void
arm_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx fnaddr, mem, a_tramp;

  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  mem = adjust_address (m_tramp, SImode, TARGET_32BIT ? 8 : 12);
  emit_move_insn (mem, chain_value);

  mem = adjust_address (m_tramp, SImode, TARGET_32BIT ? 12 : 16);
  fnaddr = XEXP (DECL_RTL (fndecl), 0);
  emit_move_insn (mem, fnaddr);

  a_tramp = XEXP (m_tramp, 0);
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"),
		     LCT_NORMAL, VOIDmode, 2, a_tramp, Pmode,
		     plus_constant (Pmode, a_tramp, TRAMPOLINE_SIZE), Pmode);
}

/* Thumb trampolines should be entered in thumb mode, so set
   the bottom bit of the address.  */

static rtx
arm_trampoline_adjust_address (rtx addr)
{
  if (TARGET_THUMB)
    addr = expand_simple_binop (Pmode, IOR, addr, const1_rtx,
				NULL, 0, OPTAB_LIB_WIDEN);
  return addr;
}

/* Return 1 if it is possible to return using a single instruction.
   If SIBLING is non-null, this is a test for a return before a sibling
   call.  SIBLING is the call insn, so we can examine its register usage.  */

int
use_return_insn (int iscond, rtx sibling)
{
  int regno;
  unsigned int func_type;
  unsigned long saved_int_regs;
  unsigned HOST_WIDE_INT stack_adjust;
  arm_stack_offsets *offsets;

  /* Never use a return instruction before reload has run.  */
  if (!reload_completed)
    return 0;

  func_type = arm_current_func_type ();

  /* Naked, volatile and stack alignment functions need special
     consideration.  */
  if (func_type & (ARM_FT_VOLATILE | ARM_FT_NAKED | ARM_FT_STACKALIGN))
    return 0;

  /* So do interrupt functions that use the frame pointer and Thumb
     interrupt functions.  */
  if (IS_INTERRUPT (func_type) && (frame_pointer_needed || TARGET_THUMB))
    return 0;

  if (TARGET_LDRD && current_tune->prefer_ldrd_strd
      && !optimize_function_for_size_p (cfun))
    return 0;

  offsets = arm_get_frame_offsets ();
  stack_adjust = offsets->outgoing_args - offsets->saved_regs;

  /* As do variadic functions.  */
  if (crtl->args.pretend_args_size
      || cfun->machine->uses_anonymous_args
      /* Or if the function calls __builtin_eh_return () */
      || crtl->calls_eh_return
      /* Or if the function calls alloca */
      || cfun->calls_alloca
      /* Or if there is a stack adjustment.  However, if the stack pointer
	 is saved on the stack, we can use a pre-incrementing stack load.  */
      || !(stack_adjust == 0 || (TARGET_APCS_FRAME && frame_pointer_needed
				 && stack_adjust == 4)))
    return 0;

  saved_int_regs = offsets->saved_regs_mask;

  /* Unfortunately, the insn

       ldmib sp, {..., sp, ...}

     triggers a bug on most SA-110 based devices, such that the stack
     pointer won't be correctly restored if the instruction takes a
     page fault.  We work around this problem by popping r3 along with
     the other registers, since that is never slower than executing
     another instruction.

     We test for !arm_arch5 here, because code for any architecture
     less than this could potentially be run on one of the buggy
     chips.  */
  if (stack_adjust == 4 && !arm_arch5 && TARGET_ARM)
    {
      /* Validate that r3 is a call-clobbered register (always true in
	 the default abi) ...  */
      if (!call_used_regs[3])
	return 0;

      /* ... that it isn't being used for a return value ... */
      if (arm_size_return_regs () >= (4 * UNITS_PER_WORD))
	return 0;

      /* ... or for a tail-call argument ...  */
      if (sibling)
	{
	  gcc_assert (CALL_P (sibling));

	  if (find_regno_fusage (sibling, USE, 3))
	    return 0;
	}

      /* ... and that there are no call-saved registers in r0-r2
	 (always true in the default ABI).  */
      if (saved_int_regs & 0x7)
	return 0;
    }

  /* Can't be done if interworking with Thumb, and any registers have been
     stacked.  */
  if (TARGET_INTERWORK && saved_int_regs != 0 && !IS_INTERRUPT(func_type))
    return 0;

  /* On StrongARM, conditional returns are expensive if they aren't
     taken and multiple registers have been stacked.  */
  if (iscond && arm_tune_strongarm)
    {
      /* Conditional return when just the LR is stored is a simple
	 conditional-load instruction, that's not expensive.  */
      if (saved_int_regs != 0 && saved_int_regs != (1 << LR_REGNUM))
	return 0;

      if (flag_pic
	  && arm_pic_register != INVALID_REGNUM
	  && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
	return 0;
    }

  /* If there are saved registers but the LR isn't saved, then we need
     two instructions for the return.  */
  if (saved_int_regs && !(saved_int_regs & (1 << LR_REGNUM)))
    return 0;

  /* Can't be done if any of the VFP regs are pushed,
     since this also requires an insn.  */
  if (TARGET_HARD_FLOAT && TARGET_VFP)
    for (regno = FIRST_VFP_REGNUM; regno <= LAST_VFP_REGNUM; regno++)
      if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
	return 0;

  if (TARGET_REALLY_IWMMXT)
    for (regno = FIRST_IWMMXT_REGNUM; regno <= LAST_IWMMXT_REGNUM; regno++)
      if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
	return 0;

  return 1;
}

/* Return TRUE if we should try to use a simple_return insn, i.e. perform
   shrink-wrapping if possible.  This is the case if we need to emit a
   prologue, which we can test by looking at the offsets.  */
bool
use_simple_return_p (void)
{
  arm_stack_offsets *offsets;

  offsets = arm_get_frame_offsets ();
  return offsets->outgoing_args != 0;
}

/* Return TRUE if int I is a valid immediate ARM constant.  */

int
const_ok_for_arm (HOST_WIDE_INT i)
{
  int lowbit;

  /* For machines with >32 bit HOST_WIDE_INT, the bits above bit 31 must
     be all zero, or all one.  */
  if ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0
      && ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff)
	  != ((~(unsigned HOST_WIDE_INT) 0)
	      & ~(unsigned HOST_WIDE_INT) 0xffffffff)))
    return FALSE;

  i &= (unsigned HOST_WIDE_INT) 0xffffffff;

  /* Fast return for 0 and small values.  We must do this for zero, since
     the code below can't handle that one case.  */
  if ((i & ~(unsigned HOST_WIDE_INT) 0xff) == 0)
    return TRUE;

  /* Get the number of trailing zeros.  */
  lowbit = ffs((int) i) - 1;

  /* Only even shifts are allowed in ARM mode so round down to the
     nearest even number.  */
  if (TARGET_ARM)
    lowbit &= ~1;

  if ((i & ~(((unsigned HOST_WIDE_INT) 0xff) << lowbit)) == 0)
    return TRUE;

  if (TARGET_ARM)
    {
      /* Allow rotated constants in ARM mode.  */
      if (lowbit <= 4
	   && ((i & ~0xc000003f) == 0
	       || (i & ~0xf000000f) == 0
	       || (i & ~0xfc000003) == 0))
	return TRUE;
    }
  else
    {
      HOST_WIDE_INT v;

      /* Allow repeated patterns 0x00XY00XY or 0xXYXYXYXY.  */
      v = i & 0xff;
      v |= v << 16;
      if (i == v || i == (v | (v << 8)))
	return TRUE;

      /* Allow repeated pattern 0xXY00XY00.  */
      v = i & 0xff00;
      v |= v << 16;
      if (i == v)
	return TRUE;
    }

  return FALSE;
}

/* Return true if I is a valid constant for the operation CODE.  */
int
const_ok_for_op (HOST_WIDE_INT i, enum rtx_code code)
{
  if (const_ok_for_arm (i))
    return 1;

  switch (code)
    {
    case SET:
      /* See if we can use movw.  */
      if (arm_arch_thumb2 && (i & 0xffff0000) == 0)
	return 1;
      else
	/* Otherwise, try mvn.  */
	return const_ok_for_arm (ARM_SIGN_EXTEND (~i));

    case PLUS:
      /* See if we can use addw or subw.  */
      if (TARGET_THUMB2
	  && ((i & 0xfffff000) == 0
	      || ((-i) & 0xfffff000) == 0))
	return 1;
      /* else fall through.  */

    case COMPARE:
    case EQ:
    case NE:
    case GT:
    case LE:
    case LT:
    case GE:
    case GEU:
    case LTU:
    case GTU:
    case LEU:
    case UNORDERED:
    case ORDERED:
    case UNEQ:
    case UNGE:
    case UNLT:
    case UNGT:
    case UNLE:
      return const_ok_for_arm (ARM_SIGN_EXTEND (-i));

    case MINUS:		/* Should only occur with (MINUS I reg) => rsb */
    case XOR:
      return 0;

    case IOR:
      if (TARGET_THUMB2)
	return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
      return 0;

    case AND:
      return const_ok_for_arm (ARM_SIGN_EXTEND (~i));

    default:
      gcc_unreachable ();
    }
}

/* Return true if I is a valid di mode constant for the operation CODE.  */
int
const_ok_for_dimode_op (HOST_WIDE_INT i, enum rtx_code code)
{
  HOST_WIDE_INT hi_val = (i >> 32) & 0xFFFFFFFF;
  HOST_WIDE_INT lo_val = i & 0xFFFFFFFF;
  rtx hi = GEN_INT (hi_val);
  rtx lo = GEN_INT (lo_val);

  if (TARGET_THUMB1)
    return 0;

  switch (code)
    {
    case AND:
    case IOR:
    case XOR:
      return (const_ok_for_op (hi_val, code) || hi_val == 0xFFFFFFFF)
              && (const_ok_for_op (lo_val, code) || lo_val == 0xFFFFFFFF);
    case PLUS:
      return arm_not_operand (hi, SImode) && arm_add_operand (lo, SImode);

    default:
      return 0;
    }
}

/* Emit a sequence of insns to handle a large constant.
   CODE is the code of the operation required, it can be any of SET, PLUS,
   IOR, AND, XOR, MINUS;
   MODE is the mode in which the operation is being performed;
   VAL is the integer to operate on;
   SOURCE is the other operand (a register, or a null-pointer for SET);
   SUBTARGETS means it is safe to create scratch registers if that will
   either produce a simpler sequence, or we will want to cse the values.
   Return value is the number of insns emitted.  */

/* ??? Tweak this for thumb2.  */
int
arm_split_constant (enum rtx_code code, enum machine_mode mode, rtx insn,
		    HOST_WIDE_INT val, rtx target, rtx source, int subtargets)
{
  rtx cond;

  if (insn && GET_CODE (PATTERN (insn)) == COND_EXEC)
    cond = COND_EXEC_TEST (PATTERN (insn));
  else
    cond = NULL_RTX;

  if (subtargets || code == SET
      || (REG_P (target) && REG_P (source)
	  && REGNO (target) != REGNO (source)))
    {
      /* After arm_reorg has been called, we can't fix up expensive
	 constants by pushing them into memory so we must synthesize
	 them in-line, regardless of the cost.  This is only likely to
	 be more costly on chips that have load delay slots and we are
	 compiling without running the scheduler (so no splitting
	 occurred before the final instruction emission).

	 Ref: gcc -O1 -mcpu=strongarm gcc.c-torture/compile/980506-2.c
      */
      if (!after_arm_reorg
	  && !cond
	  && (arm_gen_constant (code, mode, NULL_RTX, val, target, source,
				1, 0)
	      > (arm_constant_limit (optimize_function_for_size_p (cfun))
		 + (code != SET))))
	{
	  if (code == SET)
	    {
	      /* Currently SET is the only monadic value for CODE, all
		 the rest are diadic.  */
	      if (TARGET_USE_MOVT)
		arm_emit_movpair (target, GEN_INT (val));
	      else
		emit_set_insn (target, GEN_INT (val));

	      return 1;
	    }
	  else
	    {
	      rtx temp = subtargets ? gen_reg_rtx (mode) : target;

	      if (TARGET_USE_MOVT)
		arm_emit_movpair (temp, GEN_INT (val));
	      else
		emit_set_insn (temp, GEN_INT (val));

	      /* For MINUS, the value is subtracted from, since we never
		 have subtraction of a constant.  */
	      if (code == MINUS)
		emit_set_insn (target, gen_rtx_MINUS (mode, temp, source));
	      else
		emit_set_insn (target,
			       gen_rtx_fmt_ee (code, mode, source, temp));
	      return 2;
	    }
	}
    }

  return arm_gen_constant (code, mode, cond, val, target, source, subtargets,
			   1);
}

/* Return a sequence of integers, in RETURN_SEQUENCE that fit into
   ARM/THUMB2 immediates, and add up to VAL.
   Thr function return value gives the number of insns required.  */
static int
optimal_immediate_sequence (enum rtx_code code, unsigned HOST_WIDE_INT val,
			    struct four_ints *return_sequence)
{
  int best_consecutive_zeros = 0;
  int i;
  int best_start = 0;
  int insns1, insns2;
  struct four_ints tmp_sequence;

  /* If we aren't targeting ARM, the best place to start is always at
     the bottom, otherwise look more closely.  */
  if (TARGET_ARM)
    {
      for (i = 0; i < 32; i += 2)
	{
	  int consecutive_zeros = 0;

	  if (!(val & (3 << i)))
	    {
	      while ((i < 32) && !(val & (3 << i)))
		{
		  consecutive_zeros += 2;
		  i += 2;
		}
	      if (consecutive_zeros > best_consecutive_zeros)
		{
		  best_consecutive_zeros = consecutive_zeros;
		  best_start = i - consecutive_zeros;
		}
	      i -= 2;
	    }
	}
    }

  /* So long as it won't require any more insns to do so, it's
     desirable to emit a small constant (in bits 0...9) in the last
     insn.  This way there is more chance that it can be combined with
     a later addressing insn to form a pre-indexed load or store
     operation.  Consider:

	   *((volatile int *)0xe0000100) = 1;
	   *((volatile int *)0xe0000110) = 2;

     We want this to wind up as:

	    mov rA, #0xe0000000
	    mov rB, #1
	    str rB, [rA, #0x100]
	    mov rB, #2
	    str rB, [rA, #0x110]

     rather than having to synthesize both large constants from scratch.

     Therefore, we calculate how many insns would be required to emit
     the constant starting from `best_start', and also starting from
     zero (i.e. with bit 31 first to be output).  If `best_start' doesn't
     yield a shorter sequence, we may as well use zero.  */
  insns1 = optimal_immediate_sequence_1 (code, val, return_sequence, best_start);
  if (best_start != 0
      && ((((unsigned HOST_WIDE_INT) 1) << best_start) < val))
    {
      insns2 = optimal_immediate_sequence_1 (code, val, &tmp_sequence, 0);
      if (insns2 <= insns1)
	{
	  *return_sequence = tmp_sequence;
	  insns1 = insns2;
	}
    }

  return insns1;
}

/* As for optimal_immediate_sequence, but starting at bit-position I.  */
static int
optimal_immediate_sequence_1 (enum rtx_code code, unsigned HOST_WIDE_INT val,
			     struct four_ints *return_sequence, int i)
{
  int remainder = val & 0xffffffff;
  int insns = 0;

  /* Try and find a way of doing the job in either two or three
     instructions.

     In ARM mode we can use 8-bit constants, rotated to any 2-bit aligned
     location.  We start at position I.  This may be the MSB, or
     optimial_immediate_sequence may have positioned it at the largest block
     of zeros that are aligned on a 2-bit boundary. We then fill up the temps,
     wrapping around to the top of the word when we drop off the bottom.
     In the worst case this code should produce no more than four insns.

     In Thumb2 mode, we can use 32/16-bit replicated constants, and 8-bit
     constants, shifted to any arbitrary location.  We should always start
     at the MSB.  */
  do
    {
      int end;
      unsigned int b1, b2, b3, b4;
      unsigned HOST_WIDE_INT result;
      int loc;

      gcc_assert (insns < 4);

      if (i <= 0)
	i += 32;

      /* First, find the next normal 12/8-bit shifted/rotated immediate.  */
      if (remainder & ((TARGET_ARM ? (3 << (i - 2)) : (1 << (i - 1)))))
	{
	  loc = i;
	  if (i <= 12 && TARGET_THUMB2 && code == PLUS)
	    /* We can use addw/subw for the last 12 bits.  */
	    result = remainder;
	  else
	    {
	      /* Use an 8-bit shifted/rotated immediate.  */
	      end = i - 8;
	      if (end < 0)
		end += 32;
	      result = remainder & ((0x0ff << end)
				   | ((i < end) ? (0xff >> (32 - end))
						: 0));
	      i -= 8;
	    }
	}
      else
	{
	  /* Arm allows rotates by a multiple of two. Thumb-2 allows
	     arbitrary shifts.  */
	  i -= TARGET_ARM ? 2 : 1;
	  continue;
	}

      /* Next, see if we can do a better job with a thumb2 replicated
	 constant.

         We do it this way around to catch the cases like 0x01F001E0 where
	 two 8-bit immediates would work, but a replicated constant would
	 make it worse.

         TODO: 16-bit constants that don't clear all the bits, but still win.
         TODO: Arithmetic splitting for set/add/sub, rather than bitwise.  */
      if (TARGET_THUMB2)
	{
	  b1 = (remainder & 0xff000000) >> 24;
	  b2 = (remainder & 0x00ff0000) >> 16;
	  b3 = (remainder & 0x0000ff00) >> 8;
	  b4 = remainder & 0xff;

	  if (loc > 24)
	    {
	      /* The 8-bit immediate already found clears b1 (and maybe b2),
		 but must leave b3 and b4 alone.  */

	      /* First try to find a 32-bit replicated constant that clears
		 almost everything.  We can assume that we can't do it in one,
		 or else we wouldn't be here.  */
	      unsigned int tmp = b1 & b2 & b3 & b4;
	      unsigned int tmp2 = tmp + (tmp << 8) + (tmp << 16)
				  + (tmp << 24);
	      unsigned int matching_bytes = (tmp == b1) + (tmp == b2)
					    + (tmp == b3) + (tmp == b4);
	      if (tmp
		  && (matching_bytes >= 3
		      || (matching_bytes == 2
			  && const_ok_for_op (remainder & ~tmp2, code))))
		{
		  /* At least 3 of the bytes match, and the fourth has at
		     least as many bits set, or two of the bytes match
		     and it will only require one more insn to finish.  */
		  result = tmp2;
		  i = tmp != b1 ? 32
		      : tmp != b2 ? 24
		      : tmp != b3 ? 16
		      : 8;
		}

	      /* Second, try to find a 16-bit replicated constant that can
		 leave three of the bytes clear.  If b2 or b4 is already
		 zero, then we can.  If the 8-bit from above would not
		 clear b2 anyway, then we still win.  */
	      else if (b1 == b3 && (!b2 || !b4
			       || (remainder & 0x00ff0000 & ~result)))
		{
		  result = remainder & 0xff00ff00;
		  i = 24;
		}
	    }
	  else if (loc > 16)
	    {
	      /* The 8-bit immediate already found clears b2 (and maybe b3)
		 and we don't get here unless b1 is alredy clear, but it will
		 leave b4 unchanged.  */

	      /* If we can clear b2 and b4 at once, then we win, since the
		 8-bits couldn't possibly reach that far.  */
	      if (b2 == b4)
		{
		  result = remainder & 0x00ff00ff;
		  i = 16;
		}
	    }
	}

      return_sequence->i[insns++] = result;
      remainder &= ~result;

      if (code == SET || code == MINUS)
	code = PLUS;
    }
  while (remainder);

  return insns;
}

/* Emit an instruction with the indicated PATTERN.  If COND is
   non-NULL, conditionalize the execution of the instruction on COND
   being true.  */

static void
emit_constant_insn (rtx cond, rtx pattern)
{
  if (cond)
    pattern = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond), pattern);
  emit_insn (pattern);
}

/* As above, but extra parameter GENERATE which, if clear, suppresses
   RTL generation.  */

static int
arm_gen_constant (enum rtx_code code, enum machine_mode mode, rtx cond,
		  HOST_WIDE_INT val, rtx target, rtx source, int subtargets,
		  int generate)
{
  int can_invert = 0;
  int can_negate = 0;
  int final_invert = 0;
  int i;
  int set_sign_bit_copies = 0;
  int clear_sign_bit_copies = 0;
  int clear_zero_bit_copies = 0;
  int set_zero_bit_copies = 0;
  int insns = 0, neg_insns, inv_insns;
  unsigned HOST_WIDE_INT temp1, temp2;
  unsigned HOST_WIDE_INT remainder = val & 0xffffffff;
  struct four_ints *immediates;
  struct four_ints pos_immediates, neg_immediates, inv_immediates;

  /* Find out which operations are safe for a given CODE.  Also do a quick
     check for degenerate cases; these can occur when DImode operations
     are split.  */
  switch (code)
    {
    case SET:
      can_invert = 1;
      break;

    case PLUS:
      can_negate = 1;
      break;

    case IOR:
      if (remainder == 0xffffffff)
	{
	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target,
					     GEN_INT (ARM_SIGN_EXTEND (val))));
	  return 1;
	}

      if (remainder == 0)
	{
	  if (reload_completed && rtx_equal_p (target, source))
	    return 0;

	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target, source));
	  return 1;
	}
      break;

    case AND:
      if (remainder == 0)
	{
	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target, const0_rtx));
	  return 1;
	}
      if (remainder == 0xffffffff)
	{
	  if (reload_completed && rtx_equal_p (target, source))
	    return 0;
	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target, source));
	  return 1;
	}
      can_invert = 1;
      break;

    case XOR:
      if (remainder == 0)
	{
	  if (reload_completed && rtx_equal_p (target, source))
	    return 0;
	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target, source));
	  return 1;
	}

      if (remainder == 0xffffffff)
	{
	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target,
					     gen_rtx_NOT (mode, source)));
	  return 1;
	}
      final_invert = 1;
      break;

    case MINUS:
      /* We treat MINUS as (val - source), since (source - val) is always
	 passed as (source + (-val)).  */
      if (remainder == 0)
	{
	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target,
					     gen_rtx_NEG (mode, source)));
	  return 1;
	}
      if (const_ok_for_arm (val))
	{
	  if (generate)
	    emit_constant_insn (cond,
				gen_rtx_SET (VOIDmode, target,
					     gen_rtx_MINUS (mode, GEN_INT (val),
							    source)));
	  return 1;
	}

      break;

    default:
      gcc_unreachable ();
    }

  /* If we can do it in one insn get out quickly.  */
  if (const_ok_for_op (val, code))
    {
      if (generate)
	emit_constant_insn (cond,
			    gen_rtx_SET (VOIDmode, target,
					 (source
					  ? gen_rtx_fmt_ee (code, mode, source,
							    GEN_INT (val))
					  : GEN_INT (val))));
      return 1;
    }

  /* On targets with UXTH/UBFX, we can deal with AND (2^N)-1 in a single
     insn.  */
  if (code == AND && (i = exact_log2 (remainder + 1)) > 0
      && (arm_arch_thumb2 || (i == 16 && arm_arch6 && mode == SImode)))
    {
      if (generate)
	{
	  if (mode == SImode && i == 16)
	    /* Use UXTH in preference to UBFX, since on Thumb2 it's a
	       smaller insn.  */
	    emit_constant_insn (cond,
				gen_zero_extendhisi2
				(target, gen_lowpart (HImode, source)));
	  else
	    /* Extz only supports SImode, but we can coerce the operands
	       into that mode.  */
	    emit_constant_insn (cond,
				gen_extzv_t2 (gen_lowpart (SImode, target),
					      gen_lowpart (SImode, source),
					      GEN_INT (i), const0_rtx));
	}

      return 1;
    }

  /* Calculate a few attributes that may be useful for specific
     optimizations.  */
  /* Count number of leading zeros.  */
  for (i = 31; i >= 0; i--)
    {
      if ((remainder & (1 << i)) == 0)
	clear_sign_bit_copies++;
      else
	break;
    }

  /* Count number of leading 1's.  */
  for (i = 31; i >= 0; i--)
    {
      if ((remainder & (1 << i)) != 0)
	set_sign_bit_copies++;
      else
	break;
    }

  /* Count number of trailing zero's.  */
  for (i = 0; i <= 31; i++)
    {
      if ((remainder & (1 << i)) == 0)
	clear_zero_bit_copies++;
      else
	break;
    }

  /* Count number of trailing 1's.  */
  for (i = 0; i <= 31; i++)
    {
      if ((remainder & (1 << i)) != 0)
	set_zero_bit_copies++;
      else
	break;
    }

  switch (code)
    {
    case SET:
      /* See if we can do this by sign_extending a constant that is known
	 to be negative.  This is a good, way of doing it, since the shift
	 may well merge into a subsequent insn.  */
      if (set_sign_bit_copies > 1)
	{
	  if (const_ok_for_arm
	      (temp1 = ARM_SIGN_EXTEND (remainder
					<< (set_sign_bit_copies - 1))))
	    {
	      if (generate)
		{
		  rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
		  emit_constant_insn (cond,
				      gen_rtx_SET (VOIDmode, new_src,
						   GEN_INT (temp1)));
		  emit_constant_insn (cond,
				      gen_ashrsi3 (target, new_src,
						   GEN_INT (set_sign_bit_copies - 1)));
		}
	      return 2;
	    }
	  /* For an inverted constant, we will need to set the low bits,
	     these will be shifted out of harm's way.  */
	  temp1 |= (1 << (set_sign_bit_copies - 1)) - 1;
	  if (const_ok_for_arm (~temp1))
	    {
	      if (generate)
		{
		  rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
		  emit_constant_insn (cond,
				      gen_rtx_SET (VOIDmode, new_src,
						   GEN_INT (temp1)));
		  emit_constant_insn (cond,
				      gen_ashrsi3 (target, new_src,
						   GEN_INT (set_sign_bit_copies - 1)));
		}
	      return 2;
	    }
	}

      /* See if we can calculate the value as the difference between two
	 valid immediates.  */
      if (clear_sign_bit_copies + clear_zero_bit_copies <= 16)
	{
	  int topshift = clear_sign_bit_copies & ~1;

	  temp1 = ARM_SIGN_EXTEND ((remainder + (0x00800000 >> topshift))
				   & (0xff000000 >> topshift));

	  /* If temp1 is zero, then that means the 9 most significant
	     bits of remainder were 1 and we've caused it to overflow.
	     When topshift is 0 we don't need to do anything since we
	     can borrow from 'bit 32'.  */
	  if (temp1 == 0 && topshift != 0)
	    temp1 = 0x80000000 >> (topshift - 1);

	  temp2 = ARM_SIGN_EXTEND (temp1 - remainder);

	  if (const_ok_for_arm (temp2))
	    {
	      if (generate)
		{
		  rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
		  emit_constant_insn (cond,
				      gen_rtx_SET (VOIDmode, new_src,
						   GEN_INT (temp1)));
		  emit_constant_insn (cond,
				      gen_addsi3 (target, new_src,
						  GEN_INT (-temp2)));
		}

	      return 2;
	    }
	}

      /* See if we can generate this by setting the bottom (or the top)
	 16 bits, and then shifting these into the other half of the
	 word.  We only look for the simplest cases, to do more would cost
	 too much.  Be careful, however, not to generate this when the
	 alternative would take fewer insns.  */
      if (val & 0xffff0000)
	{
	  temp1 = remainder & 0xffff0000;
	  temp2 = remainder & 0x0000ffff;

	  /* Overlaps outside this range are best done using other methods.  */
	  for (i = 9; i < 24; i++)
	    {
	      if ((((temp2 | (temp2 << i)) & 0xffffffff) == remainder)
		  && !const_ok_for_arm (temp2))
		{
		  rtx new_src = (subtargets
				 ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
				 : target);
		  insns = arm_gen_constant (code, mode, cond, temp2, new_src,
					    source, subtargets, generate);
		  source = new_src;
		  if (generate)
		    emit_constant_insn
		      (cond,
		       gen_rtx_SET
		       (VOIDmode, target,
			gen_rtx_IOR (mode,
				     gen_rtx_ASHIFT (mode, source,
						     GEN_INT (i)),
				     source)));
		  return insns + 1;
		}
	    }

	  /* Don't duplicate cases already considered.  */
	  for (i = 17; i < 24; i++)
	    {
	      if (((temp1 | (temp1 >> i)) == remainder)
		  && !const_ok_for_arm (temp1))
		{
		  rtx new_src = (subtargets
				 ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
				 : target);
		  insns = arm_gen_constant (code, mode, cond, temp1, new_src,
					    source, subtargets, generate);
		  source = new_src;
		  if (generate)
		    emit_constant_insn
		      (cond,
		       gen_rtx_SET (VOIDmode, target,
				    gen_rtx_IOR
				    (mode,
				     gen_rtx_LSHIFTRT (mode, source,
						       GEN_INT (i)),
				     source)));
		  return insns + 1;
		}
	    }
	}
      break;

    case IOR:
    case XOR:
      /* If we have IOR or XOR, and the constant can be loaded in a
	 single instruction, and we can find a temporary to put it in,
	 then this can be done in two instructions instead of 3-4.  */
      if (subtargets
	  /* TARGET can't be NULL if SUBTARGETS is 0 */
	  || (reload_completed && !reg_mentioned_p (target, source)))
	{
	  if (const_ok_for_arm (ARM_SIGN_EXTEND (~val)))
	    {
	      if (generate)
		{
		  rtx sub = subtargets ? gen_reg_rtx (mode) : target;

		  emit_constant_insn (cond,
				      gen_rtx_SET (VOIDmode, sub,
						   GEN_INT (val)));
		  emit_constant_insn (cond,
				      gen_rtx_SET (VOIDmode, target,
						   gen_rtx_fmt_ee (code, mode,
								   source, sub)));
		}
	      return 2;
	    }
	}

      if (code == XOR)
	break;

      /*  Convert.
	  x = y | constant ( which is composed of set_sign_bit_copies of leading 1s
	                     and the remainder 0s for e.g. 0xfff00000)
	  x = ~(~(y ashift set_sign_bit_copies) lshiftrt set_sign_bit_copies)

	  This can be done in 2 instructions by using shifts with mov or mvn.
	  e.g. for
	  x = x | 0xfff00000;
	  we generate.
	  mvn	r0, r0, asl #12
	  mvn	r0, r0, lsr #12  */
      if (set_sign_bit_copies > 8
	  && (val & (-1 << (32 - set_sign_bit_copies))) == val)
	{
	  if (generate)
	    {
	      rtx sub = subtargets ? gen_reg_rtx (mode) : target;
	      rtx shift = GEN_INT (set_sign_bit_copies);

	      emit_constant_insn
		(cond,
		 gen_rtx_SET (VOIDmode, sub,
			      gen_rtx_NOT (mode,
					   gen_rtx_ASHIFT (mode,
							   source,
							   shift))));
	      emit_constant_insn
		(cond,
		 gen_rtx_SET (VOIDmode, target,
			      gen_rtx_NOT (mode,
					   gen_rtx_LSHIFTRT (mode, sub,
							     shift))));
	    }
	  return 2;
	}

      /* Convert
	  x = y | constant (which has set_zero_bit_copies number of trailing ones).
	   to
	  x = ~((~y lshiftrt set_zero_bit_copies) ashift set_zero_bit_copies).

	  For eg. r0 = r0 | 0xfff
	       mvn	r0, r0, lsr #12
	       mvn	r0, r0, asl #12

      */
      if (set_zero_bit_copies > 8
	  && (remainder & ((1 << set_zero_bit_copies) - 1)) == remainder)
	{
	  if (generate)
	    {
	      rtx sub = subtargets ? gen_reg_rtx (mode) : target;
	      rtx shift = GEN_INT (set_zero_bit_copies);

	      emit_constant_insn
		(cond,
		 gen_rtx_SET (VOIDmode, sub,
			      gen_rtx_NOT (mode,
					   gen_rtx_LSHIFTRT (mode,
							     source,
							     shift))));
	      emit_constant_insn
		(cond,
		 gen_rtx_SET (VOIDmode, target,
			      gen_rtx_NOT (mode,
					   gen_rtx_ASHIFT (mode, sub,
							   shift))));
	    }
	  return 2;
	}

      /* This will never be reached for Thumb2 because orn is a valid
	 instruction. This is for Thumb1 and the ARM 32 bit cases.

	 x = y | constant (such that ~constant is a valid constant)
	 Transform this to
	 x = ~(~y & ~constant).
      */
      if (const_ok_for_arm (temp1 = ARM_SIGN_EXTEND (~val)))
	{
	  if (generate)
	    {
	      rtx sub = subtargets ? gen_reg_rtx (mode) : target;
	      emit_constant_insn (cond,
				  gen_rtx_SET (VOIDmode, sub,
					       gen_rtx_NOT (mode, source)));
	      source = sub;
	      if (subtargets)
		sub = gen_reg_rtx (mode);
	      emit_constant_insn (cond,
				  gen_rtx_SET (VOIDmode, sub,
					       gen_rtx_AND (mode, source,
							    GEN_INT (temp1))));
	      emit_constant_insn (cond,
				  gen_rtx_SET (VOIDmode, target,
					       gen_rtx_NOT (mode, sub)));
	    }
	  return 3;
	}
      break;

    case AND:
      /* See if two shifts will do 2 or more insn's worth of work.  */
      if (clear_sign_bit_copies >= 16 && clear_sign_bit_copies < 24)
	{
	  HOST_WIDE_INT shift_mask = ((0xffffffff
				       << (32 - clear_sign_bit_copies))
				      & 0xffffffff);

	  if ((remainder | shift_mask) != 0xffffffff)
	    {
	      if (generate)
		{
		  rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
		  insns = arm_gen_constant (AND, mode, cond,
					    remainder | shift_mask,
					    new_src, source, subtargets, 1);
		  source = new_src;
		}
	      else
		{
		  rtx targ = subtargets ? NULL_RTX : target;
		  insns = arm_gen_constant (AND, mode, cond,
					    remainder | shift_mask,
					    targ, source, subtargets, 0);
		}
	    }

	  if (generate)
	    {
	      rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
	      rtx shift = GEN_INT (clear_sign_bit_copies);

	      emit_insn (gen_ashlsi3 (new_src, source, shift));
	      emit_insn (gen_lshrsi3 (target, new_src, shift));
	    }

	  return insns + 2;
	}

      if (clear_zero_bit_copies >= 16 && clear_zero_bit_copies < 24)
	{
	  HOST_WIDE_INT shift_mask = (1 << clear_zero_bit_copies) - 1;

	  if ((remainder | shift_mask) != 0xffffffff)
	    {
	      if (generate)
		{
		  rtx new_src = subtargets ? gen_reg_rtx (mode) : target;

		  insns = arm_gen_constant (AND, mode, cond,
					    remainder | shift_mask,
					    new_src, source, subtargets, 1);
		  source = new_src;
		}
	      else
		{
		  rtx targ = subtargets ? NULL_RTX : target;

		  insns = arm_gen_constant (AND, mode, cond,
					    remainder | shift_mask,
					    targ, source, subtargets, 0);
		}
	    }

	  if (generate)
	    {
	      rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
	      rtx shift = GEN_INT (clear_zero_bit_copies);

	      emit_insn (gen_lshrsi3 (new_src, source, shift));
	      emit_insn (gen_ashlsi3 (target, new_src, shift));
	    }

	  return insns + 2;
	}

      break;

    default:
      break;
    }

  /* Calculate what the instruction sequences would be if we generated it
     normally, negated, or inverted.  */
  if (code == AND)
    /* AND cannot be split into multiple insns, so invert and use BIC.  */
    insns = 99;
  else
    insns = optimal_immediate_sequence (code, remainder, &pos_immediates);

  if (can_negate)
    neg_insns = optimal_immediate_sequence (code, (-remainder) & 0xffffffff,
					    &neg_immediates);
  else
    neg_insns = 99;

  if (can_invert || final_invert)
    inv_insns = optimal_immediate_sequence (code, remainder ^ 0xffffffff,
					    &inv_immediates);
  else
    inv_insns = 99;

  immediates = &pos_immediates;

  /* Is the negated immediate sequence more efficient?  */
  if (neg_insns < insns && neg_insns <= inv_insns)
    {
      insns = neg_insns;
      immediates = &neg_immediates;
    }
  else
    can_negate = 0;

  /* Is the inverted immediate sequence more efficient?
     We must allow for an extra NOT instruction for XOR operations, although
     there is some chance that the final 'mvn' will get optimized later.  */
  if ((inv_insns + 1) < insns || (!final_invert && inv_insns < insns))
    {
      insns = inv_insns;
      immediates = &inv_immediates;
    }
  else
    {
      can_invert = 0;
      final_invert = 0;
    }

  /* Now output the chosen sequence as instructions.  */
  if (generate)
    {
      for (i = 0; i < insns; i++)
	{
	  rtx new_src, temp1_rtx;

	  temp1 = immediates->i[i];

	  if (code == SET || code == MINUS)
	    new_src = (subtargets ? gen_reg_rtx (mode) : target);
	  else if ((final_invert || i < (insns - 1)) && subtargets)
	    new_src = gen_reg_rtx (mode);
	  else
	    new_src = target;

	  if (can_invert)
	    temp1 = ~temp1;
	  else if (can_negate)
	    temp1 = -temp1;

	  temp1 = trunc_int_for_mode (temp1, mode);
	  temp1_rtx = GEN_INT (temp1);

	  if (code == SET)
	    ;
	  else if (code == MINUS)
	    temp1_rtx = gen_rtx_MINUS (mode, temp1_rtx, source);
	  else
	    temp1_rtx = gen_rtx_fmt_ee (code, mode, source, temp1_rtx);

	  emit_constant_insn (cond,
			      gen_rtx_SET (VOIDmode, new_src,
					   temp1_rtx));
	  source = new_src;

	  if (code == SET)
	    {
	      can_negate = can_invert;
	      can_invert = 0;
	      code = PLUS;
	    }
	  else if (code == MINUS)
	    code = PLUS;
	}
    }

  if (final_invert)
    {
      if (generate)
	emit_constant_insn (cond, gen_rtx_SET (VOIDmode, target,
					       gen_rtx_NOT (mode, source)));
      insns++;
    }

  return insns;
}

/* Canonicalize a comparison so that we are more likely to recognize it.
   This can be done for a few constant compares, where we can make the
   immediate value easier to load.  */

static void
arm_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
			     bool op0_preserve_value)
{
  enum machine_mode mode;
  unsigned HOST_WIDE_INT i, maxval;

  mode = GET_MODE (*op0);
  if (mode == VOIDmode)
    mode = GET_MODE (*op1);

  maxval = (((unsigned HOST_WIDE_INT) 1) << (GET_MODE_BITSIZE(mode) - 1)) - 1;

  /* For DImode, we have GE/LT/GEU/LTU comparisons.  In ARM mode
     we can also use cmp/cmpeq for GTU/LEU.  GT/LE must be either
     reversed or (for constant OP1) adjusted to GE/LT.  Similarly
     for GTU/LEU in Thumb mode.  */
  if (mode == DImode)
    {
      rtx tem;

      if (*code == GT || *code == LE
	  || (!TARGET_ARM && (*code == GTU || *code == LEU)))
	{
	  /* Missing comparison.  First try to use an available
	     comparison.  */
	  if (CONST_INT_P (*op1))
	    {
	      i = INTVAL (*op1);
	      switch (*code)
		{
		case GT:
		case LE:
		  if (i != maxval
		      && arm_const_double_by_immediates (GEN_INT (i + 1)))
		    {
		      *op1 = GEN_INT (i + 1);
		      *code = *code == GT ? GE : LT;
		      return;
		    }
		  break;
		case GTU:
		case LEU:
		  if (i != ~((unsigned HOST_WIDE_INT) 0)
		      && arm_const_double_by_immediates (GEN_INT (i + 1)))
		    {
		      *op1 = GEN_INT (i + 1);
		      *code = *code == GTU ? GEU : LTU;
		      return;
		    }
		  break;
		default:
		  gcc_unreachable ();
		}
	    }

	  /* If that did not work, reverse the condition.  */
	  if (!op0_preserve_value)
	    {
	      tem = *op0;
	      *op0 = *op1;
	      *op1 = tem;
	      *code = (int)swap_condition ((enum rtx_code)*code);
	    }
	}
      return;
    }

  /* If *op0 is (zero_extend:SI (subreg:QI (reg:SI) 0)) and comparing
     with const0_rtx, change it to (and:SI (reg:SI) (const_int 255)),
     to facilitate possible combining with a cmp into 'ands'.  */
  if (mode == SImode
      && GET_CODE (*op0) == ZERO_EXTEND
      && GET_CODE (XEXP (*op0, 0)) == SUBREG
      && GET_MODE (XEXP (*op0, 0)) == QImode
      && GET_MODE (SUBREG_REG (XEXP (*op0, 0))) == SImode
      && subreg_lowpart_p (XEXP (*op0, 0))
      && *op1 == const0_rtx)
    *op0 = gen_rtx_AND (SImode, SUBREG_REG (XEXP (*op0, 0)),
			GEN_INT (255));

  /* Comparisons smaller than DImode.  Only adjust comparisons against
     an out-of-range constant.  */
  if (!CONST_INT_P (*op1)
      || const_ok_for_arm (INTVAL (*op1))
      || const_ok_for_arm (- INTVAL (*op1)))
    return;

  i = INTVAL (*op1);

  switch (*code)
    {
    case EQ:
    case NE:
      return;

    case GT:
    case LE:
      if (i != maxval
	  && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
	{
	  *op1 = GEN_INT (i + 1);
	  *code = *code == GT ? GE : LT;
	  return;
	}
      break;

    case GE:
    case LT:
      if (i != ~maxval
	  && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
	{
	  *op1 = GEN_INT (i - 1);
	  *code = *code == GE ? GT : LE;
	  return;
	}
      break;

    case GTU:
    case LEU:
      if (i != ~((unsigned HOST_WIDE_INT) 0)
	  && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
	{
	  *op1 = GEN_INT (i + 1);
	  *code = *code == GTU ? GEU : LTU;
	  return;
	}
      break;

    case GEU:
    case LTU:
      if (i != 0
	  && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
	{
	  *op1 = GEN_INT (i - 1);
	  *code = *code == GEU ? GTU : LEU;
	  return;
	}
      break;

    default:
      gcc_unreachable ();
    }
}


/* Define how to find the value returned by a function.  */

static rtx
arm_function_value(const_tree type, const_tree func,
		   bool outgoing ATTRIBUTE_UNUSED)
{
  enum machine_mode mode;
  int unsignedp ATTRIBUTE_UNUSED;
  rtx r ATTRIBUTE_UNUSED;

  mode = TYPE_MODE (type);

  if (TARGET_AAPCS_BASED)
    return aapcs_allocate_return_reg (mode, type, func);

  /* Promote integer types.  */
  if (INTEGRAL_TYPE_P (type))
    mode = arm_promote_function_mode (type, mode, &unsignedp, func, 1);

  /* Promotes small structs returned in a register to full-word size
     for big-endian AAPCS.  */
  if (arm_return_in_msb (type))
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      if (size % UNITS_PER_WORD != 0)
	{
	  size += UNITS_PER_WORD - size % UNITS_PER_WORD;
	  mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
	}
    }

  return arm_libcall_value_1 (mode);
}

/* libcall hashtable helpers.  */

struct libcall_hasher : typed_noop_remove <rtx_def>
{
  typedef rtx_def value_type;
  typedef rtx_def compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
  static inline void remove (value_type *);
};

inline bool
libcall_hasher::equal (const value_type *p1, const compare_type *p2)
{
  return rtx_equal_p (p1, p2);
}

inline hashval_t
libcall_hasher::hash (const value_type *p1)
{
  return hash_rtx (p1, VOIDmode, NULL, NULL, FALSE);
}

typedef hash_table <libcall_hasher> libcall_table_type;

static void
add_libcall (libcall_table_type htab, rtx libcall)
{
  *htab.find_slot (libcall, INSERT) = libcall;
}

static bool
arm_libcall_uses_aapcs_base (const_rtx libcall)
{
  static bool init_done = false;
  static libcall_table_type libcall_htab;

  if (!init_done)
    {
      init_done = true;

      libcall_htab.create (31);
      add_libcall (libcall_htab,
		   convert_optab_libfunc (sfloat_optab, SFmode, SImode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (sfloat_optab, DFmode, SImode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (sfloat_optab, SFmode, DImode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (sfloat_optab, DFmode, DImode));

      add_libcall (libcall_htab,
		   convert_optab_libfunc (ufloat_optab, SFmode, SImode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (ufloat_optab, DFmode, SImode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (ufloat_optab, SFmode, DImode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (ufloat_optab, DFmode, DImode));

      add_libcall (libcall_htab,
		   convert_optab_libfunc (sext_optab, SFmode, HFmode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (trunc_optab, HFmode, SFmode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (sfix_optab, SImode, DFmode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (ufix_optab, SImode, DFmode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (sfix_optab, DImode, DFmode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (ufix_optab, DImode, DFmode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (sfix_optab, DImode, SFmode));
      add_libcall (libcall_htab,
		   convert_optab_libfunc (ufix_optab, DImode, SFmode));

      /* Values from double-precision helper functions are returned in core
	 registers if the selected core only supports single-precision
	 arithmetic, even if we are using the hard-float ABI.  The same is
	 true for single-precision helpers, but we will never be using the
	 hard-float ABI on a CPU which doesn't support single-precision
	 operations in hardware.  */
      add_libcall (libcall_htab, optab_libfunc (add_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (sdiv_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (smul_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (neg_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (sub_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (eq_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (lt_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (le_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (ge_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (gt_optab, DFmode));
      add_libcall (libcall_htab, optab_libfunc (unord_optab, DFmode));
      add_libcall (libcall_htab, convert_optab_libfunc (sext_optab, DFmode,
							SFmode));
      add_libcall (libcall_htab, convert_optab_libfunc (trunc_optab, SFmode,
							DFmode));
    }

  return libcall && libcall_htab.find (libcall) != NULL;
}

static rtx
arm_libcall_value_1 (enum machine_mode mode)
{
  if (TARGET_AAPCS_BASED)
    return aapcs_libcall_value (mode);
  else if (TARGET_IWMMXT_ABI
	   && arm_vector_mode_supported_p (mode))
    return gen_rtx_REG (mode, FIRST_IWMMXT_REGNUM);
  else
    return gen_rtx_REG (mode, ARG_REGISTER (1));
}

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  */

static rtx
arm_libcall_value (enum machine_mode mode, const_rtx libcall)
{
  if (TARGET_AAPCS_BASED && arm_pcs_default != ARM_PCS_AAPCS
      && GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      /* The following libcalls return their result in integer registers,
	 even though they return a floating point value.  */
      if (arm_libcall_uses_aapcs_base (libcall))
	return gen_rtx_REG (mode, ARG_REGISTER(1));

    }

  return arm_libcall_value_1 (mode);
}

/* Implement TARGET_FUNCTION_VALUE_REGNO_P.  */

static bool
arm_function_value_regno_p (const unsigned int regno)
{
  if (regno == ARG_REGISTER (1)
      || (TARGET_32BIT
	  && TARGET_AAPCS_BASED
	  && TARGET_VFP
	  && TARGET_HARD_FLOAT
	  && regno == FIRST_VFP_REGNUM)
      || (TARGET_IWMMXT_ABI
	  && regno == FIRST_IWMMXT_REGNUM))
    return true;

  return false;
}

/* Determine the amount of memory needed to store the possible return
   registers of an untyped call.  */
int
arm_apply_result_size (void)
{
  int size = 16;

  if (TARGET_32BIT)
    {
      if (TARGET_HARD_FLOAT_ABI && TARGET_VFP)
	size += 32;
      if (TARGET_IWMMXT_ABI)
	size += 8;
    }

  return size;
}

/* Decide whether TYPE should be returned in memory (true)
   or in a register (false).  FNTYPE is the type of the function making
   the call.  */
static bool
arm_return_in_memory (const_tree type, const_tree fntype)
{
  HOST_WIDE_INT size;

  size = int_size_in_bytes (type);  /* Negative if not fixed size.  */

  if (TARGET_AAPCS_BASED)
    {
      /* Simple, non-aggregate types (ie not including vectors and
	 complex) are always returned in a register (or registers).
	 We don't care about which register here, so we can short-cut
	 some of the detail.  */
      if (!AGGREGATE_TYPE_P (type)
	  && TREE_CODE (type) != VECTOR_TYPE
	  && TREE_CODE (type) != COMPLEX_TYPE)
	return false;

      /* Any return value that is no larger than one word can be
	 returned in r0.  */
      if (((unsigned HOST_WIDE_INT) size) <= UNITS_PER_WORD)
	return false;

      /* Check any available co-processors to see if they accept the
	 type as a register candidate (VFP, for example, can return
	 some aggregates in consecutive registers).  These aren't
	 available if the call is variadic.  */
      if (aapcs_select_return_coproc (type, fntype) >= 0)
	return false;

      /* Vector values should be returned using ARM registers, not
	 memory (unless they're over 16 bytes, which will break since
	 we only have four call-clobbered registers to play with).  */
      if (TREE_CODE (type) == VECTOR_TYPE)
	return (size < 0 || size > (4 * UNITS_PER_WORD));

      /* The rest go in memory.  */
      return true;
    }

  if (TREE_CODE (type) == VECTOR_TYPE)
    return (size < 0 || size > (4 * UNITS_PER_WORD));

  if (!AGGREGATE_TYPE_P (type) &&
      (TREE_CODE (type) != VECTOR_TYPE))
    /* All simple types are returned in registers.  */
    return false;

  if (arm_abi != ARM_ABI_APCS)
    {
      /* ATPCS and later return aggregate types in memory only if they are
	 larger than a word (or are variable size).  */
      return (size < 0 || size > UNITS_PER_WORD);
    }

  /* For the arm-wince targets we choose to be compatible with Microsoft's
     ARM and Thumb compilers, which always return aggregates in memory.  */
#ifndef ARM_WINCE
  /* All structures/unions bigger than one word are returned in memory.
     Also catch the case where int_size_in_bytes returns -1.  In this case
     the aggregate is either huge or of variable size, and in either case
     we will want to return it via memory and not in a register.  */
  if (size < 0 || size > UNITS_PER_WORD)
    return true;

  if (TREE_CODE (type) == RECORD_TYPE)
    {
      tree field;

      /* For a struct the APCS says that we only return in a register
	 if the type is 'integer like' and every addressable element
	 has an offset of zero.  For practical purposes this means
	 that the structure can have at most one non bit-field element
	 and that this element must be the first one in the structure.  */

      /* Find the first field, ignoring non FIELD_DECL things which will
	 have been created by C++.  */
      for (field = TYPE_FIELDS (type);
	   field && TREE_CODE (field) != FIELD_DECL;
	   field = DECL_CHAIN (field))
	continue;

      if (field == NULL)
	return false; /* An empty structure.  Allowed by an extension to ANSI C.  */

      /* Check that the first field is valid for returning in a register.  */

      /* ... Floats are not allowed */
      if (FLOAT_TYPE_P (TREE_TYPE (field)))
	return true;

      /* ... Aggregates that are not themselves valid for returning in
	 a register are not allowed.  */
      if (arm_return_in_memory (TREE_TYPE (field), NULL_TREE))
	return true;

      /* Now check the remaining fields, if any.  Only bitfields are allowed,
	 since they are not addressable.  */
      for (field = DECL_CHAIN (field);
	   field;
	   field = DECL_CHAIN (field))
	{
	  if (TREE_CODE (field) != FIELD_DECL)
	    continue;

	  if (!DECL_BIT_FIELD_TYPE (field))
	    return true;
	}

      return false;
    }

  if (TREE_CODE (type) == UNION_TYPE)
    {
      tree field;

      /* Unions can be returned in registers if every element is
	 integral, or can be returned in an integer register.  */
      for (field = TYPE_FIELDS (type);
	   field;
	   field = DECL_CHAIN (field))
	{
	  if (TREE_CODE (field) != FIELD_DECL)
	    continue;

	  if (FLOAT_TYPE_P (TREE_TYPE (field)))
	    return true;

	  if (arm_return_in_memory (TREE_TYPE (field), NULL_TREE))
	    return true;
	}

      return false;
    }
#endif /* not ARM_WINCE */

  /* Return all other types in memory.  */
  return true;
}

const struct pcs_attribute_arg
{
  const char *arg;
  enum arm_pcs value;
} pcs_attribute_args[] =
  {
    {"aapcs", ARM_PCS_AAPCS},
    {"aapcs-vfp", ARM_PCS_AAPCS_VFP},
#if 0
    /* We could recognize these, but changes would be needed elsewhere
     * to implement them.  */
    {"aapcs-iwmmxt", ARM_PCS_AAPCS_IWMMXT},
    {"atpcs", ARM_PCS_ATPCS},
    {"apcs", ARM_PCS_APCS},
#endif
    {NULL, ARM_PCS_UNKNOWN}
  };

static enum arm_pcs
arm_pcs_from_attribute (tree attr)
{
  const struct pcs_attribute_arg *ptr;
  const char *arg;

  /* Get the value of the argument.  */
  if (TREE_VALUE (attr) == NULL_TREE
      || TREE_CODE (TREE_VALUE (attr)) != STRING_CST)
    return ARM_PCS_UNKNOWN;

  arg = TREE_STRING_POINTER (TREE_VALUE (attr));

  /* Check it against the list of known arguments.  */
  for (ptr = pcs_attribute_args; ptr->arg != NULL; ptr++)
    if (streq (arg, ptr->arg))
      return ptr->value;

  /* An unrecognized interrupt type.  */
  return ARM_PCS_UNKNOWN;
}

/* Get the PCS variant to use for this call.  TYPE is the function's type
   specification, DECL is the specific declartion.  DECL may be null if
   the call could be indirect or if this is a library call.  */
static enum arm_pcs
arm_get_pcs_model (const_tree type, const_tree decl)
{
  bool user_convention = false;
  enum arm_pcs user_pcs = arm_pcs_default;
  tree attr;

  gcc_assert (type);

  attr = lookup_attribute ("pcs", TYPE_ATTRIBUTES (type));
  if (attr)
    {
      user_pcs = arm_pcs_from_attribute (TREE_VALUE (attr));
      user_convention = true;
    }

  if (TARGET_AAPCS_BASED)
    {
      /* Detect varargs functions.  These always use the base rules
	 (no argument is ever a candidate for a co-processor
	 register).  */
      bool base_rules = stdarg_p (type);

      if (user_convention)
	{
	  if (user_pcs > ARM_PCS_AAPCS_LOCAL)
	    sorry ("non-AAPCS derived PCS variant");
	  else if (base_rules && user_pcs != ARM_PCS_AAPCS)
	    error ("variadic functions must use the base AAPCS variant");
	}

      if (base_rules)
	return ARM_PCS_AAPCS;
      else if (user_convention)
	return user_pcs;
      else if (decl && flag_unit_at_a_time)
	{
	  /* Local functions never leak outside this compilation unit,
	     so we are free to use whatever conventions are
	     appropriate.  */
	  /* FIXME: remove CONST_CAST_TREE when cgraph is constified.  */
	  struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl));
	  if (i && i->local)
	    return ARM_PCS_AAPCS_LOCAL;
	}
    }
  else if (user_convention && user_pcs != arm_pcs_default)
    sorry ("PCS variant");

  /* For everything else we use the target's default.  */
  return arm_pcs_default;
}


static void
aapcs_vfp_cum_init (CUMULATIVE_ARGS *pcum  ATTRIBUTE_UNUSED,
		    const_tree fntype ATTRIBUTE_UNUSED,
		    rtx libcall ATTRIBUTE_UNUSED,
		    const_tree fndecl ATTRIBUTE_UNUSED)
{
  /* Record the unallocated VFP registers.  */
  pcum->aapcs_vfp_regs_free = (1 << NUM_VFP_ARG_REGS) - 1;
  pcum->aapcs_vfp_reg_alloc = 0;
}

/* Walk down the type tree of TYPE counting consecutive base elements.
   If *MODEP is VOIDmode, then set it to the first valid floating point
   type.  If a non-floating point type is found, or if a floating point
   type that doesn't match a non-VOIDmode *MODEP is found, then return -1,
   otherwise return the count in the sub-tree.  */
static int
aapcs_vfp_sub_candidate (const_tree type, enum machine_mode *modep)
{
  enum machine_mode mode;
  HOST_WIDE_INT size;

  switch (TREE_CODE (type))
    {
    case REAL_TYPE:
      mode = TYPE_MODE (type);
      if (mode != DFmode && mode != SFmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 1;

      break;

    case COMPLEX_TYPE:
      mode = TYPE_MODE (TREE_TYPE (type));
      if (mode != DFmode && mode != SFmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 2;

      break;

    case VECTOR_TYPE:
      /* Use V2SImode and V4SImode as representatives of all 64-bit
	 and 128-bit vector types, whether or not those modes are
	 supported with the present options.  */
      size = int_size_in_bytes (type);
      switch (size)
	{
	case 8:
	  mode = V2SImode;
	  break;
	case 16:
	  mode = V4SImode;
	  break;
	default:
	  return -1;
	}

      if (*modep == VOIDmode)
	*modep = mode;

      /* Vector modes are considered to be opaque: two vectors are
	 equivalent for the purposes of being homogeneous aggregates
	 if they are the same size.  */
      if (*modep == mode)
	return 1;

      break;

    case ARRAY_TYPE:
      {
	int count;
	tree index = TYPE_DOMAIN (type);

	/* Can't handle incomplete types.  */
	if (!COMPLETE_TYPE_P (type))
	  return -1;

	count = aapcs_vfp_sub_candidate (TREE_TYPE (type), modep);
	if (count == -1
	    || !index
	    || !TYPE_MAX_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
	    || !TYPE_MIN_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
	    || count < 0)
	  return -1;

	count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
		      - tree_to_uhwi (TYPE_MIN_VALUE (index)));

	/* There must be no padding.  */
	if (!tree_fits_uhwi_p (TYPE_SIZE (type))
	    || ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE (type))
		!= count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    case RECORD_TYPE:
      {
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types.  */
	if (!COMPLETE_TYPE_P (type))
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
	    if (sub_count < 0)
	      return -1;
	    count += sub_count;
	  }

	/* There must be no padding.  */
	if (!tree_fits_uhwi_p (TYPE_SIZE (type))
	    || ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE (type))
		!= count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	/* These aren't very interesting except in a degenerate case.  */
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types.  */
	if (!COMPLETE_TYPE_P (type))
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
	    if (sub_count < 0)
	      return -1;
	    count = count > sub_count ? count : sub_count;
	  }

	/* There must be no padding.  */
	if (!tree_fits_uhwi_p (TYPE_SIZE (type))
	    || ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE (type))
		!= count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    default:
      break;
    }

  return -1;
}

/* Return true if PCS_VARIANT should use VFP registers.  */
static bool
use_vfp_abi (enum arm_pcs pcs_variant, bool is_double)
{
  if (pcs_variant == ARM_PCS_AAPCS_VFP)
    {
      static bool seen_thumb1_vfp = false;

      if (TARGET_THUMB1 && !seen_thumb1_vfp)
	{
	  sorry ("Thumb-1 hard-float VFP ABI");
	  /* sorry() is not immediately fatal, so only display this once.  */
	  seen_thumb1_vfp = true;
	}

      return true;
    }

  if (pcs_variant != ARM_PCS_AAPCS_LOCAL)
    return false;

  return (TARGET_32BIT && TARGET_VFP && TARGET_HARD_FLOAT &&
	  (TARGET_VFP_DOUBLE || !is_double));
}

/* Return true if an argument whose type is TYPE, or mode is MODE, is
   suitable for passing or returning in VFP registers for the PCS
   variant selected.  If it is, then *BASE_MODE is updated to contain
   a machine mode describing each element of the argument's type and
   *COUNT to hold the number of such elements.  */
static bool
aapcs_vfp_is_call_or_return_candidate (enum arm_pcs pcs_variant,
				       enum machine_mode mode, const_tree type,
				       enum machine_mode *base_mode, int *count)
{
  enum machine_mode new_mode = VOIDmode;

  /* If we have the type information, prefer that to working things
     out from the mode.  */
  if (type)
    {
      int ag_count = aapcs_vfp_sub_candidate (type, &new_mode);

      if (ag_count > 0 && ag_count <= 4)
	*count = ag_count;
      else
	return false;
    }
  else if (GET_MODE_CLASS (mode) == MODE_FLOAT
	   || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	   || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
    {
      *count = 1;
      new_mode = mode;
    }
  else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
    {
      *count = 2;
      new_mode = (mode == DCmode ? DFmode : SFmode);
    }
  else
    return false;


  if (!use_vfp_abi (pcs_variant, ARM_NUM_REGS (new_mode) > 1))
    return false;

  *base_mode = new_mode;
  return true;
}

static bool
aapcs_vfp_is_return_candidate (enum arm_pcs pcs_variant,
			       enum machine_mode mode, const_tree type)
{
  int count ATTRIBUTE_UNUSED;
  enum machine_mode ag_mode ATTRIBUTE_UNUSED;

  if (!use_vfp_abi (pcs_variant, false))
    return false;
  return aapcs_vfp_is_call_or_return_candidate (pcs_variant, mode, type,
						&ag_mode, &count);
}

static bool
aapcs_vfp_is_call_candidate (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
			     const_tree type)
{
  if (!use_vfp_abi (pcum->pcs_variant, false))
    return false;

  return aapcs_vfp_is_call_or_return_candidate (pcum->pcs_variant, mode, type,
						&pcum->aapcs_vfp_rmode,
						&pcum->aapcs_vfp_rcount);
}

static bool
aapcs_vfp_allocate (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
		    const_tree type  ATTRIBUTE_UNUSED)
{
  int shift = GET_MODE_SIZE (pcum->aapcs_vfp_rmode) / GET_MODE_SIZE (SFmode);
  unsigned mask = (1 << (shift * pcum->aapcs_vfp_rcount)) - 1;
  int regno;

  for (regno = 0; regno < NUM_VFP_ARG_REGS; regno += shift)
    if (((pcum->aapcs_vfp_regs_free >> regno) & mask) == mask)
      {
	pcum->aapcs_vfp_reg_alloc = mask << regno;
	if (mode == BLKmode
	    || (mode == TImode && ! TARGET_NEON)
	    || ! arm_hard_regno_mode_ok (FIRST_VFP_REGNUM + regno, mode))
	  {
	    int i;
	    int rcount = pcum->aapcs_vfp_rcount;
	    int rshift = shift;
	    enum machine_mode rmode = pcum->aapcs_vfp_rmode;
	    rtx par;
	    if (!TARGET_NEON)
	      {
		/* Avoid using unsupported vector modes.  */
		if (rmode == V2SImode)
		  rmode = DImode;
		else if (rmode == V4SImode)
		  {
		    rmode = DImode;
		    rcount *= 2;
		    rshift /= 2;
		  }
	      }
	    par = gen_rtx_PARALLEL (mode, rtvec_alloc (rcount));
	    for (i = 0; i < rcount; i++)
	      {
		rtx tmp = gen_rtx_REG (rmode,
				       FIRST_VFP_REGNUM + regno + i * rshift);
		tmp = gen_rtx_EXPR_LIST
		  (VOIDmode, tmp,
		   GEN_INT (i * GET_MODE_SIZE (rmode)));
		XVECEXP (par, 0, i) = tmp;
	      }

	    pcum->aapcs_reg = par;
	  }
	else
	  pcum->aapcs_reg = gen_rtx_REG (mode, FIRST_VFP_REGNUM + regno);
	return true;
      }
  return false;
}

static rtx
aapcs_vfp_allocate_return_reg (enum arm_pcs pcs_variant ATTRIBUTE_UNUSED,
			       enum machine_mode mode,
			       const_tree type ATTRIBUTE_UNUSED)
{
  if (!use_vfp_abi (pcs_variant, false))
    return NULL;

  if (mode == BLKmode || (mode == TImode && !TARGET_NEON))
    {
      int count;
      enum machine_mode ag_mode;
      int i;
      rtx par;
      int shift;

      aapcs_vfp_is_call_or_return_candidate (pcs_variant, mode, type,
					     &ag_mode, &count);

      if (!TARGET_NEON)
	{
	  if (ag_mode == V2SImode)
	    ag_mode = DImode;
	  else if (ag_mode == V4SImode)
	    {
	      ag_mode = DImode;
	      count *= 2;
	    }
	}
      shift = GET_MODE_SIZE(ag_mode) / GET_MODE_SIZE(SFmode);
      par = gen_rtx_PARALLEL (mode, rtvec_alloc (count));
      for (i = 0; i < count; i++)
	{
	  rtx tmp = gen_rtx_REG (ag_mode, FIRST_VFP_REGNUM + i * shift);
	  tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp,
				   GEN_INT (i * GET_MODE_SIZE (ag_mode)));
	  XVECEXP (par, 0, i) = tmp;
	}

      return par;
    }

  return gen_rtx_REG (mode, FIRST_VFP_REGNUM);
}

static void
aapcs_vfp_advance (CUMULATIVE_ARGS *pcum  ATTRIBUTE_UNUSED,
		   enum machine_mode mode  ATTRIBUTE_UNUSED,
		   const_tree type  ATTRIBUTE_UNUSED)
{
  pcum->aapcs_vfp_regs_free &= ~pcum->aapcs_vfp_reg_alloc;
  pcum->aapcs_vfp_reg_alloc = 0;
  return;
}

#define AAPCS_CP(X)				\
  {						\
    aapcs_ ## X ## _cum_init,			\
    aapcs_ ## X ## _is_call_candidate,		\
    aapcs_ ## X ## _allocate,			\
    aapcs_ ## X ## _is_return_candidate,	\
    aapcs_ ## X ## _allocate_return_reg,	\
    aapcs_ ## X ## _advance			\
  }

/* Table of co-processors that can be used to pass arguments in
   registers.  Idealy no arugment should be a candidate for more than
   one co-processor table entry, but the table is processed in order
   and stops after the first match.  If that entry then fails to put
   the argument into a co-processor register, the argument will go on
   the stack.  */
static struct
{
  /* Initialize co-processor related state in CUMULATIVE_ARGS structure.  */
  void (*cum_init) (CUMULATIVE_ARGS *, const_tree, rtx, const_tree);

  /* Return true if an argument of mode MODE (or type TYPE if MODE is
     BLKmode) is a candidate for this co-processor's registers; this
     function should ignore any position-dependent state in
     CUMULATIVE_ARGS and only use call-type dependent information.  */
  bool (*is_call_candidate) (CUMULATIVE_ARGS *, enum machine_mode, const_tree);

  /* Return true if the argument does get a co-processor register; it
     should set aapcs_reg to an RTX of the register allocated as is
     required for a return from FUNCTION_ARG.  */
  bool (*allocate) (CUMULATIVE_ARGS *, enum machine_mode, const_tree);

  /* Return true if a result of mode MODE (or type TYPE if MODE is
     BLKmode) is can be returned in this co-processor's registers.  */
  bool (*is_return_candidate) (enum arm_pcs, enum machine_mode, const_tree);

  /* Allocate and return an RTX element to hold the return type of a
     call, this routine must not fail and will only be called if
     is_return_candidate returned true with the same parameters.  */
  rtx (*allocate_return_reg) (enum arm_pcs, enum machine_mode, const_tree);

  /* Finish processing this argument and prepare to start processing
     the next one.  */
  void (*advance) (CUMULATIVE_ARGS *, enum machine_mode, const_tree);
} aapcs_cp_arg_layout[ARM_NUM_COPROC_SLOTS] =
  {
    AAPCS_CP(vfp)
  };

#undef AAPCS_CP

static int
aapcs_select_call_coproc (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
			  const_tree type)
{
  int i;

  for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
    if (aapcs_cp_arg_layout[i].is_call_candidate (pcum, mode, type))
      return i;

  return -1;
}

static int
aapcs_select_return_coproc (const_tree type, const_tree fntype)
{
  /* We aren't passed a decl, so we can't check that a call is local.
     However, it isn't clear that that would be a win anyway, since it
     might limit some tail-calling opportunities.  */
  enum arm_pcs pcs_variant;

  if (fntype)
    {
      const_tree fndecl = NULL_TREE;

      if (TREE_CODE (fntype) == FUNCTION_DECL)
	{
	  fndecl = fntype;
	  fntype = TREE_TYPE (fntype);
	}

      pcs_variant = arm_get_pcs_model (fntype, fndecl);
    }
  else
    pcs_variant = arm_pcs_default;

  if (pcs_variant != ARM_PCS_AAPCS)
    {
      int i;

      for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
	if (aapcs_cp_arg_layout[i].is_return_candidate (pcs_variant,
							TYPE_MODE (type),
							type))
	  return i;
    }
  return -1;
}

static rtx
aapcs_allocate_return_reg (enum machine_mode mode, const_tree type,
			   const_tree fntype)
{
  /* We aren't passed a decl, so we can't check that a call is local.
     However, it isn't clear that that would be a win anyway, since it
     might limit some tail-calling opportunities.  */
  enum arm_pcs pcs_variant;
  int unsignedp ATTRIBUTE_UNUSED;

  if (fntype)
    {
      const_tree fndecl = NULL_TREE;

      if (TREE_CODE (fntype) == FUNCTION_DECL)
	{
	  fndecl = fntype;
	  fntype = TREE_TYPE (fntype);
	}

      pcs_variant = arm_get_pcs_model (fntype, fndecl);
    }
  else
    pcs_variant = arm_pcs_default;

  /* Promote integer types.  */
  if (type && INTEGRAL_TYPE_P (type))
    mode = arm_promote_function_mode (type, mode, &unsignedp, fntype, 1);

  if (pcs_variant != ARM_PCS_AAPCS)
    {
      int i;

      for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
	if (aapcs_cp_arg_layout[i].is_return_candidate (pcs_variant, mode,
							type))
	  return aapcs_cp_arg_layout[i].allocate_return_reg (pcs_variant,
							     mode, type);
    }

  /* Promotes small structs returned in a register to full-word size
     for big-endian AAPCS.  */
  if (type && arm_return_in_msb (type))
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      if (size % UNITS_PER_WORD != 0)
	{
	  size += UNITS_PER_WORD - size % UNITS_PER_WORD;
	  mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
	}
    }

  return gen_rtx_REG (mode, R0_REGNUM);
}

static rtx
aapcs_libcall_value (enum machine_mode mode)
{
  if (BYTES_BIG_ENDIAN && ALL_FIXED_POINT_MODE_P (mode)
      && GET_MODE_SIZE (mode) <= 4)
    mode = SImode;

  return aapcs_allocate_return_reg (mode, NULL_TREE, NULL_TREE);
}

/* Lay out a function argument using the AAPCS rules.  The rule
   numbers referred to here are those in the AAPCS.  */
static void
aapcs_layout_arg (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
		  const_tree type, bool named)
{
  int nregs, nregs2;
  int ncrn;

  /* We only need to do this once per argument.  */
  if (pcum->aapcs_arg_processed)
    return;

  pcum->aapcs_arg_processed = true;

  /* Special case: if named is false then we are handling an incoming
     anonymous argument which is on the stack.  */
  if (!named)
    return;

  /* Is this a potential co-processor register candidate?  */
  if (pcum->pcs_variant != ARM_PCS_AAPCS)
    {
      int slot = aapcs_select_call_coproc (pcum, mode, type);
      pcum->aapcs_cprc_slot = slot;

      /* We don't have to apply any of the rules from part B of the
	 preparation phase, these are handled elsewhere in the
	 compiler.  */

      if (slot >= 0)
	{
	  /* A Co-processor register candidate goes either in its own
	     class of registers or on the stack.  */
	  if (!pcum->aapcs_cprc_failed[slot])
	    {
	      /* C1.cp - Try to allocate the argument to co-processor
		 registers.  */
	      if (aapcs_cp_arg_layout[slot].allocate (pcum, mode, type))
		return;

	      /* C2.cp - Put the argument on the stack and note that we
		 can't assign any more candidates in this slot.  We also
		 need to note that we have allocated stack space, so that
		 we won't later try to split a non-cprc candidate between
		 core registers and the stack.  */
	      pcum->aapcs_cprc_failed[slot] = true;
	      pcum->can_split = false;
	    }

	  /* We didn't get a register, so this argument goes on the
	     stack.  */
	  gcc_assert (pcum->can_split == false);
	  return;
	}
    }

  /* C3 - For double-word aligned arguments, round the NCRN up to the
     next even number.  */
  ncrn = pcum->aapcs_ncrn;
  if ((ncrn & 1) && arm_needs_doubleword_align (mode, type))
    ncrn++;

  nregs = ARM_NUM_REGS2(mode, type);

  /* Sigh, this test should really assert that nregs > 0, but a GCC
     extension allows empty structs and then gives them empty size; it
     then allows such a structure to be passed by value.  For some of
     the code below we have to pretend that such an argument has
     non-zero size so that we 'locate' it correctly either in
     registers or on the stack.  */
  gcc_assert (nregs >= 0);

  nregs2 = nregs ? nregs : 1;

  /* C4 - Argument fits entirely in core registers.  */
  if (ncrn + nregs2 <= NUM_ARG_REGS)
    {
      pcum->aapcs_reg = gen_rtx_REG (mode, ncrn);
      pcum->aapcs_next_ncrn = ncrn + nregs;
      return;
    }

  /* C5 - Some core registers left and there are no arguments already
     on the stack: split this argument between the remaining core
     registers and the stack.  */
  if (ncrn < NUM_ARG_REGS && pcum->can_split)
    {
      pcum->aapcs_reg = gen_rtx_REG (mode, ncrn);
      pcum->aapcs_next_ncrn = NUM_ARG_REGS;
      pcum->aapcs_partial = (NUM_ARG_REGS - ncrn) * UNITS_PER_WORD;
      return;
    }

  /* C6 - NCRN is set to 4.  */
  pcum->aapcs_next_ncrn = NUM_ARG_REGS;

  /* C7,C8 - arugment goes on the stack.  We have nothing to do here.  */
  return;
}

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is NULL.  */
void
arm_init_cumulative_args (CUMULATIVE_ARGS *pcum, tree fntype,
			  rtx libname,
			  tree fndecl ATTRIBUTE_UNUSED)
{
  /* Long call handling.  */
  if (fntype)
    pcum->pcs_variant = arm_get_pcs_model (fntype, fndecl);
  else
    pcum->pcs_variant = arm_pcs_default;

  if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
    {
      if (arm_libcall_uses_aapcs_base (libname))
	pcum->pcs_variant = ARM_PCS_AAPCS;

      pcum->aapcs_ncrn = pcum->aapcs_next_ncrn = 0;
      pcum->aapcs_reg = NULL_RTX;
      pcum->aapcs_partial = 0;
      pcum->aapcs_arg_processed = false;
      pcum->aapcs_cprc_slot = -1;
      pcum->can_split = true;

      if (pcum->pcs_variant != ARM_PCS_AAPCS)
	{
	  int i;

	  for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
	    {
	      pcum->aapcs_cprc_failed[i] = false;
	      aapcs_cp_arg_layout[i].cum_init (pcum, fntype, libname, fndecl);
	    }
	}
      return;
    }

  /* Legacy ABIs */

  /* On the ARM, the offset starts at 0.  */
  pcum->nregs = 0;
  pcum->iwmmxt_nregs = 0;
  pcum->can_split = true;

  /* Varargs vectors are treated the same as long long.
     named_count avoids having to change the way arm handles 'named' */
  pcum->named_count = 0;
  pcum->nargs = 0;

  if (TARGET_REALLY_IWMMXT && fntype)
    {
      tree fn_arg;

      for (fn_arg = TYPE_ARG_TYPES (fntype);
	   fn_arg;
	   fn_arg = TREE_CHAIN (fn_arg))
	pcum->named_count += 1;

      if (! pcum->named_count)
	pcum->named_count = INT_MAX;
    }
}

/* Return true if we use LRA instead of reload pass.  */
static bool
arm_lra_p (void)
{
  return arm_lra_flag;
}

/* Return true if mode/type need doubleword alignment.  */
static bool
arm_needs_doubleword_align (enum machine_mode mode, const_tree type)
{
  return (GET_MODE_ALIGNMENT (mode) > PARM_BOUNDARY
	  || (type && TYPE_ALIGN (type) > PARM_BOUNDARY));
}


/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).

   On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
   other arguments are passed on the stack.  If (NAMED == 0) (which happens
   only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is
   defined), say it is passed in the stack (function_prologue will
   indeed make it pass in the stack if necessary).  */

static rtx
arm_function_arg (cumulative_args_t pcum_v, enum machine_mode mode,
		  const_tree type, bool named)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  int nregs;

  /* Handle the special case quickly.  Pick an arbitrary value for op2 of
     a call insn (op3 of a call_value insn).  */
  if (mode == VOIDmode)
    return const0_rtx;

  if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
    {
      aapcs_layout_arg (pcum, mode, type, named);
      return pcum->aapcs_reg;
    }

  /* Varargs vectors are treated the same as long long.
     named_count avoids having to change the way arm handles 'named' */
  if (TARGET_IWMMXT_ABI
      && arm_vector_mode_supported_p (mode)
      && pcum->named_count > pcum->nargs + 1)
    {
      if (pcum->iwmmxt_nregs <= 9)
	return gen_rtx_REG (mode, pcum->iwmmxt_nregs + FIRST_IWMMXT_REGNUM);
      else
	{
	  pcum->can_split = false;
	  return NULL_RTX;
	}
    }

  /* Put doubleword aligned quantities in even register pairs.  */
  if (pcum->nregs & 1
      && ARM_DOUBLEWORD_ALIGN
      && arm_needs_doubleword_align (mode, type))
    pcum->nregs++;

  /* Only allow splitting an arg between regs and memory if all preceding
     args were allocated to regs.  For args passed by reference we only count
     the reference pointer.  */
  if (pcum->can_split)
    nregs = 1;
  else
    nregs = ARM_NUM_REGS2 (mode, type);

  if (!named || pcum->nregs + nregs > NUM_ARG_REGS)
    return NULL_RTX;

  return gen_rtx_REG (mode, pcum->nregs);
}

static unsigned int
arm_function_arg_boundary (enum machine_mode mode, const_tree type)
{
  return (ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (mode, type)
	  ? DOUBLEWORD_ALIGNMENT
	  : PARM_BOUNDARY);
}

static int
arm_arg_partial_bytes (cumulative_args_t pcum_v, enum machine_mode mode,
		       tree type, bool named)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  int nregs = pcum->nregs;

  if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
    {
      aapcs_layout_arg (pcum, mode, type, named);
      return pcum->aapcs_partial;
    }

  if (TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (mode))
    return 0;

  if (NUM_ARG_REGS > nregs
      && (NUM_ARG_REGS < nregs + ARM_NUM_REGS2 (mode, type))
      && pcum->can_split)
    return (NUM_ARG_REGS - nregs) * UNITS_PER_WORD;

  return 0;
}

/* Update the data in PCUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

static void
arm_function_arg_advance (cumulative_args_t pcum_v, enum machine_mode mode,
			  const_tree type, bool named)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);

  if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
    {
      aapcs_layout_arg (pcum, mode, type, named);

      if (pcum->aapcs_cprc_slot >= 0)
	{
	  aapcs_cp_arg_layout[pcum->aapcs_cprc_slot].advance (pcum, mode,
							      type);
	  pcum->aapcs_cprc_slot = -1;
	}

      /* Generic stuff.  */
      pcum->aapcs_arg_processed = false;
      pcum->aapcs_ncrn = pcum->aapcs_next_ncrn;
      pcum->aapcs_reg = NULL_RTX;
      pcum->aapcs_partial = 0;
    }
  else
    {
      pcum->nargs += 1;
      if (arm_vector_mode_supported_p (mode)
	  && pcum->named_count > pcum->nargs
	  && TARGET_IWMMXT_ABI)
	pcum->iwmmxt_nregs += 1;
      else
	pcum->nregs += ARM_NUM_REGS2 (mode, type);
    }
}

/* Variable sized types are passed by reference.  This is a GCC
   extension to the ARM ABI.  */

static bool
arm_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
		       enum machine_mode mode ATTRIBUTE_UNUSED,
		       const_tree type, bool named ATTRIBUTE_UNUSED)
{
  return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
}

/* Encode the current state of the #pragma [no_]long_calls.  */
typedef enum
{
  OFF,		/* No #pragma [no_]long_calls is in effect.  */
  LONG,		/* #pragma long_calls is in effect.  */
  SHORT		/* #pragma no_long_calls is in effect.  */
} arm_pragma_enum;

static arm_pragma_enum arm_pragma_long_calls = OFF;

void
arm_pr_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
{
  arm_pragma_long_calls = LONG;
}

void
arm_pr_no_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
{
  arm_pragma_long_calls = SHORT;
}

void
arm_pr_long_calls_off (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
{
  arm_pragma_long_calls = OFF;
}

/* Handle an attribute requiring a FUNCTION_DECL;
   arguments as in struct attribute_spec.handler.  */
static tree
arm_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
			     int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle an "interrupt" or "isr" attribute;
   arguments as in struct attribute_spec.handler.  */
static tree
arm_handle_isr_attribute (tree *node, tree name, tree args, int flags,
			  bool *no_add_attrs)
{
  if (DECL_P (*node))
    {
      if (TREE_CODE (*node) != FUNCTION_DECL)
	{
	  warning (OPT_Wattributes, "%qE attribute only applies to functions",
		   name);
	  *no_add_attrs = true;
	}
      /* FIXME: the argument if any is checked for type attributes;
	 should it be checked for decl ones?  */
    }
  else
    {
      if (TREE_CODE (*node) == FUNCTION_TYPE
	  || TREE_CODE (*node) == METHOD_TYPE)
	{
	  if (arm_isr_value (args) == ARM_FT_UNKNOWN)
	    {
	      warning (OPT_Wattributes, "%qE attribute ignored",
		       name);
	      *no_add_attrs = true;
	    }
	}
      else if (TREE_CODE (*node) == POINTER_TYPE
	       && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
		   || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
	       && arm_isr_value (args) != ARM_FT_UNKNOWN)
	{
	  *node = build_variant_type_copy (*node);
	  TREE_TYPE (*node) = build_type_attribute_variant
	    (TREE_TYPE (*node),
	     tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
	  *no_add_attrs = true;
	}
      else
	{
	  /* Possibly pass this attribute on from the type to a decl.  */
	  if (flags & ((int) ATTR_FLAG_DECL_NEXT
		       | (int) ATTR_FLAG_FUNCTION_NEXT
		       | (int) ATTR_FLAG_ARRAY_NEXT))
	    {
	      *no_add_attrs = true;
	      return tree_cons (name, args, NULL_TREE);
	    }
	  else
	    {
	      warning (OPT_Wattributes, "%qE attribute ignored",
		       name);
	    }
	}
    }

  return NULL_TREE;
}

/* Handle a "pcs" attribute; arguments as in struct
   attribute_spec.handler.  */
static tree
arm_handle_pcs_attribute (tree *node ATTRIBUTE_UNUSED, tree name, tree args,
			  int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
  if (arm_pcs_from_attribute (args) == ARM_PCS_UNKNOWN)
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
    }
  return NULL_TREE;
}

#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
/* Handle the "notshared" attribute.  This attribute is another way of
   requesting hidden visibility.  ARM's compiler supports
   "__declspec(notshared)"; we support the same thing via an
   attribute.  */

static tree
arm_handle_notshared_attribute (tree *node,
				tree name ATTRIBUTE_UNUSED,
				tree args ATTRIBUTE_UNUSED,
				int flags ATTRIBUTE_UNUSED,
				bool *no_add_attrs)
{
  tree decl = TYPE_NAME (*node);

  if (decl)
    {
      DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
      DECL_VISIBILITY_SPECIFIED (decl) = 1;
      *no_add_attrs = false;
    }
  return NULL_TREE;
}
#endif

/* Return 0 if the attributes for two types are incompatible, 1 if they
   are compatible, and 2 if they are nearly compatible (which causes a
   warning to be generated).  */
static int
arm_comp_type_attributes (const_tree type1, const_tree type2)
{
  int l1, l2, s1, s2;

  /* Check for mismatch of non-default calling convention.  */
  if (TREE_CODE (type1) != FUNCTION_TYPE)
    return 1;

  /* Check for mismatched call attributes.  */
  l1 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type1)) != NULL;
  l2 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type2)) != NULL;
  s1 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type1)) != NULL;
  s2 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type2)) != NULL;

  /* Only bother to check if an attribute is defined.  */
  if (l1 | l2 | s1 | s2)
    {
      /* If one type has an attribute, the other must have the same attribute.  */
      if ((l1 != l2) || (s1 != s2))
	return 0;

      /* Disallow mixed attributes.  */
      if ((l1 & s2) || (l2 & s1))
	return 0;
    }

  /* Check for mismatched ISR attribute.  */
  l1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
  if (! l1)
    l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
  l2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
  if (! l2)
    l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
  if (l1 != l2)
    return 0;

  return 1;
}

/*  Assigns default attributes to newly defined type.  This is used to
    set short_call/long_call attributes for function types of
    functions defined inside corresponding #pragma scopes.  */
static void
arm_set_default_type_attributes (tree type)
{
  /* Add __attribute__ ((long_call)) to all functions, when
     inside #pragma long_calls or __attribute__ ((short_call)),
     when inside #pragma no_long_calls.  */
  if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
    {
      tree type_attr_list, attr_name;
      type_attr_list = TYPE_ATTRIBUTES (type);

      if (arm_pragma_long_calls == LONG)
 	attr_name = get_identifier ("long_call");
      else if (arm_pragma_long_calls == SHORT)
 	attr_name = get_identifier ("short_call");
      else
 	return;

      type_attr_list = tree_cons (attr_name, NULL_TREE, type_attr_list);
      TYPE_ATTRIBUTES (type) = type_attr_list;
    }
}

/* Return true if DECL is known to be linked into section SECTION.  */

static bool
arm_function_in_section_p (tree decl, section *section)
{
  /* We can only be certain about functions defined in the same
     compilation unit.  */
  if (!TREE_STATIC (decl))
    return false;

  /* Make sure that SYMBOL always binds to the definition in this
     compilation unit.  */
  if (!targetm.binds_local_p (decl))
    return false;

  /* If DECL_SECTION_NAME is set, assume it is trustworthy.  */
  if (!DECL_SECTION_NAME (decl))
    {
      /* Make sure that we will not create a unique section for DECL.  */
      if (flag_function_sections || DECL_ONE_ONLY (decl))
	return false;
    }

  return function_section (decl) == section;
}

/* Return nonzero if a 32-bit "long_call" should be generated for
   a call from the current function to DECL.  We generate a long_call
   if the function:

        a.  has an __attribute__((long call))
     or b.  is within the scope of a #pragma long_calls
     or c.  the -mlong-calls command line switch has been specified

   However we do not generate a long call if the function:

        d.  has an __attribute__ ((short_call))
     or e.  is inside the scope of a #pragma no_long_calls
     or f.  is defined in the same section as the current function.  */

bool
arm_is_long_call_p (tree decl)
{
  tree attrs;

  if (!decl)
    return TARGET_LONG_CALLS;

  attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
  if (lookup_attribute ("short_call", attrs))
    return false;

  /* For "f", be conservative, and only cater for cases in which the
     whole of the current function is placed in the same section.  */
  if (!flag_reorder_blocks_and_partition
      && TREE_CODE (decl) == FUNCTION_DECL
      && arm_function_in_section_p (decl, current_function_section ()))
    return false;

  if (lookup_attribute ("long_call", attrs))
    return true;

  return TARGET_LONG_CALLS;
}

/* Return nonzero if it is ok to make a tail-call to DECL.  */
static bool
arm_function_ok_for_sibcall (tree decl, tree exp)
{
  unsigned long func_type;

  if (cfun->machine->sibcall_blocked)
    return false;

  /* Never tailcall something if we are generating code for Thumb-1.  */
  if (TARGET_THUMB1)
    return false;

  /* The PIC register is live on entry to VxWorks PLT entries, so we
     must make the call before restoring the PIC register.  */
  if (TARGET_VXWORKS_RTP && flag_pic && !targetm.binds_local_p (decl))
    return false;

  /* Cannot tail-call to long calls, since these are out of range of
     a branch instruction.  */
  if (decl && arm_is_long_call_p (decl))
    return false;

  /* If we are interworking and the function is not declared static
     then we can't tail-call it unless we know that it exists in this
     compilation unit (since it might be a Thumb routine).  */
  if (TARGET_INTERWORK && decl && TREE_PUBLIC (decl)
      && !TREE_ASM_WRITTEN (decl))
    return false;

  func_type = arm_current_func_type ();
  /* Never tailcall from an ISR routine - it needs a special exit sequence.  */
  if (IS_INTERRUPT (func_type))
    return false;

  if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
    {
      /* Check that the return value locations are the same.  For
	 example that we aren't returning a value from the sibling in
	 a VFP register but then need to transfer it to a core
	 register.  */
      rtx a, b;

      a = arm_function_value (TREE_TYPE (exp), decl, false);
      b = arm_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)),
			      cfun->decl, false);
      if (!rtx_equal_p (a, b))
	return false;
    }

  /* Never tailcall if function may be called with a misaligned SP.  */
  if (IS_STACKALIGN (func_type))
    return false;

  /* The AAPCS says that, on bare-metal, calls to unresolved weak
     references should become a NOP.  Don't convert such calls into
     sibling calls.  */
  if (TARGET_AAPCS_BASED
      && arm_abi == ARM_ABI_AAPCS
      && decl
      && DECL_WEAK (decl))
    return false;

  /* Everything else is ok.  */
  return true;
}


/* Addressing mode support functions.  */

/* Return nonzero if X is a legitimate immediate operand when compiling
   for PIC.  We know that X satisfies CONSTANT_P and flag_pic is true.  */
int
legitimate_pic_operand_p (rtx x)
{
  if (GET_CODE (x) == SYMBOL_REF
      || (GET_CODE (x) == CONST
	  && GET_CODE (XEXP (x, 0)) == PLUS
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF))
    return 0;

  return 1;
}

/* Record that the current function needs a PIC register.  Initialize
   cfun->machine->pic_reg if we have not already done so.  */

static void
require_pic_register (void)
{
  /* A lot of the logic here is made obscure by the fact that this
     routine gets called as part of the rtx cost estimation process.
     We don't want those calls to affect any assumptions about the real
     function; and further, we can't call entry_of_function() until we
     start the real expansion process.  */
  if (!crtl->uses_pic_offset_table)
    {
      gcc_assert (can_create_pseudo_p ());
      if (arm_pic_register != INVALID_REGNUM
	  && !(TARGET_THUMB1 && arm_pic_register > LAST_LO_REGNUM))
	{
	  if (!cfun->machine->pic_reg)
	    cfun->machine->pic_reg = gen_rtx_REG (Pmode, arm_pic_register);

	  /* Play games to avoid marking the function as needing pic
	     if we are being called as part of the cost-estimation
	     process.  */
	  if (current_ir_type () != IR_GIMPLE || currently_expanding_to_rtl)
	    crtl->uses_pic_offset_table = 1;
	}
      else
	{
	  rtx seq, insn;

	  if (!cfun->machine->pic_reg)
	    cfun->machine->pic_reg = gen_reg_rtx (Pmode);

	  /* Play games to avoid marking the function as needing pic
	     if we are being called as part of the cost-estimation
	     process.  */
	  if (current_ir_type () != IR_GIMPLE || currently_expanding_to_rtl)
	    {
	      crtl->uses_pic_offset_table = 1;
	      start_sequence ();

	      if (TARGET_THUMB1 && arm_pic_register != INVALID_REGNUM
		  && arm_pic_register > LAST_LO_REGNUM)
		emit_move_insn (cfun->machine->pic_reg,
				gen_rtx_REG (Pmode, arm_pic_register));
	      else
		arm_load_pic_register (0UL);

	      seq = get_insns ();
	      end_sequence ();

	      for (insn = seq; insn; insn = NEXT_INSN (insn))
		if (INSN_P (insn))
		  INSN_LOCATION (insn) = prologue_location;

	      /* We can be called during expansion of PHI nodes, where
	         we can't yet emit instructions directly in the final
		 insn stream.  Queue the insns on the entry edge, they will
		 be committed after everything else is expanded.  */
	      insert_insn_on_edge (seq,
				   single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
	    }
	}
    }
}

rtx
legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
{
  if (GET_CODE (orig) == SYMBOL_REF
      || GET_CODE (orig) == LABEL_REF)
    {
      rtx insn;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      /* VxWorks does not impose a fixed gap between segments; the run-time
	 gap can be different from the object-file gap.  We therefore can't
	 use GOTOFF unless we are absolutely sure that the symbol is in the
	 same segment as the GOT.  Unfortunately, the flexibility of linker
	 scripts means that we can't be sure of that in general, so assume
	 that GOTOFF is never valid on VxWorks.  */
      if ((GET_CODE (orig) == LABEL_REF
	   || (GET_CODE (orig) == SYMBOL_REF &&
	       SYMBOL_REF_LOCAL_P (orig)))
	  && NEED_GOT_RELOC
	  && arm_pic_data_is_text_relative)
	insn = arm_pic_static_addr (orig, reg);
      else
	{
	  rtx pat;
	  rtx mem;

	  /* If this function doesn't have a pic register, create one now.  */
	  require_pic_register ();

	  pat = gen_calculate_pic_address (reg, cfun->machine->pic_reg, orig);

	  /* Make the MEM as close to a constant as possible.  */
	  mem = SET_SRC (pat);
	  gcc_assert (MEM_P (mem) && !MEM_VOLATILE_P (mem));
	  MEM_READONLY_P (mem) = 1;
	  MEM_NOTRAP_P (mem) = 1;

	  insn = emit_insn (pat);
	}

      /* Put a REG_EQUAL note on this insn, so that it can be optimized
	 by loop.  */
      set_unique_reg_note (insn, REG_EQUAL, orig);

      return reg;
    }
  else if (GET_CODE (orig) == CONST)
    {
      rtx base, offset;

      if (GET_CODE (XEXP (orig, 0)) == PLUS
	  && XEXP (XEXP (orig, 0), 0) == cfun->machine->pic_reg)
	return orig;

      /* Handle the case where we have: const (UNSPEC_TLS).  */
      if (GET_CODE (XEXP (orig, 0)) == UNSPEC
	  && XINT (XEXP (orig, 0), 1) == UNSPEC_TLS)
	return orig;

      /* Handle the case where we have:
         const (plus (UNSPEC_TLS) (ADDEND)).  The ADDEND must be a
         CONST_INT.  */
      if (GET_CODE (XEXP (orig, 0)) == PLUS
          && GET_CODE (XEXP (XEXP (orig, 0), 0)) == UNSPEC
          && XINT (XEXP (XEXP (orig, 0), 0), 1) == UNSPEC_TLS)
        {
	  gcc_assert (CONST_INT_P (XEXP (XEXP (orig, 0), 1)));
	  return orig;
	}

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);

      base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
      offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
				       base == reg ? 0 : reg);

      if (CONST_INT_P (offset))
	{
	  /* The base register doesn't really matter, we only want to
	     test the index for the appropriate mode.  */
	  if (!arm_legitimate_index_p (mode, offset, SET, 0))
	    {
	      gcc_assert (can_create_pseudo_p ());
	      offset = force_reg (Pmode, offset);
	    }

	  if (CONST_INT_P (offset))
	    return plus_constant (Pmode, base, INTVAL (offset));
	}

      if (GET_MODE_SIZE (mode) > 4
	  && (GET_MODE_CLASS (mode) == MODE_INT
	      || TARGET_SOFT_FLOAT))
	{
	  emit_insn (gen_addsi3 (reg, base, offset));
	  return reg;
	}

      return gen_rtx_PLUS (Pmode, base, offset);
    }

  return orig;
}


/* Find a spare register to use during the prolog of a function.  */

static int
thumb_find_work_register (unsigned long pushed_regs_mask)
{
  int reg;

  /* Check the argument registers first as these are call-used.  The
     register allocation order means that sometimes r3 might be used
     but earlier argument registers might not, so check them all.  */
  for (reg = LAST_ARG_REGNUM; reg >= 0; reg --)
    if (!df_regs_ever_live_p (reg))
      return reg;

  /* Before going on to check the call-saved registers we can try a couple
     more ways of deducing that r3 is available.  The first is when we are
     pushing anonymous arguments onto the stack and we have less than 4
     registers worth of fixed arguments(*).  In this case r3 will be part of
     the variable argument list and so we can be sure that it will be
     pushed right at the start of the function.  Hence it will be available
     for the rest of the prologue.
     (*): ie crtl->args.pretend_args_size is greater than 0.  */
  if (cfun->machine->uses_anonymous_args
      && crtl->args.pretend_args_size > 0)
    return LAST_ARG_REGNUM;

  /* The other case is when we have fixed arguments but less than 4 registers
     worth.  In this case r3 might be used in the body of the function, but
     it is not being used to convey an argument into the function.  In theory
     we could just check crtl->args.size to see how many bytes are
     being passed in argument registers, but it seems that it is unreliable.
     Sometimes it will have the value 0 when in fact arguments are being
     passed.  (See testcase execute/20021111-1.c for an example).  So we also
     check the args_info.nregs field as well.  The problem with this field is
     that it makes no allowances for arguments that are passed to the
     function but which are not used.  Hence we could miss an opportunity
     when a function has an unused argument in r3.  But it is better to be
     safe than to be sorry.  */
  if (! cfun->machine->uses_anonymous_args
      && crtl->args.size >= 0
      && crtl->args.size <= (LAST_ARG_REGNUM * UNITS_PER_WORD)
      && (TARGET_AAPCS_BASED
	  ? crtl->args.info.aapcs_ncrn < 4
	  : crtl->args.info.nregs < 4))
    return LAST_ARG_REGNUM;

  /* Otherwise look for a call-saved register that is going to be pushed.  */
  for (reg = LAST_LO_REGNUM; reg > LAST_ARG_REGNUM; reg --)
    if (pushed_regs_mask & (1 << reg))
      return reg;

  if (TARGET_THUMB2)
    {
      /* Thumb-2 can use high regs.  */
      for (reg = FIRST_HI_REGNUM; reg < 15; reg ++)
	if (pushed_regs_mask & (1 << reg))
	  return reg;
    }
  /* Something went wrong - thumb_compute_save_reg_mask()
     should have arranged for a suitable register to be pushed.  */
  gcc_unreachable ();
}

static GTY(()) int pic_labelno;

/* Generate code to load the PIC register.  In thumb mode SCRATCH is a
   low register.  */

void
arm_load_pic_register (unsigned long saved_regs ATTRIBUTE_UNUSED)
{
  rtx l1, labelno, pic_tmp, pic_rtx, pic_reg;

  if (crtl->uses_pic_offset_table == 0 || TARGET_SINGLE_PIC_BASE)
    return;

  gcc_assert (flag_pic);

  pic_reg = cfun->machine->pic_reg;
  if (TARGET_VXWORKS_RTP)
    {
      pic_rtx = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE);
      pic_rtx = gen_rtx_CONST (Pmode, pic_rtx);
      emit_insn (gen_pic_load_addr_32bit (pic_reg, pic_rtx));

      emit_insn (gen_rtx_SET (Pmode, pic_reg, gen_rtx_MEM (Pmode, pic_reg)));

      pic_tmp = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX);
      emit_insn (gen_pic_offset_arm (pic_reg, pic_reg, pic_tmp));
    }
  else
    {
      /* We use an UNSPEC rather than a LABEL_REF because this label
	 never appears in the code stream.  */

      labelno = GEN_INT (pic_labelno++);
      l1 = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
      l1 = gen_rtx_CONST (VOIDmode, l1);

      /* On the ARM the PC register contains 'dot + 8' at the time of the
	 addition, on the Thumb it is 'dot + 4'.  */
      pic_rtx = plus_constant (Pmode, l1, TARGET_ARM ? 8 : 4);
      pic_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, pic_rtx),
				UNSPEC_GOTSYM_OFF);
      pic_rtx = gen_rtx_CONST (Pmode, pic_rtx);

      if (TARGET_32BIT)
	{
	  emit_insn (gen_pic_load_addr_unified (pic_reg, pic_rtx, labelno));
	}
      else /* TARGET_THUMB1 */
	{
	  if (arm_pic_register != INVALID_REGNUM
	      && REGNO (pic_reg) > LAST_LO_REGNUM)
	    {
	      /* We will have pushed the pic register, so we should always be
		 able to find a work register.  */
	      pic_tmp = gen_rtx_REG (SImode,
				     thumb_find_work_register (saved_regs));
	      emit_insn (gen_pic_load_addr_thumb1 (pic_tmp, pic_rtx));
	      emit_insn (gen_movsi (pic_offset_table_rtx, pic_tmp));
	      emit_insn (gen_pic_add_dot_plus_four (pic_reg, pic_reg, labelno));
	    }
	  else if (arm_pic_register != INVALID_REGNUM
		   && arm_pic_register > LAST_LO_REGNUM
		   && REGNO (pic_reg) <= LAST_LO_REGNUM)
	    {
	      emit_insn (gen_pic_load_addr_unified (pic_reg, pic_rtx, labelno));
	      emit_move_insn (gen_rtx_REG (Pmode, arm_pic_register), pic_reg);
	      emit_use (gen_rtx_REG (Pmode, arm_pic_register));
	    }
	  else
	    emit_insn (gen_pic_load_addr_unified (pic_reg, pic_rtx, labelno));
	}
    }

  /* Need to emit this whether or not we obey regdecls,
     since setjmp/longjmp can cause life info to screw up.  */
  emit_use (pic_reg);
}

/* Generate code to load the address of a static var when flag_pic is set.  */
static rtx
arm_pic_static_addr (rtx orig, rtx reg)
{
  rtx l1, labelno, offset_rtx, insn;

  gcc_assert (flag_pic);

  /* We use an UNSPEC rather than a LABEL_REF because this label
     never appears in the code stream.  */
  labelno = GEN_INT (pic_labelno++);
  l1 = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
  l1 = gen_rtx_CONST (VOIDmode, l1);

  /* On the ARM the PC register contains 'dot + 8' at the time of the
     addition, on the Thumb it is 'dot + 4'.  */
  offset_rtx = plus_constant (Pmode, l1, TARGET_ARM ? 8 : 4);
  offset_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, orig, offset_rtx),
                               UNSPEC_SYMBOL_OFFSET);
  offset_rtx = gen_rtx_CONST (Pmode, offset_rtx);

  insn = emit_insn (gen_pic_load_addr_unified (reg, offset_rtx, labelno));
  return insn;
}

/* Return nonzero if X is valid as an ARM state addressing register.  */
static int
arm_address_register_rtx_p (rtx x, int strict_p)
{
  int regno;

  if (!REG_P (x))
    return 0;

  regno = REGNO (x);

  if (strict_p)
    return ARM_REGNO_OK_FOR_BASE_P (regno);

  return (regno <= LAST_ARM_REGNUM
	  || regno >= FIRST_PSEUDO_REGISTER
	  || regno == FRAME_POINTER_REGNUM
	  || regno == ARG_POINTER_REGNUM);
}

/* Return TRUE if this rtx is the difference of a symbol and a label,
   and will reduce to a PC-relative relocation in the object file.
   Expressions like this can be left alone when generating PIC, rather
   than forced through the GOT.  */
static int
pcrel_constant_p (rtx x)
{
  if (GET_CODE (x) == MINUS)
    return symbol_mentioned_p (XEXP (x, 0)) && label_mentioned_p (XEXP (x, 1));

  return FALSE;
}

/* Return true if X will surely end up in an index register after next
   splitting pass.  */
static bool
will_be_in_index_register (const_rtx x)
{
  /* arm.md: calculate_pic_address will split this into a register.  */
  return GET_CODE (x) == UNSPEC && (XINT (x, 1) == UNSPEC_PIC_SYM);
}

/* Return nonzero if X is a valid ARM state address operand.  */
int
arm_legitimate_address_outer_p (enum machine_mode mode, rtx x, RTX_CODE outer,
			        int strict_p)
{
  bool use_ldrd;
  enum rtx_code code = GET_CODE (x);

  if (arm_address_register_rtx_p (x, strict_p))
    return 1;

  use_ldrd = (TARGET_LDRD
	      && (mode == DImode
		  || (mode == DFmode && (TARGET_SOFT_FLOAT || TARGET_VFP))));

  if (code == POST_INC || code == PRE_DEC
      || ((code == PRE_INC || code == POST_DEC)
	  && (use_ldrd || GET_MODE_SIZE (mode) <= 4)))
    return arm_address_register_rtx_p (XEXP (x, 0), strict_p);

  else if ((code == POST_MODIFY || code == PRE_MODIFY)
	   && arm_address_register_rtx_p (XEXP (x, 0), strict_p)
	   && GET_CODE (XEXP (x, 1)) == PLUS
	   && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
    {
      rtx addend = XEXP (XEXP (x, 1), 1);

      /* Don't allow ldrd post increment by register because it's hard
	 to fixup invalid register choices.  */
      if (use_ldrd
	  && GET_CODE (x) == POST_MODIFY
	  && REG_P (addend))
	return 0;

      return ((use_ldrd || GET_MODE_SIZE (mode) <= 4)
	      && arm_legitimate_index_p (mode, addend, outer, strict_p));
    }

  /* After reload constants split into minipools will have addresses
     from a LABEL_REF.  */
  else if (reload_completed
	   && (code == LABEL_REF
	       || (code == CONST
		   && GET_CODE (XEXP (x, 0)) == PLUS
		   && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
		   && CONST_INT_P (XEXP (XEXP (x, 0), 1)))))
    return 1;

  else if (mode == TImode || (TARGET_NEON && VALID_NEON_STRUCT_MODE (mode)))
    return 0;

  else if (code == PLUS)
    {
      rtx xop0 = XEXP (x, 0);
      rtx xop1 = XEXP (x, 1);

      return ((arm_address_register_rtx_p (xop0, strict_p)
	       && ((CONST_INT_P (xop1)
		    && arm_legitimate_index_p (mode, xop1, outer, strict_p))
		   || (!strict_p && will_be_in_index_register (xop1))))
	      || (arm_address_register_rtx_p (xop1, strict_p)
		  && arm_legitimate_index_p (mode, xop0, outer, strict_p)));
    }

#if 0
  /* Reload currently can't handle MINUS, so disable this for now */
  else if (GET_CODE (x) == MINUS)
    {
      rtx xop0 = XEXP (x, 0);
      rtx xop1 = XEXP (x, 1);

      return (arm_address_register_rtx_p (xop0, strict_p)
	      && arm_legitimate_index_p (mode, xop1, outer, strict_p));
    }
#endif

  else if (GET_MODE_CLASS (mode) != MODE_FLOAT
	   && code == SYMBOL_REF
	   && CONSTANT_POOL_ADDRESS_P (x)
	   && ! (flag_pic
		 && symbol_mentioned_p (get_pool_constant (x))
		 && ! pcrel_constant_p (get_pool_constant (x))))
    return 1;

  return 0;
}

/* Return nonzero if X is a valid Thumb-2 address operand.  */
static int
thumb2_legitimate_address_p (enum machine_mode mode, rtx x, int strict_p)
{
  bool use_ldrd;
  enum rtx_code code = GET_CODE (x);

  if (arm_address_register_rtx_p (x, strict_p))
    return 1;

  use_ldrd = (TARGET_LDRD
	      && (mode == DImode
		  || (mode == DFmode && (TARGET_SOFT_FLOAT || TARGET_VFP))));

  if (code == POST_INC || code == PRE_DEC
      || ((code == PRE_INC || code == POST_DEC)
	  && (use_ldrd || GET_MODE_SIZE (mode) <= 4)))
    return arm_address_register_rtx_p (XEXP (x, 0), strict_p);

  else if ((code == POST_MODIFY || code == PRE_MODIFY)
	   && arm_address_register_rtx_p (XEXP (x, 0), strict_p)
	   && GET_CODE (XEXP (x, 1)) == PLUS
	   && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
    {
      /* Thumb-2 only has autoincrement by constant.  */
      rtx addend = XEXP (XEXP (x, 1), 1);
      HOST_WIDE_INT offset;

      if (!CONST_INT_P (addend))
	return 0;

      offset = INTVAL(addend);
      if (GET_MODE_SIZE (mode) <= 4)
	return (offset > -256 && offset < 256);

      return (use_ldrd && offset > -1024 && offset < 1024
	      && (offset & 3) == 0);
    }

  /* After reload constants split into minipools will have addresses
     from a LABEL_REF.  */
  else if (reload_completed
	   && (code == LABEL_REF
	       || (code == CONST
		   && GET_CODE (XEXP (x, 0)) == PLUS
		   && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
		   && CONST_INT_P (XEXP (XEXP (x, 0), 1)))))
    return 1;

  else if (mode == TImode || (TARGET_NEON && VALID_NEON_STRUCT_MODE (mode)))
    return 0;

  else if (code == PLUS)
    {
      rtx xop0 = XEXP (x, 0);
      rtx xop1 = XEXP (x, 1);

      return ((arm_address_register_rtx_p (xop0, strict_p)
	       && (thumb2_legitimate_index_p (mode, xop1, strict_p)
		   || (!strict_p && will_be_in_index_register (xop1))))
	      || (arm_address_register_rtx_p (xop1, strict_p)
		  && thumb2_legitimate_index_p (mode, xop0, strict_p)));
    }

  /* Normally we can assign constant values to target registers without
     the help of constant pool.  But there are cases we have to use constant
     pool like:
     1) assign a label to register.
     2) sign-extend a 8bit value to 32bit and then assign to register.

     Constant pool access in format:
     (set (reg r0) (mem (symbol_ref (".LC0"))))
     will cause the use of literal pool (later in function arm_reorg).
     So here we mark such format as an invalid format, then the compiler
     will adjust it into:
     (set (reg r0) (symbol_ref (".LC0")))
     (set (reg r0) (mem (reg r0))).
     No extra register is required, and (mem (reg r0)) won't cause the use
     of literal pools.  */
  else if (arm_disable_literal_pool && code == SYMBOL_REF
	   && CONSTANT_POOL_ADDRESS_P (x))
    return 0;

  else if (GET_MODE_CLASS (mode) != MODE_FLOAT
	   && code == SYMBOL_REF
	   && CONSTANT_POOL_ADDRESS_P (x)
	   && ! (flag_pic
		 && symbol_mentioned_p (get_pool_constant (x))
		 && ! pcrel_constant_p (get_pool_constant (x))))
    return 1;

  return 0;
}

/* Return nonzero if INDEX is valid for an address index operand in
   ARM state.  */
static int
arm_legitimate_index_p (enum machine_mode mode, rtx index, RTX_CODE outer,
			int strict_p)
{
  HOST_WIDE_INT range;
  enum rtx_code code = GET_CODE (index);

  /* Standard coprocessor addressing modes.  */
  if (TARGET_HARD_FLOAT
      && TARGET_VFP
      && (mode == SFmode || mode == DFmode))
    return (code == CONST_INT && INTVAL (index) < 1024
	    && INTVAL (index) > -1024
	    && (INTVAL (index) & 3) == 0);

  /* For quad modes, we restrict the constant offset to be slightly less
     than what the instruction format permits.  We do this because for
     quad mode moves, we will actually decompose them into two separate
     double-mode reads or writes.  INDEX must therefore be a valid
     (double-mode) offset and so should INDEX+8.  */
  if (TARGET_NEON && VALID_NEON_QREG_MODE (mode))
    return (code == CONST_INT
	    && INTVAL (index) < 1016
	    && INTVAL (index) > -1024
	    && (INTVAL (index) & 3) == 0);

  /* We have no such constraint on double mode offsets, so we permit the
     full range of the instruction format.  */
  if (TARGET_NEON && VALID_NEON_DREG_MODE (mode))
    return (code == CONST_INT
	    && INTVAL (index) < 1024
	    && INTVAL (index) > -1024
	    && (INTVAL (index) & 3) == 0);

  if (TARGET_REALLY_IWMMXT && VALID_IWMMXT_REG_MODE (mode))
    return (code == CONST_INT
	    && INTVAL (index) < 1024
	    && INTVAL (index) > -1024
	    && (INTVAL (index) & 3) == 0);

  if (arm_address_register_rtx_p (index, strict_p)
      && (GET_MODE_SIZE (mode) <= 4))
    return 1;

  if (mode == DImode || mode == DFmode)
    {
      if (code == CONST_INT)
	{
	  HOST_WIDE_INT val = INTVAL (index);

	  if (TARGET_LDRD)
	    return val > -256 && val < 256;
	  else
	    return val > -4096 && val < 4092;
	}

      return TARGET_LDRD && arm_address_register_rtx_p (index, strict_p);
    }

  if (GET_MODE_SIZE (mode) <= 4
      && ! (arm_arch4
	    && (mode == HImode
		|| mode == HFmode
		|| (mode == QImode && outer == SIGN_EXTEND))))
    {
      if (code == MULT)
	{
	  rtx xiop0 = XEXP (index, 0);
	  rtx xiop1 = XEXP (index, 1);

	  return ((arm_address_register_rtx_p (xiop0, strict_p)
		   && power_of_two_operand (xiop1, SImode))
		  || (arm_address_register_rtx_p (xiop1, strict_p)
		      && power_of_two_operand (xiop0, SImode)));
	}
      else if (code == LSHIFTRT || code == ASHIFTRT
	       || code == ASHIFT || code == ROTATERT)
	{
	  rtx op = XEXP (index, 1);

	  return (arm_address_register_rtx_p (XEXP (index, 0), strict_p)
		  && CONST_INT_P (op)
		  && INTVAL (op) > 0
		  && INTVAL (op) <= 31);
	}
    }

  /* For ARM v4 we may be doing a sign-extend operation during the
     load.  */
  if (arm_arch4)
    {
      if (mode == HImode
	  || mode == HFmode
	  || (outer == SIGN_EXTEND && mode == QImode))
	range = 256;
      else
	range = 4096;
    }
  else
    range = (mode == HImode || mode == HFmode) ? 4095 : 4096;

  return (code == CONST_INT
	  && INTVAL (index) < range
	  && INTVAL (index) > -range);
}

/* Return true if OP is a valid index scaling factor for Thumb-2 address
   index operand.  i.e. 1, 2, 4 or 8.  */
static bool
thumb2_index_mul_operand (rtx op)
{
  HOST_WIDE_INT val;

  if (!CONST_INT_P (op))
    return false;

  val = INTVAL(op);
  return (val == 1 || val == 2 || val == 4 || val == 8);
}

/* Return nonzero if INDEX is a valid Thumb-2 address index operand.  */
static int
thumb2_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p)
{
  enum rtx_code code = GET_CODE (index);

  /* ??? Combine arm and thumb2 coprocessor addressing modes.  */
  /* Standard coprocessor addressing modes.  */
  if (TARGET_HARD_FLOAT
      && TARGET_VFP
      && (mode == SFmode || mode == DFmode))
    return (code == CONST_INT && INTVAL (index) < 1024
	    /* Thumb-2 allows only > -256 index range for it's core register
	       load/stores. Since we allow SF/DF in core registers, we have
	       to use the intersection between -256~4096 (core) and -1024~1024
	       (coprocessor).  */
	    && INTVAL (index) > -256
	    && (INTVAL (index) & 3) == 0);

  if (TARGET_REALLY_IWMMXT && VALID_IWMMXT_REG_MODE (mode))
    {
      /* For DImode assume values will usually live in core regs
	 and only allow LDRD addressing modes.  */
      if (!TARGET_LDRD || mode != DImode)
	return (code == CONST_INT
		&& INTVAL (index) < 1024
		&& INTVAL (index) > -1024
		&& (INTVAL (index) & 3) == 0);
    }

  /* For quad modes, we restrict the constant offset to be slightly less
     than what the instruction format permits.  We do this because for
     quad mode moves, we will actually decompose them into two separate
     double-mode reads or writes.  INDEX must therefore be a valid
     (double-mode) offset and so should INDEX+8.  */
  if (TARGET_NEON && VALID_NEON_QREG_MODE (mode))
    return (code == CONST_INT
	    && INTVAL (index) < 1016
	    && INTVAL (index) > -1024
	    && (INTVAL (index) & 3) == 0);

  /* We have no such constraint on double mode offsets, so we permit the
     full range of the instruction format.  */
  if (TARGET_NEON && VALID_NEON_DREG_MODE (mode))
    return (code == CONST_INT
	    && INTVAL (index) < 1024
	    && INTVAL (index) > -1024
	    && (INTVAL (index) & 3) == 0);

  if (arm_address_register_rtx_p (index, strict_p)
      && (GET_MODE_SIZE (mode) <= 4))
    return 1;

  if (mode == DImode || mode == DFmode)
    {
      if (code == CONST_INT)
	{
	  HOST_WIDE_INT val = INTVAL (index);
	  /* ??? Can we assume ldrd for thumb2?  */
	  /* Thumb-2 ldrd only has reg+const addressing modes.  */
	  /* ldrd supports offsets of +-1020.
	     However the ldr fallback does not.  */
	  return val > -256 && val < 256 && (val & 3) == 0;
	}
      else
	return 0;
    }

  if (code == MULT)
    {
      rtx xiop0 = XEXP (index, 0);
      rtx xiop1 = XEXP (index, 1);

      return ((arm_address_register_rtx_p (xiop0, strict_p)
	       && thumb2_index_mul_operand (xiop1))
	      || (arm_address_register_rtx_p (xiop1, strict_p)
		  && thumb2_index_mul_operand (xiop0)));
    }
  else if (code == ASHIFT)
    {
      rtx op = XEXP (index, 1);

      return (arm_address_register_rtx_p (XEXP (index, 0), strict_p)
	      && CONST_INT_P (op)
	      && INTVAL (op) > 0
	      && INTVAL (op) <= 3);
    }

  return (code == CONST_INT
	  && INTVAL (index) < 4096
	  && INTVAL (index) > -256);
}

/* Return nonzero if X is valid as a 16-bit Thumb state base register.  */
static int
thumb1_base_register_rtx_p (rtx x, enum machine_mode mode, int strict_p)
{
  int regno;

  if (!REG_P (x))
    return 0;

  regno = REGNO (x);

  if (strict_p)
    return THUMB1_REGNO_MODE_OK_FOR_BASE_P (regno, mode);

  return (regno <= LAST_LO_REGNUM
	  || regno > LAST_VIRTUAL_REGISTER
	  || regno == FRAME_POINTER_REGNUM
	  || (GET_MODE_SIZE (mode) >= 4
	      && (regno == STACK_POINTER_REGNUM
		  || regno >= FIRST_PSEUDO_REGISTER
		  || x == hard_frame_pointer_rtx
		  || x == arg_pointer_rtx)));
}

/* Return nonzero if x is a legitimate index register.  This is the case
   for any base register that can access a QImode object.  */
inline static int
thumb1_index_register_rtx_p (rtx x, int strict_p)
{
  return thumb1_base_register_rtx_p (x, QImode, strict_p);
}

/* Return nonzero if x is a legitimate 16-bit Thumb-state address.

   The AP may be eliminated to either the SP or the FP, so we use the
   least common denominator, e.g. SImode, and offsets from 0 to 64.

   ??? Verify whether the above is the right approach.

   ??? Also, the FP may be eliminated to the SP, so perhaps that
   needs special handling also.

   ??? Look at how the mips16 port solves this problem.  It probably uses
   better ways to solve some of these problems.

   Although it is not incorrect, we don't accept QImode and HImode
   addresses based on the frame pointer or arg pointer until the
   reload pass starts.  This is so that eliminating such addresses
   into stack based ones won't produce impossible code.  */
int
thumb1_legitimate_address_p (enum machine_mode mode, rtx x, int strict_p)
{
  /* ??? Not clear if this is right.  Experiment.  */
  if (GET_MODE_SIZE (mode) < 4
      && !(reload_in_progress || reload_completed)
      && (reg_mentioned_p (frame_pointer_rtx, x)
	  || reg_mentioned_p (arg_pointer_rtx, x)
	  || reg_mentioned_p (virtual_incoming_args_rtx, x)
	  || reg_mentioned_p (virtual_outgoing_args_rtx, x)
	  || reg_mentioned_p (virtual_stack_dynamic_rtx, x)
	  || reg_mentioned_p (virtual_stack_vars_rtx, x)))
    return 0;

  /* Accept any base register.  SP only in SImode or larger.  */
  else if (thumb1_base_register_rtx_p (x, mode, strict_p))
    return 1;

  /* This is PC relative data before arm_reorg runs.  */
  else if (GET_MODE_SIZE (mode) >= 4 && CONSTANT_P (x)
	   && GET_CODE (x) == SYMBOL_REF
           && CONSTANT_POOL_ADDRESS_P (x) && !flag_pic)
    return 1;

  /* This is PC relative data after arm_reorg runs.  */
  else if ((GET_MODE_SIZE (mode) >= 4 || mode == HFmode)
	   && reload_completed
	   && (GET_CODE (x) == LABEL_REF
	       || (GET_CODE (x) == CONST
		   && GET_CODE (XEXP (x, 0)) == PLUS
		   && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
		   && CONST_INT_P (XEXP (XEXP (x, 0), 1)))))
    return 1;

  /* Post-inc indexing only supported for SImode and larger.  */
  else if (GET_CODE (x) == POST_INC && GET_MODE_SIZE (mode) >= 4
	   && thumb1_index_register_rtx_p (XEXP (x, 0), strict_p))
    return 1;

  else if (GET_CODE (x) == PLUS)
    {
      /* REG+REG address can be any two index registers.  */
      /* We disallow FRAME+REG addressing since we know that FRAME
	 will be replaced with STACK, and SP relative addressing only
	 permits SP+OFFSET.  */
      if (GET_MODE_SIZE (mode) <= 4
	  && XEXP (x, 0) != frame_pointer_rtx
	  && XEXP (x, 1) != frame_pointer_rtx
	  && thumb1_index_register_rtx_p (XEXP (x, 0), strict_p)
	  && (thumb1_index_register_rtx_p (XEXP (x, 1), strict_p)
	      || (!strict_p && will_be_in_index_register (XEXP (x, 1)))))
	return 1;

      /* REG+const has 5-7 bit offset for non-SP registers.  */
      else if ((thumb1_index_register_rtx_p (XEXP (x, 0), strict_p)
		|| XEXP (x, 0) == arg_pointer_rtx)
	       && CONST_INT_P (XEXP (x, 1))
	       && thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
	return 1;

      /* REG+const has 10-bit offset for SP, but only SImode and
	 larger is supported.  */
      /* ??? Should probably check for DI/DFmode overflow here
	 just like GO_IF_LEGITIMATE_OFFSET does.  */
      else if (REG_P (XEXP (x, 0))
	       && REGNO (XEXP (x, 0)) == STACK_POINTER_REGNUM
	       && GET_MODE_SIZE (mode) >= 4
	       && CONST_INT_P (XEXP (x, 1))
	       && INTVAL (XEXP (x, 1)) >= 0
	       && INTVAL (XEXP (x, 1)) + GET_MODE_SIZE (mode) <= 1024
	       && (INTVAL (XEXP (x, 1)) & 3) == 0)
	return 1;

      else if (REG_P (XEXP (x, 0))
	       && (REGNO (XEXP (x, 0)) == FRAME_POINTER_REGNUM
		   || REGNO (XEXP (x, 0)) == ARG_POINTER_REGNUM
		   || (REGNO (XEXP (x, 0)) >= FIRST_VIRTUAL_REGISTER
		       && REGNO (XEXP (x, 0))
			  <= LAST_VIRTUAL_POINTER_REGISTER))
	       && GET_MODE_SIZE (mode) >= 4
	       && CONST_INT_P (XEXP (x, 1))
	       && (INTVAL (XEXP (x, 1)) & 3) == 0)
	return 1;
    }

  else if (GET_MODE_CLASS (mode) != MODE_FLOAT
	   && GET_MODE_SIZE (mode) == 4
	   && GET_CODE (x) == SYMBOL_REF
	   && CONSTANT_POOL_ADDRESS_P (x)
	   && ! (flag_pic
		 && symbol_mentioned_p (get_pool_constant (x))
		 && ! pcrel_constant_p (get_pool_constant (x))))
    return 1;

  return 0;
}

/* Return nonzero if VAL can be used as an offset in a Thumb-state address
   instruction of mode MODE.  */
int
thumb_legitimate_offset_p (enum machine_mode mode, HOST_WIDE_INT val)
{
  switch (GET_MODE_SIZE (mode))
    {
    case 1:
      return val >= 0 && val < 32;

    case 2:
      return val >= 0 && val < 64 && (val & 1) == 0;

    default:
      return (val >= 0
	      && (val + GET_MODE_SIZE (mode)) <= 128
	      && (val & 3) == 0);
    }
}

bool
arm_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
{
  if (TARGET_ARM)
    return arm_legitimate_address_outer_p (mode, x, SET, strict_p);
  else if (TARGET_THUMB2)
    return thumb2_legitimate_address_p (mode, x, strict_p);
  else /* if (TARGET_THUMB1) */
    return thumb1_legitimate_address_p (mode, x, strict_p);
}

/* Worker function for TARGET_PREFERRED_RELOAD_CLASS.

   Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS, but for the Thumb core registers and
   immediate constants we prefer a LO_REGS class or a subset.  */

static reg_class_t
arm_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, reg_class_t rclass)
{
  if (TARGET_32BIT)
    return rclass;
  else
    {
      if (rclass == GENERAL_REGS)
	return LO_REGS;
      else
	return rclass;
    }
}

/* Build the SYMBOL_REF for __tls_get_addr.  */

static GTY(()) rtx tls_get_addr_libfunc;

static rtx
get_tls_get_addr (void)
{
  if (!tls_get_addr_libfunc)
    tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
  return tls_get_addr_libfunc;
}

rtx
arm_load_tp (rtx target)
{
  if (!target)
    target = gen_reg_rtx (SImode);

  if (TARGET_HARD_TP)
    {
      /* Can return in any reg.  */
      emit_insn (gen_load_tp_hard (target));
    }
  else
    {
      /* Always returned in r0.  Immediately copy the result into a pseudo,
	 otherwise other uses of r0 (e.g. setting up function arguments) may
	 clobber the value.  */

      rtx tmp;

      emit_insn (gen_load_tp_soft ());

      tmp = gen_rtx_REG (SImode, 0);
      emit_move_insn (target, tmp);
    }
  return target;
}

static rtx
load_tls_operand (rtx x, rtx reg)
{
  rtx tmp;

  if (reg == NULL_RTX)
    reg = gen_reg_rtx (SImode);

  tmp = gen_rtx_CONST (SImode, x);

  emit_move_insn (reg, tmp);

  return reg;
}

static rtx
arm_call_tls_get_addr (rtx x, rtx reg, rtx *valuep, int reloc)
{
  rtx insns, label, labelno, sum;

  gcc_assert (reloc != TLS_DESCSEQ);
  start_sequence ();

  labelno = GEN_INT (pic_labelno++);
  label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
  label = gen_rtx_CONST (VOIDmode, label);

  sum = gen_rtx_UNSPEC (Pmode,
			gen_rtvec (4, x, GEN_INT (reloc), label,
				   GEN_INT (TARGET_ARM ? 8 : 4)),
			UNSPEC_TLS);
  reg = load_tls_operand (sum, reg);

  if (TARGET_ARM)
    emit_insn (gen_pic_add_dot_plus_eight (reg, reg, labelno));
  else
    emit_insn (gen_pic_add_dot_plus_four (reg, reg, labelno));

  *valuep = emit_library_call_value (get_tls_get_addr (), NULL_RTX,
				     LCT_PURE, /* LCT_CONST?  */
				     Pmode, 1, reg, Pmode);

  insns = get_insns ();
  end_sequence ();

  return insns;
}

static rtx
arm_tls_descseq_addr (rtx x, rtx reg)
{
  rtx labelno = GEN_INT (pic_labelno++);
  rtx label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
  rtx sum = gen_rtx_UNSPEC (Pmode,
			    gen_rtvec (4, x, GEN_INT (TLS_DESCSEQ),
				       gen_rtx_CONST (VOIDmode, label),
				       GEN_INT (!TARGET_ARM)),
			    UNSPEC_TLS);
  rtx reg0 = load_tls_operand (sum, gen_rtx_REG (SImode, 0));

  emit_insn (gen_tlscall (x, labelno));
  if (!reg)
    reg = gen_reg_rtx (SImode);
  else
    gcc_assert (REGNO (reg) != 0);

  emit_move_insn (reg, reg0);

  return reg;
}

rtx
legitimize_tls_address (rtx x, rtx reg)
{
  rtx dest, tp, label, labelno, sum, insns, ret, eqv, addend;
  unsigned int model = SYMBOL_REF_TLS_MODEL (x);

  switch (model)
    {
    case TLS_MODEL_GLOBAL_DYNAMIC:
      if (TARGET_GNU2_TLS)
	{
	  reg = arm_tls_descseq_addr (x, reg);

	  tp = arm_load_tp (NULL_RTX);

	  dest = gen_rtx_PLUS (Pmode, tp, reg);
	}
      else
	{
	  /* Original scheme */
	  insns = arm_call_tls_get_addr (x, reg, &ret, TLS_GD32);
	  dest = gen_reg_rtx (Pmode);
	  emit_libcall_block (insns, dest, ret, x);
	}
      return dest;

    case TLS_MODEL_LOCAL_DYNAMIC:
      if (TARGET_GNU2_TLS)
	{
	  reg = arm_tls_descseq_addr (x, reg);

	  tp = arm_load_tp (NULL_RTX);

	  dest = gen_rtx_PLUS (Pmode, tp, reg);
	}
      else
	{
	  insns = arm_call_tls_get_addr (x, reg, &ret, TLS_LDM32);

	  /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
	     share the LDM result with other LD model accesses.  */
	  eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx),
				UNSPEC_TLS);
	  dest = gen_reg_rtx (Pmode);
	  emit_libcall_block (insns, dest, ret, eqv);

	  /* Load the addend.  */
	  addend = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x,
						     GEN_INT (TLS_LDO32)),
				   UNSPEC_TLS);
	  addend = force_reg (SImode, gen_rtx_CONST (SImode, addend));
	  dest = gen_rtx_PLUS (Pmode, dest, addend);
	}
      return dest;

    case TLS_MODEL_INITIAL_EXEC:
      labelno = GEN_INT (pic_labelno++);
      label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
      label = gen_rtx_CONST (VOIDmode, label);
      sum = gen_rtx_UNSPEC (Pmode,
			    gen_rtvec (4, x, GEN_INT (TLS_IE32), label,
				       GEN_INT (TARGET_ARM ? 8 : 4)),
			    UNSPEC_TLS);
      reg = load_tls_operand (sum, reg);

      if (TARGET_ARM)
	emit_insn (gen_tls_load_dot_plus_eight (reg, reg, labelno));
      else if (TARGET_THUMB2)
	emit_insn (gen_tls_load_dot_plus_four (reg, NULL, reg, labelno));
      else
	{
	  emit_insn (gen_pic_add_dot_plus_four (reg, reg, labelno));
	  emit_move_insn (reg, gen_const_mem (SImode, reg));
	}

      tp = arm_load_tp (NULL_RTX);

      return gen_rtx_PLUS (Pmode, tp, reg);

    case TLS_MODEL_LOCAL_EXEC:
      tp = arm_load_tp (NULL_RTX);

      reg = gen_rtx_UNSPEC (Pmode,
			    gen_rtvec (2, x, GEN_INT (TLS_LE32)),
			    UNSPEC_TLS);
      reg = force_reg (SImode, gen_rtx_CONST (SImode, reg));

      return gen_rtx_PLUS (Pmode, tp, reg);

    default:
      abort ();
    }
}

/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.  */
rtx
arm_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
{
  if (arm_tls_referenced_p (x))
    {
      rtx addend = NULL;

      if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
	{
	  addend = XEXP (XEXP (x, 0), 1);
	  x = XEXP (XEXP (x, 0), 0);
	}

      if (GET_CODE (x) != SYMBOL_REF)
	return x;

      gcc_assert (SYMBOL_REF_TLS_MODEL (x) != 0);

      x = legitimize_tls_address (x, NULL_RTX);

      if (addend)
	{
	  x = gen_rtx_PLUS (SImode, x, addend);
	  orig_x = x;
	}
      else
	return x;
    }

  if (!TARGET_ARM)
    {
      /* TODO: legitimize_address for Thumb2.  */
      if (TARGET_THUMB2)
        return x;
      return thumb_legitimize_address (x, orig_x, mode);
    }

  if (GET_CODE (x) == PLUS)
    {
      rtx xop0 = XEXP (x, 0);
      rtx xop1 = XEXP (x, 1);

      if (CONSTANT_P (xop0) && !symbol_mentioned_p (xop0))
	xop0 = force_reg (SImode, xop0);

      if (CONSTANT_P (xop1) && !CONST_INT_P (xop1)
	  && !symbol_mentioned_p (xop1))
	xop1 = force_reg (SImode, xop1);

      if (ARM_BASE_REGISTER_RTX_P (xop0)
	  && CONST_INT_P (xop1))
	{
	  HOST_WIDE_INT n, low_n;
	  rtx base_reg, val;
	  n = INTVAL (xop1);

	  /* VFP addressing modes actually allow greater offsets, but for
	     now we just stick with the lowest common denominator.  */
	  if (mode == DImode
	      || ((TARGET_SOFT_FLOAT || TARGET_VFP) && mode == DFmode))
	    {
	      low_n = n & 0x0f;
	      n &= ~0x0f;
	      if (low_n > 4)
		{
		  n += 16;
		  low_n -= 16;
		}
	    }
	  else
	    {
	      low_n = ((mode) == TImode ? 0
		       : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff));
	      n -= low_n;
	    }

	  base_reg = gen_reg_rtx (SImode);
	  val = force_operand (plus_constant (Pmode, xop0, n), NULL_RTX);
	  emit_move_insn (base_reg, val);
	  x = plus_constant (Pmode, base_reg, low_n);
	}
      else if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
	x = gen_rtx_PLUS (SImode, xop0, xop1);
    }

  /* XXX We don't allow MINUS any more -- see comment in
     arm_legitimate_address_outer_p ().  */
  else if (GET_CODE (x) == MINUS)
    {
      rtx xop0 = XEXP (x, 0);
      rtx xop1 = XEXP (x, 1);

      if (CONSTANT_P (xop0))
	xop0 = force_reg (SImode, xop0);

      if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1))
	xop1 = force_reg (SImode, xop1);

      if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
	x = gen_rtx_MINUS (SImode, xop0, xop1);
    }

  /* Make sure to take full advantage of the pre-indexed addressing mode
     with absolute addresses which often allows for the base register to
     be factorized for multiple adjacent memory references, and it might
     even allows for the mini pool to be avoided entirely. */
  else if (CONST_INT_P (x) && optimize > 0)
    {
      unsigned int bits;
      HOST_WIDE_INT mask, base, index;
      rtx base_reg;

      /* ldr and ldrb can use a 12-bit index, ldrsb and the rest can only
         use a 8-bit index. So let's use a 12-bit index for SImode only and
         hope that arm_gen_constant will enable ldrb to use more bits. */
      bits = (mode == SImode) ? 12 : 8;
      mask = (1 << bits) - 1;
      base = INTVAL (x) & ~mask;
      index = INTVAL (x) & mask;
      if (bit_count (base & 0xffffffff) > (32 - bits)/2)
        {
	  /* It'll most probably be more efficient to generate the base
	     with more bits set and use a negative index instead. */
	  base |= mask;
	  index -= mask;
	}
      base_reg = force_reg (SImode, GEN_INT (base));
      x = plus_constant (Pmode, base_reg, index);
    }

  if (flag_pic)
    {
      /* We need to find and carefully transform any SYMBOL and LABEL
	 references; so go back to the original address expression.  */
      rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);

      if (new_x != orig_x)
	x = new_x;
    }

  return x;
}


/* Try machine-dependent ways of modifying an illegitimate Thumb address
   to be legitimate.  If we find one, return the new, valid address.  */
rtx
thumb_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
{
  if (GET_CODE (x) == PLUS
      && CONST_INT_P (XEXP (x, 1))
      && (INTVAL (XEXP (x, 1)) >= 32 * GET_MODE_SIZE (mode)
	  || INTVAL (XEXP (x, 1)) < 0))
    {
      rtx xop0 = XEXP (x, 0);
      rtx xop1 = XEXP (x, 1);
      HOST_WIDE_INT offset = INTVAL (xop1);

      /* Try and fold the offset into a biasing of the base register and
	 then offsetting that.  Don't do this when optimizing for space
	 since it can cause too many CSEs.  */
      if (optimize_size && offset >= 0
	  && offset < 256 + 31 * GET_MODE_SIZE (mode))
	{
	  HOST_WIDE_INT delta;

	  if (offset >= 256)
	    delta = offset - (256 - GET_MODE_SIZE (mode));
	  else if (offset < 32 * GET_MODE_SIZE (mode) + 8)
	    delta = 31 * GET_MODE_SIZE (mode);
	  else
	    delta = offset & (~31 * GET_MODE_SIZE (mode));

	  xop0 = force_operand (plus_constant (Pmode, xop0, offset - delta),
				NULL_RTX);
	  x = plus_constant (Pmode, xop0, delta);
	}
      else if (offset < 0 && offset > -256)
	/* Small negative offsets are best done with a subtract before the
	   dereference, forcing these into a register normally takes two
	   instructions.  */
	x = force_operand (x, NULL_RTX);
      else
	{
	  /* For the remaining cases, force the constant into a register.  */
	  xop1 = force_reg (SImode, xop1);
	  x = gen_rtx_PLUS (SImode, xop0, xop1);
	}
    }
  else if (GET_CODE (x) == PLUS
	   && s_register_operand (XEXP (x, 1), SImode)
	   && !s_register_operand (XEXP (x, 0), SImode))
    {
      rtx xop0 = force_operand (XEXP (x, 0), NULL_RTX);

      x = gen_rtx_PLUS (SImode, xop0, XEXP (x, 1));
    }

  if (flag_pic)
    {
      /* We need to find and carefully transform any SYMBOL and LABEL
	 references; so go back to the original address expression.  */
      rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);

      if (new_x != orig_x)
	x = new_x;
    }

  return x;
}

bool
arm_legitimize_reload_address (rtx *p,
			       enum machine_mode mode,
			       int opnum, int type,
			       int ind_levels ATTRIBUTE_UNUSED)
{
  /* We must recognize output that we have already generated ourselves.  */
  if (GET_CODE (*p) == PLUS
      && GET_CODE (XEXP (*p, 0)) == PLUS
      && REG_P (XEXP (XEXP (*p, 0), 0))
      && CONST_INT_P (XEXP (XEXP (*p, 0), 1))
      && CONST_INT_P (XEXP (*p, 1)))
    {
      push_reload (XEXP (*p, 0), NULL_RTX, &XEXP (*p, 0), NULL,
		   MODE_BASE_REG_CLASS (mode), GET_MODE (*p),
		   VOIDmode, 0, 0, opnum, (enum reload_type) type);
      return true;
    }

  if (GET_CODE (*p) == PLUS
      && REG_P (XEXP (*p, 0))
      && ARM_REGNO_OK_FOR_BASE_P (REGNO (XEXP (*p, 0)))
      /* If the base register is equivalent to a constant, let the generic
	 code handle it.  Otherwise we will run into problems if a future
	 reload pass decides to rematerialize the constant.  */
      && !reg_equiv_constant (ORIGINAL_REGNO (XEXP (*p, 0)))
      && CONST_INT_P (XEXP (*p, 1)))
    {
      HOST_WIDE_INT val = INTVAL (XEXP (*p, 1));
      HOST_WIDE_INT low, high;

      /* Detect coprocessor load/stores.  */
      bool coproc_p = ((TARGET_HARD_FLOAT
			&& TARGET_VFP
			&& (mode == SFmode || mode == DFmode))
		       || (TARGET_REALLY_IWMMXT
			   && VALID_IWMMXT_REG_MODE (mode))
		       || (TARGET_NEON
			   && (VALID_NEON_DREG_MODE (mode)
			       || VALID_NEON_QREG_MODE (mode))));

      /* For some conditions, bail out when lower two bits are unaligned.  */
      if ((val & 0x3) != 0
	  /* Coprocessor load/store indexes are 8-bits + '00' appended.  */
	  && (coproc_p
	      /* For DI, and DF under soft-float: */
	      || ((mode == DImode || mode == DFmode)
		  /* Without ldrd, we use stm/ldm, which does not
		     fair well with unaligned bits.  */
		  && (! TARGET_LDRD
		      /* Thumb-2 ldrd/strd is [-1020,+1020] in steps of 4.  */
		      || TARGET_THUMB2))))
	return false;

      /* When breaking down a [reg+index] reload address into [(reg+high)+low],
	 of which the (reg+high) gets turned into a reload add insn,
	 we try to decompose the index into high/low values that can often
	 also lead to better reload CSE.
	 For example:
	         ldr r0, [r2, #4100]  // Offset too large
		 ldr r1, [r2, #4104]  // Offset too large

	 is best reloaded as:
	         add t1, r2, #4096
		 ldr r0, [t1, #4]
		 add t2, r2, #4096
		 ldr r1, [t2, #8]

	 which post-reload CSE can simplify in most cases to eliminate the
	 second add instruction:
	         add t1, r2, #4096
		 ldr r0, [t1, #4]
		 ldr r1, [t1, #8]

	 The idea here is that we want to split out the bits of the constant
	 as a mask, rather than as subtracting the maximum offset that the
	 respective type of load/store used can handle.

	 When encountering negative offsets, we can still utilize it even if
	 the overall offset is positive; sometimes this may lead to an immediate
	 that can be constructed with fewer instructions.
	 For example:
	         ldr r0, [r2, #0x3FFFFC]

	 This is best reloaded as:
	         add t1, r2, #0x400000
		 ldr r0, [t1, #-4]

	 The trick for spotting this for a load insn with N bits of offset
	 (i.e. bits N-1:0) is to look at bit N; if it is set, then chose a
	 negative offset that is going to make bit N and all the bits below
	 it become zero in the remainder part.

	 The SIGN_MAG_LOW_ADDR_BITS macro below implements this, with respect
	 to sign-magnitude addressing (i.e. separate +- bit, or 1's complement),
	 used in most cases of ARM load/store instructions.  */

#define SIGN_MAG_LOW_ADDR_BITS(VAL, N)					\
      (((VAL) & ((1 << (N)) - 1))					\
       ? (((VAL) & ((1 << ((N) + 1)) - 1)) ^ (1 << (N))) - (1 << (N))	\
       : 0)

      if (coproc_p)
	{
	  low = SIGN_MAG_LOW_ADDR_BITS (val, 10);

	  /* NEON quad-word load/stores are made of two double-word accesses,
	     so the valid index range is reduced by 8. Treat as 9-bit range if
	     we go over it.  */
	  if (TARGET_NEON && VALID_NEON_QREG_MODE (mode) && low >= 1016)
	    low = SIGN_MAG_LOW_ADDR_BITS (val, 9);
	}
      else if (GET_MODE_SIZE (mode) == 8)
	{
	  if (TARGET_LDRD)
	    low = (TARGET_THUMB2
		   ? SIGN_MAG_LOW_ADDR_BITS (val, 10)
		   : SIGN_MAG_LOW_ADDR_BITS (val, 8));
	  else
	    /* For pre-ARMv5TE (without ldrd), we use ldm/stm(db/da/ib)
	       to access doublewords. The supported load/store offsets are
	       -8, -4, and 4, which we try to produce here.  */
	    low = ((val & 0xf) ^ 0x8) - 0x8;
	}
      else if (GET_MODE_SIZE (mode) < 8)
	{
	  /* NEON element load/stores do not have an offset.  */
	  if (TARGET_NEON_FP16 && mode == HFmode)
	    return false;

	  if (TARGET_THUMB2)
	    {
	      /* Thumb-2 has an asymmetrical index range of (-256,4096).
		 Try the wider 12-bit range first, and re-try if the result
		 is out of range.  */
	      low = SIGN_MAG_LOW_ADDR_BITS (val, 12);
	      if (low < -255)
		low = SIGN_MAG_LOW_ADDR_BITS (val, 8);
	    }
	  else
	    {
	      if (mode == HImode || mode == HFmode)
		{
		  if (arm_arch4)
		    low = SIGN_MAG_LOW_ADDR_BITS (val, 8);
		  else
		    {
		      /* The storehi/movhi_bytes fallbacks can use only
			 [-4094,+4094] of the full ldrb/strb index range.  */
		      low = SIGN_MAG_LOW_ADDR_BITS (val, 12);
		      if (low == 4095 || low == -4095)
			return false;
		    }
		}
	      else
		low = SIGN_MAG_LOW_ADDR_BITS (val, 12);
	    }
	}
      else
	return false;

      high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff)
	       ^ (unsigned HOST_WIDE_INT) 0x80000000)
	      - (unsigned HOST_WIDE_INT) 0x80000000);
      /* Check for overflow or zero */
      if (low == 0 || high == 0 || (high + low != val))
	return false;

      /* Reload the high part into a base reg; leave the low part
	 in the mem.
	 Note that replacing this gen_rtx_PLUS with plus_constant is
	 wrong in this case because we rely on the
	 (plus (plus reg c1) c2) structure being preserved so that
	 XEXP (*p, 0) in push_reload below uses the correct term.  */
      *p = gen_rtx_PLUS (GET_MODE (*p),
			 gen_rtx_PLUS (GET_MODE (*p), XEXP (*p, 0),
				       GEN_INT (high)),
			 GEN_INT (low));
      push_reload (XEXP (*p, 0), NULL_RTX, &XEXP (*p, 0), NULL,
		   MODE_BASE_REG_CLASS (mode), GET_MODE (*p),
		   VOIDmode, 0, 0, opnum, (enum reload_type) type);
      return true;
    }

  return false;
}

rtx
thumb_legitimize_reload_address (rtx *x_p,
				 enum machine_mode mode,
				 int opnum, int type,
				 int ind_levels ATTRIBUTE_UNUSED)
{
  rtx x = *x_p;

  if (GET_CODE (x) == PLUS
      && GET_MODE_SIZE (mode) < 4
      && REG_P (XEXP (x, 0))
      && XEXP (x, 0) == stack_pointer_rtx
      && CONST_INT_P (XEXP (x, 1))
      && !thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
    {
      rtx orig_x = x;

      x = copy_rtx (x);
      push_reload (orig_x, NULL_RTX, x_p, NULL, MODE_BASE_REG_CLASS (mode),
		   Pmode, VOIDmode, 0, 0, opnum, (enum reload_type) type);
      return x;
    }

  /* If both registers are hi-regs, then it's better to reload the
     entire expression rather than each register individually.  That
     only requires one reload register rather than two.  */
  if (GET_CODE (x) == PLUS
      && REG_P (XEXP (x, 0))
      && REG_P (XEXP (x, 1))
      && !REG_MODE_OK_FOR_REG_BASE_P (XEXP (x, 0), mode)
      && !REG_MODE_OK_FOR_REG_BASE_P (XEXP (x, 1), mode))
    {
      rtx orig_x = x;

      x = copy_rtx (x);
      push_reload (orig_x, NULL_RTX, x_p, NULL, MODE_BASE_REG_CLASS (mode),
		   Pmode, VOIDmode, 0, 0, opnum, (enum reload_type) type);
      return x;
    }

  return NULL;
}

/* Test for various thread-local symbols.  */

/* Helper for arm_tls_referenced_p.  */

static int
arm_tls_operand_p_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
{
  if (GET_CODE (*x) == SYMBOL_REF)
    return SYMBOL_REF_TLS_MODEL (*x) != 0;

  /* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are
     TLS offsets, not real symbol references.  */
  if (GET_CODE (*x) == UNSPEC
      && XINT (*x, 1) == UNSPEC_TLS)
    return -1;

  return 0;
}

/* Return TRUE if X contains any TLS symbol references.  */

bool
arm_tls_referenced_p (rtx x)
{
  if (! TARGET_HAVE_TLS)
    return false;

  return for_each_rtx (&x, arm_tls_operand_p_1, NULL);
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.

   On the ARM, allow any integer (invalid ones are removed later by insn
   patterns), nice doubles and symbol_refs which refer to the function's
   constant pool XXX.

   When generating pic allow anything.  */

static bool
arm_legitimate_constant_p_1 (enum machine_mode mode, rtx x)
{
  /* At present, we have no support for Neon structure constants, so forbid
     them here.  It might be possible to handle simple cases like 0 and -1
     in future.  */
  if (TARGET_NEON && VALID_NEON_STRUCT_MODE (mode))
    return false;

  return flag_pic || !label_mentioned_p (x);
}

static bool
thumb_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  return (CONST_INT_P (x)
	  || CONST_DOUBLE_P (x)
	  || CONSTANT_ADDRESS_P (x)
	  || flag_pic);
}

static bool
arm_legitimate_constant_p (enum machine_mode mode, rtx x)
{
  return (!arm_cannot_force_const_mem (mode, x)
	  && (TARGET_32BIT
	      ? arm_legitimate_constant_p_1 (mode, x)
	      : thumb_legitimate_constant_p (mode, x)));
}

/* Implement TARGET_CANNOT_FORCE_CONST_MEM.  */

static bool
arm_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  rtx base, offset;

  if (ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
    {
      split_const (x, &base, &offset);
      if (GET_CODE (base) == SYMBOL_REF
	  && !offset_within_block_p (base, INTVAL (offset)))
	return true;
    }
  return arm_tls_referenced_p (x);
}

#define REG_OR_SUBREG_REG(X)						\
  (REG_P (X)							\
   || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))))

#define REG_OR_SUBREG_RTX(X)			\
   (REG_P (X) ? (X) : SUBREG_REG (X))

static inline int
thumb1_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer)
{
  enum machine_mode mode = GET_MODE (x);
  int total, words;

  switch (code)
    {
    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
    case ROTATERT:
      return (mode == SImode) ? COSTS_N_INSNS (1) : COSTS_N_INSNS (2);

    case PLUS:
    case MINUS:
    case COMPARE:
    case NEG:
    case NOT:
      return COSTS_N_INSNS (1);

    case MULT:
      if (CONST_INT_P (XEXP (x, 1)))
	{
	  int cycles = 0;
	  unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));

	  while (i)
	    {
	      i >>= 2;
	      cycles++;
	    }
	  return COSTS_N_INSNS (2) + cycles;
	}
      return COSTS_N_INSNS (1) + 16;

    case SET:
      /* A SET doesn't have a mode, so let's look at the SET_DEST to get
	 the mode.  */
      words = ARM_NUM_INTS (GET_MODE_SIZE (GET_MODE (SET_DEST (x))));
      return (COSTS_N_INSNS (words)
	      + 4 * ((MEM_P (SET_SRC (x)))
		     + MEM_P (SET_DEST (x))));

    case CONST_INT:
      if (outer == SET)
	{
	  if ((unsigned HOST_WIDE_INT) INTVAL (x) < 256)
	    return 0;
	  if (thumb_shiftable_const (INTVAL (x)))
	    return COSTS_N_INSNS (2);
	  return COSTS_N_INSNS (3);
	}
      else if ((outer == PLUS || outer == COMPARE)
	       && INTVAL (x) < 256 && INTVAL (x) > -256)
	return 0;
      else if ((outer == IOR || outer == XOR || outer == AND)
	       && INTVAL (x) < 256 && INTVAL (x) >= -256)
	return COSTS_N_INSNS (1);
      else if (outer == AND)
	{
	  int i;
	  /* This duplicates the tests in the andsi3 expander.  */
	  for (i = 9; i <= 31; i++)
	    if ((((HOST_WIDE_INT) 1) << i) - 1 == INTVAL (x)
		|| (((HOST_WIDE_INT) 1) << i) - 1 == ~INTVAL (x))
	      return COSTS_N_INSNS (2);
	}
      else if (outer == ASHIFT || outer == ASHIFTRT
	       || outer == LSHIFTRT)
	return 0;
      return COSTS_N_INSNS (2);

    case CONST:
    case CONST_DOUBLE:
    case LABEL_REF:
    case SYMBOL_REF:
      return COSTS_N_INSNS (3);

    case UDIV:
    case UMOD:
    case DIV:
    case MOD:
      return 100;

    case TRUNCATE:
      return 99;

    case AND:
    case XOR:
    case IOR:
      /* XXX guess.  */
      return 8;

    case MEM:
      /* XXX another guess.  */
      /* Memory costs quite a lot for the first word, but subsequent words
	 load at the equivalent of a single insn each.  */
      return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
	      + ((GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
		 ? 4 : 0));

    case IF_THEN_ELSE:
      /* XXX a guess.  */
      if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
	return 14;
      return 2;

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      total = mode == DImode ? COSTS_N_INSNS (1) : 0;
      total += thumb1_rtx_costs (XEXP (x, 0), GET_CODE (XEXP (x, 0)), code);

      if (mode == SImode)
	return total;

      if (arm_arch6)
	return total + COSTS_N_INSNS (1);

      /* Assume a two-shift sequence.  Increase the cost slightly so
	 we prefer actual shifts over an extend operation.  */
      return total + 1 + COSTS_N_INSNS (2);

    default:
      return 99;
    }
}

static inline bool
arm_rtx_costs_1 (rtx x, enum rtx_code outer, int* total, bool speed)
{
  enum machine_mode mode = GET_MODE (x);
  enum rtx_code subcode;
  rtx operand;
  enum rtx_code code = GET_CODE (x);
  *total = 0;

  switch (code)
    {
    case MEM:
      /* Memory costs quite a lot for the first word, but subsequent words
	 load at the equivalent of a single insn each.  */
      *total = COSTS_N_INSNS (2 + ARM_NUM_REGS (mode));
      return true;

    case DIV:
    case MOD:
    case UDIV:
    case UMOD:
      if (TARGET_HARD_FLOAT && mode == SFmode)
	*total = COSTS_N_INSNS (2);
      else if (TARGET_HARD_FLOAT && mode == DFmode && !TARGET_VFP_SINGLE)
	*total = COSTS_N_INSNS (4);
      else
	*total = COSTS_N_INSNS (20);
      return false;

    case ROTATE:
      if (REG_P (XEXP (x, 1)))
	*total = COSTS_N_INSNS (1); /* Need to subtract from 32 */
      else if (!CONST_INT_P (XEXP (x, 1)))
	*total = rtx_cost (XEXP (x, 1), code, 1, speed);

      /* Fall through */
    case ROTATERT:
      if (mode != SImode)
	{
	  *total += COSTS_N_INSNS (4);
	  return true;
	}

      /* Fall through */
    case ASHIFT: case LSHIFTRT: case ASHIFTRT:
      *total += rtx_cost (XEXP (x, 0), code, 0, speed);
      if (mode == DImode)
	{
	  *total += COSTS_N_INSNS (3);
	  return true;
	}

      *total += COSTS_N_INSNS (1);
      /* Increase the cost of complex shifts because they aren't any faster,
         and reduce dual issue opportunities.  */
      if (arm_tune_cortex_a9
	  && outer != SET && !CONST_INT_P (XEXP (x, 1)))
	++*total;

      return true;

    case MINUS:
      if (mode == DImode)
	{
	  *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
	  if (CONST_INT_P (XEXP (x, 0))
	      && const_ok_for_arm (INTVAL (XEXP (x, 0))))
	    {
	      *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	      return true;
	    }

	  if (CONST_INT_P (XEXP (x, 1))
	      && const_ok_for_arm (INTVAL (XEXP (x, 1))))
	    {
	      *total += rtx_cost (XEXP (x, 0), code, 0, speed);
	      return true;
	    }

	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  if (TARGET_HARD_FLOAT
	      && (mode == SFmode
		  || (mode == DFmode && !TARGET_VFP_SINGLE)))
	    {
	      *total = COSTS_N_INSNS (1);
	      if (CONST_DOUBLE_P (XEXP (x, 0))
		  && arm_const_double_rtx (XEXP (x, 0)))
		{
		  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
		  return true;
		}

	      if (CONST_DOUBLE_P (XEXP (x, 1))
		  && arm_const_double_rtx (XEXP (x, 1)))
		{
		  *total += rtx_cost (XEXP (x, 0), code, 0, speed);
		  return true;
		}

	      return false;
	    }
	  *total = COSTS_N_INSNS (20);
	  return false;
	}

      *total = COSTS_N_INSNS (1);
      if (CONST_INT_P (XEXP (x, 0))
	  && const_ok_for_arm (INTVAL (XEXP (x, 0))))
	{
	  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	  return true;
	}

      subcode = GET_CODE (XEXP (x, 1));
      if (subcode == ASHIFT || subcode == ASHIFTRT
	  || subcode == LSHIFTRT
	  || subcode == ROTATE || subcode == ROTATERT)
	{
	  *total += rtx_cost (XEXP (x, 0), code, 0, speed);
	  *total += rtx_cost (XEXP (XEXP (x, 1), 0), subcode, 0, speed);
	  return true;
	}

      /* A shift as a part of RSB costs no more than RSB itself.  */
      if (GET_CODE (XEXP (x, 0)) == MULT
	  && power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
	{
	  *total += rtx_cost (XEXP (XEXP (x, 0), 0), code, 0, speed);
	  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	  return true;
	}

      if (subcode == MULT
	  && power_of_two_operand (XEXP (XEXP (x, 1), 1), SImode))
	{
	  *total += rtx_cost (XEXP (x, 0), code, 0, speed);
	  *total += rtx_cost (XEXP (XEXP (x, 1), 0), subcode, 0, speed);
	  return true;
	}

      if (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == RTX_COMPARE
	  || GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == RTX_COMM_COMPARE)
	{
	  *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, speed);
	  if (REG_P (XEXP (XEXP (x, 1), 0))
	      && REGNO (XEXP (XEXP (x, 1), 0)) != CC_REGNUM)
	    *total += COSTS_N_INSNS (1);

	  return true;
	}

      /* Fall through */

    case PLUS:
      if (code == PLUS && arm_arch6 && mode == SImode
	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
	{
	  *total = COSTS_N_INSNS (1);
	  *total += rtx_cost (XEXP (XEXP (x, 0), 0), GET_CODE (XEXP (x, 0)),
			      0, speed);
	  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	  return true;
	}

      /* MLA: All arguments must be registers.  We filter out
	 multiplication by a power of two, so that we fall down into
	 the code below.  */
      if (GET_CODE (XEXP (x, 0)) == MULT
	  && !power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
	{
	  /* The cost comes from the cost of the multiply.  */
	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  if (TARGET_HARD_FLOAT
	      && (mode == SFmode
		  || (mode == DFmode && !TARGET_VFP_SINGLE)))
	    {
	      *total = COSTS_N_INSNS (1);
	      if (CONST_DOUBLE_P (XEXP (x, 1))
		  && arm_const_double_rtx (XEXP (x, 1)))
		{
		  *total += rtx_cost (XEXP (x, 0), code, 0, speed);
		  return true;
		}

	      return false;
	    }

	  *total = COSTS_N_INSNS (20);
	  return false;
	}

      if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_COMPARE
	  || GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_COMM_COMPARE)
	{
	  *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 1), code, 1, speed);
	  if (REG_P (XEXP (XEXP (x, 0), 0))
	      && REGNO (XEXP (XEXP (x, 0), 0)) != CC_REGNUM)
	    *total += COSTS_N_INSNS (1);
	  return true;
	}

      /* Fall through */

    case AND: case XOR: case IOR:

      /* Normally the frame registers will be spilt into reg+const during
	 reload, so it is a bad idea to combine them with other instructions,
	 since then they might not be moved outside of loops.  As a compromise
	 we allow integration with ops that have a constant as their second
	 operand.  */
      if (REG_OR_SUBREG_REG (XEXP (x, 0))
	  && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))
	  && !CONST_INT_P (XEXP (x, 1)))
	*total = COSTS_N_INSNS (1);

      if (mode == DImode)
	{
	  *total += COSTS_N_INSNS (2);
	  if (CONST_INT_P (XEXP (x, 1))
	      && const_ok_for_op (INTVAL (XEXP (x, 1)), code))
	    {
	      *total += rtx_cost (XEXP (x, 0), code, 0, speed);
	      return true;
	    }

	  return false;
	}

      *total += COSTS_N_INSNS (1);
      if (CONST_INT_P (XEXP (x, 1))
	  && const_ok_for_op (INTVAL (XEXP (x, 1)), code))
	{
	  *total += rtx_cost (XEXP (x, 0), code, 0, speed);
	  return true;
	}
      subcode = GET_CODE (XEXP (x, 0));
      if (subcode == ASHIFT || subcode == ASHIFTRT
	  || subcode == LSHIFTRT
	  || subcode == ROTATE || subcode == ROTATERT)
	{
	  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	  *total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
	  return true;
	}

      if (subcode == MULT
	  && power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
	{
	  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	  *total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
	  return true;
	}

      if (subcode == UMIN || subcode == UMAX
	  || subcode == SMIN || subcode == SMAX)
	{
	  *total = COSTS_N_INSNS (3);
	  return true;
	}

      return false;

    case MULT:
      /* This should have been handled by the CPU specific routines.  */
      gcc_unreachable ();

    case TRUNCATE:
      if (arm_arch3m && mode == SImode
	  && GET_CODE (XEXP (x, 0)) == LSHIFTRT
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
	  && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0))
	      == GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)))
	  && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
	      || GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND))
	{
	  *total = rtx_cost (XEXP (XEXP (x, 0), 0), LSHIFTRT, 0, speed);
	  return true;
	}
      *total = COSTS_N_INSNS (2); /* Plus the cost of the MULT */
      return false;

    case NEG:
      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  if (TARGET_HARD_FLOAT
	      && (mode == SFmode
		  || (mode == DFmode && !TARGET_VFP_SINGLE)))
	    {
	      *total = COSTS_N_INSNS (1);
	      return false;
	    }
	  *total = COSTS_N_INSNS (2);
	  return false;
	}

      /* Fall through */
    case NOT:
      *total = COSTS_N_INSNS (ARM_NUM_REGS(mode));
      if (mode == SImode && code == NOT)
	{
	  subcode = GET_CODE (XEXP (x, 0));
	  if (subcode == ASHIFT || subcode == ASHIFTRT
	      || subcode == LSHIFTRT
	      || subcode == ROTATE || subcode == ROTATERT
	      || (subcode == MULT
		  && power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode)))
	    {
	      *total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
	      /* Register shifts cost an extra cycle.  */
	      if (!CONST_INT_P (XEXP (XEXP (x, 0), 1)))
		*total += COSTS_N_INSNS (1) + rtx_cost (XEXP (XEXP (x, 0), 1),
							subcode, 1, speed);
	      return true;
	    }
	}

      return false;

    case IF_THEN_ELSE:
      if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
	{
	  *total = COSTS_N_INSNS (4);
	  return true;
	}

      operand = XEXP (x, 0);

      if (!((GET_RTX_CLASS (GET_CODE (operand)) == RTX_COMPARE
	     || GET_RTX_CLASS (GET_CODE (operand)) == RTX_COMM_COMPARE)
	    && REG_P (XEXP (operand, 0))
	    && REGNO (XEXP (operand, 0)) == CC_REGNUM))
	*total += COSTS_N_INSNS (1);
      *total += (rtx_cost (XEXP (x, 1), code, 1, speed)
		 + rtx_cost (XEXP (x, 2), code, 2, speed));
      return true;

    case NE:
      if (mode == SImode && XEXP (x, 1) == const0_rtx)
	{
	  *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, speed);
	  return true;
	}
      goto scc_insn;

    case GE:
      if ((!REG_P (XEXP (x, 0)) || REGNO (XEXP (x, 0)) != CC_REGNUM)
	  && mode == SImode && XEXP (x, 1) == const0_rtx)
	{
	  *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, speed);
	  return true;
	}
      goto scc_insn;

    case LT:
      if ((!REG_P (XEXP (x, 0)) || REGNO (XEXP (x, 0)) != CC_REGNUM)
	  && mode == SImode && XEXP (x, 1) == const0_rtx)
	{
	  *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, speed);
	  return true;
	}
      goto scc_insn;

    case EQ:
    case GT:
    case LE:
    case GEU:
    case LTU:
    case GTU:
    case LEU:
    case UNORDERED:
    case ORDERED:
    case UNEQ:
    case UNGE:
    case UNLT:
    case UNGT:
    case UNLE:
    scc_insn:
      /* SCC insns.  In the case where the comparison has already been
	 performed, then they cost 2 instructions.  Otherwise they need
	 an additional comparison before them.  */
      *total = COSTS_N_INSNS (2);
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) == CC_REGNUM)
	{
	  return true;
	}

      /* Fall through */
    case COMPARE:
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) == CC_REGNUM)
	{
	  *total = 0;
	  return true;
	}

      *total += COSTS_N_INSNS (1);
      if (CONST_INT_P (XEXP (x, 1))
	  && const_ok_for_op (INTVAL (XEXP (x, 1)), code))
	{
	  *total += rtx_cost (XEXP (x, 0), code, 0, speed);
	  return true;
	}

      subcode = GET_CODE (XEXP (x, 0));
      if (subcode == ASHIFT || subcode == ASHIFTRT
	  || subcode == LSHIFTRT
	  || subcode == ROTATE || subcode == ROTATERT)
	{
	  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	  *total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
	  return true;
	}

      if (subcode == MULT
	  && power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
	{
	  *total += rtx_cost (XEXP (x, 1), code, 1, speed);
	  *total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
	  return true;
	}

      return false;

    case UMIN:
    case UMAX:
    case SMIN:
    case SMAX:
      *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, speed);
      if (!CONST_INT_P (XEXP (x, 1))
	  || !const_ok_for_arm (INTVAL (XEXP (x, 1))))
	*total += rtx_cost (XEXP (x, 1), code, 1, speed);
      return true;

    case ABS:
      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  if (TARGET_HARD_FLOAT
	      && (mode == SFmode
		  || (mode == DFmode && !TARGET_VFP_SINGLE)))
	    {
	      *total = COSTS_N_INSNS (1);
	      return false;
	    }
	  *total = COSTS_N_INSNS (20);
	  return false;
	}
      *total = COSTS_N_INSNS (1);
      if (mode == DImode)
	*total += COSTS_N_INSNS (3);
      return false;

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      *total = 0;
      if (GET_MODE_CLASS (mode) == MODE_INT)
	{
	  rtx op = XEXP (x, 0);
	  enum machine_mode opmode = GET_MODE (op);

	  if (mode == DImode)
	    *total += COSTS_N_INSNS (1);

	  if (opmode != SImode)
	    {
	      if (MEM_P (op))
		{
		  /* If !arm_arch4, we use one of the extendhisi2_mem
		     or movhi_bytes patterns for HImode.  For a QImode
		     sign extension, we first zero-extend from memory
		     and then perform a shift sequence.  */
		  if (!arm_arch4 && (opmode != QImode || code == SIGN_EXTEND))
		    *total += COSTS_N_INSNS (2);
		}
	      else if (arm_arch6)
		*total += COSTS_N_INSNS (1);

	      /* We don't have the necessary insn, so we need to perform some
		 other operation.  */
	      else if (TARGET_ARM && code == ZERO_EXTEND && mode == QImode)
		/* An and with constant 255.  */
		*total += COSTS_N_INSNS (1);
	      else
		/* A shift sequence.  Increase costs slightly to avoid
		   combining two shifts into an extend operation.  */
		*total += COSTS_N_INSNS (2) + 1;
	    }

	  return false;
	}

      switch (GET_MODE (XEXP (x, 0)))
	{
	case V8QImode:
	case V4HImode:
	case V2SImode:
	case V4QImode:
	case V2HImode:
	  *total = COSTS_N_INSNS (1);
	  return false;

	default:
	  gcc_unreachable ();
	}
      gcc_unreachable ();

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, speed);
      return true;

    case CONST_INT:
      if (const_ok_for_arm (INTVAL (x))
	  || const_ok_for_arm (~INTVAL (x)))
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (arm_gen_constant (SET, mode, NULL_RTX,
						  INTVAL (x), NULL_RTX,
						  NULL_RTX, 0, 0));
      return true;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      *total = COSTS_N_INSNS (3);
      return true;

    case HIGH:
      *total = COSTS_N_INSNS (1);
      return true;

    case LO_SUM:
      *total = COSTS_N_INSNS (1);
      *total += rtx_cost (XEXP (x, 0), code, 0, speed);
      return true;

    case CONST_DOUBLE:
      if (TARGET_HARD_FLOAT && vfp3_const_double_rtx (x)
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (4);
      return true;

    case SET:
      /* The vec_extract patterns accept memory operands that require an
	 address reload.  Account for the cost of that reload to give the
	 auto-inc-dec pass an incentive to try to replace them.  */
      if (TARGET_NEON && MEM_P (SET_DEST (x))
	  && GET_CODE (SET_SRC (x)) == VEC_SELECT)
	{
	  *total = rtx_cost (SET_DEST (x), code, 0, speed);
	  if (!neon_vector_mem_operand (SET_DEST (x), 2, true))
	    *total += COSTS_N_INSNS (1);
	  return true;
	}
      /* Likewise for the vec_set patterns.  */
      if (TARGET_NEON && GET_CODE (SET_SRC (x)) == VEC_MERGE
	  && GET_CODE (XEXP (SET_SRC (x), 0)) == VEC_DUPLICATE
	  && MEM_P (XEXP (XEXP (SET_SRC (x), 0), 0)))
	{
	  rtx mem = XEXP (XEXP (SET_SRC (x), 0), 0);
	  *total = rtx_cost (mem, code, 0, speed);
	  if (!neon_vector_mem_operand (mem, 2, true))
	    *total += COSTS_N_INSNS (1);
	  return true;
	}
      return false;

    case UNSPEC:
      /* We cost this as high as our memory costs to allow this to
	 be hoisted from loops.  */
      if (XINT (x, 1) == UNSPEC_PIC_UNIFIED)
	{
	  *total = COSTS_N_INSNS (2 + ARM_NUM_REGS (mode));
	}
      return true;

    case CONST_VECTOR:
      if (TARGET_NEON
	  && TARGET_HARD_FLOAT
	  && outer == SET
	  && (VALID_NEON_DREG_MODE (mode) || VALID_NEON_QREG_MODE (mode))
	  && neon_immediate_valid_for_move (x, mode, NULL, NULL))
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (4);
      return true;

    default:
      *total = COSTS_N_INSNS (4);
      return false;
    }
}

/* Estimates the size cost of thumb1 instructions.
   For now most of the code is copied from thumb1_rtx_costs. We need more
   fine grain tuning when we have more related test cases.  */
static inline int
thumb1_size_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer)
{
  enum machine_mode mode = GET_MODE (x);
  int words;

  switch (code)
    {
    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
    case ROTATERT:
      return (mode == SImode) ? COSTS_N_INSNS (1) : COSTS_N_INSNS (2);

    case PLUS:
    case MINUS:
      /* Thumb-1 needs two instructions to fulfill shiftadd/shiftsub0/shiftsub1
	 defined by RTL expansion, especially for the expansion of
	 multiplication.  */
      if ((GET_CODE (XEXP (x, 0)) == MULT
	   && power_of_two_operand (XEXP (XEXP (x,0),1), SImode))
	  || (GET_CODE (XEXP (x, 1)) == MULT
	      && power_of_two_operand (XEXP (XEXP (x, 1), 1), SImode)))
	return COSTS_N_INSNS (2);
      /* On purpose fall through for normal RTX.  */
    case COMPARE:
    case NEG:
    case NOT:
      return COSTS_N_INSNS (1);

    case MULT:
      if (CONST_INT_P (XEXP (x, 1)))
        {
          /* Thumb1 mul instruction can't operate on const. We must Load it
             into a register first.  */
          int const_size = thumb1_size_rtx_costs (XEXP (x, 1), CONST_INT, SET);
          return COSTS_N_INSNS (1) + const_size;
        }
      return COSTS_N_INSNS (1);

    case SET:
      /* A SET doesn't have a mode, so let's look at the SET_DEST to get
	 the mode.  */
      words = ARM_NUM_INTS (GET_MODE_SIZE (GET_MODE (SET_DEST (x))));
      return (COSTS_N_INSNS (words)
              + 4 * ((MEM_P (SET_SRC (x)))
                     + MEM_P (SET_DEST (x))));

    case CONST_INT:
      if (outer == SET)
        {
          if ((unsigned HOST_WIDE_INT) INTVAL (x) < 256)
            return COSTS_N_INSNS (1);
	  /* See split "TARGET_THUMB1 && satisfies_constraint_J".  */
	  if (INTVAL (x) >= -255 && INTVAL (x) <= -1)
            return COSTS_N_INSNS (2);
	  /* See split "TARGET_THUMB1 && satisfies_constraint_K".  */
          if (thumb_shiftable_const (INTVAL (x)))
            return COSTS_N_INSNS (2);
          return COSTS_N_INSNS (3);
        }
      else if ((outer == PLUS || outer == COMPARE)
               && INTVAL (x) < 256 && INTVAL (x) > -256)
        return 0;
      else if ((outer == IOR || outer == XOR || outer == AND)
               && INTVAL (x) < 256 && INTVAL (x) >= -256)
        return COSTS_N_INSNS (1);
      else if (outer == AND)
        {
          int i;
          /* This duplicates the tests in the andsi3 expander.  */
          for (i = 9; i <= 31; i++)
            if ((((HOST_WIDE_INT) 1) << i) - 1 == INTVAL (x)
                || (((HOST_WIDE_INT) 1) << i) - 1 == ~INTVAL (x))
              return COSTS_N_INSNS (2);
        }
      else if (outer == ASHIFT || outer == ASHIFTRT
               || outer == LSHIFTRT)
        return 0;
      return COSTS_N_INSNS (2);

    case CONST:
    case CONST_DOUBLE:
    case LABEL_REF:
    case SYMBOL_REF:
      return COSTS_N_INSNS (3);

    case UDIV:
    case UMOD:
    case DIV:
    case MOD:
      return 100;

    case TRUNCATE:
      return 99;

    case AND:
    case XOR:
    case IOR:
      /* XXX guess.  */
      return 8;

    case MEM:
      /* XXX another guess.  */
      /* Memory costs quite a lot for the first word, but subsequent words
         load at the equivalent of a single insn each.  */
      return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
              + ((GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
                 ? 4 : 0));

    case IF_THEN_ELSE:
      /* XXX a guess.  */
      if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
        return 14;
      return 2;

    case ZERO_EXTEND:
      /* XXX still guessing.  */
      switch (GET_MODE (XEXP (x, 0)))
        {
          case QImode:
            return (1 + (mode == DImode ? 4 : 0)
                    + (MEM_P (XEXP (x, 0)) ? 10 : 0));

          case HImode:
            return (4 + (mode == DImode ? 4 : 0)
                    + (MEM_P (XEXP (x, 0)) ? 10 : 0));

          case SImode:
            return (1 + (MEM_P (XEXP (x, 0)) ? 10 : 0));

          default:
            return 99;
        }

    default:
      return 99;
    }
}

/* RTX costs when optimizing for size.  */
static bool
arm_size_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
		    int *total)
{
  enum machine_mode mode = GET_MODE (x);
  if (TARGET_THUMB1)
    {
      *total = thumb1_size_rtx_costs (x, code, outer_code);
      return true;
    }

  /* FIXME: This makes no attempt to prefer narrow Thumb-2 instructions.  */
  switch (code)
    {
    case MEM:
      /* A memory access costs 1 insn if the mode is small, or the address is
	 a single register, otherwise it costs one insn per word.  */
      if (REG_P (XEXP (x, 0)))
	*total = COSTS_N_INSNS (1);
      else if (flag_pic
	       && GET_CODE (XEXP (x, 0)) == PLUS
	       && will_be_in_index_register (XEXP (XEXP (x, 0), 1)))
	/* This will be split into two instructions.
	   See arm.md:calculate_pic_address.  */
	*total = COSTS_N_INSNS (2);
      else
	*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
      return true;

    case DIV:
    case MOD:
    case UDIV:
    case UMOD:
      /* Needs a libcall, so it costs about this.  */
      *total = COSTS_N_INSNS (2);
      return false;

    case ROTATE:
      if (mode == SImode && REG_P (XEXP (x, 1)))
	{
	  *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, false);
	  return true;
	}
      /* Fall through */
    case ROTATERT:
    case ASHIFT:
    case LSHIFTRT:
    case ASHIFTRT:
      if (mode == DImode && CONST_INT_P (XEXP (x, 1)))
	{
	  *total = COSTS_N_INSNS (3) + rtx_cost (XEXP (x, 0), code, 0, false);
	  return true;
	}
      else if (mode == SImode)
	{
	  *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, false);
	  /* Slightly disparage register shifts, but not by much.  */
	  if (!CONST_INT_P (XEXP (x, 1)))
	    *total += 1 + rtx_cost (XEXP (x, 1), code, 1, false);
	  return true;
	}

      /* Needs a libcall.  */
      *total = COSTS_N_INSNS (2);
      return false;

    case MINUS:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  *total = COSTS_N_INSNS (1);
	  return false;
	}

      if (mode == SImode)
	{
	  enum rtx_code subcode0 = GET_CODE (XEXP (x, 0));
	  enum rtx_code subcode1 = GET_CODE (XEXP (x, 1));

	  if (subcode0 == ROTATE || subcode0 == ROTATERT || subcode0 == ASHIFT
	      || subcode0 == LSHIFTRT || subcode0 == ASHIFTRT
	      || subcode1 == ROTATE || subcode1 == ROTATERT
	      || subcode1 == ASHIFT || subcode1 == LSHIFTRT
	      || subcode1 == ASHIFTRT)
	    {
	      /* It's just the cost of the two operands.  */
	      *total = 0;
	      return false;
	    }

	  *total = COSTS_N_INSNS (1);
	  return false;
	}

      *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
      return false;

    case PLUS:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  *total = COSTS_N_INSNS (1);
	  return false;
	}

      /* A shift as a part of ADD costs nothing.  */
      if (GET_CODE (XEXP (x, 0)) == MULT
	  && power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
	{
	  *total = COSTS_N_INSNS (TARGET_THUMB2 ? 2 : 1);
	  *total += rtx_cost (XEXP (XEXP (x, 0), 0), code, 0, false);
	  *total += rtx_cost (XEXP (x, 1), code, 1, false);
	  return true;
	}

      /* Fall through */
    case AND: case XOR: case IOR:
      if (mode == SImode)
	{
	  enum rtx_code subcode = GET_CODE (XEXP (x, 0));

	  if (subcode == ROTATE || subcode == ROTATERT || subcode == ASHIFT
	      || subcode == LSHIFTRT || subcode == ASHIFTRT
	      || (code == AND && subcode == NOT))
	    {
	      /* It's just the cost of the two operands.  */
	      *total = 0;
	      return false;
	    }
	}

      *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
      return false;

    case MULT:
      *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
      return false;

    case NEG:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  *total = COSTS_N_INSNS (1);
	  return false;
	}

      /* Fall through */
    case NOT:
      *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));

      return false;

    case IF_THEN_ELSE:
      *total = 0;
      return false;

    case COMPARE:
      if (cc_register (XEXP (x, 0), VOIDmode))
	* total = 0;
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case ABS:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (1 + ARM_NUM_REGS (mode));
      return false;

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      return arm_rtx_costs_1 (x, outer_code, total, 0);

    case CONST_INT:
      if (const_ok_for_arm (INTVAL (x)))
	/* A multiplication by a constant requires another instruction
	   to load the constant to a register.  */
	*total = COSTS_N_INSNS ((outer_code == SET || outer_code == MULT)
				? 1 : 0);
      else if (const_ok_for_arm (~INTVAL (x)))
	*total = COSTS_N_INSNS (outer_code == AND ? 0 : 1);
      else if (const_ok_for_arm (-INTVAL (x)))
	{
	  if (outer_code == COMPARE || outer_code == PLUS
	      || outer_code == MINUS)
	    *total = 0;
	  else
	    *total = COSTS_N_INSNS (1);
	}
      else
	*total = COSTS_N_INSNS (2);
      return true;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      *total = COSTS_N_INSNS (2);
      return true;

    case CONST_DOUBLE:
      *total = COSTS_N_INSNS (4);
      return true;

    case CONST_VECTOR:
      if (TARGET_NEON
	  && TARGET_HARD_FLOAT
	  && outer_code == SET
	  && (VALID_NEON_DREG_MODE (mode) || VALID_NEON_QREG_MODE (mode))
	  && neon_immediate_valid_for_move (x, mode, NULL, NULL))
	*total = COSTS_N_INSNS (1);
      else
	*total = COSTS_N_INSNS (4);
      return true;

    case HIGH:
    case LO_SUM:
      /* We prefer constant pool entries to MOVW/MOVT pairs, so bump the
	 cost of these slightly.  */
      *total = COSTS_N_INSNS (1) + 1;
      return true;

    case SET:
      return false;

    default:
      if (mode != VOIDmode)
	*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
      else
	*total = COSTS_N_INSNS (4); /* How knows?  */
      return false;
    }
}

/* Helper function for arm_rtx_costs.  If the operand is a valid shift
   operand, then return the operand that is being shifted.  If the shift
   is not by a constant, then set SHIFT_REG to point to the operand.
   Return NULL if OP is not a shifter operand.  */
static rtx
shifter_op_p (rtx op, rtx *shift_reg)
{
  enum rtx_code code = GET_CODE (op);

  if (code == MULT && CONST_INT_P (XEXP (op, 1))
      && exact_log2 (INTVAL (XEXP (op, 1))) > 0)
    return XEXP (op, 0);
  else if (code == ROTATE && CONST_INT_P (XEXP (op, 1)))
    return XEXP (op, 0);
  else if (code == ROTATERT || code == ASHIFT || code == LSHIFTRT
	   || code == ASHIFTRT)
    {
      if (!CONST_INT_P (XEXP (op, 1)))
	*shift_reg = XEXP (op, 1);
      return XEXP (op, 0);
    }

  return NULL;
}

static bool
arm_unspec_cost (rtx x, enum rtx_code /* outer_code */, bool speed_p, int *cost)
{
  const struct cpu_cost_table *extra_cost = current_tune->insn_extra_cost;
  gcc_assert (GET_CODE (x) == UNSPEC);

  switch (XINT (x, 1))
    {
    case UNSPEC_UNALIGNED_LOAD:
      /* We can only do unaligned loads into the integer unit, and we can't
	 use LDM or LDRD.  */
      *cost = COSTS_N_INSNS (ARM_NUM_REGS (GET_MODE (x)));
      if (speed_p)
	*cost += (ARM_NUM_REGS (GET_MODE (x)) * extra_cost->ldst.load
		  + extra_cost->ldst.load_unaligned);

#ifdef NOT_YET
      *cost += arm_address_cost (XEXP (XVECEXP (x, 0, 0), 0), GET_MODE (x),
				 ADDR_SPACE_GENERIC, speed_p);
#endif
      return true;

    case UNSPEC_UNALIGNED_STORE:
      *cost = COSTS_N_INSNS (ARM_NUM_REGS (GET_MODE (x)));
      if (speed_p)
	*cost += (ARM_NUM_REGS (GET_MODE (x)) * extra_cost->ldst.store
		  + extra_cost->ldst.store_unaligned);

      *cost += rtx_cost (XVECEXP (x, 0, 0), UNSPEC, 0, speed_p);
#ifdef NOT_YET
      *cost += arm_address_cost (XEXP (XVECEXP (x, 0, 0), 0), GET_MODE (x),
				 ADDR_SPACE_GENERIC, speed_p);
#endif
      return true;

    case UNSPEC_VRINTZ:
    case UNSPEC_VRINTP:
    case UNSPEC_VRINTM:
    case UNSPEC_VRINTR:
    case UNSPEC_VRINTX:
    case UNSPEC_VRINTA:
      *cost = COSTS_N_INSNS (1);
      if (speed_p)
        *cost += extra_cost->fp[GET_MODE (x) == DFmode].roundint;

      return true;
    default:
      *cost = COSTS_N_INSNS (2);
      break;
    }
  return false;
}

/* Cost of a libcall.  We assume one insn per argument, an amount for the
   call (one insn for -Os) and then one for processing the result.  */
#define LIBCALL_COST(N) COSTS_N_INSNS (N + (speed_p ? 18 : 2))

#define HANDLE_NARROW_SHIFT_ARITH(OP, IDX)				\
	do								\
	  {								\
	    shift_op = shifter_op_p (XEXP (x, IDX), &shift_reg);	\
	    if (shift_op != NULL					\
	        && arm_rtx_shift_left_p (XEXP (x, IDX)))		\
	      {								\
	        if (shift_reg)						\
		  {							\
		    if (speed_p)					\
		      *cost += extra_cost->alu.arith_shift_reg;	\
		    *cost += rtx_cost (shift_reg, ASHIFT, 1, speed_p);	\
		  }							\
	        else if (speed_p)					\
		  *cost += extra_cost->alu.arith_shift;		\
									\
		  *cost += (rtx_cost (shift_op, ASHIFT, 0, speed_p)	\
			  + rtx_cost (XEXP (x, 1 - IDX),		\
			              OP, 1, speed_p));		\
	        return true;						\
	      }								\
	  }								\
	while (0);

/* RTX costs.  Make an estimate of the cost of executing the operation
   X, which is contained with an operation with code OUTER_CODE.
   SPEED_P indicates whether the cost desired is the performance cost,
   or the size cost.  The estimate is stored in COST and the return
   value is TRUE if the cost calculation is final, or FALSE if the
   caller should recurse through the operands of X to add additional
   costs.

   We currently make no attempt to model the size savings of Thumb-2
   16-bit instructions.  At the normal points in compilation where
   this code is called we have no measure of whether the condition
   flags are live or not, and thus no realistic way to determine what
   the size will eventually be.  */
static bool
arm_new_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
		   const struct cpu_cost_table *extra_cost,
		   int *cost, bool speed_p)
{
  enum machine_mode mode = GET_MODE (x);

  if (TARGET_THUMB1)
    {
      if (speed_p)
	*cost = thumb1_rtx_costs (x, code, outer_code);
      else
	*cost = thumb1_size_rtx_costs (x, code, outer_code);
      return true;
    }

  switch (code)
    {
    case SET:
      *cost = 0;
      /* SET RTXs don't have a mode so we get it from the destination.  */
      mode = GET_MODE (SET_DEST (x));

      if (REG_P (SET_SRC (x))
	  && REG_P (SET_DEST (x)))
	{
	  /* Assume that most copies can be done with a single insn,
	     unless we don't have HW FP, in which case everything
	     larger than word mode will require two insns.  */
	  *cost = COSTS_N_INSNS (((!TARGET_HARD_FLOAT
				   && GET_MODE_SIZE (mode) > 4)
				  || mode == DImode)
				 ? 2 : 1);
	  /* Conditional register moves can be encoded
	     in 16 bits in Thumb mode.  */
	  if (!speed_p && TARGET_THUMB && outer_code == COND_EXEC)
	    *cost >>= 1;

	  return true;
	}

      if (CONST_INT_P (SET_SRC (x)))
	{
	  /* Handle CONST_INT here, since the value doesn't have a mode
	     and we would otherwise be unable to work out the true cost.  */
	  *cost = rtx_cost (SET_DEST (x), SET, 0, speed_p);
	  outer_code = SET;
	  /* Slightly lower the cost of setting a core reg to a constant.
	     This helps break up chains and allows for better scheduling.  */
	  if (REG_P (SET_DEST (x))
	      && REGNO (SET_DEST (x)) <= LR_REGNUM)
	    *cost -= 1;
	  x = SET_SRC (x);
	  /* Immediate moves with an immediate in the range [0, 255] can be
	     encoded in 16 bits in Thumb mode.  */
	  if (!speed_p && TARGET_THUMB && GET_MODE (x) == SImode
	      && INTVAL (x) >= 0 && INTVAL (x) <=255)
	    *cost >>= 1;
	  goto const_int_cost;
	}

      return false;

    case MEM:
      /* A memory access costs 1 insn if the mode is small, or the address is
	 a single register, otherwise it costs one insn per word.  */
      if (REG_P (XEXP (x, 0)))
	*cost = COSTS_N_INSNS (1);
      else if (flag_pic
	       && GET_CODE (XEXP (x, 0)) == PLUS
	       && will_be_in_index_register (XEXP (XEXP (x, 0), 1)))
	/* This will be split into two instructions.
	   See arm.md:calculate_pic_address.  */
	*cost = COSTS_N_INSNS (2);
      else
	*cost = COSTS_N_INSNS (ARM_NUM_REGS (mode));

      /* For speed optimizations, add the costs of the address and
	 accessing memory.  */
      if (speed_p)
#ifdef NOT_YET
	*cost += (extra_cost->ldst.load
		  + arm_address_cost (XEXP (x, 0), mode,
				      ADDR_SPACE_GENERIC, speed_p));
#else
        *cost += extra_cost->ldst.load;
#endif
      return true;

    case PARALLEL:
    {
   /* Calculations of LDM costs are complex.  We assume an initial cost
   (ldm_1st) which will load the number of registers mentioned in
   ldm_regs_per_insn_1st registers; then each additional
   ldm_regs_per_insn_subsequent registers cost one more insn.  The
   formula for N regs is thus:

   ldm_1st + COSTS_N_INSNS ((max (N - ldm_regs_per_insn_1st, 0)
			     + ldm_regs_per_insn_subsequent - 1)
			    / ldm_regs_per_insn_subsequent).

   Additional costs may also be added for addressing.  A similar
   formula is used for STM.  */

      bool is_ldm = load_multiple_operation (x, SImode);
      bool is_stm = store_multiple_operation (x, SImode);

      *cost = COSTS_N_INSNS (1);

      if (is_ldm || is_stm)
        {
	  if (speed_p)
	    {
	      HOST_WIDE_INT nregs = XVECLEN (x, 0);
	      HOST_WIDE_INT regs_per_insn_1st = is_ldm
	                              ? extra_cost->ldst.ldm_regs_per_insn_1st
	                              : extra_cost->ldst.stm_regs_per_insn_1st;
	      HOST_WIDE_INT regs_per_insn_sub = is_ldm
	                       ? extra_cost->ldst.ldm_regs_per_insn_subsequent
	                       : extra_cost->ldst.stm_regs_per_insn_subsequent;

	      *cost += regs_per_insn_1st
	               + COSTS_N_INSNS (((MAX (nregs - regs_per_insn_1st, 0))
					    + regs_per_insn_sub - 1)
					  / regs_per_insn_sub);
	      return true;
	    }

        }
      return false;
    }
    case DIV:
    case UDIV:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	*cost = COSTS_N_INSNS (speed_p
			       ? extra_cost->fp[mode != SFmode].div : 1);
      else if (mode == SImode && TARGET_IDIV)
	*cost = COSTS_N_INSNS (speed_p ? extra_cost->mult[0].idiv : 1);
      else
	*cost = LIBCALL_COST (2);
      return false;	/* All arguments must be in registers.  */

    case MOD:
    case UMOD:
      *cost = LIBCALL_COST (2);
      return false;	/* All arguments must be in registers.  */

    case ROTATE:
      if (mode == SImode && REG_P (XEXP (x, 1)))
	{
	  *cost = (COSTS_N_INSNS (2)
		   + rtx_cost (XEXP (x, 0), code, 0, speed_p));
	  if (speed_p)
	    *cost += extra_cost->alu.shift_reg;
	  return true;
	}
      /* Fall through */
    case ROTATERT:
    case ASHIFT:
    case LSHIFTRT:
    case ASHIFTRT:
      if (mode == DImode && CONST_INT_P (XEXP (x, 1)))
	{
	  *cost = (COSTS_N_INSNS (3)
		   + rtx_cost (XEXP (x, 0), code, 0, speed_p));
	  if (speed_p)
	    *cost += 2 * extra_cost->alu.shift;
	  return true;
	}
      else if (mode == SImode)
	{
	  *cost = (COSTS_N_INSNS (1)
		   + rtx_cost (XEXP (x, 0), code, 0, speed_p));
	  /* Slightly disparage register shifts at -Os, but not by much.  */
	  if (!CONST_INT_P (XEXP (x, 1)))
	    *cost += (speed_p ? extra_cost->alu.shift_reg : 1
		      + rtx_cost (XEXP (x, 1), code, 1, speed_p));
	  return true;
	}
      else if (GET_MODE_CLASS (mode) == MODE_INT
	       && GET_MODE_SIZE (mode) < 4)
	{
	  if (code == ASHIFT)
	    {
	      *cost = (COSTS_N_INSNS (1)
		       + rtx_cost (XEXP (x, 0), code, 0, speed_p));
	      /* Slightly disparage register shifts at -Os, but not by
	         much.  */
	      if (!CONST_INT_P (XEXP (x, 1)))
		*cost += (speed_p ? extra_cost->alu.shift_reg : 1
			  + rtx_cost (XEXP (x, 1), code, 1, speed_p));
	    }
	  else if (code == LSHIFTRT || code == ASHIFTRT)
	    {
	      if (arm_arch_thumb2 && CONST_INT_P (XEXP (x, 1)))
		{
		  /* Can use SBFX/UBFX.  */
		  *cost = COSTS_N_INSNS (1);
		  if (speed_p)
		    *cost += extra_cost->alu.bfx;
		  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
		}
	      else
		{
		  *cost = COSTS_N_INSNS (2);
		  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
		  if (speed_p)
		    {
		      if (CONST_INT_P (XEXP (x, 1)))
			*cost += 2 * extra_cost->alu.shift;
		      else
			*cost += (extra_cost->alu.shift
				  + extra_cost->alu.shift_reg);
		    }
		  else
		    /* Slightly disparage register shifts.  */
		    *cost += !CONST_INT_P (XEXP (x, 1));
		}
	    }
	  else /* Rotates.  */
	    {
	      *cost = COSTS_N_INSNS (3 + !CONST_INT_P (XEXP (x, 1)));
	      *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	      if (speed_p)
		{
		  if (CONST_INT_P (XEXP (x, 1)))
		    *cost += (2 * extra_cost->alu.shift
			      + extra_cost->alu.log_shift);
		  else
		    *cost += (extra_cost->alu.shift
			      + extra_cost->alu.shift_reg
			      + extra_cost->alu.log_shift_reg);
		}
	    }
	  return true;
	}

      *cost = LIBCALL_COST (2);
      return false;

    case MINUS:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  *cost = COSTS_N_INSNS (1);
	  if (GET_CODE (XEXP (x, 0)) == MULT
	      || GET_CODE (XEXP (x, 1)) == MULT)
	    {
	      rtx mul_op0, mul_op1, sub_op;

	      if (speed_p)
		*cost += extra_cost->fp[mode != SFmode].mult_addsub;

	      if (GET_CODE (XEXP (x, 0)) == MULT)
		{
		  mul_op0 = XEXP (XEXP (x, 0), 0);
		  mul_op1 = XEXP (XEXP (x, 0), 1);
		  sub_op = XEXP (x, 1);
		}
	      else
		{
		  mul_op0 = XEXP (XEXP (x, 1), 0);
		  mul_op1 = XEXP (XEXP (x, 1), 1);
		  sub_op = XEXP (x, 0);
		}

	      /* The first operand of the multiply may be optionally
		 negated.  */
	      if (GET_CODE (mul_op0) == NEG)
		mul_op0 = XEXP (mul_op0, 0);

	      *cost += (rtx_cost (mul_op0, code, 0, speed_p)
			+ rtx_cost (mul_op1, code, 0, speed_p)
			+ rtx_cost (sub_op, code, 0, speed_p));

	      return true;
	    }

	  if (speed_p)
	    *cost += extra_cost->fp[mode != SFmode].addsub;
	  return false;
	}

      if (mode == SImode)
	{
	  rtx shift_by_reg = NULL;
	  rtx shift_op;
	  rtx non_shift_op;

	  *cost = COSTS_N_INSNS (1);

	  shift_op = shifter_op_p (XEXP (x, 0), &shift_by_reg);
	  if (shift_op == NULL)
	    {
	      shift_op = shifter_op_p (XEXP (x, 1), &shift_by_reg);
	      non_shift_op = XEXP (x, 0);
	    }
	  else
	    non_shift_op = XEXP (x, 1);

	  if (shift_op != NULL)
	    {
	      if (shift_by_reg != NULL)
		{
		  if (speed_p)
		    *cost += extra_cost->alu.arith_shift_reg;
		  *cost += rtx_cost (shift_by_reg, code, 0, speed_p);
		}
	      else if (speed_p)
		*cost += extra_cost->alu.arith_shift;

	      *cost += (rtx_cost (shift_op, code, 0, speed_p)
			+ rtx_cost (non_shift_op, code, 0, speed_p));
	      return true;
	    }

	  if (arm_arch_thumb2
	      && GET_CODE (XEXP (x, 1)) == MULT)
	    {
	      /* MLS.  */
	      if (speed_p)
		*cost += extra_cost->mult[0].add;
	      *cost += (rtx_cost (XEXP (x, 0), MINUS, 0, speed_p)
			+ rtx_cost (XEXP (XEXP (x, 1), 0), MULT, 0, speed_p)
			+ rtx_cost (XEXP (XEXP (x, 1), 1), MULT, 1, speed_p));
	      return true;
	    }

	  if (CONST_INT_P (XEXP (x, 0)))
	    {
	      int insns = arm_gen_constant (MINUS, SImode, NULL_RTX,
					    INTVAL (XEXP (x, 0)), NULL_RTX,
					    NULL_RTX, 1, 0);
	      *cost = COSTS_N_INSNS (insns);
	      if (speed_p)
		*cost += insns * extra_cost->alu.arith;
	      *cost += rtx_cost (XEXP (x, 1), code, 1, speed_p);
	      return true;
	    }

	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_SIZE (mode) < 4)
	{
	  rtx shift_op, shift_reg;
	  shift_reg = NULL;

	  /* We check both sides of the MINUS for shifter operands since,
	     unlike PLUS, it's not commutative.  */

	  HANDLE_NARROW_SHIFT_ARITH (MINUS, 0)
	  HANDLE_NARROW_SHIFT_ARITH (MINUS, 1)

	  /* Slightly disparage, as we might need to widen the result.  */
	  *cost = 1 + COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.arith;

	  if (CONST_INT_P (XEXP (x, 0)))
	    {
	      *cost += rtx_cost (XEXP (x, 1), code, 1, speed_p);
	      return true;
	    }

	  return false;
	}

      if (mode == DImode)
	{
	  *cost = COSTS_N_INSNS (2);

	  if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
	    {
	      rtx op1 = XEXP (x, 1);

	      if (speed_p)
		*cost += 2 * extra_cost->alu.arith;

	      if (GET_CODE (op1) == ZERO_EXTEND)
		*cost += rtx_cost (XEXP (op1, 0), ZERO_EXTEND, 0, speed_p);
	      else
		*cost += rtx_cost (op1, MINUS, 1, speed_p);
	      *cost += rtx_cost (XEXP (XEXP (x, 0), 0), ZERO_EXTEND,
				 0, speed_p);
	      return true;
	    }
	  else if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	    {
	      if (speed_p)
		*cost += extra_cost->alu.arith + extra_cost->alu.arith_shift;
	      *cost += (rtx_cost (XEXP (XEXP (x, 0), 0), SIGN_EXTEND,
				  0, speed_p)
			+ rtx_cost (XEXP (x, 1), MINUS, 1, speed_p));
	      return true;
	    }
	  else if (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
		   || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
	    {
	      if (speed_p)
		*cost += (extra_cost->alu.arith
			  + (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
			     ? extra_cost->alu.arith
			     : extra_cost->alu.arith_shift));
	      *cost += (rtx_cost (XEXP (x, 0), MINUS, 0, speed_p)
			+ rtx_cost (XEXP (XEXP (x, 1), 0),
				    GET_CODE (XEXP (x, 1)), 0, speed_p));
	      return true;
	    }

	  if (speed_p)
	    *cost += 2 * extra_cost->alu.arith;
	  return false;
	}

      /* Vector mode?  */

      *cost = LIBCALL_COST (2);
      return false;

    case PLUS:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  *cost = COSTS_N_INSNS (1);
	  if (GET_CODE (XEXP (x, 0)) == MULT)
	    {
	      rtx mul_op0, mul_op1, add_op;

	      if (speed_p)
		*cost += extra_cost->fp[mode != SFmode].mult_addsub;

	      mul_op0 = XEXP (XEXP (x, 0), 0);
	      mul_op1 = XEXP (XEXP (x, 0), 1);
	      add_op = XEXP (x, 1);

	      *cost += (rtx_cost (mul_op0, code, 0, speed_p)
			+ rtx_cost (mul_op1, code, 0, speed_p)
			+ rtx_cost (add_op, code, 0, speed_p));

	      return true;
	    }

	  if (speed_p)
	    *cost += extra_cost->fp[mode != SFmode].addsub;
	  return false;
	}
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  *cost = LIBCALL_COST (2);
	  return false;
	}

	/* Narrow modes can be synthesized in SImode, but the range
	   of useful sub-operations is limited.  Check for shift operations
	   on one of the operands.  Only left shifts can be used in the
	   narrow modes.  */
      if (GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_SIZE (mode) < 4)
	{
	  rtx shift_op, shift_reg;
	  shift_reg = NULL;

	  HANDLE_NARROW_SHIFT_ARITH (PLUS, 0)

	  if (CONST_INT_P (XEXP (x, 1)))
	    {
	      int insns = arm_gen_constant (PLUS, SImode, NULL_RTX,
					    INTVAL (XEXP (x, 1)), NULL_RTX,
					    NULL_RTX, 1, 0);
	      *cost = COSTS_N_INSNS (insns);
	      if (speed_p)
		*cost += insns * extra_cost->alu.arith;
	      /* Slightly penalize a narrow operation as the result may
		 need widening.  */
	      *cost += 1 + rtx_cost (XEXP (x, 0), PLUS, 0, speed_p);
	      return true;
	    }

	  /* Slightly penalize a narrow operation as the result may
	     need widening.  */
	  *cost = 1 + COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.arith;

	  return false;
	}

      if (mode == SImode)
	{
	  rtx shift_op, shift_reg;

	  *cost = COSTS_N_INSNS (1);
	  if (TARGET_INT_SIMD
	      && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
		  || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
	    {
	      /* UXTA[BH] or SXTA[BH].  */
	      if (speed_p)
		*cost += extra_cost->alu.extend_arith;
	      *cost += (rtx_cost (XEXP (XEXP (x, 0), 0), ZERO_EXTEND, 0,
				  speed_p)
			+ rtx_cost (XEXP (x, 1), PLUS, 0, speed_p));
	      return true;
	    }

	  shift_reg = NULL;
	  shift_op = shifter_op_p (XEXP (x, 0), &shift_reg);
	  if (shift_op != NULL)
	    {
	      if (shift_reg)
		{
		  if (speed_p)
		    *cost += extra_cost->alu.arith_shift_reg;
		  *cost += rtx_cost (shift_reg, ASHIFT, 1, speed_p);
		}
	      else if (speed_p)
		*cost += extra_cost->alu.arith_shift;

	      *cost += (rtx_cost (shift_op, ASHIFT, 0, speed_p)
			+ rtx_cost (XEXP (x, 1), PLUS, 1, speed_p));
	      return true;
	    }
	  if (GET_CODE (XEXP (x, 0)) == MULT)
	    {
	      rtx mul_op = XEXP (x, 0);

	      *cost = COSTS_N_INSNS (1);

	      if (TARGET_DSP_MULTIPLY
		  && ((GET_CODE (XEXP (mul_op, 0)) == SIGN_EXTEND
		       && (GET_CODE (XEXP (mul_op, 1)) == SIGN_EXTEND
			   || (GET_CODE (XEXP (mul_op, 1)) == ASHIFTRT
			       && CONST_INT_P (XEXP (XEXP (mul_op, 1), 1))
			       && INTVAL (XEXP (XEXP (mul_op, 1), 1)) == 16)))
		      || (GET_CODE (XEXP (mul_op, 0)) == ASHIFTRT
			  && CONST_INT_P (XEXP (XEXP (mul_op, 0), 1))
			  && INTVAL (XEXP (XEXP (mul_op, 0), 1)) == 16
			  && (GET_CODE (XEXP (mul_op, 1)) == SIGN_EXTEND
			      || (GET_CODE (XEXP (mul_op, 1)) == ASHIFTRT
				  && CONST_INT_P (XEXP (XEXP (mul_op, 1), 1))
				  && (INTVAL (XEXP (XEXP (mul_op, 1), 1))
				      == 16))))))
		{
		  /* SMLA[BT][BT].  */
		  if (speed_p)
		    *cost += extra_cost->mult[0].extend_add;
		  *cost += (rtx_cost (XEXP (XEXP (mul_op, 0), 0),
				      SIGN_EXTEND, 0, speed_p)
			    + rtx_cost (XEXP (XEXP (mul_op, 1), 0),
					SIGN_EXTEND, 0, speed_p)
			    + rtx_cost (XEXP (x, 1), PLUS, 1, speed_p));
		  return true;
		}

	      if (speed_p)
		*cost += extra_cost->mult[0].add;
	      *cost += (rtx_cost (XEXP (mul_op, 0), MULT, 0, speed_p)
			+ rtx_cost (XEXP (mul_op, 1), MULT, 1, speed_p)
			+ rtx_cost (XEXP (x, 1), PLUS, 1, speed_p));
	      return true;
	    }
	  if (CONST_INT_P (XEXP (x, 1)))
	    {
	      int insns = arm_gen_constant (PLUS, SImode, NULL_RTX,
					    INTVAL (XEXP (x, 1)), NULL_RTX,
					    NULL_RTX, 1, 0);
	      *cost = COSTS_N_INSNS (insns);
	      if (speed_p)
		*cost += insns * extra_cost->alu.arith;
	      *cost += rtx_cost (XEXP (x, 0), PLUS, 0, speed_p);
	      return true;
	    }
	  return false;
	}

      if (mode == DImode)
	{
	  if (arm_arch3m
	      && GET_CODE (XEXP (x, 0)) == MULT
	      && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
		   && GET_CODE (XEXP (XEXP (x, 0), 1)) == ZERO_EXTEND)
		  || (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
		      && GET_CODE (XEXP (XEXP (x, 0), 1)) == SIGN_EXTEND)))
	    {
	      *cost = COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->mult[1].extend_add;
	      *cost += (rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0),
				  ZERO_EXTEND, 0, speed_p)
			+ rtx_cost (XEXP (XEXP (XEXP (x, 0), 1), 0),
				    ZERO_EXTEND, 0, speed_p)
			+ rtx_cost (XEXP (x, 1), PLUS, 1, speed_p));
	      return true;
	    }

	  *cost = COSTS_N_INSNS (2);

	  if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	    {
	      if (speed_p)
		*cost += (extra_cost->alu.arith
			  + (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
			     ? extra_cost->alu.arith
			     : extra_cost->alu.arith_shift));

	      *cost += (rtx_cost (XEXP (XEXP (x, 0), 0), ZERO_EXTEND, 0,
				  speed_p)
			+ rtx_cost (XEXP (x, 1), PLUS, 1, speed_p));
	      return true;
	    }

	  if (speed_p)
	    *cost += 2 * extra_cost->alu.arith;
	  return false;
	}

      /* Vector mode?  */
      *cost = LIBCALL_COST (2);
      return false;

    case AND: case XOR: case IOR:
      if (mode == SImode)
	{
	  enum rtx_code subcode = GET_CODE (XEXP (x, 0));
	  rtx op0 = XEXP (x, 0);
	  rtx shift_op, shift_reg;

	  *cost = COSTS_N_INSNS (1);

	  if (subcode == NOT
	      && (code == AND
		  || (code == IOR && TARGET_THUMB2)))
	    op0 = XEXP (op0, 0);

	  shift_reg = NULL;
	  shift_op = shifter_op_p (op0, &shift_reg);
	  if (shift_op != NULL)
	    {
	      if (shift_reg)
		{
		  if (speed_p)
		    *cost += extra_cost->alu.log_shift_reg;
		  *cost += rtx_cost (shift_reg, ASHIFT, 1, speed_p);
		}
	      else if (speed_p)
		*cost += extra_cost->alu.log_shift;

	      *cost += (rtx_cost (shift_op, ASHIFT, 0, speed_p)
			+ rtx_cost (XEXP (x, 1), code, 1, speed_p));
	      return true;
	    }

	  if (CONST_INT_P (XEXP (x, 1)))
	    {
	      int insns = arm_gen_constant (code, SImode, NULL_RTX,
					    INTVAL (XEXP (x, 1)), NULL_RTX,
					    NULL_RTX, 1, 0);

	      *cost = COSTS_N_INSNS (insns);
	      if (speed_p)
		*cost += insns * extra_cost->alu.logical;
	      *cost += rtx_cost (op0, code, 0, speed_p);
	      return true;
	    }

	  if (speed_p)
	    *cost += extra_cost->alu.logical;
	  *cost += (rtx_cost (op0, code, 0, speed_p)
		    + rtx_cost (XEXP (x, 1), code, 1, speed_p));
	  return true;
	}

      if (mode == DImode)
	{
	  rtx op0 = XEXP (x, 0);
	  enum rtx_code subcode = GET_CODE (op0);

	  *cost = COSTS_N_INSNS (2);

	  if (subcode == NOT
	      && (code == AND
		  || (code == IOR && TARGET_THUMB2)))
	    op0 = XEXP (op0, 0);

	  if (GET_CODE (op0) == ZERO_EXTEND)
	    {
	      if (speed_p)
		*cost += 2 * extra_cost->alu.logical;

	      *cost += (rtx_cost (XEXP (op0, 0), ZERO_EXTEND, 0, speed_p)
			+ rtx_cost (XEXP (x, 1), code, 0, speed_p));
	      return true;
	    }
	  else if (GET_CODE (op0) == SIGN_EXTEND)
	    {
	      if (speed_p)
		*cost += extra_cost->alu.logical + extra_cost->alu.log_shift;

	      *cost += (rtx_cost (XEXP (op0, 0), SIGN_EXTEND, 0, speed_p)
			+ rtx_cost (XEXP (x, 1), code, 0, speed_p));
	      return true;
	    }

	  if (speed_p)
	    *cost += 2 * extra_cost->alu.logical;

	  return true;
	}
      /* Vector mode?  */

      *cost = LIBCALL_COST (2);
      return false;

    case MULT:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  rtx op0 = XEXP (x, 0);

	  *cost = COSTS_N_INSNS (1);

	  if (GET_CODE (op0) == NEG)
	    op0 = XEXP (op0, 0);

	  if (speed_p)
	    *cost += extra_cost->fp[mode != SFmode].mult;

	  *cost += (rtx_cost (op0, MULT, 0, speed_p)
		    + rtx_cost (XEXP (x, 1), MULT, 1, speed_p));
	  return true;
	}
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  *cost = LIBCALL_COST (2);
	  return false;
	}

      if (mode == SImode)
	{
	  *cost = COSTS_N_INSNS (1);
	  if (TARGET_DSP_MULTIPLY
	      && ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
		   && (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
		       || (GET_CODE (XEXP (x, 1)) == ASHIFTRT
			   && CONST_INT_P (XEXP (XEXP (x, 1), 1))
			   && INTVAL (XEXP (XEXP (x, 1), 1)) == 16)))
		  || (GET_CODE (XEXP (x, 0)) == ASHIFTRT
		      && CONST_INT_P (XEXP (XEXP (x, 0), 1))
		      && INTVAL (XEXP (XEXP (x, 0), 1)) == 16
		      && (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
			  || (GET_CODE (XEXP (x, 1)) == ASHIFTRT
			      && CONST_INT_P (XEXP (XEXP (x, 1), 1))
			      && (INTVAL (XEXP (XEXP (x, 1), 1))
				  == 16))))))
	    {
	      /* SMUL[TB][TB].  */
	      if (speed_p)
		*cost += extra_cost->mult[0].extend;
	      *cost += (rtx_cost (XEXP (x, 0), SIGN_EXTEND, 0, speed_p)
			+ rtx_cost (XEXP (x, 1), SIGN_EXTEND, 0, speed_p));
	      return true;
	    }
	  if (speed_p)
	    *cost += extra_cost->mult[0].simple;
	  return false;
	}

      if (mode == DImode)
	{
	  if (arm_arch3m
	      && ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
		   && GET_CODE (XEXP (x, 1)) == ZERO_EXTEND)
		  || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
		      && GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)))
	    {
	      *cost = COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->mult[1].extend;
	      *cost += (rtx_cost (XEXP (XEXP (x, 0), 0),
				  ZERO_EXTEND, 0, speed_p)
			+ rtx_cost (XEXP (XEXP (x, 1), 0),
				    ZERO_EXTEND, 0, speed_p));
	      return true;
	    }

	  *cost = LIBCALL_COST (2);
	  return false;
	}

      /* Vector mode?  */
      *cost = LIBCALL_COST (2);
      return false;

    case NEG:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->fp[mode != SFmode].neg;

	  return false;
	}
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  *cost = LIBCALL_COST (1);
	  return false;
	}

      if (mode == SImode)
	{
	  if (GET_CODE (XEXP (x, 0)) == ABS)
	    {
	      *cost = COSTS_N_INSNS (2);
	      /* Assume the non-flag-changing variant.  */
	      if (speed_p)
		*cost += (extra_cost->alu.log_shift
			  + extra_cost->alu.arith_shift);
	      *cost += rtx_cost (XEXP (XEXP (x, 0), 0), ABS, 0, speed_p);
	      return true;
	    }

	  if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_COMPARE
	      || GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_COMM_COMPARE)
	    {
	      *cost = COSTS_N_INSNS (2);
	      /* No extra cost for MOV imm and MVN imm.  */
	      /* If the comparison op is using the flags, there's no further
		 cost, otherwise we need to add the cost of the comparison.  */
	      if (!(REG_P (XEXP (XEXP (x, 0), 0))
		    && REGNO (XEXP (XEXP (x, 0), 0)) == CC_REGNUM
		    && XEXP (XEXP (x, 0), 1) == const0_rtx))
		{
		  *cost += (COSTS_N_INSNS (1)
			    + rtx_cost (XEXP (XEXP (x, 0), 0), COMPARE, 0,
					speed_p)
			    + rtx_cost (XEXP (XEXP (x, 0), 1), COMPARE, 1,
					speed_p));
		  if (speed_p)
		    *cost += extra_cost->alu.arith;
		}
	      return true;
	    }
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.arith;
	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_SIZE (mode) < 4)
	{
	  /* Slightly disparage, as we might need an extend operation.  */
	  *cost = 1 + COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.arith;
	  return false;
	}

      if (mode == DImode)
	{
	  *cost = COSTS_N_INSNS (2);
	  if (speed_p)
	    *cost += 2 * extra_cost->alu.arith;
	  return false;
	}

      /* Vector mode?  */
      *cost = LIBCALL_COST (1);
      return false;

    case NOT:
      if (mode == SImode)
	{
	  rtx shift_op;
	  rtx shift_reg = NULL;

	  *cost = COSTS_N_INSNS (1);
	  shift_op = shifter_op_p (XEXP (x, 0), &shift_reg);

	  if (shift_op)
	    {
	      if (shift_reg != NULL)
		{
		  if (speed_p)
		    *cost += extra_cost->alu.log_shift_reg;
		  *cost += rtx_cost (shift_reg, ASHIFT, 1, speed_p);
		}
	      else if (speed_p)
		*cost += extra_cost->alu.log_shift;
	      *cost += rtx_cost (shift_op, ASHIFT, 0, speed_p);
	      return true;
	    }

	  if (speed_p)
	    *cost += extra_cost->alu.logical;
	  return false;
	}
      if (mode == DImode)
	{
	  *cost = COSTS_N_INSNS (2);
	  return false;
	}

      /* Vector mode?  */

      *cost += LIBCALL_COST (1);
      return false;

    case IF_THEN_ELSE:
      {
        if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
	  {
	    *cost = COSTS_N_INSNS (4);
	    return true;
	  }
	int op1cost = rtx_cost (XEXP (x, 1), SET, 1, speed_p);
	int op2cost = rtx_cost (XEXP (x, 2), SET, 1, speed_p);

	*cost = rtx_cost (XEXP (x, 0), IF_THEN_ELSE, 0, speed_p);
	/* Assume that if one arm of the if_then_else is a register,
	   that it will be tied with the result and eliminate the
	   conditional insn.  */
	if (REG_P (XEXP (x, 1)))
	  *cost += op2cost;
	else if (REG_P (XEXP (x, 2)))
	  *cost += op1cost;
	else
	  {
	    if (speed_p)
	      {
		if (extra_cost->alu.non_exec_costs_exec)
		  *cost += op1cost + op2cost + extra_cost->alu.non_exec;
		else
		  *cost += MAX (op1cost, op2cost) + extra_cost->alu.non_exec;
	      }
	    else
	      *cost += op1cost + op2cost;
	  }
      }
      return true;

    case COMPARE:
      if (cc_register (XEXP (x, 0), VOIDmode) && XEXP (x, 1) == const0_rtx)
	*cost = 0;
      else
	{
	  enum machine_mode op0mode;
	  /* We'll mostly assume that the cost of a compare is the cost of the
	     LHS.  However, there are some notable exceptions.  */

	  /* Floating point compares are never done as side-effects.  */
	  op0mode = GET_MODE (XEXP (x, 0));
	  if (TARGET_HARD_FLOAT && GET_MODE_CLASS (op0mode) == MODE_FLOAT
	      && (op0mode == SFmode || !TARGET_VFP_SINGLE))
	    {
	      *cost = COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->fp[op0mode != SFmode].compare;

	      if (XEXP (x, 1) == CONST0_RTX (op0mode))
		{
		  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
		  return true;
		}

	      return false;
	    }
	  else if (GET_MODE_CLASS (op0mode) == MODE_FLOAT)
	    {
	      *cost = LIBCALL_COST (2);
	      return false;
	    }

	  /* DImode compares normally take two insns.  */
	  if (op0mode == DImode)
	    {
	      *cost = COSTS_N_INSNS (2);
	      if (speed_p)
		*cost += 2 * extra_cost->alu.arith;
	      return false;
	    }

	  if (op0mode == SImode)
	    {
	      rtx shift_op;
	      rtx shift_reg;

	      if (XEXP (x, 1) == const0_rtx
		  && !(REG_P (XEXP (x, 0))
		       || (GET_CODE (XEXP (x, 0)) == SUBREG
			   && REG_P (SUBREG_REG (XEXP (x, 0))))))
		{
		  *cost = rtx_cost (XEXP (x, 0), COMPARE, 0, speed_p);

		  /* Multiply operations that set the flags are often
		     significantly more expensive.  */
		  if (speed_p
		      && GET_CODE (XEXP (x, 0)) == MULT
		      && !power_of_two_operand (XEXP (XEXP (x, 0), 1), mode))
		    *cost += extra_cost->mult[0].flag_setting;

		  if (speed_p
		      && GET_CODE (XEXP (x, 0)) == PLUS
		      && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
		      && !power_of_two_operand (XEXP (XEXP (XEXP (x, 0),
							    0), 1), mode))
		    *cost += extra_cost->mult[0].flag_setting;
		  return true;
		}

	      shift_reg = NULL;
	      shift_op = shifter_op_p (XEXP (x, 0), &shift_reg);
	      if (shift_op != NULL)
		{
		  *cost = COSTS_N_INSNS (1);
		  if (shift_reg != NULL)
		    {
		      *cost += rtx_cost (shift_reg, ASHIFT, 1, speed_p);
		      if (speed_p)
			*cost += extra_cost->alu.arith_shift_reg;
		    }
		  else if (speed_p)
		    *cost += extra_cost->alu.arith_shift;
		  *cost += (rtx_cost (shift_op, ASHIFT, 0, speed_p)
			    + rtx_cost (XEXP (x, 1), COMPARE, 1, speed_p));
		  return true;
		}

	      *cost = COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->alu.arith;
	      if (CONST_INT_P (XEXP (x, 1))
		  && const_ok_for_op (INTVAL (XEXP (x, 1)), COMPARE))
		{
		  *cost += rtx_cost (XEXP (x, 0), COMPARE, 0, speed_p);
		  return true;
		}
	      return false;
	    }

	  /* Vector mode?  */

	  *cost = LIBCALL_COST (2);
	  return false;
	}
      return true;

    case EQ:
    case NE:
    case LT:
    case LE:
    case GT:
    case GE:
    case LTU:
    case LEU:
    case GEU:
    case GTU:
    case ORDERED:
    case UNORDERED:
    case UNEQ:
    case UNLE:
    case UNLT:
    case UNGE:
    case UNGT:
    case LTGT:
      if (outer_code == SET)
	{
	  /* Is it a store-flag operation?  */
	  if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) == CC_REGNUM
	      && XEXP (x, 1) == const0_rtx)
	    {
	      /* Thumb also needs an IT insn.  */
	      *cost = COSTS_N_INSNS (TARGET_THUMB ? 3 : 2);
	      return true;
	    }
	  if (XEXP (x, 1) == const0_rtx)
	    {
	      switch (code)
		{
		case LT:
		  /* LSR Rd, Rn, #31.  */
		  *cost = COSTS_N_INSNS (1);
		  if (speed_p)
		    *cost += extra_cost->alu.shift;
		  break;

		case EQ:
		  /* RSBS T1, Rn, #0
		     ADC  Rd, Rn, T1.  */

		case NE:
		  /* SUBS T1, Rn, #1
		     SBC  Rd, Rn, T1.  */
		  *cost = COSTS_N_INSNS (2);
		  break;

		case LE:
		  /* RSBS T1, Rn, Rn, LSR #31
		     ADC  Rd, Rn, T1. */
		  *cost = COSTS_N_INSNS (2);
		  if (speed_p)
		    *cost += extra_cost->alu.arith_shift;
		  break;

		case GT:
		  /* RSB  Rd, Rn, Rn, ASR #1
		     LSR  Rd, Rd, #31.  */
		  *cost = COSTS_N_INSNS (2);
		  if (speed_p)
		    *cost += (extra_cost->alu.arith_shift
			      + extra_cost->alu.shift);
		  break;

		case GE:
		  /* ASR  Rd, Rn, #31
		     ADD  Rd, Rn, #1.  */
		  *cost = COSTS_N_INSNS (2);
		  if (speed_p)
		    *cost += extra_cost->alu.shift;
		  break;

		default:
		  /* Remaining cases are either meaningless or would take
		     three insns anyway.  */
		  *cost = COSTS_N_INSNS (3);
		  break;
		}
	      *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	      return true;
	    }
	  else
	    {
	      *cost = COSTS_N_INSNS (TARGET_THUMB ? 4 : 3);
	      if (CONST_INT_P (XEXP (x, 1))
		  && const_ok_for_op (INTVAL (XEXP (x, 1)), COMPARE))
		{
		  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
		  return true;
		}

	      return false;
	    }
	}
      /* Not directly inside a set.  If it involves the condition code
	 register it must be the condition for a branch, cond_exec or
	 I_T_E operation.  Since the comparison is performed elsewhere
	 this is just the control part which has no additional
	 cost.  */
      else if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) == CC_REGNUM
	       && XEXP (x, 1) == const0_rtx)
	{
	  *cost = 0;
	  return true;
	}
      return false;

    case ABS:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->fp[mode != SFmode].neg;

	  return false;
	}
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  *cost = LIBCALL_COST (1);
	  return false;
	}

      if (mode == SImode)
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.log_shift + extra_cost->alu.arith_shift;
	  return false;
	}
      /* Vector mode?  */
      *cost = LIBCALL_COST (1);
      return false;

    case SIGN_EXTEND:
      if ((arm_arch4 || GET_MODE (XEXP (x, 0)) == SImode)
	  && MEM_P (XEXP (x, 0)))
	{
	  *cost = rtx_cost (XEXP (x, 0), code, 0, speed_p);

	  if (mode == DImode)
	    *cost += COSTS_N_INSNS (1);

	  if (!speed_p)
	    return true;

	  if (GET_MODE (XEXP (x, 0)) == SImode)
	    *cost += extra_cost->ldst.load;
	  else
	    *cost += extra_cost->ldst.load_sign_extend;

	  if (mode == DImode)
	    *cost += extra_cost->alu.shift;

	  return true;
	}

      /* Widening from less than 32-bits requires an extend operation.  */
      if (GET_MODE (XEXP (x, 0)) != SImode && arm_arch6)
	{
	  /* We have SXTB/SXTH.  */
	  *cost = COSTS_N_INSNS (1);
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  if (speed_p)
	    *cost += extra_cost->alu.extend;
	}
      else if (GET_MODE (XEXP (x, 0)) != SImode)
	{
	  /* Needs two shifts.  */
	  *cost = COSTS_N_INSNS (2);
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  if (speed_p)
	    *cost += 2 * extra_cost->alu.shift;
	}

      /* Widening beyond 32-bits requires one more insn.  */
      if (mode == DImode)
	{
	  *cost += COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.shift;
	}

      return true;

    case ZERO_EXTEND:
      if ((arm_arch4
	   || GET_MODE (XEXP (x, 0)) == SImode
	   || GET_MODE (XEXP (x, 0)) == QImode)
	  && MEM_P (XEXP (x, 0)))
	{
	  *cost = rtx_cost (XEXP (x, 0), code, 0, speed_p);

	  if (mode == DImode)
	    *cost += COSTS_N_INSNS (1);  /* No speed penalty.  */

	  return true;
	}

      /* Widening from less than 32-bits requires an extend operation.  */
      if (GET_MODE (XEXP (x, 0)) == QImode)
	{
	  /* UXTB can be a shorter instruction in Thumb2, but it might
	     be slower than the AND Rd, Rn, #255 alternative.  When
	     optimizing for speed it should never be slower to use
	     AND, and we don't really model 16-bit vs 32-bit insns
	     here.  */
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.logical;
	}
      else if (GET_MODE (XEXP (x, 0)) != SImode && arm_arch6)
	{
	  /* We have UXTB/UXTH.  */
	  *cost = COSTS_N_INSNS (1);
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  if (speed_p)
	    *cost += extra_cost->alu.extend;
	}
      else if (GET_MODE (XEXP (x, 0)) != SImode)
	{
	  /* Needs two shifts.  It's marginally preferable to use
	     shifts rather than two BIC instructions as the second
	     shift may merge with a subsequent insn as a shifter
	     op.  */
	  *cost = COSTS_N_INSNS (2);
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  if (speed_p)
	    *cost += 2 * extra_cost->alu.shift;
	}
      else  /* GET_MODE (XEXP (x, 0)) == SImode.  */
        *cost = COSTS_N_INSNS (1);

      /* Widening beyond 32-bits requires one more insn.  */
      if (mode == DImode)
	{
	  *cost += COSTS_N_INSNS (1);	/* No speed penalty.  */
	}

      return true;

    case CONST_INT:
      *cost = 0;
      /* CONST_INT has no mode, so we cannot tell for sure how many
	 insns are really going to be needed.  The best we can do is
	 look at the value passed.  If it fits in SImode, then assume
	 that's the mode it will be used for.  Otherwise assume it
	 will be used in DImode.  */
      if (INTVAL (x) == trunc_int_for_mode (INTVAL (x), SImode))
	mode = SImode;
      else
	mode = DImode;

      /* Avoid blowing up in arm_gen_constant ().  */
      if (!(outer_code == PLUS
	    || outer_code == AND
	    || outer_code == IOR
	    || outer_code == XOR
	    || outer_code == MINUS))
	outer_code = SET;

    const_int_cost:
      if (mode == SImode)
	{
	  *cost += COSTS_N_INSNS (arm_gen_constant (outer_code, SImode, NULL,
						    INTVAL (x), NULL, NULL,
						    0, 0));
	  /* Extra costs?  */
	}
      else
	{
	  *cost += COSTS_N_INSNS (arm_gen_constant
				  (outer_code, SImode, NULL,
				   trunc_int_for_mode (INTVAL (x), SImode),
				   NULL, NULL, 0, 0)
				  + arm_gen_constant (outer_code, SImode, NULL,
						      INTVAL (x) >> 32, NULL,
						      NULL, 0, 0));
	  /* Extra costs?  */
	}

      return true;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      if (speed_p)
	{
	  if (arm_arch_thumb2 && !flag_pic)
	    *cost = COSTS_N_INSNS (2);
	  else
	    *cost = COSTS_N_INSNS (1) + extra_cost->ldst.load;
	}
      else
	*cost = COSTS_N_INSNS (2);

      if (flag_pic)
	{
	  *cost += COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.arith;
	}

      return true;

    case CONST_FIXED:
      *cost = COSTS_N_INSNS (4);
      /* Fixme.  */
      return true;

    case CONST_DOUBLE:
      if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
	  && (mode == SFmode || !TARGET_VFP_SINGLE))
	{
	  if (vfp3_const_double_rtx (x))
	    {
	      *cost = COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->fp[mode == DFmode].fpconst;
	      return true;
	    }

	  if (speed_p)
	    {
	      *cost = COSTS_N_INSNS (1);
	      if (mode == DFmode)
		*cost += extra_cost->ldst.loadd;
	      else
		*cost += extra_cost->ldst.loadf;
	    }
	  else
	    *cost = COSTS_N_INSNS (2 + (mode == DFmode));

	  return true;
	}
      *cost = COSTS_N_INSNS (4);
      return true;

    case CONST_VECTOR:
      /* Fixme.  */
      if (TARGET_NEON
	  && TARGET_HARD_FLOAT
	  && (VALID_NEON_DREG_MODE (mode) || VALID_NEON_QREG_MODE (mode))
	  && neon_immediate_valid_for_move (x, mode, NULL, NULL))
	*cost = COSTS_N_INSNS (1);
      else
	*cost = COSTS_N_INSNS (4);
      return true;

    case HIGH:
    case LO_SUM:
      *cost = COSTS_N_INSNS (1);
      /* When optimizing for size, we prefer constant pool entries to
	 MOVW/MOVT pairs, so bump the cost of these slightly.  */
      if (!speed_p)
	*cost += 1;
      return true;

    case CLZ:
      *cost = COSTS_N_INSNS (1);
      if (speed_p)
	*cost += extra_cost->alu.clz;
      return false;

    case SMIN:
      if (XEXP (x, 1) == const0_rtx)
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.log_shift;
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  return true;
	}
      /* Fall through.  */
    case SMAX:
    case UMIN:
    case UMAX:
      *cost = COSTS_N_INSNS (2);
      return false;

    case TRUNCATE:
      if (GET_CODE (XEXP (x, 0)) == ASHIFTRT
	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	  && INTVAL (XEXP (XEXP (x, 0), 1)) == 32
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
	  && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
	       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND)
	      || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
		  && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1))
		      == ZERO_EXTEND))))
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->mult[1].extend;
	  *cost += (rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0), ZERO_EXTEND, 0,
			      speed_p)
		    + rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 1), ZERO_EXTEND,
				0, speed_p));
	  return true;
	}
      *cost = LIBCALL_COST (1);
      return false;

    case UNSPEC:
      return arm_unspec_cost (x, outer_code, speed_p, cost);

    case PC:
      /* Reading the PC is like reading any other register.  Writing it
	 is more expensive, but we take that into account elsewhere.  */
      *cost = 0;
      return true;

    case ZERO_EXTRACT:
      /* TODO: Simple zero_extract of bottom bits using AND.  */
      /* Fall through.  */
    case SIGN_EXTRACT:
      if (arm_arch6
	  && mode == SImode
	  && CONST_INT_P (XEXP (x, 1))
	  && CONST_INT_P (XEXP (x, 2)))
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->alu.bfx;
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  return true;
	}
      /* Without UBFX/SBFX, need to resort to shift operations.  */
      *cost = COSTS_N_INSNS (2);
      if (speed_p)
	*cost += 2 * extra_cost->alu.shift;
      *cost += rtx_cost (XEXP (x, 0), ASHIFT, 0, speed_p);
      return true;

    case FLOAT_EXTEND:
      if (TARGET_HARD_FLOAT)
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->fp[mode == DFmode].widen;
	  if (!TARGET_FPU_ARMV8
	      && GET_MODE (XEXP (x, 0)) == HFmode)
	    {
	      /* Pre v8, widening HF->DF is a two-step process, first
	         widening to SFmode.  */
	      *cost += COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->fp[0].widen;
	    }
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  return true;
	}

      *cost = LIBCALL_COST (1);
      return false;

    case FLOAT_TRUNCATE:
      if (TARGET_HARD_FLOAT)
	{
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->fp[mode == DFmode].narrow;
	  *cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	  return true;
	  /* Vector modes?  */
	}
      *cost = LIBCALL_COST (1);
      return false;

    case FIX:
    case UNSIGNED_FIX:
      if (TARGET_HARD_FLOAT)
	{
	  if (GET_MODE_CLASS (mode) == MODE_INT)
	    {
	      *cost = COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->fp[GET_MODE (XEXP (x, 0)) == DFmode].toint;
	      /* Strip of the 'cost' of rounding towards zero.  */
	      if (GET_CODE (XEXP (x, 0)) == FIX)
		*cost += rtx_cost (XEXP (XEXP (x, 0), 0), code, 0, speed_p);
	      else
		*cost += rtx_cost (XEXP (x, 0), code, 0, speed_p);
	      /* ??? Increase the cost to deal with transferring from
		 FP -> CORE registers?  */
	      return true;
	    }
	  else if (GET_MODE_CLASS (mode) == MODE_FLOAT
		   && TARGET_FPU_ARMV8)
	    {
	      *cost = COSTS_N_INSNS (1);
	      if (speed_p)
		*cost += extra_cost->fp[mode == DFmode].roundint;
	      return false;
	    }
	  /* Vector costs? */
	}
      *cost = LIBCALL_COST (1);
      return false;

    case FLOAT:
    case UNSIGNED_FLOAT:
      if (TARGET_HARD_FLOAT)
	{
	  /* ??? Increase the cost to deal with transferring from CORE
	     -> FP registers?  */
	  *cost = COSTS_N_INSNS (1);
	  if (speed_p)
	    *cost += extra_cost->fp[mode == DFmode].fromint;
	  return false;
	}
      *cost = LIBCALL_COST (1);
      return false;

    case CALL:
      *cost = COSTS_N_INSNS (1);
      return true;

    case ASM_OPERANDS:
      /* Just a guess.  Cost one insn per input.  */
      *cost = COSTS_N_INSNS (ASM_OPERANDS_INPUT_LENGTH (x));
      return true;

    default:
      if (mode != VOIDmode)
	*cost = COSTS_N_INSNS (ARM_NUM_REGS (mode));
      else
	*cost = COSTS_N_INSNS (4); /* Who knows?  */
      return false;
    }
}

#undef HANDLE_NARROW_SHIFT_ARITH

/* RTX costs when optimizing for size.  */
static bool
arm_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
	       int *total, bool speed)
{
  bool result;

  if (TARGET_OLD_RTX_COSTS
      || (!current_tune->insn_extra_cost && !TARGET_NEW_GENERIC_COSTS))
    {
      /* Old way.  (Deprecated.)  */
      if (!speed)
	result = arm_size_rtx_costs (x, (enum rtx_code) code,
				     (enum rtx_code) outer_code, total);
      else
	result = current_tune->rtx_costs (x,  (enum rtx_code) code,
					  (enum rtx_code) outer_code, total,
					  speed);
    }
  else
    {
    /* New way.  */
      if (current_tune->insn_extra_cost)
        result =  arm_new_rtx_costs (x, (enum rtx_code) code,
				     (enum rtx_code) outer_code,
				     current_tune->insn_extra_cost,
				     total, speed);
    /* TARGET_NEW_GENERIC_COSTS && !TARGET_OLD_RTX_COSTS
       && current_tune->insn_extra_cost != NULL  */
      else
        result =  arm_new_rtx_costs (x, (enum rtx_code) code,
				    (enum rtx_code) outer_code,
				    &generic_extra_costs, total, speed);
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      print_rtl_single (dump_file, x);
      fprintf (dump_file, "\n%s cost: %d (%s)\n", speed ? "Hot" : "Cold",
	       *total, result ? "final" : "partial");
    }
  return result;
}

/* RTX costs for cores with a slow MUL implementation.  Thumb-2 is not
   supported on any "slowmul" cores, so it can be ignored.  */

static bool
arm_slowmul_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
		       int *total, bool speed)
{
  enum machine_mode mode = GET_MODE (x);

  if (TARGET_THUMB)
    {
      *total = thumb1_rtx_costs (x, code, outer_code);
      return true;
    }

  switch (code)
    {
    case MULT:
      if (GET_MODE_CLASS (mode) == MODE_FLOAT
	  || mode == DImode)
	{
	  *total = COSTS_N_INSNS (20);
	  return false;
	}

      if (CONST_INT_P (XEXP (x, 1)))
	{
	  unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
				      & (unsigned HOST_WIDE_INT) 0xffffffff);
	  int cost, const_ok = const_ok_for_arm (i);
	  int j, booth_unit_size;

	  /* Tune as appropriate.  */
	  cost = const_ok ? 4 : 8;
	  booth_unit_size = 2;
	  for (j = 0; i && j < 32; j += booth_unit_size)
	    {
	      i >>= booth_unit_size;
	      cost++;
	    }

	  *total = COSTS_N_INSNS (cost);
	  *total += rtx_cost (XEXP (x, 0), code, 0, speed);
	  return true;
	}

      *total = COSTS_N_INSNS (20);
      return false;

    default:
      return arm_rtx_costs_1 (x, outer_code, total, speed);;
    }
}


/* RTX cost for cores with a fast multiply unit (M variants).  */

static bool
arm_fastmul_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
		       int *total, bool speed)
{
  enum machine_mode mode = GET_MODE (x);

  if (TARGET_THUMB1)
    {
      *total = thumb1_rtx_costs (x, code, outer_code);
      return true;
    }

  /* ??? should thumb2 use different costs?  */
  switch (code)
    {
    case MULT:
      /* There is no point basing this on the tuning, since it is always the
	 fast variant if it exists at all.  */
      if (mode == DImode
	  && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
	{
	  *total = COSTS_N_INSNS(2);
	  return false;
	}


      if (mode == DImode)
	{
	  *total = COSTS_N_INSNS (5);
	  return false;
	}

      if (CONST_INT_P (XEXP (x, 1)))
	{
	  unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
				      & (unsigned HOST_WIDE_INT) 0xffffffff);
	  int cost, const_ok = const_ok_for_arm (i);
	  int j, booth_unit_size;

	  /* Tune as appropriate.  */
	  cost = const_ok ? 4 : 8;
	  booth_unit_size = 8;
	  for (j = 0; i && j < 32; j += booth_unit_size)
	    {
	      i >>= booth_unit_size;
	      cost++;
	    }

	  *total = COSTS_N_INSNS(cost);
	  return false;
	}

      if (mode == SImode)
	{
	  *total = COSTS_N_INSNS (4);
	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  if (TARGET_HARD_FLOAT
	      && (mode == SFmode
		  || (mode == DFmode && !TARGET_VFP_SINGLE)))
	    {
	      *total = COSTS_N_INSNS (1);
	      return false;
	    }
	}

      /* Requires a lib call */
      *total = COSTS_N_INSNS (20);
      return false;

    default:
      return arm_rtx_costs_1 (x, outer_code, total, speed);
    }
}


/* RTX cost for XScale CPUs.  Thumb-2 is not supported on any xscale cores,
   so it can be ignored.  */

static bool
arm_xscale_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
		      int *total, bool speed)
{
  enum machine_mode mode = GET_MODE (x);

  if (TARGET_THUMB)
    {
      *total = thumb1_rtx_costs (x, code, outer_code);
      return true;
    }

  switch (code)
    {
    case COMPARE:
      if (GET_CODE (XEXP (x, 0)) != MULT)
	return arm_rtx_costs_1 (x, outer_code, total, speed);

      /* A COMPARE of a MULT is slow on XScale; the muls instruction
	 will stall until the multiplication is complete.  */
      *total = COSTS_N_INSNS (3);
      return false;

    case MULT:
      /* There is no point basing this on the tuning, since it is always the
	 fast variant if it exists at all.  */
      if (mode == DImode
	  && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
	{
	  *total = COSTS_N_INSNS (2);
	  return false;
	}


      if (mode == DImode)
	{
	  *total = COSTS_N_INSNS (5);
	  return false;
	}

      if (CONST_INT_P (XEXP (x, 1)))
	{
	  /* If operand 1 is a constant we can more accurately
	     calculate the cost of the multiply.  The multiplier can
	     retire 15 bits on the first cycle and a further 12 on the
	     second.  We do, of course, have to load the constant into
	     a register first.  */
	  unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));
	  /* There's a general overhead of one cycle.  */
	  int cost = 1;
	  unsigned HOST_WIDE_INT masked_const;

	  if (i & 0x80000000)
	    i = ~i;

	  i &= (unsigned HOST_WIDE_INT) 0xffffffff;

	  masked_const = i & 0xffff8000;
	  if (masked_const != 0)
	    {
	      cost++;
	      masked_const = i & 0xf8000000;
	      if (masked_const != 0)
		cost++;
	    }
	  *total = COSTS_N_INSNS (cost);
	  return false;
	}

      if (mode == SImode)
	{
	  *total = COSTS_N_INSNS (3);
	  return false;
	}

      /* Requires a lib call */
      *total = COSTS_N_INSNS (20);
      return false;

    default:
      return arm_rtx_costs_1 (x, outer_code, total, speed);
    }
}


/* RTX costs for 9e (and later) cores.  */

static bool
arm_9e_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
		  int *total, bool speed)
{
  enum machine_mode mode = GET_MODE (x);

  if (TARGET_THUMB1)
    {
      switch (code)
	{
	case MULT:
	  *total = COSTS_N_INSNS (3);
	  return true;

	default:
	  *total = thumb1_rtx_costs (x, code, outer_code);
	  return true;
	}
    }

  switch (code)
    {
    case MULT:
      /* There is no point basing this on the tuning, since it is always the
	 fast variant if it exists at all.  */
      if (mode == DImode
	  && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
	{
	  *total = COSTS_N_INSNS (2);
	  return false;
	}


      if (mode == DImode)
	{
	  *total = COSTS_N_INSNS (5);
	  return false;
	}

      if (mode == SImode)
	{
	  *total = COSTS_N_INSNS (2);
	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  if (TARGET_HARD_FLOAT
	      && (mode == SFmode
		  || (mode == DFmode && !TARGET_VFP_SINGLE)))
	    {
	      *total = COSTS_N_INSNS (1);
	      return false;
	    }
	}

      *total = COSTS_N_INSNS (20);
      return false;

    default:
      return arm_rtx_costs_1 (x, outer_code, total, speed);
    }
}
/* All address computations that can be done are free, but rtx cost returns
   the same for practically all of them.  So we weight the different types
   of address here in the order (most pref first):
   PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL.  */
static inline int
arm_arm_address_cost (rtx x)
{
  enum rtx_code c  = GET_CODE (x);

  if (c == PRE_INC || c == PRE_DEC || c == POST_INC || c == POST_DEC)
    return 0;
  if (c == MEM || c == LABEL_REF || c == SYMBOL_REF)
    return 10;

  if (c == PLUS)
    {
      if (CONST_INT_P (XEXP (x, 1)))
	return 2;

      if (ARITHMETIC_P (XEXP (x, 0)) || ARITHMETIC_P (XEXP (x, 1)))
	return 3;

      return 4;
    }

  return 6;
}

static inline int
arm_thumb_address_cost (rtx x)
{
  enum rtx_code c  = GET_CODE (x);

  if (c == REG)
    return 1;
  if (c == PLUS
      && REG_P (XEXP (x, 0))
      && CONST_INT_P (XEXP (x, 1)))
    return 1;

  return 2;
}

static int
arm_address_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
		  addr_space_t as ATTRIBUTE_UNUSED, bool speed ATTRIBUTE_UNUSED)
{
  return TARGET_32BIT ? arm_arm_address_cost (x) : arm_thumb_address_cost (x);
}

/* Adjust cost hook for XScale.  */
static bool
xscale_sched_adjust_cost (rtx insn, rtx link, rtx dep, int * cost)
{
  /* Some true dependencies can have a higher cost depending
     on precisely how certain input operands are used.  */
  if (REG_NOTE_KIND(link) == 0
      && recog_memoized (insn) >= 0
      && recog_memoized (dep) >= 0)
    {
      int shift_opnum = get_attr_shift (insn);
      enum attr_type attr_type = get_attr_type (dep);

      /* If nonzero, SHIFT_OPNUM contains the operand number of a shifted
	 operand for INSN.  If we have a shifted input operand and the
	 instruction we depend on is another ALU instruction, then we may
	 have to account for an additional stall.  */
      if (shift_opnum != 0
	  && (attr_type == TYPE_ALU_SHIFT_IMM
	      || attr_type == TYPE_ALUS_SHIFT_IMM
	      || attr_type == TYPE_LOGIC_SHIFT_IMM
	      || attr_type == TYPE_LOGICS_SHIFT_IMM
	      || attr_type == TYPE_ALU_SHIFT_REG
	      || attr_type == TYPE_ALUS_SHIFT_REG
	      || attr_type == TYPE_LOGIC_SHIFT_REG
	      || attr_type == TYPE_LOGICS_SHIFT_REG
	      || attr_type == TYPE_MOV_SHIFT
	      || attr_type == TYPE_MVN_SHIFT
	      || attr_type == TYPE_MOV_SHIFT_REG
	      || attr_type == TYPE_MVN_SHIFT_REG))
	{
	  rtx shifted_operand;
	  int opno;

	  /* Get the shifted operand.  */
	  extract_insn (insn);
	  shifted_operand = recog_data.operand[shift_opnum];

	  /* Iterate over all the operands in DEP.  If we write an operand
	     that overlaps with SHIFTED_OPERAND, then we have increase the
	     cost of this dependency.  */
	  extract_insn (dep);
	  preprocess_constraints ();
	  for (opno = 0; opno < recog_data.n_operands; opno++)
	    {
	      /* We can ignore strict inputs.  */
	      if (recog_data.operand_type[opno] == OP_IN)
		continue;

	      if (reg_overlap_mentioned_p (recog_data.operand[opno],
					   shifted_operand))
		{
		  *cost = 2;
		  return false;
		}
	    }
	}
    }
  return true;
}

/* Adjust cost hook for Cortex A9.  */
static bool
cortex_a9_sched_adjust_cost (rtx insn, rtx link, rtx dep, int * cost)
{
  switch (REG_NOTE_KIND (link))
    {
    case REG_DEP_ANTI:
      *cost = 0;
      return false;

    case REG_DEP_TRUE:
    case REG_DEP_OUTPUT:
	if (recog_memoized (insn) >= 0
	    && recog_memoized (dep) >= 0)
	  {
	    if (GET_CODE (PATTERN (insn)) == SET)
	      {
		if (GET_MODE_CLASS
		    (GET_MODE (SET_DEST (PATTERN (insn)))) == MODE_FLOAT
		  || GET_MODE_CLASS
		    (GET_MODE (SET_SRC (PATTERN (insn)))) == MODE_FLOAT)
		  {
		    enum attr_type attr_type_insn = get_attr_type (insn);
		    enum attr_type attr_type_dep = get_attr_type (dep);

		    /* By default all dependencies of the form
		       s0 = s0 <op> s1
		       s0 = s0 <op> s2
		       have an extra latency of 1 cycle because
		       of the input and output dependency in this
		       case. However this gets modeled as an true
		       dependency and hence all these checks.  */
		    if (REG_P (SET_DEST (PATTERN (insn)))
			&& REG_P (SET_DEST (PATTERN (dep)))
			&& reg_overlap_mentioned_p (SET_DEST (PATTERN (insn)),
						    SET_DEST (PATTERN (dep))))
		      {
			/* FMACS is a special case where the dependent
			   instruction can be issued 3 cycles before
			   the normal latency in case of an output
			   dependency.  */
			if ((attr_type_insn == TYPE_FMACS
			     || attr_type_insn == TYPE_FMACD)
			    && (attr_type_dep == TYPE_FMACS
				|| attr_type_dep == TYPE_FMACD))
			  {
			    if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
			      *cost = insn_default_latency (dep) - 3;
			    else
			      *cost = insn_default_latency (dep);
			    return false;
			  }
			else
			  {
			    if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
			      *cost = insn_default_latency (dep) + 1;
			    else
			      *cost = insn_default_latency (dep);
			  }
			return false;
		      }
		  }
	      }
	  }
	break;

    default:
      gcc_unreachable ();
    }

  return true;
}

/* Adjust cost hook for FA726TE.  */
static bool
fa726te_sched_adjust_cost (rtx insn, rtx link, rtx dep, int * cost)
{
  /* For FA726TE, true dependency on CPSR (i.e. set cond followed by predicated)
     have penalty of 3.  */
  if (REG_NOTE_KIND (link) == REG_DEP_TRUE
      && recog_memoized (insn) >= 0
      && recog_memoized (dep) >= 0
      && get_attr_conds (dep) == CONDS_SET)
    {
      /* Use of carry (e.g. 64-bit arithmetic) in ALU: 3-cycle latency.  */
      if (get_attr_conds (insn) == CONDS_USE
          && get_attr_type (insn) != TYPE_BRANCH)
        {
          *cost = 3;
          return false;
        }

      if (GET_CODE (PATTERN (insn)) == COND_EXEC
          || get_attr_conds (insn) == CONDS_USE)
        {
          *cost = 0;
          return false;
        }
    }

  return true;
}

/* Implement TARGET_REGISTER_MOVE_COST.

   Moves between VFP_REGS and GENERAL_REGS are a single insn, but
   it is typically more expensive than a single memory access.  We set
   the cost to less than two memory accesses so that floating
   point to integer conversion does not go through memory.  */

int
arm_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
			reg_class_t from, reg_class_t to)
{
  if (TARGET_32BIT)
    {
      if ((IS_VFP_CLASS (from) && !IS_VFP_CLASS (to))
	  || (!IS_VFP_CLASS (from) && IS_VFP_CLASS (to)))
	return 15;
      else if ((from == IWMMXT_REGS && to != IWMMXT_REGS)
	       || (from != IWMMXT_REGS && to == IWMMXT_REGS))
	return 4;
      else if (from == IWMMXT_GR_REGS || to == IWMMXT_GR_REGS)
	return 20;
      else
	return 2;
    }
  else
    {
      if (from == HI_REGS || to == HI_REGS)
	return 4;
      else
	return 2;
    }
}

/* Implement TARGET_MEMORY_MOVE_COST.  */

int
arm_memory_move_cost (enum machine_mode mode, reg_class_t rclass,
		      bool in ATTRIBUTE_UNUSED)
{
  if (TARGET_32BIT)
    return 10;
  else
    {
      if (GET_MODE_SIZE (mode) < 4)
	return 8;
      else
	return ((2 * GET_MODE_SIZE (mode)) * (rclass == LO_REGS ? 1 : 2));
    }
}

/* Vectorizer cost model implementation.  */

/* Implement targetm.vectorize.builtin_vectorization_cost.  */
static int
arm_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
				tree vectype,
				int misalign ATTRIBUTE_UNUSED)
{
  unsigned elements;

  switch (type_of_cost)
    {
      case scalar_stmt:
        return current_tune->vec_costs->scalar_stmt_cost;

      case scalar_load:
        return current_tune->vec_costs->scalar_load_cost;

      case scalar_store:
        return current_tune->vec_costs->scalar_store_cost;

      case vector_stmt:
        return current_tune->vec_costs->vec_stmt_cost;

      case vector_load:
        return current_tune->vec_costs->vec_align_load_cost;

      case vector_store:
        return current_tune->vec_costs->vec_store_cost;

      case vec_to_scalar:
        return current_tune->vec_costs->vec_to_scalar_cost;

      case scalar_to_vec:
        return current_tune->vec_costs->scalar_to_vec_cost;

      case unaligned_load:
        return current_tune->vec_costs->vec_unalign_load_cost;

      case unaligned_store:
        return current_tune->vec_costs->vec_unalign_store_cost;

      case cond_branch_taken:
        return current_tune->vec_costs->cond_taken_branch_cost;

      case cond_branch_not_taken:
        return current_tune->vec_costs->cond_not_taken_branch_cost;

      case vec_perm:
      case vec_promote_demote:
        return current_tune->vec_costs->vec_stmt_cost;

      case vec_construct:
	elements = TYPE_VECTOR_SUBPARTS (vectype);
	return elements / 2 + 1;

      default:
        gcc_unreachable ();
    }
}

/* Implement targetm.vectorize.add_stmt_cost.  */

static unsigned
arm_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
		   struct _stmt_vec_info *stmt_info, int misalign,
		   enum vect_cost_model_location where)
{
  unsigned *cost = (unsigned *) data;
  unsigned retval = 0;

  if (flag_vect_cost_model)
    {
      tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
      int stmt_cost = arm_builtin_vectorization_cost (kind, vectype, misalign);

      /* Statements in an inner loop relative to the loop being
	 vectorized are weighted more heavily.  The value here is
	 arbitrary and could potentially be improved with analysis.  */
      if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
	count *= 50;  /* FIXME.  */

      retval = (unsigned) (count * stmt_cost);
      cost[where] += retval;
    }

  return retval;
}

/* Return true if and only if this insn can dual-issue only as older.  */
static bool
cortexa7_older_only (rtx insn)
{
  if (recog_memoized (insn) < 0)
    return false;

  switch (get_attr_type (insn))
    {
    case TYPE_ALU_REG:
    case TYPE_ALUS_REG:
    case TYPE_LOGIC_REG:
    case TYPE_LOGICS_REG:
    case TYPE_ADC_REG:
    case TYPE_ADCS_REG:
    case TYPE_ADR:
    case TYPE_BFM:
    case TYPE_REV:
    case TYPE_MVN_REG:
    case TYPE_SHIFT_IMM:
    case TYPE_SHIFT_REG:
    case TYPE_LOAD_BYTE:
    case TYPE_LOAD1:
    case TYPE_STORE1:
    case TYPE_FFARITHS:
    case TYPE_FADDS:
    case TYPE_FFARITHD:
    case TYPE_FADDD:
    case TYPE_FMOV:
    case TYPE_F_CVT:
    case TYPE_FCMPS:
    case TYPE_FCMPD:
    case TYPE_FCONSTS:
    case TYPE_FCONSTD:
    case TYPE_FMULS:
    case TYPE_FMACS:
    case TYPE_FMULD:
    case TYPE_FMACD:
    case TYPE_FDIVS:
    case TYPE_FDIVD:
    case TYPE_F_MRC:
    case TYPE_F_MRRC:
    case TYPE_F_FLAG:
    case TYPE_F_LOADS:
    case TYPE_F_STORES:
      return true;
    default:
      return false;
    }
}

/* Return true if and only if this insn can dual-issue as younger.  */
static bool
cortexa7_younger (FILE *file, int verbose, rtx insn)
{
  if (recog_memoized (insn) < 0)
    {
      if (verbose > 5)
        fprintf (file, ";; not cortexa7_younger %d\n", INSN_UID (insn));
      return false;
    }

  switch (get_attr_type (insn))
    {
    case TYPE_ALU_IMM:
    case TYPE_ALUS_IMM:
    case TYPE_LOGIC_IMM:
    case TYPE_LOGICS_IMM:
    case TYPE_EXTEND:
    case TYPE_MVN_IMM:
    case TYPE_MOV_IMM:
    case TYPE_MOV_REG:
    case TYPE_MOV_SHIFT:
    case TYPE_MOV_SHIFT_REG:
    case TYPE_BRANCH:
    case TYPE_CALL:
      return true;
    default:
      return false;
    }
}


/* Look for an instruction that can dual issue only as an older
   instruction, and move it in front of any instructions that can
   dual-issue as younger, while preserving the relative order of all
   other instructions in the ready list.  This is a hueuristic to help
   dual-issue in later cycles, by postponing issue of more flexible
   instructions.  This heuristic may affect dual issue opportunities
   in the current cycle.  */
static void
cortexa7_sched_reorder (FILE *file, int verbose, rtx *ready, int *n_readyp,
                        int clock)
{
  int i;
  int first_older_only = -1, first_younger = -1;

  if (verbose > 5)
    fprintf (file,
             ";; sched_reorder for cycle %d with %d insns in ready list\n",
             clock,
             *n_readyp);

  /* Traverse the ready list from the head (the instruction to issue
     first), and looking for the first instruction that can issue as
     younger and the first instruction that can dual-issue only as
     older.  */
  for (i = *n_readyp - 1; i >= 0; i--)
    {
      rtx insn = ready[i];
      if (cortexa7_older_only (insn))
        {
          first_older_only = i;
          if (verbose > 5)
            fprintf (file, ";; reorder older found %d\n", INSN_UID (insn));
          break;
        }
      else if (cortexa7_younger (file, verbose, insn) && first_younger == -1)
        first_younger = i;
    }

  /* Nothing to reorder because either no younger insn found or insn
     that can dual-issue only as older appears before any insn that
     can dual-issue as younger.  */
  if (first_younger == -1)
    {
      if (verbose > 5)
        fprintf (file, ";; sched_reorder nothing to reorder as no younger\n");
      return;
    }

  /* Nothing to reorder because no older-only insn in the ready list.  */
  if (first_older_only == -1)
    {
      if (verbose > 5)
        fprintf (file, ";; sched_reorder nothing to reorder as no older_only\n");
      return;
    }

  /* Move first_older_only insn before first_younger.  */
  if (verbose > 5)
    fprintf (file, ";; cortexa7_sched_reorder insn %d before %d\n",
             INSN_UID(ready [first_older_only]),
             INSN_UID(ready [first_younger]));
  rtx first_older_only_insn = ready [first_older_only];
  for (i = first_older_only; i < first_younger; i++)
    {
      ready[i] = ready[i+1];
    }

  ready[i] = first_older_only_insn;
  return;
}

/* Implement TARGET_SCHED_REORDER. */
static int
arm_sched_reorder (FILE *file, int verbose, rtx *ready, int *n_readyp,
                   int clock)
{
  switch (arm_tune)
    {
    case cortexa7:
      cortexa7_sched_reorder (file, verbose, ready, n_readyp, clock);
      break;
    default:
      /* Do nothing for other cores.  */
      break;
    }

  return arm_issue_rate ();
}

/* This function implements the target macro TARGET_SCHED_ADJUST_COST.
   It corrects the value of COST based on the relationship between
   INSN and DEP through the dependence LINK.  It returns the new
   value. There is a per-core adjust_cost hook to adjust scheduler costs
   and the per-core hook can choose to completely override the generic
   adjust_cost function. Only put bits of code into arm_adjust_cost that
   are common across all cores.  */
static int
arm_adjust_cost (rtx insn, rtx link, rtx dep, int cost)
{
  rtx i_pat, d_pat;

 /* When generating Thumb-1 code, we want to place flag-setting operations
    close to a conditional branch which depends on them, so that we can
    omit the comparison. */
  if (TARGET_THUMB1
      && REG_NOTE_KIND (link) == 0
      && recog_memoized (insn) == CODE_FOR_cbranchsi4_insn
      && recog_memoized (dep) >= 0
      && get_attr_conds (dep) == CONDS_SET)
    return 0;

  if (current_tune->sched_adjust_cost != NULL)
    {
      if (!current_tune->sched_adjust_cost (insn, link, dep, &cost))
	return cost;
    }

  /* XXX Is this strictly true?  */
  if (REG_NOTE_KIND (link) == REG_DEP_ANTI
      || REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
    return 0;

  /* Call insns don't incur a stall, even if they follow a load.  */
  if (REG_NOTE_KIND (link) == 0
      && CALL_P (insn))
    return 1;

  if ((i_pat = single_set (insn)) != NULL
      && MEM_P (SET_SRC (i_pat))
      && (d_pat = single_set (dep)) != NULL
      && MEM_P (SET_DEST (d_pat)))
    {
      rtx src_mem = XEXP (SET_SRC (i_pat), 0);
      /* This is a load after a store, there is no conflict if the load reads
	 from a cached area.  Assume that loads from the stack, and from the
	 constant pool are cached, and that others will miss.  This is a
	 hack.  */

      if ((GET_CODE (src_mem) == SYMBOL_REF
	   && CONSTANT_POOL_ADDRESS_P (src_mem))
	  || reg_mentioned_p (stack_pointer_rtx, src_mem)
	  || reg_mentioned_p (frame_pointer_rtx, src_mem)
	  || reg_mentioned_p (hard_frame_pointer_rtx, src_mem))
	return 1;
    }

  return cost;
}

int
arm_max_conditional_execute (void)
{
  return max_insns_skipped;
}

static int
arm_default_branch_cost (bool speed_p, bool predictable_p ATTRIBUTE_UNUSED)
{
  if (TARGET_32BIT)
    return (TARGET_THUMB2 && !speed_p) ? 1 : 4;
  else
    return (optimize > 0) ? 2 : 0;
}

static int
arm_cortex_a5_branch_cost (bool speed_p, bool predictable_p)
{
  return speed_p ? 0 : arm_default_branch_cost (speed_p, predictable_p);
}

/* Thumb-2 branches are relatively cheap on Cortex-M processors ("1 + P cycles"
   on Cortex-M4, where P varies from 1 to 3 according to some criteria), since
   sequences of non-executed instructions in IT blocks probably take the same
   amount of time as executed instructions (and the IT instruction itself takes
   space in icache).  This function was experimentally determined to give good
   results on a popular embedded benchmark.  */

static int
arm_cortex_m_branch_cost (bool speed_p, bool predictable_p)
{
  return (TARGET_32BIT && speed_p) ? 1
         : arm_default_branch_cost (speed_p, predictable_p);
}

static bool fp_consts_inited = false;

static REAL_VALUE_TYPE value_fp0;

static void
init_fp_table (void)
{
  REAL_VALUE_TYPE r;

  r = REAL_VALUE_ATOF ("0", DFmode);
  value_fp0 = r;
  fp_consts_inited = true;
}

/* Return TRUE if rtx X is a valid immediate FP constant.  */
int
arm_const_double_rtx (rtx x)
{
  REAL_VALUE_TYPE r;

  if (!fp_consts_inited)
    init_fp_table ();

  REAL_VALUE_FROM_CONST_DOUBLE (r, x);
  if (REAL_VALUE_MINUS_ZERO (r))
    return 0;

  if (REAL_VALUES_EQUAL (r, value_fp0))
    return 1;

  return 0;
}

/* VFPv3 has a fairly wide range of representable immediates, formed from
   "quarter-precision" floating-point values. These can be evaluated using this
   formula (with ^ for exponentiation):

     -1^s * n * 2^-r

   Where 's' is a sign bit (0/1), 'n' and 'r' are integers such that
   16 <= n <= 31 and 0 <= r <= 7.

   These values are mapped onto an 8-bit integer ABCDEFGH s.t.

     - A (most-significant) is the sign bit.
     - BCD are the exponent (encoded as r XOR 3).
     - EFGH are the mantissa (encoded as n - 16).
*/

/* Return an integer index for a VFPv3 immediate operand X suitable for the
   fconst[sd] instruction, or -1 if X isn't suitable.  */
static int
vfp3_const_double_index (rtx x)
{
  REAL_VALUE_TYPE r, m;
  int sign, exponent;
  unsigned HOST_WIDE_INT mantissa, mant_hi;
  unsigned HOST_WIDE_INT mask;
  HOST_WIDE_INT m1, m2;
  int point_pos = 2 * HOST_BITS_PER_WIDE_INT - 1;

  if (!TARGET_VFP3 || !CONST_DOUBLE_P (x))
    return -1;

  REAL_VALUE_FROM_CONST_DOUBLE (r, x);

  /* We can't represent these things, so detect them first.  */
  if (REAL_VALUE_ISINF (r) || REAL_VALUE_ISNAN (r) || REAL_VALUE_MINUS_ZERO (r))
    return -1;

  /* Extract sign, exponent and mantissa.  */
  sign = REAL_VALUE_NEGATIVE (r) ? 1 : 0;
  r = real_value_abs (&r);
  exponent = REAL_EXP (&r);
  /* For the mantissa, we expand into two HOST_WIDE_INTS, apart from the
     highest (sign) bit, with a fixed binary point at bit point_pos.
     WARNING: If there's ever a VFP version which uses more than 2 * H_W_I - 1
     bits for the mantissa, this may fail (low bits would be lost).  */
  real_ldexp (&m, &r, point_pos - exponent);
  REAL_VALUE_TO_INT (&m1, &m2, m);
  mantissa = m1;
  mant_hi = m2;

  /* If there are bits set in the low part of the mantissa, we can't
     represent this value.  */
  if (mantissa != 0)
    return -1;

  /* Now make it so that mantissa contains the most-significant bits, and move
     the point_pos to indicate that the least-significant bits have been
     discarded.  */
  point_pos -= HOST_BITS_PER_WIDE_INT;
  mantissa = mant_hi;

  /* We can permit four significant bits of mantissa only, plus a high bit
     which is always 1.  */
  mask = ((unsigned HOST_WIDE_INT)1 << (point_pos - 5)) - 1;
  if ((mantissa & mask) != 0)
    return -1;

  /* Now we know the mantissa is in range, chop off the unneeded bits.  */
  mantissa >>= point_pos - 5;

  /* The mantissa may be zero. Disallow that case. (It's possible to load the
     floating-point immediate zero with Neon using an integer-zero load, but
     that case is handled elsewhere.)  */
  if (mantissa == 0)
    return -1;

  gcc_assert (mantissa >= 16 && mantissa <= 31);

  /* The value of 5 here would be 4 if GCC used IEEE754-like encoding (where
     normalized significands are in the range [1, 2). (Our mantissa is shifted
     left 4 places at this point relative to normalized IEEE754 values).  GCC
     internally uses [0.5, 1) (see real.c), so the exponent returned from
     REAL_EXP must be altered.  */
  exponent = 5 - exponent;

  if (exponent < 0 || exponent > 7)
    return -1;

  /* Sign, mantissa and exponent are now in the correct form to plug into the
     formula described in the comment above.  */
  return (sign << 7) | ((exponent ^ 3) << 4) | (mantissa - 16);
}

/* Return TRUE if rtx X is a valid immediate VFPv3 constant.  */
int
vfp3_const_double_rtx (rtx x)
{
  if (!TARGET_VFP3)
    return 0;

  return vfp3_const_double_index (x) != -1;
}

/* Recognize immediates which can be used in various Neon instructions. Legal
   immediates are described by the following table (for VMVN variants, the
   bitwise inverse of the constant shown is recognized. In either case, VMOV
   is output and the correct instruction to use for a given constant is chosen
   by the assembler). The constant shown is replicated across all elements of
   the destination vector.

   insn elems variant constant (binary)
   ---- ----- ------- -----------------
   vmov  i32     0    00000000 00000000 00000000 abcdefgh
   vmov  i32     1    00000000 00000000 abcdefgh 00000000
   vmov  i32     2    00000000 abcdefgh 00000000 00000000
   vmov  i32     3    abcdefgh 00000000 00000000 00000000
   vmov  i16     4    00000000 abcdefgh
   vmov  i16     5    abcdefgh 00000000
   vmvn  i32     6    00000000 00000000 00000000 abcdefgh
   vmvn  i32     7    00000000 00000000 abcdefgh 00000000
   vmvn  i32     8    00000000 abcdefgh 00000000 00000000
   vmvn  i32     9    abcdefgh 00000000 00000000 00000000
   vmvn  i16    10    00000000 abcdefgh
   vmvn  i16    11    abcdefgh 00000000
   vmov  i32    12    00000000 00000000 abcdefgh 11111111
   vmvn  i32    13    00000000 00000000 abcdefgh 11111111
   vmov  i32    14    00000000 abcdefgh 11111111 11111111
   vmvn  i32    15    00000000 abcdefgh 11111111 11111111
   vmov   i8    16    abcdefgh
   vmov  i64    17    aaaaaaaa bbbbbbbb cccccccc dddddddd
                      eeeeeeee ffffffff gggggggg hhhhhhhh
   vmov  f32    18    aBbbbbbc defgh000 00000000 00000000
   vmov  f32    19    00000000 00000000 00000000 00000000

   For case 18, B = !b. Representable values are exactly those accepted by
   vfp3_const_double_index, but are output as floating-point numbers rather
   than indices.

   For case 19, we will change it to vmov.i32 when assembling.

   Variants 0-5 (inclusive) may also be used as immediates for the second
   operand of VORR/VBIC instructions.

   The INVERSE argument causes the bitwise inverse of the given operand to be
   recognized instead (used for recognizing legal immediates for the VAND/VORN
   pseudo-instructions). If INVERSE is true, the value placed in *MODCONST is
   *not* inverted (i.e. the pseudo-instruction forms vand/vorn should still be
   output, rather than the real insns vbic/vorr).

   INVERSE makes no difference to the recognition of float vectors.

   The return value is the variant of immediate as shown in the above table, or
   -1 if the given value doesn't match any of the listed patterns.
*/
static int
neon_valid_immediate (rtx op, enum machine_mode mode, int inverse,
		      rtx *modconst, int *elementwidth)
{
#define CHECK(STRIDE, ELSIZE, CLASS, TEST)	\
  matches = 1;					\
  for (i = 0; i < idx; i += (STRIDE))		\
    if (!(TEST))				\
      matches = 0;				\
  if (matches)					\
    {						\
      immtype = (CLASS);			\
      elsize = (ELSIZE);			\
      break;					\
    }

  unsigned int i, elsize = 0, idx = 0, n_elts;
  unsigned int innersize;
  unsigned char bytes[16];
  int immtype = -1, matches;
  unsigned int invmask = inverse ? 0xff : 0;
  bool vector = GET_CODE (op) == CONST_VECTOR;

  if (vector)
    {
      n_elts = CONST_VECTOR_NUNITS (op);
      innersize = GET_MODE_SIZE (GET_MODE_INNER (mode));
    }
  else
    {
      n_elts = 1;
      if (mode == VOIDmode)
	mode = DImode;
      innersize = GET_MODE_SIZE (mode);
    }

  /* Vectors of float constants.  */
  if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
    {
      rtx el0 = CONST_VECTOR_ELT (op, 0);
      REAL_VALUE_TYPE r0;

      if (!vfp3_const_double_rtx (el0) && el0 != CONST0_RTX (GET_MODE (el0)))
        return -1;

      REAL_VALUE_FROM_CONST_DOUBLE (r0, el0);

      for (i = 1; i < n_elts; i++)
        {
          rtx elt = CONST_VECTOR_ELT (op, i);
          REAL_VALUE_TYPE re;

          REAL_VALUE_FROM_CONST_DOUBLE (re, elt);

          if (!REAL_VALUES_EQUAL (r0, re))
            return -1;
        }

      if (modconst)
        *modconst = CONST_VECTOR_ELT (op, 0);

      if (elementwidth)
        *elementwidth = 0;

      if (el0 == CONST0_RTX (GET_MODE (el0)))
	return 19;
      else
	return 18;
    }

  /* Splat vector constant out into a byte vector.  */
  for (i = 0; i < n_elts; i++)
    {
      rtx el = vector ? CONST_VECTOR_ELT (op, i) : op;
      unsigned HOST_WIDE_INT elpart;
      unsigned int part, parts;

      if (CONST_INT_P (el))
        {
          elpart = INTVAL (el);
          parts = 1;
        }
      else if (CONST_DOUBLE_P (el))
        {
          elpart = CONST_DOUBLE_LOW (el);
          parts = 2;
        }
      else
        gcc_unreachable ();

      for (part = 0; part < parts; part++)
        {
          unsigned int byte;
          for (byte = 0; byte < innersize; byte++)
            {
              bytes[idx++] = (elpart & 0xff) ^ invmask;
              elpart >>= BITS_PER_UNIT;
            }
          if (CONST_DOUBLE_P (el))
            elpart = CONST_DOUBLE_HIGH (el);
        }
    }

  /* Sanity check.  */
  gcc_assert (idx == GET_MODE_SIZE (mode));

  do
    {
      CHECK (4, 32, 0, bytes[i] == bytes[0] && bytes[i + 1] == 0
		       && bytes[i + 2] == 0 && bytes[i + 3] == 0);

      CHECK (4, 32, 1, bytes[i] == 0 && bytes[i + 1] == bytes[1]
		       && bytes[i + 2] == 0 && bytes[i + 3] == 0);

      CHECK (4, 32, 2, bytes[i] == 0 && bytes[i + 1] == 0
		       && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0);

      CHECK (4, 32, 3, bytes[i] == 0 && bytes[i + 1] == 0
		       && bytes[i + 2] == 0 && bytes[i + 3] == bytes[3]);

      CHECK (2, 16, 4, bytes[i] == bytes[0] && bytes[i + 1] == 0);

      CHECK (2, 16, 5, bytes[i] == 0 && bytes[i + 1] == bytes[1]);

      CHECK (4, 32, 6, bytes[i] == bytes[0] && bytes[i + 1] == 0xff
		       && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff);

      CHECK (4, 32, 7, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
		       && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff);

      CHECK (4, 32, 8, bytes[i] == 0xff && bytes[i + 1] == 0xff
		       && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff);

      CHECK (4, 32, 9, bytes[i] == 0xff && bytes[i + 1] == 0xff
		       && bytes[i + 2] == 0xff && bytes[i + 3] == bytes[3]);

      CHECK (2, 16, 10, bytes[i] == bytes[0] && bytes[i + 1] == 0xff);

      CHECK (2, 16, 11, bytes[i] == 0xff && bytes[i + 1] == bytes[1]);

      CHECK (4, 32, 12, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
			&& bytes[i + 2] == 0 && bytes[i + 3] == 0);

      CHECK (4, 32, 13, bytes[i] == 0 && bytes[i + 1] == bytes[1]
			&& bytes[i + 2] == 0xff && bytes[i + 3] == 0xff);

      CHECK (4, 32, 14, bytes[i] == 0xff && bytes[i + 1] == 0xff
			&& bytes[i + 2] == bytes[2] && bytes[i + 3] == 0);

      CHECK (4, 32, 15, bytes[i] == 0 && bytes[i + 1] == 0
			&& bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff);

      CHECK (1, 8, 16, bytes[i] == bytes[0]);

      CHECK (1, 64, 17, (bytes[i] == 0 || bytes[i] == 0xff)
			&& bytes[i] == bytes[(i + 8) % idx]);
    }
  while (0);

  if (immtype == -1)
    return -1;

  if (elementwidth)
    *elementwidth = elsize;

  if (modconst)
    {
      unsigned HOST_WIDE_INT imm = 0;

      /* Un-invert bytes of recognized vector, if necessary.  */
      if (invmask != 0)
        for (i = 0; i < idx; i++)
          bytes[i] ^= invmask;

      if (immtype == 17)
        {
          /* FIXME: Broken on 32-bit H_W_I hosts.  */
          gcc_assert (sizeof (HOST_WIDE_INT) == 8);

          for (i = 0; i < 8; i++)
            imm |= (unsigned HOST_WIDE_INT) (bytes[i] ? 0xff : 0)
                   << (i * BITS_PER_UNIT);

          *modconst = GEN_INT (imm);
        }
      else
        {
          unsigned HOST_WIDE_INT imm = 0;

          for (i = 0; i < elsize / BITS_PER_UNIT; i++)
            imm |= (unsigned HOST_WIDE_INT) bytes[i] << (i * BITS_PER_UNIT);

          *modconst = GEN_INT (imm);
        }
    }

  return immtype;
#undef CHECK
}

/* Return TRUE if rtx X is legal for use as either a Neon VMOV (or, implicitly,
   VMVN) immediate. Write back width per element to *ELEMENTWIDTH (or zero for
   float elements), and a modified constant (whatever should be output for a
   VMOV) in *MODCONST.  */

int
neon_immediate_valid_for_move (rtx op, enum machine_mode mode,
			       rtx *modconst, int *elementwidth)
{
  rtx tmpconst;
  int tmpwidth;
  int retval = neon_valid_immediate (op, mode, 0, &tmpconst, &tmpwidth);

  if (retval == -1)
    return 0;

  if (modconst)
    *modconst = tmpconst;

  if (elementwidth)
    *elementwidth = tmpwidth;

  return 1;
}

/* Return TRUE if rtx X is legal for use in a VORR or VBIC instruction.  If
   the immediate is valid, write a constant suitable for using as an operand
   to VORR/VBIC/VAND/VORN to *MODCONST and the corresponding element width to
   *ELEMENTWIDTH. See neon_valid_immediate for description of INVERSE.  */

int
neon_immediate_valid_for_logic (rtx op, enum machine_mode mode, int inverse,
				rtx *modconst, int *elementwidth)
{
  rtx tmpconst;
  int tmpwidth;
  int retval = neon_valid_immediate (op, mode, inverse, &tmpconst, &tmpwidth);

  if (retval < 0 || retval > 5)
    return 0;

  if (modconst)
    *modconst = tmpconst;

  if (elementwidth)
    *elementwidth = tmpwidth;

  return 1;
}

/* Return TRUE if rtx OP is legal for use in a VSHR or VSHL instruction.  If
   the immediate is valid, write a constant suitable for using as an operand
   to VSHR/VSHL to *MODCONST and the corresponding element width to
   *ELEMENTWIDTH. ISLEFTSHIFT is for determine left or right shift,
   because they have different limitations.  */

int
neon_immediate_valid_for_shift (rtx op, enum machine_mode mode,
				rtx *modconst, int *elementwidth,
				bool isleftshift)
{
  unsigned int innersize = GET_MODE_SIZE (GET_MODE_INNER (mode));
  unsigned int n_elts = CONST_VECTOR_NUNITS (op), i;
  unsigned HOST_WIDE_INT last_elt = 0;
  unsigned HOST_WIDE_INT maxshift;

  /* Split vector constant out into a byte vector.  */
  for (i = 0; i < n_elts; i++)
    {
      rtx el = CONST_VECTOR_ELT (op, i);
      unsigned HOST_WIDE_INT elpart;

      if (CONST_INT_P (el))
        elpart = INTVAL (el);
      else if (CONST_DOUBLE_P (el))
        return 0;
      else
        gcc_unreachable ();

      if (i != 0 && elpart != last_elt)
        return 0;

      last_elt = elpart;
    }

  /* Shift less than element size.  */
  maxshift = innersize * 8;

  if (isleftshift)
    {
      /* Left shift immediate value can be from 0 to <size>-1.  */
      if (last_elt >= maxshift)
        return 0;
    }
  else
    {
      /* Right shift immediate value can be from 1 to <size>.  */
      if (last_elt == 0 || last_elt > maxshift)
	return 0;
    }

  if (elementwidth)
    *elementwidth = innersize * 8;

  if (modconst)
    *modconst = CONST_VECTOR_ELT (op, 0);

  return 1;
}

/* Return a string suitable for output of Neon immediate logic operation
   MNEM.  */

char *
neon_output_logic_immediate (const char *mnem, rtx *op2, enum machine_mode mode,
			     int inverse, int quad)
{
  int width, is_valid;
  static char templ[40];

  is_valid = neon_immediate_valid_for_logic (*op2, mode, inverse, op2, &width);

  gcc_assert (is_valid != 0);

  if (quad)
    sprintf (templ, "%s.i%d\t%%q0, %%2", mnem, width);
  else
    sprintf (templ, "%s.i%d\t%%P0, %%2", mnem, width);

  return templ;
}

/* Return a string suitable for output of Neon immediate shift operation
   (VSHR or VSHL) MNEM.  */

char *
neon_output_shift_immediate (const char *mnem, char sign, rtx *op2,
			     enum machine_mode mode, int quad,
			     bool isleftshift)
{
  int width, is_valid;
  static char templ[40];

  is_valid = neon_immediate_valid_for_shift (*op2, mode, op2, &width, isleftshift);
  gcc_assert (is_valid != 0);

  if (quad)
    sprintf (templ, "%s.%c%d\t%%q0, %%q1, %%2", mnem, sign, width);
  else
    sprintf (templ, "%s.%c%d\t%%P0, %%P1, %%2", mnem, sign, width);

  return templ;
}

/* Output a sequence of pairwise operations to implement a reduction.
   NOTE: We do "too much work" here, because pairwise operations work on two
   registers-worth of operands in one go. Unfortunately we can't exploit those
   extra calculations to do the full operation in fewer steps, I don't think.
   Although all vector elements of the result but the first are ignored, we
   actually calculate the same result in each of the elements. An alternative
   such as initially loading a vector with zero to use as each of the second
   operands would use up an additional register and take an extra instruction,
   for no particular gain.  */

void
neon_pairwise_reduce (rtx op0, rtx op1, enum machine_mode mode,
		      rtx (*reduc) (rtx, rtx, rtx))
{
  enum machine_mode inner = GET_MODE_INNER (mode);
  unsigned int i, parts = GET_MODE_SIZE (mode) / GET_MODE_SIZE (inner);
  rtx tmpsum = op1;

  for (i = parts / 2; i >= 1; i /= 2)
    {
      rtx dest = (i == 1) ? op0 : gen_reg_rtx (mode);
      emit_insn (reduc (dest, tmpsum, tmpsum));
      tmpsum = dest;
    }
}

/* If VALS is a vector constant that can be loaded into a register
   using VDUP, generate instructions to do so and return an RTX to
   assign to the register.  Otherwise return NULL_RTX.  */

static rtx
neon_vdup_constant (rtx vals)
{
  enum machine_mode mode = GET_MODE (vals);
  enum machine_mode inner_mode = GET_MODE_INNER (mode);
  int n_elts = GET_MODE_NUNITS (mode);
  bool all_same = true;
  rtx x;
  int i;

  if (GET_CODE (vals) != CONST_VECTOR || GET_MODE_SIZE (inner_mode) > 4)
    return NULL_RTX;

  for (i = 0; i < n_elts; ++i)
    {
      x = XVECEXP (vals, 0, i);
      if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
	all_same = false;
    }

  if (!all_same)
    /* The elements are not all the same.  We could handle repeating
       patterns of a mode larger than INNER_MODE here (e.g. int8x8_t
       {0, C, 0, C, 0, C, 0, C} which can be loaded using
       vdup.i16).  */
    return NULL_RTX;

  /* We can load this constant by using VDUP and a constant in a
     single ARM register.  This will be cheaper than a vector
     load.  */

  x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, 0));
  return gen_rtx_VEC_DUPLICATE (mode, x);
}

/* Generate code to load VALS, which is a PARALLEL containing only
   constants (for vec_init) or CONST_VECTOR, efficiently into a
   register.  Returns an RTX to copy into the register, or NULL_RTX
   for a PARALLEL that can not be converted into a CONST_VECTOR.  */

rtx
neon_make_constant (rtx vals)
{
  enum machine_mode mode = GET_MODE (vals);
  rtx target;
  rtx const_vec = NULL_RTX;
  int n_elts = GET_MODE_NUNITS (mode);
  int n_const = 0;
  int i;

  if (GET_CODE (vals) == CONST_VECTOR)
    const_vec = vals;
  else if (GET_CODE (vals) == PARALLEL)
    {
      /* A CONST_VECTOR must contain only CONST_INTs and
	 CONST_DOUBLEs, but CONSTANT_P allows more (e.g. SYMBOL_REF).
	 Only store valid constants in a CONST_VECTOR.  */
      for (i = 0; i < n_elts; ++i)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	    n_const++;
	}
      if (n_const == n_elts)
	const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
    }
  else
    gcc_unreachable ();

  if (const_vec != NULL
      && neon_immediate_valid_for_move (const_vec, mode, NULL, NULL))
    /* Load using VMOV.  On Cortex-A8 this takes one cycle.  */
    return const_vec;
  else if ((target = neon_vdup_constant (vals)) != NULL_RTX)
    /* Loaded using VDUP.  On Cortex-A8 the VDUP takes one NEON
       pipeline cycle; creating the constant takes one or two ARM
       pipeline cycles.  */
    return target;
  else if (const_vec != NULL_RTX)
    /* Load from constant pool.  On Cortex-A8 this takes two cycles
       (for either double or quad vectors).  We can not take advantage
       of single-cycle VLD1 because we need a PC-relative addressing
       mode.  */
    return const_vec;
  else
    /* A PARALLEL containing something not valid inside CONST_VECTOR.
       We can not construct an initializer.  */
    return NULL_RTX;
}

/* Initialize vector TARGET to VALS.  */

void
neon_expand_vector_init (rtx target, rtx vals)
{
  enum machine_mode mode = GET_MODE (target);
  enum machine_mode inner_mode = GET_MODE_INNER (mode);
  int n_elts = GET_MODE_NUNITS (mode);
  int n_var = 0, one_var = -1;
  bool all_same = true;
  rtx x, mem;
  int i;

  for (i = 0; i < n_elts; ++i)
    {
      x = XVECEXP (vals, 0, i);
      if (!CONSTANT_P (x))
	++n_var, one_var = i;

      if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
	all_same = false;
    }

  if (n_var == 0)
    {
      rtx constant = neon_make_constant (vals);
      if (constant != NULL_RTX)
	{
	  emit_move_insn (target, constant);
	  return;
	}
    }

  /* Splat a single non-constant element if we can.  */
  if (all_same && GET_MODE_SIZE (inner_mode) <= 4)
    {
      x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, 0));
      emit_insn (gen_rtx_SET (VOIDmode, target,
			      gen_rtx_VEC_DUPLICATE (mode, x)));
      return;
    }

  /* One field is non-constant.  Load constant then overwrite varying
     field.  This is more efficient than using the stack.  */
  if (n_var == 1)
    {
      rtx copy = copy_rtx (vals);
      rtx index = GEN_INT (one_var);

      /* Load constant part of vector, substitute neighboring value for
	 varying element.  */
      XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
      neon_expand_vector_init (target, copy);

      /* Insert variable.  */
      x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, one_var));
      switch (mode)
	{
	case V8QImode:
	  emit_insn (gen_neon_vset_lanev8qi (target, x, target, index));
	  break;
	case V16QImode:
	  emit_insn (gen_neon_vset_lanev16qi (target, x, target, index));
	  break;
	case V4HImode:
	  emit_insn (gen_neon_vset_lanev4hi (target, x, target, index));
	  break;
	case V8HImode:
	  emit_insn (gen_neon_vset_lanev8hi (target, x, target, index));
	  break;
	case V2SImode:
	  emit_insn (gen_neon_vset_lanev2si (target, x, target, index));
	  break;
	case V4SImode:
	  emit_insn (gen_neon_vset_lanev4si (target, x, target, index));
	  break;
	case V2SFmode:
	  emit_insn (gen_neon_vset_lanev2sf (target, x, target, index));
	  break;
	case V4SFmode:
	  emit_insn (gen_neon_vset_lanev4sf (target, x, target, index));
	  break;
	case V2DImode:
	  emit_insn (gen_neon_vset_lanev2di (target, x, target, index));
	  break;
	default:
	  gcc_unreachable ();
	}
      return;
    }

  /* Construct the vector in memory one field at a time
     and load the whole vector.  */
  mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
  for (i = 0; i < n_elts; i++)
    emit_move_insn (adjust_address_nv (mem, inner_mode,
				    i * GET_MODE_SIZE (inner_mode)),
		    XVECEXP (vals, 0, i));
  emit_move_insn (target, mem);
}

/* Ensure OPERAND lies between LOW (inclusive) and HIGH (exclusive).  Raise
   ERR if it doesn't.  FIXME: NEON bounds checks occur late in compilation, so
   reported source locations are bogus.  */

static void
bounds_check (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high,
	      const char *err)
{
  HOST_WIDE_INT lane;

  gcc_assert (CONST_INT_P (operand));

  lane = INTVAL (operand);

  if (lane < low || lane >= high)
    error (err);
}

/* Bounds-check lanes.  */

void
neon_lane_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high)
{
  bounds_check (operand, low, high, "lane out of range");
}

/* Bounds-check constants.  */

void
neon_const_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high)
{
  bounds_check (operand, low, high, "constant out of range");
}

HOST_WIDE_INT
neon_element_bits (enum machine_mode mode)
{
  if (mode == DImode)
    return GET_MODE_BITSIZE (mode);
  else
    return GET_MODE_BITSIZE (GET_MODE_INNER (mode));
}


/* Predicates for `match_operand' and `match_operator'.  */

/* Return TRUE if OP is a valid coprocessor memory address pattern.
   WB is true if full writeback address modes are allowed and is false
   if limited writeback address modes (POST_INC and PRE_DEC) are
   allowed.  */

int
arm_coproc_mem_operand (rtx op, bool wb)
{
  rtx ind;

  /* Reject eliminable registers.  */
  if (! (reload_in_progress || reload_completed || lra_in_progress)
      && (   reg_mentioned_p (frame_pointer_rtx, op)
	  || reg_mentioned_p (arg_pointer_rtx, op)
	  || reg_mentioned_p (virtual_incoming_args_rtx, op)
	  || reg_mentioned_p (virtual_outgoing_args_rtx, op)
	  || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
	  || reg_mentioned_p (virtual_stack_vars_rtx, op)))
    return FALSE;

  /* Constants are converted into offsets from labels.  */
  if (!MEM_P (op))
    return FALSE;

  ind = XEXP (op, 0);

  if (reload_completed
      && (GET_CODE (ind) == LABEL_REF
	  || (GET_CODE (ind) == CONST
	      && GET_CODE (XEXP (ind, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
	      && CONST_INT_P (XEXP (XEXP (ind, 0), 1)))))
    return TRUE;

  /* Match: (mem (reg)).  */
  if (REG_P (ind))
    return arm_address_register_rtx_p (ind, 0);

  /* Autoincremment addressing modes.  POST_INC and PRE_DEC are
     acceptable in any case (subject to verification by
     arm_address_register_rtx_p).  We need WB to be true to accept
     PRE_INC and POST_DEC.  */
  if (GET_CODE (ind) == POST_INC
      || GET_CODE (ind) == PRE_DEC
      || (wb
	  && (GET_CODE (ind) == PRE_INC
	      || GET_CODE (ind) == POST_DEC)))
    return arm_address_register_rtx_p (XEXP (ind, 0), 0);

  if (wb
      && (GET_CODE (ind) == POST_MODIFY || GET_CODE (ind) == PRE_MODIFY)
      && arm_address_register_rtx_p (XEXP (ind, 0), 0)
      && GET_CODE (XEXP (ind, 1)) == PLUS
      && rtx_equal_p (XEXP (XEXP (ind, 1), 0), XEXP (ind, 0)))
    ind = XEXP (ind, 1);

  /* Match:
     (plus (reg)
	   (const)).  */
  if (GET_CODE (ind) == PLUS
      && REG_P (XEXP (ind, 0))
      && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
      && CONST_INT_P (XEXP (ind, 1))
      && INTVAL (XEXP (ind, 1)) > -1024
      && INTVAL (XEXP (ind, 1)) <  1024
      && (INTVAL (XEXP (ind, 1)) & 3) == 0)
    return TRUE;

  return FALSE;
}

/* Return TRUE if OP is a memory operand which we can load or store a vector
   to/from. TYPE is one of the following values:
    0 - Vector load/stor (vldr)
    1 - Core registers (ldm)
    2 - Element/structure loads (vld1)
 */
int
neon_vector_mem_operand (rtx op, int type, bool strict)
{
  rtx ind;

  /* Reject eliminable registers.  */
  if (! (reload_in_progress || reload_completed)
      && (   reg_mentioned_p (frame_pointer_rtx, op)
	  || reg_mentioned_p (arg_pointer_rtx, op)
	  || reg_mentioned_p (virtual_incoming_args_rtx, op)
	  || reg_mentioned_p (virtual_outgoing_args_rtx, op)
	  || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
	  || reg_mentioned_p (virtual_stack_vars_rtx, op)))
    return !strict;

  /* Constants are converted into offsets from labels.  */
  if (!MEM_P (op))
    return FALSE;

  ind = XEXP (op, 0);

  if (reload_completed
      && (GET_CODE (ind) == LABEL_REF
	  || (GET_CODE (ind) == CONST
	      && GET_CODE (XEXP (ind, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
	      && CONST_INT_P (XEXP (XEXP (ind, 0), 1)))))
    return TRUE;

  /* Match: (mem (reg)).  */
  if (REG_P (ind))
    return arm_address_register_rtx_p (ind, 0);

  /* Allow post-increment with Neon registers.  */
  if ((type != 1 && GET_CODE (ind) == POST_INC)
      || (type == 0 && GET_CODE (ind) == PRE_DEC))
    return arm_address_register_rtx_p (XEXP (ind, 0), 0);

  /* FIXME: vld1 allows register post-modify.  */

  /* Match:
     (plus (reg)
          (const)).  */
  if (type == 0
      && GET_CODE (ind) == PLUS
      && REG_P (XEXP (ind, 0))
      && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
      && CONST_INT_P (XEXP (ind, 1))
      && INTVAL (XEXP (ind, 1)) > -1024
      /* For quad modes, we restrict the constant offset to be slightly less
	 than what the instruction format permits.  We have no such constraint
	 on double mode offsets.  (This must match arm_legitimate_index_p.)  */
      && (INTVAL (XEXP (ind, 1))
	  < (VALID_NEON_QREG_MODE (GET_MODE (op))? 1016 : 1024))
      && (INTVAL (XEXP (ind, 1)) & 3) == 0)
    return TRUE;

  return FALSE;
}

/* Return TRUE if OP is a mem suitable for loading/storing a Neon struct
   type.  */
int
neon_struct_mem_operand (rtx op)
{
  rtx ind;

  /* Reject eliminable registers.  */
  if (! (reload_in_progress || reload_completed)
      && (   reg_mentioned_p (frame_pointer_rtx, op)
	  || reg_mentioned_p (arg_pointer_rtx, op)
	  || reg_mentioned_p (virtual_incoming_args_rtx, op)
	  || reg_mentioned_p (virtual_outgoing_args_rtx, op)
	  || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
	  || reg_mentioned_p (virtual_stack_vars_rtx, op)))
    return FALSE;

  /* Constants are converted into offsets from labels.  */
  if (!MEM_P (op))
    return FALSE;

  ind = XEXP (op, 0);

  if (reload_completed
      && (GET_CODE (ind) == LABEL_REF
	  || (GET_CODE (ind) == CONST
	      && GET_CODE (XEXP (ind, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
	      && CONST_INT_P (XEXP (XEXP (ind, 0), 1)))))
    return TRUE;

  /* Match: (mem (reg)).  */
  if (REG_P (ind))
    return arm_address_register_rtx_p (ind, 0);

  /* vldm/vstm allows POST_INC (ia) and PRE_DEC (db).  */
  if (GET_CODE (ind) == POST_INC
      || GET_CODE (ind) == PRE_DEC)
    return arm_address_register_rtx_p (XEXP (ind, 0), 0);

  return FALSE;
}

/* Return true if X is a register that will be eliminated later on.  */
int
arm_eliminable_register (rtx x)
{
  return REG_P (x) && (REGNO (x) == FRAME_POINTER_REGNUM
		       || REGNO (x) == ARG_POINTER_REGNUM
		       || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
			   && REGNO (x) <= LAST_VIRTUAL_REGISTER));
}

/* Return GENERAL_REGS if a scratch register required to reload x to/from
   coprocessor registers.  Otherwise return NO_REGS.  */

enum reg_class
coproc_secondary_reload_class (enum machine_mode mode, rtx x, bool wb)
{
  if (mode == HFmode)
    {
      if (!TARGET_NEON_FP16)
	return GENERAL_REGS;
      if (s_register_operand (x, mode) || neon_vector_mem_operand (x, 2, true))
	return NO_REGS;
      return GENERAL_REGS;
    }

  /* The neon move patterns handle all legitimate vector and struct
     addresses.  */
  if (TARGET_NEON
      && (MEM_P (x) || GET_CODE (x) == CONST_VECTOR)
      && (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	  || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
	  || VALID_NEON_STRUCT_MODE (mode)))
    return NO_REGS;

  if (arm_coproc_mem_operand (x, wb) || s_register_operand (x, mode))
    return NO_REGS;

  return GENERAL_REGS;
}

/* Values which must be returned in the most-significant end of the return
   register.  */

static bool
arm_return_in_msb (const_tree valtype)
{
  return (TARGET_AAPCS_BASED
          && BYTES_BIG_ENDIAN
	  && (AGGREGATE_TYPE_P (valtype)
	      || TREE_CODE (valtype) == COMPLEX_TYPE
	      || FIXED_POINT_TYPE_P (valtype)));
}

/* Return TRUE if X references a SYMBOL_REF.  */
int
symbol_mentioned_p (rtx x)
{
  const char * fmt;
  int i;

  if (GET_CODE (x) == SYMBOL_REF)
    return 1;

  /* UNSPEC_TLS entries for a symbol include the SYMBOL_REF, but they
     are constant offsets, not symbols.  */
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
    return 0;

  fmt = GET_RTX_FORMAT (GET_CODE (x));

  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (symbol_mentioned_p (XVECEXP (x, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
	return 1;
    }

  return 0;
}

/* Return TRUE if X references a LABEL_REF.  */
int
label_mentioned_p (rtx x)
{
  const char * fmt;
  int i;

  if (GET_CODE (x) == LABEL_REF)
    return 1;

  /* UNSPEC_TLS entries for a symbol include a LABEL_REF for the referencing
     instruction, but they are constant offsets, not symbols.  */
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
    return 0;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (label_mentioned_p (XVECEXP (x, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
	return 1;
    }

  return 0;
}

int
tls_mentioned_p (rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST:
      return tls_mentioned_p (XEXP (x, 0));

    case UNSPEC:
      if (XINT (x, 1) == UNSPEC_TLS)
	return 1;

    default:
      return 0;
    }
}

/* Must not copy any rtx that uses a pc-relative address.  */

static int
arm_note_pic_base (rtx *x, void *date ATTRIBUTE_UNUSED)
{
  if (GET_CODE (*x) == UNSPEC
      && (XINT (*x, 1) == UNSPEC_PIC_BASE
	  || XINT (*x, 1) == UNSPEC_PIC_UNIFIED))
    return 1;
  return 0;
}

static bool
arm_cannot_copy_insn_p (rtx insn)
{
  /* The tls call insn cannot be copied, as it is paired with a data
     word.  */
  if (recog_memoized (insn) == CODE_FOR_tlscall)
    return true;

  return for_each_rtx (&PATTERN (insn), arm_note_pic_base, NULL);
}

enum rtx_code
minmax_code (rtx x)
{
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case SMAX:
      return GE;
    case SMIN:
      return LE;
    case UMIN:
      return LEU;
    case UMAX:
      return GEU;
    default:
      gcc_unreachable ();
    }
}

/* Match pair of min/max operators that can be implemented via usat/ssat.  */

bool
arm_sat_operator_match (rtx lo_bound, rtx hi_bound,
			int *mask, bool *signed_sat)
{
  /* The high bound must be a power of two minus one.  */
  int log = exact_log2 (INTVAL (hi_bound) + 1);
  if (log == -1)
    return false;

  /* The low bound is either zero (for usat) or one less than the
     negation of the high bound (for ssat).  */
  if (INTVAL (lo_bound) == 0)
    {
      if (mask)
        *mask = log;
      if (signed_sat)
        *signed_sat = false;

      return true;
    }

  if (INTVAL (lo_bound) == -INTVAL (hi_bound) - 1)
    {
      if (mask)
        *mask = log + 1;
      if (signed_sat)
        *signed_sat = true;

      return true;
    }

  return false;
}

/* Return 1 if memory locations are adjacent.  */
int
adjacent_mem_locations (rtx a, rtx b)
{
  /* We don't guarantee to preserve the order of these memory refs.  */
  if (volatile_refs_p (a) || volatile_refs_p (b))
    return 0;

  if ((REG_P (XEXP (a, 0))
       || (GET_CODE (XEXP (a, 0)) == PLUS
	   && CONST_INT_P (XEXP (XEXP (a, 0), 1))))
      && (REG_P (XEXP (b, 0))
	  || (GET_CODE (XEXP (b, 0)) == PLUS
	      && CONST_INT_P (XEXP (XEXP (b, 0), 1)))))
    {
      HOST_WIDE_INT val0 = 0, val1 = 0;
      rtx reg0, reg1;
      int val_diff;

      if (GET_CODE (XEXP (a, 0)) == PLUS)
        {
	  reg0 = XEXP (XEXP (a, 0), 0);
	  val0 = INTVAL (XEXP (XEXP (a, 0), 1));
        }
      else
	reg0 = XEXP (a, 0);

      if (GET_CODE (XEXP (b, 0)) == PLUS)
        {
	  reg1 = XEXP (XEXP (b, 0), 0);
	  val1 = INTVAL (XEXP (XEXP (b, 0), 1));
        }
      else
	reg1 = XEXP (b, 0);

      /* Don't accept any offset that will require multiple
	 instructions to handle, since this would cause the
	 arith_adjacentmem pattern to output an overlong sequence.  */
      if (!const_ok_for_op (val0, PLUS) || !const_ok_for_op (val1, PLUS))
	return 0;

      /* Don't allow an eliminable register: register elimination can make
	 the offset too large.  */
      if (arm_eliminable_register (reg0))
	return 0;

      val_diff = val1 - val0;

      if (arm_ld_sched)
	{
	  /* If the target has load delay slots, then there's no benefit
	     to using an ldm instruction unless the offset is zero and
	     we are optimizing for size.  */
	  return (optimize_size && (REGNO (reg0) == REGNO (reg1))
		  && (val0 == 0 || val1 == 0 || val0 == 4 || val1 == 4)
		  && (val_diff == 4 || val_diff == -4));
	}

      return ((REGNO (reg0) == REGNO (reg1))
	      && (val_diff == 4 || val_diff == -4));
    }

  return 0;
}

/* Return true if OP is a valid load or store multiple operation.  LOAD is true
   for load operations, false for store operations.  CONSECUTIVE is true
   if the register numbers in the operation must be consecutive in the register
   bank. RETURN_PC is true if value is to be loaded in PC.
   The pattern we are trying to match for load is:
     [(SET (R_d0) (MEM (PLUS (addr) (offset))))
      (SET (R_d1) (MEM (PLUS (addr) (offset + <reg_increment>))))
       :
       :
      (SET (R_dn) (MEM (PLUS (addr) (offset + n * <reg_increment>))))
     ]
     where
     1.  If offset is 0, first insn should be (SET (R_d0) (MEM (src_addr))).
     2.  REGNO (R_d0) < REGNO (R_d1) < ... < REGNO (R_dn).
     3.  If consecutive is TRUE, then for kth register being loaded,
         REGNO (R_dk) = REGNO (R_d0) + k.
   The pattern for store is similar.  */
bool
ldm_stm_operation_p (rtx op, bool load, enum machine_mode mode,
                     bool consecutive, bool return_pc)
{
  HOST_WIDE_INT count = XVECLEN (op, 0);
  rtx reg, mem, addr;
  unsigned regno;
  unsigned first_regno;
  HOST_WIDE_INT i = 1, base = 0, offset = 0;
  rtx elt;
  bool addr_reg_in_reglist = false;
  bool update = false;
  int reg_increment;
  int offset_adj;
  int regs_per_val;

  /* If not in SImode, then registers must be consecutive
     (e.g., VLDM instructions for DFmode).  */
  gcc_assert ((mode == SImode) || consecutive);
  /* Setting return_pc for stores is illegal.  */
  gcc_assert (!return_pc || load);

  /* Set up the increments and the regs per val based on the mode.  */
  reg_increment = GET_MODE_SIZE (mode);
  regs_per_val = reg_increment / 4;
  offset_adj = return_pc ? 1 : 0;

  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, offset_adj)) != SET
      || (load && !REG_P (SET_DEST (XVECEXP (op, 0, offset_adj)))))
    return false;

  /* Check if this is a write-back.  */
  elt = XVECEXP (op, 0, offset_adj);
  if (GET_CODE (SET_SRC (elt)) == PLUS)
    {
      i++;
      base = 1;
      update = true;

      /* The offset adjustment must be the number of registers being
         popped times the size of a single register.  */
      if (!REG_P (SET_DEST (elt))
          || !REG_P (XEXP (SET_SRC (elt), 0))
          || (REGNO (SET_DEST (elt)) != REGNO (XEXP (SET_SRC (elt), 0)))
          || !CONST_INT_P (XEXP (SET_SRC (elt), 1))
          || INTVAL (XEXP (SET_SRC (elt), 1)) !=
             ((count - 1 - offset_adj) * reg_increment))
        return false;
    }

  i = i + offset_adj;
  base = base + offset_adj;
  /* Perform a quick check so we don't blow up below. If only one reg is loaded,
     success depends on the type: VLDM can do just one reg,
     LDM must do at least two.  */
  if ((count <= i) && (mode == SImode))
      return false;

  elt = XVECEXP (op, 0, i - 1);
  if (GET_CODE (elt) != SET)
    return false;

  if (load)
    {
      reg = SET_DEST (elt);
      mem = SET_SRC (elt);
    }
  else
    {
      reg = SET_SRC (elt);
      mem = SET_DEST (elt);
    }

  if (!REG_P (reg) || !MEM_P (mem))
    return false;

  regno = REGNO (reg);
  first_regno = regno;
  addr = XEXP (mem, 0);
  if (GET_CODE (addr) == PLUS)
    {
      if (!CONST_INT_P (XEXP (addr, 1)))
	return false;

      offset = INTVAL (XEXP (addr, 1));
      addr = XEXP (addr, 0);
    }

  if (!REG_P (addr))
    return false;

  /* Don't allow SP to be loaded unless it is also the base register. It
     guarantees that SP is reset correctly when an LDM instruction
     is interrupted. Otherwise, we might end up with a corrupt stack.  */
  if (load && (REGNO (reg) == SP_REGNUM) && (REGNO (addr) != SP_REGNUM))
    return false;

  for (; i < count; i++)
    {
      elt = XVECEXP (op, 0, i);
      if (GET_CODE (elt) != SET)
        return false;

      if (load)
        {
          reg = SET_DEST (elt);
          mem = SET_SRC (elt);
        }
      else
        {
          reg = SET_SRC (elt);
          mem = SET_DEST (elt);
        }

      if (!REG_P (reg)
          || GET_MODE (reg) != mode
          || REGNO (reg) <= regno
          || (consecutive
              && (REGNO (reg) !=
                  (unsigned int) (first_regno + regs_per_val * (i - base))))
          /* Don't allow SP to be loaded unless it is also the base register. It
             guarantees that SP is reset correctly when an LDM instruction
             is interrupted. Otherwise, we might end up with a corrupt stack.  */
          || (load && (REGNO (reg) == SP_REGNUM) && (REGNO (addr) != SP_REGNUM))
          || !MEM_P (mem)
          || GET_MODE (mem) != mode
          || ((GET_CODE (XEXP (mem, 0)) != PLUS
	       || !rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr)
	       || !CONST_INT_P (XEXP (XEXP (mem, 0), 1))
	       || (INTVAL (XEXP (XEXP (mem, 0), 1)) !=
                   offset + (i - base) * reg_increment))
	      && (!REG_P (XEXP (mem, 0))
		  || offset + (i - base) * reg_increment != 0)))
        return false;

      regno = REGNO (reg);
      if (regno == REGNO (addr))
        addr_reg_in_reglist = true;
    }

  if (load)
    {
      if (update && addr_reg_in_reglist)
        return false;

      /* For Thumb-1, address register is always modified - either by write-back
         or by explicit load.  If the pattern does not describe an update,
         then the address register must be in the list of loaded registers.  */
      if (TARGET_THUMB1)
        return update || addr_reg_in_reglist;
    }

  return true;
}

/* Return true iff it would be profitable to turn a sequence of NOPS loads
   or stores (depending on IS_STORE) into a load-multiple or store-multiple
   instruction.  ADD_OFFSET is nonzero if the base address register needs
   to be modified with an add instruction before we can use it.  */

static bool
multiple_operation_profitable_p (bool is_store ATTRIBUTE_UNUSED,
				 int nops, HOST_WIDE_INT add_offset)
 {
  /* For ARM8,9 & StrongARM, 2 ldr instructions are faster than an ldm
     if the offset isn't small enough.  The reason 2 ldrs are faster
     is because these ARMs are able to do more than one cache access
     in a single cycle.  The ARM9 and StrongARM have Harvard caches,
     whilst the ARM8 has a double bandwidth cache.  This means that
     these cores can do both an instruction fetch and a data fetch in
     a single cycle, so the trick of calculating the address into a
     scratch register (one of the result regs) and then doing a load
     multiple actually becomes slower (and no smaller in code size).
     That is the transformation

 	ldr	rd1, [rbase + offset]
 	ldr	rd2, [rbase + offset + 4]

     to

 	add	rd1, rbase, offset
 	ldmia	rd1, {rd1, rd2}

     produces worse code -- '3 cycles + any stalls on rd2' instead of
     '2 cycles + any stalls on rd2'.  On ARMs with only one cache
     access per cycle, the first sequence could never complete in less
     than 6 cycles, whereas the ldm sequence would only take 5 and
     would make better use of sequential accesses if not hitting the
     cache.

     We cheat here and test 'arm_ld_sched' which we currently know to
     only be true for the ARM8, ARM9 and StrongARM.  If this ever
     changes, then the test below needs to be reworked.  */
  if (nops == 2 && arm_ld_sched && add_offset != 0)
    return false;

  /* XScale has load-store double instructions, but they have stricter
     alignment requirements than load-store multiple, so we cannot
     use them.

     For XScale ldm requires 2 + NREGS cycles to complete and blocks
     the pipeline until completion.

	NREGS		CYCLES
	  1		  3
	  2		  4
	  3		  5
	  4		  6

     An ldr instruction takes 1-3 cycles, but does not block the
     pipeline.

	NREGS		CYCLES
	  1		 1-3
	  2		 2-6
	  3		 3-9
	  4		 4-12

     Best case ldr will always win.  However, the more ldr instructions
     we issue, the less likely we are to be able to schedule them well.
     Using ldr instructions also increases code size.

     As a compromise, we use ldr for counts of 1 or 2 regs, and ldm
     for counts of 3 or 4 regs.  */
  if (nops <= 2 && arm_tune_xscale && !optimize_size)
    return false;
  return true;
}

/* Subroutine of load_multiple_sequence and store_multiple_sequence.
   Given an array of UNSORTED_OFFSETS, of which there are NOPS, compute
   an array ORDER which describes the sequence to use when accessing the
   offsets that produces an ascending order.  In this sequence, each
   offset must be larger by exactly 4 than the previous one.  ORDER[0]
   must have been filled in with the lowest offset by the caller.
   If UNSORTED_REGS is nonnull, it is an array of register numbers that
   we use to verify that ORDER produces an ascending order of registers.
   Return true if it was possible to construct such an order, false if
   not.  */

static bool
compute_offset_order (int nops, HOST_WIDE_INT *unsorted_offsets, int *order,
		      int *unsorted_regs)
{
  int i;
  for (i = 1; i < nops; i++)
    {
      int j;

      order[i] = order[i - 1];
      for (j = 0; j < nops; j++)
	if (unsorted_offsets[j] == unsorted_offsets[order[i - 1]] + 4)
	  {
	    /* We must find exactly one offset that is higher than the
	       previous one by 4.  */
	    if (order[i] != order[i - 1])
	      return false;
	    order[i] = j;
	  }
      if (order[i] == order[i - 1])
	return false;
      /* The register numbers must be ascending.  */
      if (unsorted_regs != NULL
	  && unsorted_regs[order[i]] <= unsorted_regs[order[i - 1]])
	return false;
    }
  return true;
}

/* Used to determine in a peephole whether a sequence of load
   instructions can be changed into a load-multiple instruction.
   NOPS is the number of separate load instructions we are examining.  The
   first NOPS entries in OPERANDS are the destination registers, the
   next NOPS entries are memory operands.  If this function is
   successful, *BASE is set to the common base register of the memory
   accesses; *LOAD_OFFSET is set to the first memory location's offset
   from that base register.
   REGS is an array filled in with the destination register numbers.
   SAVED_ORDER (if nonnull), is an array filled in with an order that maps
   insn numbers to an ascending order of stores.  If CHECK_REGS is true,
   the sequence of registers in REGS matches the loads from ascending memory
   locations, and the function verifies that the register numbers are
   themselves ascending.  If CHECK_REGS is false, the register numbers
   are stored in the order they are found in the operands.  */
static int
load_multiple_sequence (rtx *operands, int nops, int *regs, int *saved_order,
			int *base, HOST_WIDE_INT *load_offset, bool check_regs)
{
  int unsorted_regs[MAX_LDM_STM_OPS];
  HOST_WIDE_INT unsorted_offsets[MAX_LDM_STM_OPS];
  int order[MAX_LDM_STM_OPS];
  rtx base_reg_rtx = NULL;
  int base_reg = -1;
  int i, ldm_case;

  /* Can only handle up to MAX_LDM_STM_OPS insns at present, though could be
     easily extended if required.  */
  gcc_assert (nops >= 2 && nops <= MAX_LDM_STM_OPS);

  memset (order, 0, MAX_LDM_STM_OPS * sizeof (int));

  /* Loop over the operands and check that the memory references are
     suitable (i.e. immediate offsets from the same base register).  At
     the same time, extract the target register, and the memory
     offsets.  */
  for (i = 0; i < nops; i++)
    {
      rtx reg;
      rtx offset;

      /* Convert a subreg of a mem into the mem itself.  */
      if (GET_CODE (operands[nops + i]) == SUBREG)
	operands[nops + i] = alter_subreg (operands + (nops + i), true);

      gcc_assert (MEM_P (operands[nops + i]));

      /* Don't reorder volatile memory references; it doesn't seem worth
	 looking for the case where the order is ok anyway.  */
      if (MEM_VOLATILE_P (operands[nops + i]))
	return 0;

      offset = const0_rtx;

      if ((REG_P (reg = XEXP (operands[nops + i], 0))
	   || (GET_CODE (reg) == SUBREG
	       && REG_P (reg = SUBREG_REG (reg))))
	  || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
	      && ((REG_P (reg = XEXP (XEXP (operands[nops + i], 0), 0)))
		  || (GET_CODE (reg) == SUBREG
		      && REG_P (reg = SUBREG_REG (reg))))
	      && (CONST_INT_P (offset
		  = XEXP (XEXP (operands[nops + i], 0), 1)))))
	{
	  if (i == 0)
	    {
	      base_reg = REGNO (reg);
	      base_reg_rtx = reg;
	      if (TARGET_THUMB1 && base_reg > LAST_LO_REGNUM)
		return 0;
	    }
	  else if (base_reg != (int) REGNO (reg))
	    /* Not addressed from the same base register.  */
	    return 0;

	  unsorted_regs[i] = (REG_P (operands[i])
			      ? REGNO (operands[i])
			      : REGNO (SUBREG_REG (operands[i])));

	  /* If it isn't an integer register, or if it overwrites the
	     base register but isn't the last insn in the list, then
	     we can't do this.  */
	  if (unsorted_regs[i] < 0
	      || (TARGET_THUMB1 && unsorted_regs[i] > LAST_LO_REGNUM)
	      || unsorted_regs[i] > 14
	      || (i != nops - 1 && unsorted_regs[i] == base_reg))
	    return 0;

          /* Don't allow SP to be loaded unless it is also the base
             register.  It guarantees that SP is reset correctly when
             an LDM instruction is interrupted.  Otherwise, we might
             end up with a corrupt stack.  */
          if (unsorted_regs[i] == SP_REGNUM && base_reg != SP_REGNUM)
            return 0;

	  unsorted_offsets[i] = INTVAL (offset);
	  if (i == 0 || unsorted_offsets[i] < unsorted_offsets[order[0]])
	    order[0] = i;
	}
      else
	/* Not a suitable memory address.  */
	return 0;
    }

  /* All the useful information has now been extracted from the
     operands into unsorted_regs and unsorted_offsets; additionally,
     order[0] has been set to the lowest offset in the list.  Sort
     the offsets into order, verifying that they are adjacent, and
     check that the register numbers are ascending.  */
  if (!compute_offset_order (nops, unsorted_offsets, order,
			     check_regs ? unsorted_regs : NULL))
    return 0;

  if (saved_order)
    memcpy (saved_order, order, sizeof order);

  if (base)
    {
      *base = base_reg;

      for (i = 0; i < nops; i++)
	regs[i] = unsorted_regs[check_regs ? order[i] : i];

      *load_offset = unsorted_offsets[order[0]];
    }

  if (TARGET_THUMB1
      && !peep2_reg_dead_p (nops, base_reg_rtx))
    return 0;

  if (unsorted_offsets[order[0]] == 0)
    ldm_case = 1; /* ldmia */
  else if (TARGET_ARM && unsorted_offsets[order[0]] == 4)
    ldm_case = 2; /* ldmib */
  else if (TARGET_ARM && unsorted_offsets[order[nops - 1]] == 0)
    ldm_case = 3; /* ldmda */
  else if (TARGET_32BIT && unsorted_offsets[order[nops - 1]] == -4)
    ldm_case = 4; /* ldmdb */
  else if (const_ok_for_arm (unsorted_offsets[order[0]])
	   || const_ok_for_arm (-unsorted_offsets[order[0]]))
    ldm_case = 5;
  else
    return 0;

  if (!multiple_operation_profitable_p (false, nops,
					ldm_case == 5
					? unsorted_offsets[order[0]] : 0))
    return 0;

  return ldm_case;
}

/* Used to determine in a peephole whether a sequence of store instructions can
   be changed into a store-multiple instruction.
   NOPS is the number of separate store instructions we are examining.
   NOPS_TOTAL is the total number of instructions recognized by the peephole
   pattern.
   The first NOPS entries in OPERANDS are the source registers, the next
   NOPS entries are memory operands.  If this function is successful, *BASE is
   set to the common base register of the memory accesses; *LOAD_OFFSET is set
   to the first memory location's offset from that base register.  REGS is an
   array filled in with the source register numbers, REG_RTXS (if nonnull) is
   likewise filled with the corresponding rtx's.
   SAVED_ORDER (if nonnull), is an array filled in with an order that maps insn
   numbers to an ascending order of stores.
   If CHECK_REGS is true, the sequence of registers in *REGS matches the stores
   from ascending memory locations, and the function verifies that the register
   numbers are themselves ascending.  If CHECK_REGS is false, the register
   numbers are stored in the order they are found in the operands.  */
static int
store_multiple_sequence (rtx *operands, int nops, int nops_total,
			 int *regs, rtx *reg_rtxs, int *saved_order, int *base,
			 HOST_WIDE_INT *load_offset, bool check_regs)
{
  int unsorted_regs[MAX_LDM_STM_OPS];
  rtx unsorted_reg_rtxs[MAX_LDM_STM_OPS];
  HOST_WIDE_INT unsorted_offsets[MAX_LDM_STM_OPS];
  int order[MAX_LDM_STM_OPS];
  int base_reg = -1;
  rtx base_reg_rtx = NULL;
  int i, stm_case;

  /* Write back of base register is currently only supported for Thumb 1.  */
  int base_writeback = TARGET_THUMB1;

  /* Can only handle up to MAX_LDM_STM_OPS insns at present, though could be
     easily extended if required.  */
  gcc_assert (nops >= 2 && nops <= MAX_LDM_STM_OPS);

  memset (order, 0, MAX_LDM_STM_OPS * sizeof (int));

  /* Loop over the operands and check that the memory references are
     suitable (i.e. immediate offsets from the same base register).  At
     the same time, extract the target register, and the memory
     offsets.  */
  for (i = 0; i < nops; i++)
    {
      rtx reg;
      rtx offset;

      /* Convert a subreg of a mem into the mem itself.  */
      if (GET_CODE (operands[nops + i]) == SUBREG)
	operands[nops + i] = alter_subreg (operands + (nops + i), true);

      gcc_assert (MEM_P (operands[nops + i]));

      /* Don't reorder volatile memory references; it doesn't seem worth
	 looking for the case where the order is ok anyway.  */
      if (MEM_VOLATILE_P (operands[nops + i]))
	return 0;

      offset = const0_rtx;

      if ((REG_P (reg = XEXP (operands[nops + i], 0))
	   || (GET_CODE (reg) == SUBREG
	       && REG_P (reg = SUBREG_REG (reg))))
	  || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
	      && ((REG_P (reg = XEXP (XEXP (operands[nops + i], 0), 0)))
		  || (GET_CODE (reg) == SUBREG
		      && REG_P (reg = SUBREG_REG (reg))))
	      && (CONST_INT_P (offset
		  = XEXP (XEXP (operands[nops + i], 0), 1)))))
	{
	  unsorted_reg_rtxs[i] = (REG_P (operands[i])
				  ? operands[i] : SUBREG_REG (operands[i]));
	  unsorted_regs[i] = REGNO (unsorted_reg_rtxs[i]);

	  if (i == 0)
	    {
	      base_reg = REGNO (reg);
	      base_reg_rtx = reg;
	      if (TARGET_THUMB1 && base_reg > LAST_LO_REGNUM)
		return 0;
	    }
	  else if (base_reg != (int) REGNO (reg))
	    /* Not addressed from the same base register.  */
	    return 0;

	  /* If it isn't an integer register, then we can't do this.  */
	  if (unsorted_regs[i] < 0
	      || (TARGET_THUMB1 && unsorted_regs[i] > LAST_LO_REGNUM)
	      /* The effects are unpredictable if the base register is
		 both updated and stored.  */
	      || (base_writeback && unsorted_regs[i] == base_reg)
	      || (TARGET_THUMB2 && unsorted_regs[i] == SP_REGNUM)
	      || unsorted_regs[i] > 14)
	    return 0;

	  unsorted_offsets[i] = INTVAL (offset);
	  if (i == 0 || unsorted_offsets[i] < unsorted_offsets[order[0]])
	    order[0] = i;
	}
      else
	/* Not a suitable memory address.  */
	return 0;
    }

  /* All the useful information has now been extracted from the
     operands into unsorted_regs and unsorted_offsets; additionally,
     order[0] has been set to the lowest offset in the list.  Sort
     the offsets into order, verifying that they are adjacent, and
     check that the register numbers are ascending.  */
  if (!compute_offset_order (nops, unsorted_offsets, order,
			     check_regs ? unsorted_regs : NULL))
    return 0;

  if (saved_order)
    memcpy (saved_order, order, sizeof order);

  if (base)
    {
      *base = base_reg;

      for (i = 0; i < nops; i++)
	{
	  regs[i] = unsorted_regs[check_regs ? order[i] : i];
	  if (reg_rtxs)
	    reg_rtxs[i] = unsorted_reg_rtxs[check_regs ? order[i] : i];
	}

      *load_offset = unsorted_offsets[order[0]];
    }

  if (TARGET_THUMB1
      && !peep2_reg_dead_p (nops_total, base_reg_rtx))
    return 0;

  if (unsorted_offsets[order[0]] == 0)
    stm_case = 1; /* stmia */
  else if (TARGET_ARM && unsorted_offsets[order[0]] == 4)
    stm_case = 2; /* stmib */
  else if (TARGET_ARM && unsorted_offsets[order[nops - 1]] == 0)
    stm_case = 3; /* stmda */
  else if (TARGET_32BIT && unsorted_offsets[order[nops - 1]] == -4)
    stm_case = 4; /* stmdb */
  else
    return 0;

  if (!multiple_operation_profitable_p (false, nops, 0))
    return 0;

  return stm_case;
}

/* Routines for use in generating RTL.  */

/* Generate a load-multiple instruction.  COUNT is the number of loads in
   the instruction; REGS and MEMS are arrays containing the operands.
   BASEREG is the base register to be used in addressing the memory operands.
   WBACK_OFFSET is nonzero if the instruction should update the base
   register.  */

static rtx
arm_gen_load_multiple_1 (int count, int *regs, rtx *mems, rtx basereg,
			 HOST_WIDE_INT wback_offset)
{
  int i = 0, j;
  rtx result;

  if (!multiple_operation_profitable_p (false, count, 0))
    {
      rtx seq;

      start_sequence ();

      for (i = 0; i < count; i++)
	emit_move_insn (gen_rtx_REG (SImode, regs[i]), mems[i]);

      if (wback_offset != 0)
	emit_move_insn (basereg, plus_constant (Pmode, basereg, wback_offset));

      seq = get_insns ();
      end_sequence ();

      return seq;
    }

  result = gen_rtx_PARALLEL (VOIDmode,
			     rtvec_alloc (count + (wback_offset != 0 ? 1 : 0)));
  if (wback_offset != 0)
    {
      XVECEXP (result, 0, 0)
	= gen_rtx_SET (VOIDmode, basereg,
		       plus_constant (Pmode, basereg, wback_offset));
      i = 1;
      count++;
    }

  for (j = 0; i < count; i++, j++)
    XVECEXP (result, 0, i)
      = gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, regs[j]), mems[j]);

  return result;
}

/* Generate a store-multiple instruction.  COUNT is the number of stores in
   the instruction; REGS and MEMS are arrays containing the operands.
   BASEREG is the base register to be used in addressing the memory operands.
   WBACK_OFFSET is nonzero if the instruction should update the base
   register.  */

static rtx
arm_gen_store_multiple_1 (int count, int *regs, rtx *mems, rtx basereg,
			  HOST_WIDE_INT wback_offset)
{
  int i = 0, j;
  rtx result;

  if (GET_CODE (basereg) == PLUS)
    basereg = XEXP (basereg, 0);

  if (!multiple_operation_profitable_p (false, count, 0))
    {
      rtx seq;

      start_sequence ();

      for (i = 0; i < count; i++)
	emit_move_insn (mems[i], gen_rtx_REG (SImode, regs[i]));

      if (wback_offset != 0)
	emit_move_insn (basereg, plus_constant (Pmode, basereg, wback_offset));

      seq = get_insns ();
      end_sequence ();

      return seq;
    }

  result = gen_rtx_PARALLEL (VOIDmode,
			     rtvec_alloc (count + (wback_offset != 0 ? 1 : 0)));
  if (wback_offset != 0)
    {
      XVECEXP (result, 0, 0)
	= gen_rtx_SET (VOIDmode, basereg,
		       plus_constant (Pmode, basereg, wback_offset));
      i = 1;
      count++;
    }

  for (j = 0; i < count; i++, j++)
    XVECEXP (result, 0, i)
      = gen_rtx_SET (VOIDmode, mems[j], gen_rtx_REG (SImode, regs[j]));

  return result;
}

/* Generate either a load-multiple or a store-multiple instruction.  This
   function can be used in situations where we can start with a single MEM
   rtx and adjust its address upwards.
   COUNT is the number of operations in the instruction, not counting a
   possible update of the base register.  REGS is an array containing the
   register operands.
   BASEREG is the base register to be used in addressing the memory operands,
   which are constructed from BASEMEM.
   WRITE_BACK specifies whether the generated instruction should include an
   update of the base register.
   OFFSETP is used to pass an offset to and from this function; this offset
   is not used when constructing the address (instead BASEMEM should have an
   appropriate offset in its address), it is used only for setting
   MEM_OFFSET.  It is updated only if WRITE_BACK is true.*/

static rtx
arm_gen_multiple_op (bool is_load, int *regs, int count, rtx basereg,
		     bool write_back, rtx basemem, HOST_WIDE_INT *offsetp)
{
  rtx mems[MAX_LDM_STM_OPS];
  HOST_WIDE_INT offset = *offsetp;
  int i;

  gcc_assert (count <= MAX_LDM_STM_OPS);

  if (GET_CODE (basereg) == PLUS)
    basereg = XEXP (basereg, 0);

  for (i = 0; i < count; i++)
    {
      rtx addr = plus_constant (Pmode, basereg, i * 4);
      mems[i] = adjust_automodify_address_nv (basemem, SImode, addr, offset);
      offset += 4;
    }

  if (write_back)
    *offsetp = offset;

  if (is_load)
    return arm_gen_load_multiple_1 (count, regs, mems, basereg,
				    write_back ? 4 * count : 0);
  else
    return arm_gen_store_multiple_1 (count, regs, mems, basereg,
				     write_back ? 4 * count : 0);
}

rtx
arm_gen_load_multiple (int *regs, int count, rtx basereg, int write_back,
		       rtx basemem, HOST_WIDE_INT *offsetp)
{
  return arm_gen_multiple_op (TRUE, regs, count, basereg, write_back, basemem,
			      offsetp);
}

rtx
arm_gen_store_multiple (int *regs, int count, rtx basereg, int write_back,
			rtx basemem, HOST_WIDE_INT *offsetp)
{
  return arm_gen_multiple_op (FALSE, regs, count, basereg, write_back, basemem,
			      offsetp);
}

/* Called from a peephole2 expander to turn a sequence of loads into an
   LDM instruction.  OPERANDS are the operands found by the peephole matcher;
   NOPS indicates how many separate loads we are trying to combine.  SORT_REGS
   is true if we can reorder the registers because they are used commutatively
   subsequently.
   Returns true iff we could generate a new instruction.  */

bool
gen_ldm_seq (rtx *operands, int nops, bool sort_regs)
{
  int regs[MAX_LDM_STM_OPS], mem_order[MAX_LDM_STM_OPS];
  rtx mems[MAX_LDM_STM_OPS];
  int i, j, base_reg;
  rtx base_reg_rtx;
  HOST_WIDE_INT offset;
  int write_back = FALSE;
  int ldm_case;
  rtx addr;

  ldm_case = load_multiple_sequence (operands, nops, regs, mem_order,
				     &base_reg, &offset, !sort_regs);

  if (ldm_case == 0)
    return false;

  if (sort_regs)
    for (i = 0; i < nops - 1; i++)
      for (j = i + 1; j < nops; j++)
	if (regs[i] > regs[j])
	  {
	    int t = regs[i];
	    regs[i] = regs[j];
	    regs[j] = t;
	  }
  base_reg_rtx = gen_rtx_REG (Pmode, base_reg);

  if (TARGET_THUMB1)
    {
      gcc_assert (peep2_reg_dead_p (nops, base_reg_rtx));
      gcc_assert (ldm_case == 1 || ldm_case == 5);
      write_back = TRUE;
    }

  if (ldm_case == 5)
    {
      rtx newbase = TARGET_THUMB1 ? base_reg_rtx : gen_rtx_REG (SImode, regs[0]);
      emit_insn (gen_addsi3 (newbase, base_reg_rtx, GEN_INT (offset)));
      offset = 0;
      if (!TARGET_THUMB1)
	{
	  base_reg = regs[0];
	  base_reg_rtx = newbase;
	}
    }

  for (i = 0; i < nops; i++)
    {
      addr = plus_constant (Pmode, base_reg_rtx, offset + i * 4);
      mems[i] = adjust_automodify_address_nv (operands[nops + mem_order[i]],
					      SImode, addr, 0);
    }
  emit_insn (arm_gen_load_multiple_1 (nops, regs, mems, base_reg_rtx,
				      write_back ? offset + i * 4 : 0));
  return true;
}

/* Called from a peephole2 expander to turn a sequence of stores into an
   STM instruction.  OPERANDS are the operands found by the peephole matcher;
   NOPS indicates how many separate stores we are trying to combine.
   Returns true iff we could generate a new instruction.  */

bool
gen_stm_seq (rtx *operands, int nops)
{
  int i;
  int regs[MAX_LDM_STM_OPS], mem_order[MAX_LDM_STM_OPS];
  rtx mems[MAX_LDM_STM_OPS];
  int base_reg;
  rtx base_reg_rtx;
  HOST_WIDE_INT offset;
  int write_back = FALSE;
  int stm_case;
  rtx addr;
  bool base_reg_dies;

  stm_case = store_multiple_sequence (operands, nops, nops, regs, NULL,
				      mem_order, &base_reg, &offset, true);

  if (stm_case == 0)
    return false;

  base_reg_rtx = gen_rtx_REG (Pmode, base_reg);

  base_reg_dies = peep2_reg_dead_p (nops, base_reg_rtx);
  if (TARGET_THUMB1)
    {
      gcc_assert (base_reg_dies);
      write_back = TRUE;
    }

  if (stm_case == 5)
    {
      gcc_assert (base_reg_dies);
      emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, GEN_INT (offset)));
      offset = 0;
    }

  addr = plus_constant (Pmode, base_reg_rtx, offset);

  for (i = 0; i < nops; i++)
    {
      addr = plus_constant (Pmode, base_reg_rtx, offset + i * 4);
      mems[i] = adjust_automodify_address_nv (operands[nops + mem_order[i]],
					      SImode, addr, 0);
    }
  emit_insn (arm_gen_store_multiple_1 (nops, regs, mems, base_reg_rtx,
				       write_back ? offset + i * 4 : 0));
  return true;
}

/* Called from a peephole2 expander to turn a sequence of stores that are
   preceded by constant loads into an STM instruction.  OPERANDS are the
   operands found by the peephole matcher; NOPS indicates how many
   separate stores we are trying to combine; there are 2 * NOPS
   instructions in the peephole.
   Returns true iff we could generate a new instruction.  */

bool
gen_const_stm_seq (rtx *operands, int nops)
{
  int regs[MAX_LDM_STM_OPS], sorted_regs[MAX_LDM_STM_OPS];
  int reg_order[MAX_LDM_STM_OPS], mem_order[MAX_LDM_STM_OPS];
  rtx reg_rtxs[MAX_LDM_STM_OPS], orig_reg_rtxs[MAX_LDM_STM_OPS];
  rtx mems[MAX_LDM_STM_OPS];
  int base_reg;
  rtx base_reg_rtx;
  HOST_WIDE_INT offset;
  int write_back = FALSE;
  int stm_case;
  rtx addr;
  bool base_reg_dies;
  int i, j;
  HARD_REG_SET allocated;

  stm_case = store_multiple_sequence (operands, nops, 2 * nops, regs, reg_rtxs,
				      mem_order, &base_reg, &offset, false);

  if (stm_case == 0)
    return false;

  memcpy (orig_reg_rtxs, reg_rtxs, sizeof orig_reg_rtxs);

  /* If the same register is used more than once, try to find a free
     register.  */
  CLEAR_HARD_REG_SET (allocated);
  for (i = 0; i < nops; i++)
    {
      for (j = i + 1; j < nops; j++)
	if (regs[i] == regs[j])
	  {
	    rtx t = peep2_find_free_register (0, nops * 2,
					      TARGET_THUMB1 ? "l" : "r",
					      SImode, &allocated);
	    if (t == NULL_RTX)
	      return false;
	    reg_rtxs[i] = t;
	    regs[i] = REGNO (t);
	  }
    }

  /* Compute an ordering that maps the register numbers to an ascending
     sequence.  */
  reg_order[0] = 0;
  for (i = 0; i < nops; i++)
    if (regs[i] < regs[reg_order[0]])
      reg_order[0] = i;

  for (i = 1; i < nops; i++)
    {
      int this_order = reg_order[i - 1];
      for (j = 0; j < nops; j++)
	if (regs[j] > regs[reg_order[i - 1]]
	    && (this_order == reg_order[i - 1]
		|| regs[j] < regs[this_order]))
	  this_order = j;
      reg_order[i] = this_order;
    }

  /* Ensure that registers that must be live after the instruction end
     up with the correct value.  */
  for (i = 0; i < nops; i++)
    {
      int this_order = reg_order[i];
      if ((this_order != mem_order[i]
	   || orig_reg_rtxs[this_order] != reg_rtxs[this_order])
	  && !peep2_reg_dead_p (nops * 2, orig_reg_rtxs[this_order]))
	return false;
    }

  /* Load the constants.  */
  for (i = 0; i < nops; i++)
    {
      rtx op = operands[2 * nops + mem_order[i]];
      sorted_regs[i] = regs[reg_order[i]];
      emit_move_insn (reg_rtxs[reg_order[i]], op);
    }

  base_reg_rtx = gen_rtx_REG (Pmode, base_reg);

  base_reg_dies = peep2_reg_dead_p (nops * 2, base_reg_rtx);
  if (TARGET_THUMB1)
    {
      gcc_assert (base_reg_dies);
      write_back = TRUE;
    }

  if (stm_case == 5)
    {
      gcc_assert (base_reg_dies);
      emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, GEN_INT (offset)));
      offset = 0;
    }

  addr = plus_constant (Pmode, base_reg_rtx, offset);

  for (i = 0; i < nops; i++)
    {
      addr = plus_constant (Pmode, base_reg_rtx, offset + i * 4);
      mems[i] = adjust_automodify_address_nv (operands[nops + mem_order[i]],
					      SImode, addr, 0);
    }
  emit_insn (arm_gen_store_multiple_1 (nops, sorted_regs, mems, base_reg_rtx,
				       write_back ? offset + i * 4 : 0));
  return true;
}

/* Copy a block of memory using plain ldr/str/ldrh/strh instructions, to permit
   unaligned copies on processors which support unaligned semantics for those
   instructions.  INTERLEAVE_FACTOR can be used to attempt to hide load latency
   (using more registers) by doing e.g. load/load/store/store for a factor of 2.
   An interleave factor of 1 (the minimum) will perform no interleaving.
   Load/store multiple are used for aligned addresses where possible.  */

static void
arm_block_move_unaligned_straight (rtx dstbase, rtx srcbase,
				   HOST_WIDE_INT length,
				   unsigned int interleave_factor)
{
  rtx *regs = XALLOCAVEC (rtx, interleave_factor);
  int *regnos = XALLOCAVEC (int, interleave_factor);
  HOST_WIDE_INT block_size_bytes = interleave_factor * UNITS_PER_WORD;
  HOST_WIDE_INT i, j;
  HOST_WIDE_INT remaining = length, words;
  rtx halfword_tmp = NULL, byte_tmp = NULL;
  rtx dst, src;
  bool src_aligned = MEM_ALIGN (srcbase) >= BITS_PER_WORD;
  bool dst_aligned = MEM_ALIGN (dstbase) >= BITS_PER_WORD;
  HOST_WIDE_INT srcoffset, dstoffset;
  HOST_WIDE_INT src_autoinc, dst_autoinc;
  rtx mem, addr;
  
  gcc_assert (1 <= interleave_factor && interleave_factor <= 4);
  
  /* Use hard registers if we have aligned source or destination so we can use
     load/store multiple with contiguous registers.  */
  if (dst_aligned || src_aligned)
    for (i = 0; i < interleave_factor; i++)
      regs[i] = gen_rtx_REG (SImode, i);
  else
    for (i = 0; i < interleave_factor; i++)
      regs[i] = gen_reg_rtx (SImode);

  dst = copy_addr_to_reg (XEXP (dstbase, 0));
  src = copy_addr_to_reg (XEXP (srcbase, 0));

  srcoffset = dstoffset = 0;
  
  /* Calls to arm_gen_load_multiple and arm_gen_store_multiple update SRC/DST.
     For copying the last bytes we want to subtract this offset again.  */
  src_autoinc = dst_autoinc = 0;

  for (i = 0; i < interleave_factor; i++)
    regnos[i] = i;

  /* Copy BLOCK_SIZE_BYTES chunks.  */

  for (i = 0; i + block_size_bytes <= length; i += block_size_bytes)
    {
      /* Load words.  */
      if (src_aligned && interleave_factor > 1)
	{
	  emit_insn (arm_gen_load_multiple (regnos, interleave_factor, src,
					    TRUE, srcbase, &srcoffset));
	  src_autoinc += UNITS_PER_WORD * interleave_factor;
	}
      else
	{
	  for (j = 0; j < interleave_factor; j++)
	    {
	      addr = plus_constant (Pmode, src, (srcoffset + j * UNITS_PER_WORD
						 - src_autoinc));
	      mem = adjust_automodify_address (srcbase, SImode, addr,
					       srcoffset + j * UNITS_PER_WORD);
	      emit_insn (gen_unaligned_loadsi (regs[j], mem));
	    }
	  srcoffset += block_size_bytes;
	}

      /* Store words.  */
      if (dst_aligned && interleave_factor > 1)
	{
	  emit_insn (arm_gen_store_multiple (regnos, interleave_factor, dst,
					     TRUE, dstbase, &dstoffset));
	  dst_autoinc += UNITS_PER_WORD * interleave_factor;
	}
      else
	{
	  for (j = 0; j < interleave_factor; j++)
	    {
	      addr = plus_constant (Pmode, dst, (dstoffset + j * UNITS_PER_WORD
						 - dst_autoinc));
	      mem = adjust_automodify_address (dstbase, SImode, addr,
					       dstoffset + j * UNITS_PER_WORD);
	      emit_insn (gen_unaligned_storesi (mem, regs[j]));
	    }
	  dstoffset += block_size_bytes;
	}

      remaining -= block_size_bytes;
    }
  
  /* Copy any whole words left (note these aren't interleaved with any
     subsequent halfword/byte load/stores in the interests of simplicity).  */
  
  words = remaining / UNITS_PER_WORD;

  gcc_assert (words < interleave_factor);
  
  if (src_aligned && words > 1)
    {
      emit_insn (arm_gen_load_multiple (regnos, words, src, TRUE, srcbase,
					&srcoffset));
      src_autoinc += UNITS_PER_WORD * words;
    }
  else
    {
      for (j = 0; j < words; j++)
	{
	  addr = plus_constant (Pmode, src,
				srcoffset + j * UNITS_PER_WORD - src_autoinc);
	  mem = adjust_automodify_address (srcbase, SImode, addr,
					   srcoffset + j * UNITS_PER_WORD);
	  emit_insn (gen_unaligned_loadsi (regs[j], mem));
	}
      srcoffset += words * UNITS_PER_WORD;
    }

  if (dst_aligned && words > 1)
    {
      emit_insn (arm_gen_store_multiple (regnos, words, dst, TRUE, dstbase,
					 &dstoffset));
      dst_autoinc += words * UNITS_PER_WORD;
    }
  else
    {
      for (j = 0; j < words; j++)
	{
	  addr = plus_constant (Pmode, dst,
				dstoffset + j * UNITS_PER_WORD - dst_autoinc);
	  mem = adjust_automodify_address (dstbase, SImode, addr,
					   dstoffset + j * UNITS_PER_WORD);
	  emit_insn (gen_unaligned_storesi (mem, regs[j]));
	}
      dstoffset += words * UNITS_PER_WORD;
    }

  remaining -= words * UNITS_PER_WORD;
  
  gcc_assert (remaining < 4);
  
  /* Copy a halfword if necessary.  */
  
  if (remaining >= 2)
    {
      halfword_tmp = gen_reg_rtx (SImode);

      addr = plus_constant (Pmode, src, srcoffset - src_autoinc);
      mem = adjust_automodify_address (srcbase, HImode, addr, srcoffset);
      emit_insn (gen_unaligned_loadhiu (halfword_tmp, mem));

      /* Either write out immediately, or delay until we've loaded the last
	 byte, depending on interleave factor.  */
      if (interleave_factor == 1)
	{
	  addr = plus_constant (Pmode, dst, dstoffset - dst_autoinc);
	  mem = adjust_automodify_address (dstbase, HImode, addr, dstoffset);
	  emit_insn (gen_unaligned_storehi (mem,
		       gen_lowpart (HImode, halfword_tmp)));
	  halfword_tmp = NULL;
	  dstoffset += 2;
	}

      remaining -= 2;
      srcoffset += 2;
    }
  
  gcc_assert (remaining < 2);
  
  /* Copy last byte.  */
  
  if ((remaining & 1) != 0)
    {
      byte_tmp = gen_reg_rtx (SImode);

      addr = plus_constant (Pmode, src, srcoffset - src_autoinc);
      mem = adjust_automodify_address (srcbase, QImode, addr, srcoffset);
      emit_move_insn (gen_lowpart (QImode, byte_tmp), mem);

      if (interleave_factor == 1)
	{
	  addr = plus_constant (Pmode, dst, dstoffset - dst_autoinc);
	  mem = adjust_automodify_address (dstbase, QImode, addr, dstoffset);
	  emit_move_insn (mem, gen_lowpart (QImode, byte_tmp));
	  byte_tmp = NULL;
	  dstoffset++;
	}

      remaining--;
      srcoffset++;
    }
  
  /* Store last halfword if we haven't done so already.  */
  
  if (halfword_tmp)
    {
      addr = plus_constant (Pmode, dst, dstoffset - dst_autoinc);
      mem = adjust_automodify_address (dstbase, HImode, addr, dstoffset);
      emit_insn (gen_unaligned_storehi (mem,
		   gen_lowpart (HImode, halfword_tmp)));
      dstoffset += 2;
    }

  /* Likewise for last byte.  */

  if (byte_tmp)
    {
      addr = plus_constant (Pmode, dst, dstoffset - dst_autoinc);
      mem = adjust_automodify_address (dstbase, QImode, addr, dstoffset);
      emit_move_insn (mem, gen_lowpart (QImode, byte_tmp));
      dstoffset++;
    }
  
  gcc_assert (remaining == 0 && srcoffset == dstoffset);
}

/* From mips_adjust_block_mem:

   Helper function for doing a loop-based block operation on memory
   reference MEM.  Each iteration of the loop will operate on LENGTH
   bytes of MEM.

   Create a new base register for use within the loop and point it to
   the start of MEM.  Create a new memory reference that uses this
   register.  Store them in *LOOP_REG and *LOOP_MEM respectively.  */

static void
arm_adjust_block_mem (rtx mem, HOST_WIDE_INT length, rtx *loop_reg,
		      rtx *loop_mem)
{
  *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
  
  /* Although the new mem does not refer to a known location,
     it does keep up to LENGTH bytes of alignment.  */
  *loop_mem = change_address (mem, BLKmode, *loop_reg);
  set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
}

/* From mips_block_move_loop:

   Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
   bytes at a time.  LENGTH must be at least BYTES_PER_ITER.  Assume that
   the memory regions do not overlap.  */

static void
arm_block_move_unaligned_loop (rtx dest, rtx src, HOST_WIDE_INT length,
			       unsigned int interleave_factor,
			       HOST_WIDE_INT bytes_per_iter)
{
  rtx label, src_reg, dest_reg, final_src, test;
  HOST_WIDE_INT leftover;
  
  leftover = length % bytes_per_iter;
  length -= leftover;
  
  /* Create registers and memory references for use within the loop.  */
  arm_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
  arm_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
  
  /* Calculate the value that SRC_REG should have after the last iteration of
     the loop.  */
  final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
				   0, 0, OPTAB_WIDEN);

  /* Emit the start of the loop.  */
  label = gen_label_rtx ();
  emit_label (label);
  
  /* Emit the loop body.  */
  arm_block_move_unaligned_straight (dest, src, bytes_per_iter,
				     interleave_factor);

  /* Move on to the next block.  */
  emit_move_insn (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter));
  emit_move_insn (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter));
  
  /* Emit the loop condition.  */
  test = gen_rtx_NE (VOIDmode, src_reg, final_src);
  emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
  
  /* Mop up any left-over bytes.  */
  if (leftover)
    arm_block_move_unaligned_straight (dest, src, leftover, interleave_factor);
}

/* Emit a block move when either the source or destination is unaligned (not
   aligned to a four-byte boundary).  This may need further tuning depending on
   core type, optimize_size setting, etc.  */

static int
arm_movmemqi_unaligned (rtx *operands)
{
  HOST_WIDE_INT length = INTVAL (operands[2]);
  
  if (optimize_size)
    {
      bool src_aligned = MEM_ALIGN (operands[1]) >= BITS_PER_WORD;
      bool dst_aligned = MEM_ALIGN (operands[0]) >= BITS_PER_WORD;
      /* Inlined memcpy using ldr/str/ldrh/strh can be quite big: try to limit
	 size of code if optimizing for size.  We'll use ldm/stm if src_aligned
	 or dst_aligned though: allow more interleaving in those cases since the
	 resulting code can be smaller.  */
      unsigned int interleave_factor = (src_aligned || dst_aligned) ? 2 : 1;
      HOST_WIDE_INT bytes_per_iter = (src_aligned || dst_aligned) ? 8 : 4;
      
      if (length > 12)
	arm_block_move_unaligned_loop (operands[0], operands[1], length,
				       interleave_factor, bytes_per_iter);
      else
	arm_block_move_unaligned_straight (operands[0], operands[1], length,
					   interleave_factor);
    }
  else
    {
      /* Note that the loop created by arm_block_move_unaligned_loop may be
	 subject to loop unrolling, which makes tuning this condition a little
	 redundant.  */
      if (length > 32)
	arm_block_move_unaligned_loop (operands[0], operands[1], length, 4, 16);
      else
	arm_block_move_unaligned_straight (operands[0], operands[1], length, 4);
    }
  
  return 1;
}

int
arm_gen_movmemqi (rtx *operands)
{
  HOST_WIDE_INT in_words_to_go, out_words_to_go, last_bytes;
  HOST_WIDE_INT srcoffset, dstoffset;
  int i;
  rtx src, dst, srcbase, dstbase;
  rtx part_bytes_reg = NULL;
  rtx mem;

  if (!CONST_INT_P (operands[2])
      || !CONST_INT_P (operands[3])
      || INTVAL (operands[2]) > 64)
    return 0;

  if (unaligned_access && (INTVAL (operands[3]) & 3) != 0)
    return arm_movmemqi_unaligned (operands);

  if (INTVAL (operands[3]) & 3)
    return 0;

  dstbase = operands[0];
  srcbase = operands[1];

  dst = copy_to_mode_reg (SImode, XEXP (dstbase, 0));
  src = copy_to_mode_reg (SImode, XEXP (srcbase, 0));

  in_words_to_go = ARM_NUM_INTS (INTVAL (operands[2]));
  out_words_to_go = INTVAL (operands[2]) / 4;
  last_bytes = INTVAL (operands[2]) & 3;
  dstoffset = srcoffset = 0;

  if (out_words_to_go != in_words_to_go && ((in_words_to_go - 1) & 3) != 0)
    part_bytes_reg = gen_rtx_REG (SImode, (in_words_to_go - 1) & 3);

  for (i = 0; in_words_to_go >= 2; i+=4)
    {
      if (in_words_to_go > 4)
	emit_insn (arm_gen_load_multiple (arm_regs_in_sequence, 4, src,
					  TRUE, srcbase, &srcoffset));
      else
	emit_insn (arm_gen_load_multiple (arm_regs_in_sequence, in_words_to_go,
					  src, FALSE, srcbase,
					  &srcoffset));

      if (out_words_to_go)
	{
	  if (out_words_to_go > 4)
	    emit_insn (arm_gen_store_multiple (arm_regs_in_sequence, 4, dst,
					       TRUE, dstbase, &dstoffset));
	  else if (out_words_to_go != 1)
	    emit_insn (arm_gen_store_multiple (arm_regs_in_sequence,
					       out_words_to_go, dst,
					       (last_bytes == 0
						? FALSE : TRUE),
					       dstbase, &dstoffset));
	  else
	    {
	      mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
	      emit_move_insn (mem, gen_rtx_REG (SImode, 0));
	      if (last_bytes != 0)
		{
		  emit_insn (gen_addsi3 (dst, dst, GEN_INT (4)));
		  dstoffset += 4;
		}
	    }
	}

      in_words_to_go -= in_words_to_go < 4 ? in_words_to_go : 4;
      out_words_to_go -= out_words_to_go < 4 ? out_words_to_go : 4;
    }

  /* OUT_WORDS_TO_GO will be zero here if there are byte stores to do.  */
  if (out_words_to_go)
    {
      rtx sreg;

      mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
      sreg = copy_to_reg (mem);

      mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
      emit_move_insn (mem, sreg);
      in_words_to_go--;

      gcc_assert (!in_words_to_go);	/* Sanity check */
    }

  if (in_words_to_go)
    {
      gcc_assert (in_words_to_go > 0);

      mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
      part_bytes_reg = copy_to_mode_reg (SImode, mem);
    }

  gcc_assert (!last_bytes || part_bytes_reg);

  if (BYTES_BIG_ENDIAN && last_bytes)
    {
      rtx tmp = gen_reg_rtx (SImode);

      /* The bytes we want are in the top end of the word.  */
      emit_insn (gen_lshrsi3 (tmp, part_bytes_reg,
			      GEN_INT (8 * (4 - last_bytes))));
      part_bytes_reg = tmp;

      while (last_bytes)
	{
	  mem = adjust_automodify_address (dstbase, QImode,
					   plus_constant (Pmode, dst,
							  last_bytes - 1),
					   dstoffset + last_bytes - 1);
	  emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));

	  if (--last_bytes)
	    {
	      tmp = gen_reg_rtx (SImode);
	      emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (8)));
	      part_bytes_reg = tmp;
	    }
	}

    }
  else
    {
      if (last_bytes > 1)
	{
	  mem = adjust_automodify_address (dstbase, HImode, dst, dstoffset);
	  emit_move_insn (mem, gen_lowpart (HImode, part_bytes_reg));
	  last_bytes -= 2;
	  if (last_bytes)
	    {
	      rtx tmp = gen_reg_rtx (SImode);
	      emit_insn (gen_addsi3 (dst, dst, const2_rtx));
	      emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (16)));
	      part_bytes_reg = tmp;
	      dstoffset += 2;
	    }
	}

      if (last_bytes)
	{
	  mem = adjust_automodify_address (dstbase, QImode, dst, dstoffset);
	  emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
	}
    }

  return 1;
}

/* Helper for gen_movmem_ldrd_strd. Increase the address of memory rtx
by mode size.  */
inline static rtx
next_consecutive_mem (rtx mem)
{
  enum machine_mode mode = GET_MODE (mem);
  HOST_WIDE_INT offset = GET_MODE_SIZE (mode);
  rtx addr = plus_constant (Pmode, XEXP (mem, 0), offset);

  return adjust_automodify_address (mem, mode, addr, offset);
}

/* Copy using LDRD/STRD instructions whenever possible.
   Returns true upon success. */
bool
gen_movmem_ldrd_strd (rtx *operands)
{
  unsigned HOST_WIDE_INT len;
  HOST_WIDE_INT align;
  rtx src, dst, base;
  rtx reg0;
  bool src_aligned, dst_aligned;
  bool src_volatile, dst_volatile;

  gcc_assert (CONST_INT_P (operands[2]));
  gcc_assert (CONST_INT_P (operands[3]));

  len = UINTVAL (operands[2]);
  if (len > 64)
    return false;

  /* Maximum alignment we can assume for both src and dst buffers.  */
  align = INTVAL (operands[3]);

  if ((!unaligned_access) && (len >= 4) && ((align & 3) != 0))
    return false;

  /* Place src and dst addresses in registers
     and update the corresponding mem rtx.  */
  dst = operands[0];
  dst_volatile = MEM_VOLATILE_P (dst);
  dst_aligned = MEM_ALIGN (dst) >= BITS_PER_WORD;
  base = copy_to_mode_reg (SImode, XEXP (dst, 0));
  dst = adjust_automodify_address (dst, VOIDmode, base, 0);

  src = operands[1];
  src_volatile = MEM_VOLATILE_P (src);
  src_aligned = MEM_ALIGN (src) >= BITS_PER_WORD;
  base = copy_to_mode_reg (SImode, XEXP (src, 0));
  src = adjust_automodify_address (src, VOIDmode, base, 0);

  if (!unaligned_access && !(src_aligned && dst_aligned))
    return false;

  if (src_volatile || dst_volatile)
    return false;

  /* If we cannot generate any LDRD/STRD, try to generate LDM/STM.  */
  if (!(dst_aligned || src_aligned))
    return arm_gen_movmemqi (operands);

  src = adjust_address (src, DImode, 0);
  dst = adjust_address (dst, DImode, 0);
  while (len >= 8)
    {
      len -= 8;
      reg0 = gen_reg_rtx (DImode);
      if (src_aligned)
        emit_move_insn (reg0, src);
      else
        emit_insn (gen_unaligned_loaddi (reg0, src));

      if (dst_aligned)
        emit_move_insn (dst, reg0);
      else
        emit_insn (gen_unaligned_storedi (dst, reg0));

      src = next_consecutive_mem (src);
      dst = next_consecutive_mem (dst);
    }

  gcc_assert (len < 8);
  if (len >= 4)
    {
      /* More than a word but less than a double-word to copy.  Copy a word.  */
      reg0 = gen_reg_rtx (SImode);
      src = adjust_address (src, SImode, 0);
      dst = adjust_address (dst, SImode, 0);
      if (src_aligned)
        emit_move_insn (reg0, src);
      else
        emit_insn (gen_unaligned_loadsi (reg0, src));

      if (dst_aligned)
        emit_move_insn (dst, reg0);
      else
        emit_insn (gen_unaligned_storesi (dst, reg0));

      src = next_consecutive_mem (src);
      dst = next_consecutive_mem (dst);
      len -= 4;
    }

  if (len == 0)
    return true;

  /* Copy the remaining bytes.  */
  if (len >= 2)
    {
      dst = adjust_address (dst, HImode, 0);
      src = adjust_address (src, HImode, 0);
      reg0 = gen_reg_rtx (SImode);
      if (src_aligned)
        emit_insn (gen_zero_extendhisi2 (reg0, src));
      else
        emit_insn (gen_unaligned_loadhiu (reg0, src));

      if (dst_aligned)
        emit_insn (gen_movhi (dst, gen_lowpart(HImode, reg0)));
      else
        emit_insn (gen_unaligned_storehi (dst, gen_lowpart (HImode, reg0)));

      src = next_consecutive_mem (src);
      dst = next_consecutive_mem (dst);
      if (len == 2)
        return true;
    }

  dst = adjust_address (dst, QImode, 0);
  src = adjust_address (src, QImode, 0);
  reg0 = gen_reg_rtx (QImode);
  emit_move_insn (reg0, src);
  emit_move_insn (dst, reg0);
  return true;
}

/* Select a dominance comparison mode if possible for a test of the general
   form (OP (COND_OR (X) (Y)) (const_int 0)).  We support three forms.
   COND_OR == DOM_CC_X_AND_Y => (X && Y)
   COND_OR == DOM_CC_NX_OR_Y => ((! X) || Y)
   COND_OR == DOM_CC_X_OR_Y => (X || Y)
   In all cases OP will be either EQ or NE, but we don't need to know which
   here.  If we are unable to support a dominance comparison we return
   CC mode.  This will then fail to match for the RTL expressions that
   generate this call.  */
enum machine_mode
arm_select_dominance_cc_mode (rtx x, rtx y, HOST_WIDE_INT cond_or)
{
  enum rtx_code cond1, cond2;
  int swapped = 0;

  /* Currently we will probably get the wrong result if the individual
     comparisons are not simple.  This also ensures that it is safe to
     reverse a comparison if necessary.  */
  if ((arm_select_cc_mode (cond1 = GET_CODE (x), XEXP (x, 0), XEXP (x, 1))
       != CCmode)
      || (arm_select_cc_mode (cond2 = GET_CODE (y), XEXP (y, 0), XEXP (y, 1))
	  != CCmode))
    return CCmode;

  /* The if_then_else variant of this tests the second condition if the
     first passes, but is true if the first fails.  Reverse the first
     condition to get a true "inclusive-or" expression.  */
  if (cond_or == DOM_CC_NX_OR_Y)
    cond1 = reverse_condition (cond1);

  /* If the comparisons are not equal, and one doesn't dominate the other,
     then we can't do this.  */
  if (cond1 != cond2
      && !comparison_dominates_p (cond1, cond2)
      && (swapped = 1, !comparison_dominates_p (cond2, cond1)))
    return CCmode;

  if (swapped)
    {
      enum rtx_code temp = cond1;
      cond1 = cond2;
      cond2 = temp;
    }

  switch (cond1)
    {
    case EQ:
      if (cond_or == DOM_CC_X_AND_Y)
	return CC_DEQmode;

      switch (cond2)
	{
	case EQ: return CC_DEQmode;
	case LE: return CC_DLEmode;
	case LEU: return CC_DLEUmode;
	case GE: return CC_DGEmode;
	case GEU: return CC_DGEUmode;
	default: gcc_unreachable ();
	}

    case LT:
      if (cond_or == DOM_CC_X_AND_Y)
	return CC_DLTmode;

      switch (cond2)
	{
	case  LT:
	    return CC_DLTmode;
	case LE:
	  return CC_DLEmode;
	case NE:
	  return CC_DNEmode;
	default:
	  gcc_unreachable ();
	}

    case GT:
      if (cond_or == DOM_CC_X_AND_Y)
	return CC_DGTmode;

      switch (cond2)
	{
	case GT:
	  return CC_DGTmode;
	case GE:
	  return CC_DGEmode;
	case NE:
	  return CC_DNEmode;
	default:
	  gcc_unreachable ();
	}

    case LTU:
      if (cond_or == DOM_CC_X_AND_Y)
	return CC_DLTUmode;

      switch (cond2)
	{
	case LTU:
	  return CC_DLTUmode;
	case LEU:
	  return CC_DLEUmode;
	case NE:
	  return CC_DNEmode;
	default:
	  gcc_unreachable ();
	}

    case GTU:
      if (cond_or == DOM_CC_X_AND_Y)
	return CC_DGTUmode;

      switch (cond2)
	{
	case GTU:
	  return CC_DGTUmode;
	case GEU:
	  return CC_DGEUmode;
	case NE:
	  return CC_DNEmode;
	default:
	  gcc_unreachable ();
	}

    /* The remaining cases only occur when both comparisons are the
       same.  */
    case NE:
      gcc_assert (cond1 == cond2);
      return CC_DNEmode;

    case LE:
      gcc_assert (cond1 == cond2);
      return CC_DLEmode;

    case GE:
      gcc_assert (cond1 == cond2);
      return CC_DGEmode;

    case LEU:
      gcc_assert (cond1 == cond2);
      return CC_DLEUmode;

    case GEU:
      gcc_assert (cond1 == cond2);
      return CC_DGEUmode;

    default:
      gcc_unreachable ();
    }
}

enum machine_mode
arm_select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
  /* All floating point compares return CCFP if it is an equality
     comparison, and CCFPE otherwise.  */
  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    {
      switch (op)
	{
	case EQ:
	case NE:
	case UNORDERED:
	case ORDERED:
	case UNLT:
	case UNLE:
	case UNGT:
	case UNGE:
	case UNEQ:
	case LTGT:
	  return CCFPmode;

	case LT:
	case LE:
	case GT:
	case GE:
	  return CCFPEmode;

	default:
	  gcc_unreachable ();
	}
    }

  /* A compare with a shifted operand.  Because of canonicalization, the
     comparison will have to be swapped when we emit the assembler.  */
  if (GET_MODE (y) == SImode
      && (REG_P (y) || (GET_CODE (y) == SUBREG))
      && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
	  || GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ROTATE
	  || GET_CODE (x) == ROTATERT))
    return CC_SWPmode;

  /* This operation is performed swapped, but since we only rely on the Z
     flag we don't need an additional mode.  */
  if (GET_MODE (y) == SImode
      && (REG_P (y) || (GET_CODE (y) == SUBREG))
      && GET_CODE (x) == NEG
      && (op ==	EQ || op == NE))
    return CC_Zmode;

  /* This is a special case that is used by combine to allow a
     comparison of a shifted byte load to be split into a zero-extend
     followed by a comparison of the shifted integer (only valid for
     equalities and unsigned inequalities).  */
  if (GET_MODE (x) == SImode
      && GET_CODE (x) == ASHIFT
      && CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == 24
      && GET_CODE (XEXP (x, 0)) == SUBREG
      && MEM_P (SUBREG_REG (XEXP (x, 0)))
      && GET_MODE (SUBREG_REG (XEXP (x, 0))) == QImode
      && (op == EQ || op == NE
	  || op == GEU || op == GTU || op == LTU || op == LEU)
      && CONST_INT_P (y))
    return CC_Zmode;

  /* A construct for a conditional compare, if the false arm contains
     0, then both conditions must be true, otherwise either condition
     must be true.  Not all conditions are possible, so CCmode is
     returned if it can't be done.  */
  if (GET_CODE (x) == IF_THEN_ELSE
      && (XEXP (x, 2) == const0_rtx
	  || XEXP (x, 2) == const1_rtx)
      && COMPARISON_P (XEXP (x, 0))
      && COMPARISON_P (XEXP (x, 1)))
    return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
					 INTVAL (XEXP (x, 2)));

  /* Alternate canonicalizations of the above.  These are somewhat cleaner.  */
  if (GET_CODE (x) == AND
      && (op == EQ || op == NE)
      && COMPARISON_P (XEXP (x, 0))
      && COMPARISON_P (XEXP (x, 1)))
    return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
					 DOM_CC_X_AND_Y);

  if (GET_CODE (x) == IOR
      && (op == EQ || op == NE)
      && COMPARISON_P (XEXP (x, 0))
      && COMPARISON_P (XEXP (x, 1)))
    return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
					 DOM_CC_X_OR_Y);

  /* An operation (on Thumb) where we want to test for a single bit.
     This is done by shifting that bit up into the top bit of a
     scratch register; we can then branch on the sign bit.  */
  if (TARGET_THUMB1
      && GET_MODE (x) == SImode
      && (op == EQ || op == NE)
      && GET_CODE (x) == ZERO_EXTRACT
      && XEXP (x, 1) == const1_rtx)
    return CC_Nmode;

  /* An operation that sets the condition codes as a side-effect, the
     V flag is not set correctly, so we can only use comparisons where
     this doesn't matter.  (For LT and GE we can use "mi" and "pl"
     instead.)  */
  /* ??? Does the ZERO_EXTRACT case really apply to thumb2?  */
  if (GET_MODE (x) == SImode
      && y == const0_rtx
      && (op == EQ || op == NE || op == LT || op == GE)
      && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
	  || GET_CODE (x) == AND || GET_CODE (x) == IOR
	  || GET_CODE (x) == XOR || GET_CODE (x) == MULT
	  || GET_CODE (x) == NOT || GET_CODE (x) == NEG
	  || GET_CODE (x) == LSHIFTRT
	  || GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
	  || GET_CODE (x) == ROTATERT
	  || (TARGET_32BIT && GET_CODE (x) == ZERO_EXTRACT)))
    return CC_NOOVmode;

  if (GET_MODE (x) == QImode && (op == EQ || op == NE))
    return CC_Zmode;

  if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
      && GET_CODE (x) == PLUS
      && (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
    return CC_Cmode;

  if (GET_MODE (x) == DImode || GET_MODE (y) == DImode)
    {
      switch (op)
	{
	case EQ:
	case NE:
	  /* A DImode comparison against zero can be implemented by
	     or'ing the two halves together.  */
	  if (y == const0_rtx)
	    return CC_Zmode;

	  /* We can do an equality test in three Thumb instructions.  */
	  if (!TARGET_32BIT)
	    return CC_Zmode;

	  /* FALLTHROUGH */

	case LTU:
	case LEU:
	case GTU:
	case GEU:
	  /* DImode unsigned comparisons can be implemented by cmp +
	     cmpeq without a scratch register.  Not worth doing in
	     Thumb-2.  */
	  if (TARGET_32BIT)
	    return CC_CZmode;

	  /* FALLTHROUGH */

	case LT:
	case LE:
	case GT:
	case GE:
	  /* DImode signed and unsigned comparisons can be implemented
	     by cmp + sbcs with a scratch register, but that does not
	     set the Z flag - we must reverse GT/LE/GTU/LEU.  */
	  gcc_assert (op != EQ && op != NE);
	  return CC_NCVmode;

	default:
	  gcc_unreachable ();
	}
    }

  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
    return GET_MODE (x);

  return CCmode;
}

/* X and Y are two things to compare using CODE.  Emit the compare insn and
   return the rtx for register 0 in the proper mode.  FP means this is a
   floating point compare: I don't think that it is needed on the arm.  */
rtx
arm_gen_compare_reg (enum rtx_code code, rtx x, rtx y, rtx scratch)
{
  enum machine_mode mode;
  rtx cc_reg;
  int dimode_comparison = GET_MODE (x) == DImode || GET_MODE (y) == DImode;

  /* We might have X as a constant, Y as a register because of the predicates
     used for cmpdi.  If so, force X to a register here.  */
  if (dimode_comparison && !REG_P (x))
    x = force_reg (DImode, x);

  mode = SELECT_CC_MODE (code, x, y);
  cc_reg = gen_rtx_REG (mode, CC_REGNUM);

  if (dimode_comparison
      && mode != CC_CZmode)
    {
      rtx clobber, set;

      /* To compare two non-zero values for equality, XOR them and
	 then compare against zero.  Not used for ARM mode; there
	 CC_CZmode is cheaper.  */
      if (mode == CC_Zmode && y != const0_rtx)
	{
	  gcc_assert (!reload_completed);
	  x = expand_binop (DImode, xor_optab, x, y, NULL_RTX, 0, OPTAB_WIDEN);
	  y = const0_rtx;
	}

      /* A scratch register is required.  */
      if (reload_completed)
	gcc_assert (scratch != NULL && GET_MODE (scratch) == SImode);
      else
	scratch = gen_rtx_SCRATCH (SImode);

      clobber = gen_rtx_CLOBBER (VOIDmode, scratch);
      set = gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (mode, x, y));
      emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
    }
  else
    emit_set_insn (cc_reg, gen_rtx_COMPARE (mode, x, y));

  return cc_reg;
}

/* Generate a sequence of insns that will generate the correct return
   address mask depending on the physical architecture that the program
   is running on.  */
rtx
arm_gen_return_addr_mask (void)
{
  rtx reg = gen_reg_rtx (Pmode);

  emit_insn (gen_return_addr_mask (reg));
  return reg;
}

void
arm_reload_in_hi (rtx *operands)
{
  rtx ref = operands[1];
  rtx base, scratch;
  HOST_WIDE_INT offset = 0;

  if (GET_CODE (ref) == SUBREG)
    {
      offset = SUBREG_BYTE (ref);
      ref = SUBREG_REG (ref);
    }

  if (REG_P (ref))
    {
      /* We have a pseudo which has been spilt onto the stack; there
	 are two cases here: the first where there is a simple
	 stack-slot replacement and a second where the stack-slot is
	 out of range, or is used as a subreg.  */
      if (reg_equiv_mem (REGNO (ref)))
	{
	  ref = reg_equiv_mem (REGNO (ref));
	  base = find_replacement (&XEXP (ref, 0));
	}
      else
	/* The slot is out of range, or was dressed up in a SUBREG.  */
	base = reg_equiv_address (REGNO (ref));
    }
  else
    base = find_replacement (&XEXP (ref, 0));

  /* Handle the case where the address is too complex to be offset by 1.  */
  if (GET_CODE (base) == MINUS
      || (GET_CODE (base) == PLUS && !CONST_INT_P (XEXP (base, 1))))
    {
      rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);

      emit_set_insn (base_plus, base);
      base = base_plus;
    }
  else if (GET_CODE (base) == PLUS)
    {
      /* The addend must be CONST_INT, or we would have dealt with it above.  */
      HOST_WIDE_INT hi, lo;

      offset += INTVAL (XEXP (base, 1));
      base = XEXP (base, 0);

      /* Rework the address into a legal sequence of insns.  */
      /* Valid range for lo is -4095 -> 4095 */
      lo = (offset >= 0
	    ? (offset & 0xfff)
	    : -((-offset) & 0xfff));

      /* Corner case, if lo is the max offset then we would be out of range
	 once we have added the additional 1 below, so bump the msb into the
	 pre-loading insn(s).  */
      if (lo == 4095)
	lo &= 0x7ff;

      hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
	     ^ (HOST_WIDE_INT) 0x80000000)
	    - (HOST_WIDE_INT) 0x80000000);

      gcc_assert (hi + lo == offset);

      if (hi != 0)
	{
	  rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);

	  /* Get the base address; addsi3 knows how to handle constants
	     that require more than one insn.  */
	  emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
	  base = base_plus;
	  offset = lo;
	}
    }

  /* Operands[2] may overlap operands[0] (though it won't overlap
     operands[1]), that's why we asked for a DImode reg -- so we can
     use the bit that does not overlap.  */
  if (REGNO (operands[2]) == REGNO (operands[0]))
    scratch = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
  else
    scratch = gen_rtx_REG (SImode, REGNO (operands[2]));

  emit_insn (gen_zero_extendqisi2 (scratch,
				   gen_rtx_MEM (QImode,
						plus_constant (Pmode, base,
							       offset))));
  emit_insn (gen_zero_extendqisi2 (gen_rtx_SUBREG (SImode, operands[0], 0),
				   gen_rtx_MEM (QImode,
						plus_constant (Pmode, base,
							       offset + 1))));
  if (!BYTES_BIG_ENDIAN)
    emit_set_insn (gen_rtx_SUBREG (SImode, operands[0], 0),
		   gen_rtx_IOR (SImode,
				gen_rtx_ASHIFT
				(SImode,
				 gen_rtx_SUBREG (SImode, operands[0], 0),
				 GEN_INT (8)),
				scratch));
  else
    emit_set_insn (gen_rtx_SUBREG (SImode, operands[0], 0),
		   gen_rtx_IOR (SImode,
				gen_rtx_ASHIFT (SImode, scratch,
						GEN_INT (8)),
				gen_rtx_SUBREG (SImode, operands[0], 0)));
}

/* Handle storing a half-word to memory during reload by synthesizing as two
   byte stores.  Take care not to clobber the input values until after we
   have moved them somewhere safe.  This code assumes that if the DImode
   scratch in operands[2] overlaps either the input value or output address
   in some way, then that value must die in this insn (we absolutely need
   two scratch registers for some corner cases).  */
void
arm_reload_out_hi (rtx *operands)
{
  rtx ref = operands[0];
  rtx outval = operands[1];
  rtx base, scratch;
  HOST_WIDE_INT offset = 0;

  if (GET_CODE (ref) == SUBREG)
    {
      offset = SUBREG_BYTE (ref);
      ref = SUBREG_REG (ref);
    }

  if (REG_P (ref))
    {
      /* We have a pseudo which has been spilt onto the stack; there
	 are two cases here: the first where there is a simple
	 stack-slot replacement and a second where the stack-slot is
	 out of range, or is used as a subreg.  */
      if (reg_equiv_mem (REGNO (ref)))
	{
	  ref = reg_equiv_mem (REGNO (ref));
	  base = find_replacement (&XEXP (ref, 0));
	}
      else
	/* The slot is out of range, or was dressed up in a SUBREG.  */
	base = reg_equiv_address (REGNO (ref));
    }
  else
    base = find_replacement (&XEXP (ref, 0));

  scratch = gen_rtx_REG (SImode, REGNO (operands[2]));

  /* Handle the case where the address is too complex to be offset by 1.  */
  if (GET_CODE (base) == MINUS
      || (GET_CODE (base) == PLUS && !CONST_INT_P (XEXP (base, 1))))
    {
      rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);

      /* Be careful not to destroy OUTVAL.  */
      if (reg_overlap_mentioned_p (base_plus, outval))
	{
	  /* Updating base_plus might destroy outval, see if we can
	     swap the scratch and base_plus.  */
	  if (!reg_overlap_mentioned_p (scratch, outval))
	    {
	      rtx tmp = scratch;
	      scratch = base_plus;
	      base_plus = tmp;
	    }
	  else
	    {
	      rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));

	      /* Be conservative and copy OUTVAL into the scratch now,
		 this should only be necessary if outval is a subreg
		 of something larger than a word.  */
	      /* XXX Might this clobber base?  I can't see how it can,
		 since scratch is known to overlap with OUTVAL, and
		 must be wider than a word.  */
	      emit_insn (gen_movhi (scratch_hi, outval));
	      outval = scratch_hi;
	    }
	}

      emit_set_insn (base_plus, base);
      base = base_plus;
    }
  else if (GET_CODE (base) == PLUS)
    {
      /* The addend must be CONST_INT, or we would have dealt with it above.  */
      HOST_WIDE_INT hi, lo;

      offset += INTVAL (XEXP (base, 1));
      base = XEXP (base, 0);

      /* Rework the address into a legal sequence of insns.  */
      /* Valid range for lo is -4095 -> 4095 */
      lo = (offset >= 0
	    ? (offset & 0xfff)
	    : -((-offset) & 0xfff));

      /* Corner case, if lo is the max offset then we would be out of range
	 once we have added the additional 1 below, so bump the msb into the
	 pre-loading insn(s).  */
      if (lo == 4095)
	lo &= 0x7ff;

      hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
	     ^ (HOST_WIDE_INT) 0x80000000)
	    - (HOST_WIDE_INT) 0x80000000);

      gcc_assert (hi + lo == offset);

      if (hi != 0)
	{
	  rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);

	  /* Be careful not to destroy OUTVAL.  */
	  if (reg_overlap_mentioned_p (base_plus, outval))
	    {
	      /* Updating base_plus might destroy outval, see if we
		 can swap the scratch and base_plus.  */
	      if (!reg_overlap_mentioned_p (scratch, outval))
		{
		  rtx tmp = scratch;
		  scratch = base_plus;
		  base_plus = tmp;
		}
	      else
		{
		  rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));

		  /* Be conservative and copy outval into scratch now,
		     this should only be necessary if outval is a
		     subreg of something larger than a word.  */
		  /* XXX Might this clobber base?  I can't see how it
		     can, since scratch is known to overlap with
		     outval.  */
		  emit_insn (gen_movhi (scratch_hi, outval));
		  outval = scratch_hi;
		}
	    }

	  /* Get the base address; addsi3 knows how to handle constants
	     that require more than one insn.  */
	  emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
	  base = base_plus;
	  offset = lo;
	}
    }

  if (BYTES_BIG_ENDIAN)
    {
      emit_insn (gen_movqi (gen_rtx_MEM (QImode,
					 plus_constant (Pmode, base,
							offset + 1)),
			    gen_lowpart (QImode, outval)));
      emit_insn (gen_lshrsi3 (scratch,
			      gen_rtx_SUBREG (SImode, outval, 0),
			      GEN_INT (8)));
      emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (Pmode, base,
								offset)),
			    gen_lowpart (QImode, scratch)));
    }
  else
    {
      emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (Pmode, base,
								offset)),
			    gen_lowpart (QImode, outval)));
      emit_insn (gen_lshrsi3 (scratch,
			      gen_rtx_SUBREG (SImode, outval, 0),
			      GEN_INT (8)));
      emit_insn (gen_movqi (gen_rtx_MEM (QImode,
					 plus_constant (Pmode, base,
							offset + 1)),
			    gen_lowpart (QImode, scratch)));
    }
}

/* Return true if a type must be passed in memory. For AAPCS, small aggregates
   (padded to the size of a word) should be passed in a register.  */

static bool
arm_must_pass_in_stack (enum machine_mode mode, const_tree type)
{
  if (TARGET_AAPCS_BASED)
    return must_pass_in_stack_var_size (mode, type);
  else
    return must_pass_in_stack_var_size_or_pad (mode, type);
}


/* For use by FUNCTION_ARG_PADDING (MODE, TYPE).
   Return true if an argument passed on the stack should be padded upwards,
   i.e. if the least-significant byte has useful data.
   For legacy APCS ABIs we use the default.  For AAPCS based ABIs small
   aggregate types are placed in the lowest memory address.  */

bool
arm_pad_arg_upward (enum machine_mode mode ATTRIBUTE_UNUSED, const_tree type)
{
  if (!TARGET_AAPCS_BASED)
    return DEFAULT_FUNCTION_ARG_PADDING(mode, type) == upward;

  if (type && BYTES_BIG_ENDIAN && INTEGRAL_TYPE_P (type))
    return false;

  return true;
}


/* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST).
   Return !BYTES_BIG_ENDIAN if the least significant byte of the
   register has useful data, and return the opposite if the most
   significant byte does.  */

bool
arm_pad_reg_upward (enum machine_mode mode,
                    tree type, int first ATTRIBUTE_UNUSED)
{
  if (TARGET_AAPCS_BASED && BYTES_BIG_ENDIAN)
    {
      /* For AAPCS, small aggregates, small fixed-point types,
	 and small complex types are always padded upwards.  */
      if (type)
	{
	  if ((AGGREGATE_TYPE_P (type)
	       || TREE_CODE (type) == COMPLEX_TYPE
	       || FIXED_POINT_TYPE_P (type))
	      && int_size_in_bytes (type) <= 4)
	    return true;
	}
      else
	{
	  if ((COMPLEX_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode))
	      && GET_MODE_SIZE (mode) <= 4)
	    return true;
	}
    }

  /* Otherwise, use default padding.  */
  return !BYTES_BIG_ENDIAN;
}

/* Returns true iff OFFSET is valid for use in an LDRD/STRD instruction,
   assuming that the address in the base register is word aligned.  */
bool
offset_ok_for_ldrd_strd (HOST_WIDE_INT offset)
{
  HOST_WIDE_INT max_offset;

  /* Offset must be a multiple of 4 in Thumb mode.  */
  if (TARGET_THUMB2 && ((offset & 3) != 0))
    return false;

  if (TARGET_THUMB2)
    max_offset = 1020;
  else if (TARGET_ARM)
    max_offset = 255;
  else
    return false;

  return ((offset <= max_offset) && (offset >= -max_offset));
}

/* Checks whether the operands are valid for use in an LDRD/STRD instruction.
   Assumes that RT, RT2, and RN are REG.  This is guaranteed by the patterns.
   Assumes that the address in the base register RN is word aligned.  Pattern
   guarantees that both memory accesses use the same base register,
   the offsets are constants within the range, and the gap between the offsets is 4.
   If preload complete then check that registers are legal.  WBACK indicates whether
   address is updated.  LOAD indicates whether memory access is load or store.  */
bool
operands_ok_ldrd_strd (rtx rt, rtx rt2, rtx rn, HOST_WIDE_INT offset,
                       bool wback, bool load)
{
  unsigned int t, t2, n;

  if (!reload_completed)
    return true;

  if (!offset_ok_for_ldrd_strd (offset))
    return false;

  t = REGNO (rt);
  t2 = REGNO (rt2);
  n = REGNO (rn);

  if ((TARGET_THUMB2)
      && ((wback && (n == t || n == t2))
          || (t == SP_REGNUM)
          || (t == PC_REGNUM)
          || (t2 == SP_REGNUM)
          || (t2 == PC_REGNUM)
          || (!load && (n == PC_REGNUM))
          || (load && (t == t2))
          /* Triggers Cortex-M3 LDRD errata.  */
          || (!wback && load && fix_cm3_ldrd && (n == t))))
    return false;

  if ((TARGET_ARM)
      && ((wback && (n == t || n == t2))
          || (t2 == PC_REGNUM)
          || (t % 2 != 0)   /* First destination register is not even.  */
          || (t2 != t + 1)
          /* PC can be used as base register (for offset addressing only),
             but it is depricated.  */
          || (n == PC_REGNUM)))
    return false;

  return true;
}

/* Helper for gen_operands_ldrd_strd.  Returns true iff the memory
   operand MEM's address contains an immediate offset from the base
   register and has no side effects, in which case it sets BASE and
   OFFSET accordingly.  */
static bool
mem_ok_for_ldrd_strd (rtx mem, rtx *base, rtx *offset)
{
  rtx addr;

  gcc_assert (base != NULL && offset != NULL);

  /* TODO: Handle more general memory operand patterns, such as
     PRE_DEC and PRE_INC.  */

  if (side_effects_p (mem))
    return false;

  /* Can't deal with subregs.  */
  if (GET_CODE (mem) == SUBREG)
    return false;

  gcc_assert (MEM_P (mem));

  *offset = const0_rtx;

  addr = XEXP (mem, 0);

  /* If addr isn't valid for DImode, then we can't handle it.  */
  if (!arm_legitimate_address_p (DImode, addr,
				 reload_in_progress || reload_completed))
    return false;

  if (REG_P (addr))
    {
      *base = addr;
      return true;
    }
  else if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS)
    {
      *base = XEXP (addr, 0);
      *offset = XEXP (addr, 1);
      return (REG_P (*base) && CONST_INT_P (*offset));
    }

  return false;
}

#define SWAP_RTX(x,y) do { rtx tmp = x; x = y; y = tmp; } while (0)

/* Called from a peephole2 to replace two word-size accesses with a
   single LDRD/STRD instruction.  Returns true iff we can generate a
   new instruction sequence.  That is, both accesses use the same base
   register and the gap between constant offsets is 4.  This function
   may reorder its operands to match ldrd/strd RTL templates.
   OPERANDS are the operands found by the peephole matcher;
   OPERANDS[0,1] are register operands, and OPERANDS[2,3] are the
   corresponding memory operands.  LOAD indicaates whether the access
   is load or store.  CONST_STORE indicates a store of constant
   integer values held in OPERANDS[4,5] and assumes that the pattern
   is of length 4 insn, for the purpose of checking dead registers.
   COMMUTE indicates that register operands may be reordered.  */
bool
gen_operands_ldrd_strd (rtx *operands, bool load,
                        bool const_store, bool commute)
{
  int nops = 2;
  HOST_WIDE_INT offsets[2], offset;
  rtx base = NULL_RTX;
  rtx cur_base, cur_offset, tmp;
  int i, gap;
  HARD_REG_SET regset;

  gcc_assert (!const_store || !load);
  /* Check that the memory references are immediate offsets from the
     same base register.  Extract the base register, the destination
     registers, and the corresponding memory offsets.  */
  for (i = 0; i < nops; i++)
    {
      if (!mem_ok_for_ldrd_strd (operands[nops+i], &cur_base, &cur_offset))
        return false;

      if (i == 0)
        base = cur_base;
      else if (REGNO (base) != REGNO (cur_base))
        return false;

      offsets[i] = INTVAL (cur_offset);
      if (GET_CODE (operands[i]) == SUBREG)
        {
          tmp = SUBREG_REG (operands[i]);
          gcc_assert (GET_MODE (operands[i]) == GET_MODE (tmp));
          operands[i] = tmp;
        }
    }

  /* Make sure there is no dependency between the individual loads.  */
  if (load && REGNO (operands[0]) == REGNO (base))
    return false; /* RAW */

  if (load && REGNO (operands[0]) == REGNO (operands[1]))
    return false; /* WAW */

  /* If the same input register is used in both stores
     when storing different constants, try to find a free register.
     For example, the code
        mov r0, 0
        str r0, [r2]
        mov r0, 1
        str r0, [r2, #4]
     can be transformed into
        mov r1, 0
        strd r1, r0, [r2]
     in Thumb mode assuming that r1 is free.  */
  if (const_store
      && REGNO (operands[0]) == REGNO (operands[1])
      && INTVAL (operands[4]) != INTVAL (operands[5]))
    {
    if (TARGET_THUMB2)
      {
        CLEAR_HARD_REG_SET (regset);
        tmp = peep2_find_free_register (0, 4, "r", SImode, &regset);
        if (tmp == NULL_RTX)
          return false;

        /* Use the new register in the first load to ensure that
           if the original input register is not dead after peephole,
           then it will have the correct constant value.  */
        operands[0] = tmp;
      }
    else if (TARGET_ARM)
      {
        return false;
        int regno = REGNO (operands[0]);
        if (!peep2_reg_dead_p (4, operands[0]))
          {
            /* When the input register is even and is not dead after the
               pattern, it has to hold the second constant but we cannot
               form a legal STRD in ARM mode with this register as the second
               register.  */
            if (regno % 2 == 0)
              return false;

            /* Is regno-1 free? */
            SET_HARD_REG_SET (regset);
            CLEAR_HARD_REG_BIT(regset, regno - 1);
            tmp = peep2_find_free_register (0, 4, "r", SImode, &regset);
            if (tmp == NULL_RTX)
              return false;

            operands[0] = tmp;
          }
        else
          {
            /* Find a DImode register.  */
            CLEAR_HARD_REG_SET (regset);
            tmp = peep2_find_free_register (0, 4, "r", DImode, &regset);
            if (tmp != NULL_RTX)
              {
                operands[0] = simplify_gen_subreg (SImode, tmp, DImode, 0);
                operands[1] = simplify_gen_subreg (SImode, tmp, DImode, 4);
              }
            else
              {
                /* Can we use the input register to form a DI register?  */
                SET_HARD_REG_SET (regset);
                CLEAR_HARD_REG_BIT(regset,
                                   regno % 2 == 0 ? regno + 1 : regno - 1);
                tmp = peep2_find_free_register (0, 4, "r", SImode, &regset);
                if (tmp == NULL_RTX)
                  return false;
                operands[regno % 2 == 1 ? 0 : 1] = tmp;
              }
          }

        gcc_assert (operands[0] != NULL_RTX);
        gcc_assert (operands[1] != NULL_RTX);
        gcc_assert (REGNO (operands[0]) % 2 == 0);
        gcc_assert (REGNO (operands[1]) == REGNO (operands[0]) + 1);
      }
    }

  /* Make sure the instructions are ordered with lower memory access first.  */
  if (offsets[0] > offsets[1])
    {
      gap = offsets[0] - offsets[1];
      offset = offsets[1];

      /* Swap the instructions such that lower memory is accessed first.  */
      SWAP_RTX (operands[0], operands[1]);
      SWAP_RTX (operands[2], operands[3]);
      if (const_store)
        SWAP_RTX (operands[4], operands[5]);
    }
  else
    {
      gap = offsets[1] - offsets[0];
      offset = offsets[0];
    }

  /* Make sure accesses are to consecutive memory locations.  */
  if (gap != 4)
    return false;

  /* Make sure we generate legal instructions.  */
  if (operands_ok_ldrd_strd (operands[0], operands[1], base, offset,
                             false, load))
    return true;

  /* In Thumb state, where registers are almost unconstrained, there
     is little hope to fix it.  */
  if (TARGET_THUMB2)
    return false;

  if (load && commute)
    {
      /* Try reordering registers.  */
      SWAP_RTX (operands[0], operands[1]);
      if (operands_ok_ldrd_strd (operands[0], operands[1], base, offset,
                                 false, load))
        return true;
    }

  if (const_store)
    {
      /* If input registers are dead after this pattern, they can be
         reordered or replaced by other registers that are free in the
         current pattern.  */
      if (!peep2_reg_dead_p (4, operands[0])
          || !peep2_reg_dead_p (4, operands[1]))
        return false;

      /* Try to reorder the input registers.  */
      /* For example, the code
           mov r0, 0
           mov r1, 1
           str r1, [r2]
           str r0, [r2, #4]
         can be transformed into
           mov r1, 0
           mov r0, 1
           strd r0, [r2]
      */
      if (operands_ok_ldrd_strd (operands[1], operands[0], base, offset,
                                  false, false))
        {
          SWAP_RTX (operands[0], operands[1]);
          return true;
        }

      /* Try to find a free DI register.  */
      CLEAR_HARD_REG_SET (regset);
      add_to_hard_reg_set (&regset, SImode, REGNO (operands[0]));
      add_to_hard_reg_set (&regset, SImode, REGNO (operands[1]));
      while (true)
        {
          tmp = peep2_find_free_register (0, 4, "r", DImode, &regset);
          if (tmp == NULL_RTX)
            return false;

          /* DREG must be an even-numbered register in DImode.
             Split it into SI registers.  */
          operands[0] = simplify_gen_subreg (SImode, tmp, DImode, 0);
          operands[1] = simplify_gen_subreg (SImode, tmp, DImode, 4);
          gcc_assert (operands[0] != NULL_RTX);
          gcc_assert (operands[1] != NULL_RTX);
          gcc_assert (REGNO (operands[0]) % 2 == 0);
          gcc_assert (REGNO (operands[0]) + 1 == REGNO (operands[1]));

          return (operands_ok_ldrd_strd (operands[0], operands[1],
                                         base, offset,
                                         false, load));
        }
    }

  return false;
}
#undef SWAP_RTX




/* Print a symbolic form of X to the debug file, F.  */
static void
arm_print_value (FILE *f, rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST_INT:
      fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
      return;

    case CONST_DOUBLE:
      fprintf (f, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
      return;

    case CONST_VECTOR:
      {
	int i;

	fprintf (f, "<");
	for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
	  {
	    fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (CONST_VECTOR_ELT (x, i)));
	    if (i < (CONST_VECTOR_NUNITS (x) - 1))
	      fputc (',', f);
	  }
	fprintf (f, ">");
      }
      return;

    case CONST_STRING:
      fprintf (f, "\"%s\"", XSTR (x, 0));
      return;

    case SYMBOL_REF:
      fprintf (f, "`%s'", XSTR (x, 0));
      return;

    case LABEL_REF:
      fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
      return;

    case CONST:
      arm_print_value (f, XEXP (x, 0));
      return;

    case PLUS:
      arm_print_value (f, XEXP (x, 0));
      fprintf (f, "+");
      arm_print_value (f, XEXP (x, 1));
      return;

    case PC:
      fprintf (f, "pc");
      return;

    default:
      fprintf (f, "????");
      return;
    }
}

/* Routines for manipulation of the constant pool.  */

/* Arm instructions cannot load a large constant directly into a
   register; they have to come from a pc relative load.  The constant
   must therefore be placed in the addressable range of the pc
   relative load.  Depending on the precise pc relative load
   instruction the range is somewhere between 256 bytes and 4k.  This
   means that we often have to dump a constant inside a function, and
   generate code to branch around it.

   It is important to minimize this, since the branches will slow
   things down and make the code larger.

   Normally we can hide the table after an existing unconditional
   branch so that there is no interruption of the flow, but in the
   worst case the code looks like this:

	ldr	rn, L1
	...
	b	L2
	align
	L1:	.long value
	L2:
	...

	ldr	rn, L3
	...
	b	L4
	align
	L3:	.long value
	L4:
	...

   We fix this by performing a scan after scheduling, which notices
   which instructions need to have their operands fetched from the
   constant table and builds the table.

   The algorithm starts by building a table of all the constants that
   need fixing up and all the natural barriers in the function (places
   where a constant table can be dropped without breaking the flow).
   For each fixup we note how far the pc-relative replacement will be
   able to reach and the offset of the instruction into the function.

   Having built the table we then group the fixes together to form
   tables that are as large as possible (subject to addressing
   constraints) and emit each table of constants after the last
   barrier that is within range of all the instructions in the group.
   If a group does not contain a barrier, then we forcibly create one
   by inserting a jump instruction into the flow.  Once the table has
   been inserted, the insns are then modified to reference the
   relevant entry in the pool.

   Possible enhancements to the algorithm (not implemented) are:

   1) For some processors and object formats, there may be benefit in
   aligning the pools to the start of cache lines; this alignment
   would need to be taken into account when calculating addressability
   of a pool.  */

/* These typedefs are located at the start of this file, so that
   they can be used in the prototypes there.  This comment is to
   remind readers of that fact so that the following structures
   can be understood more easily.

     typedef struct minipool_node    Mnode;
     typedef struct minipool_fixup   Mfix;  */

struct minipool_node
{
  /* Doubly linked chain of entries.  */
  Mnode * next;
  Mnode * prev;
  /* The maximum offset into the code that this entry can be placed.  While
     pushing fixes for forward references, all entries are sorted in order
     of increasing max_address.  */
  HOST_WIDE_INT max_address;
  /* Similarly for an entry inserted for a backwards ref.  */
  HOST_WIDE_INT min_address;
  /* The number of fixes referencing this entry.  This can become zero
     if we "unpush" an entry.  In this case we ignore the entry when we
     come to emit the code.  */
  int refcount;
  /* The offset from the start of the minipool.  */
  HOST_WIDE_INT offset;
  /* The value in table.  */
  rtx value;
  /* The mode of value.  */
  enum machine_mode mode;
  /* The size of the value.  With iWMMXt enabled
     sizes > 4 also imply an alignment of 8-bytes.  */
  int fix_size;
};

struct minipool_fixup
{
  Mfix *            next;
  rtx               insn;
  HOST_WIDE_INT     address;
  rtx *             loc;
  enum machine_mode mode;
  int               fix_size;
  rtx               value;
  Mnode *           minipool;
  HOST_WIDE_INT     forwards;
  HOST_WIDE_INT     backwards;
};

/* Fixes less than a word need padding out to a word boundary.  */
#define MINIPOOL_FIX_SIZE(mode) \
  (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)

static Mnode *	minipool_vector_head;
static Mnode *	minipool_vector_tail;
static rtx	minipool_vector_label;
static int	minipool_pad;

/* The linked list of all minipool fixes required for this function.  */
Mfix * 		minipool_fix_head;
Mfix * 		minipool_fix_tail;
/* The fix entry for the current minipool, once it has been placed.  */
Mfix *		minipool_barrier;

#ifndef JUMP_TABLES_IN_TEXT_SECTION
#define JUMP_TABLES_IN_TEXT_SECTION 0
#endif

static HOST_WIDE_INT
get_jump_table_size (rtx insn)
{
  /* ADDR_VECs only take room if read-only data does into the text
     section.  */
  if (JUMP_TABLES_IN_TEXT_SECTION || readonly_data_section == text_section)
    {
      rtx body = PATTERN (insn);
      int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
      HOST_WIDE_INT size;
      HOST_WIDE_INT modesize;

      modesize = GET_MODE_SIZE (GET_MODE (body));
      size = modesize * XVECLEN (body, elt);
      switch (modesize)
	{
	case 1:
	  /* Round up size  of TBB table to a halfword boundary.  */
	  size = (size + 1) & ~(HOST_WIDE_INT)1;
	  break;
	case 2:
	  /* No padding necessary for TBH.  */
	  break;
	case 4:
	  /* Add two bytes for alignment on Thumb.  */
	  if (TARGET_THUMB)
	    size += 2;
	  break;
	default:
	  gcc_unreachable ();
	}
      return size;
    }

  return 0;
}

/* Return the maximum amount of padding that will be inserted before
   label LABEL.  */

static HOST_WIDE_INT
get_label_padding (rtx label)
{
  HOST_WIDE_INT align, min_insn_size;

  align = 1 << label_to_alignment (label);
  min_insn_size = TARGET_THUMB ? 2 : 4;
  return align > min_insn_size ? align - min_insn_size : 0;
}

/* Move a minipool fix MP from its current location to before MAX_MP.
   If MAX_MP is NULL, then MP doesn't need moving, but the addressing
   constraints may need updating.  */
static Mnode *
move_minipool_fix_forward_ref (Mnode *mp, Mnode *max_mp,
			       HOST_WIDE_INT max_address)
{
  /* The code below assumes these are different.  */
  gcc_assert (mp != max_mp);

  if (max_mp == NULL)
    {
      if (max_address < mp->max_address)
	mp->max_address = max_address;
    }
  else
    {
      if (max_address > max_mp->max_address - mp->fix_size)
	mp->max_address = max_mp->max_address - mp->fix_size;
      else
	mp->max_address = max_address;

      /* Unlink MP from its current position.  Since max_mp is non-null,
       mp->prev must be non-null.  */
      mp->prev->next = mp->next;
      if (mp->next != NULL)
	mp->next->prev = mp->prev;
      else
	minipool_vector_tail = mp->prev;

      /* Re-insert it before MAX_MP.  */
      mp->next = max_mp;
      mp->prev = max_mp->prev;
      max_mp->prev = mp;

      if (mp->prev != NULL)
	mp->prev->next = mp;
      else
	minipool_vector_head = mp;
    }

  /* Save the new entry.  */
  max_mp = mp;

  /* Scan over the preceding entries and adjust their addresses as
     required.  */
  while (mp->prev != NULL
	 && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
    {
      mp->prev->max_address = mp->max_address - mp->prev->fix_size;
      mp = mp->prev;
    }

  return max_mp;
}

/* Add a constant to the minipool for a forward reference.  Returns the
   node added or NULL if the constant will not fit in this pool.  */
static Mnode *
add_minipool_forward_ref (Mfix *fix)
{
  /* If set, max_mp is the first pool_entry that has a lower
     constraint than the one we are trying to add.  */
  Mnode *       max_mp = NULL;
  HOST_WIDE_INT max_address = fix->address + fix->forwards - minipool_pad;
  Mnode *       mp;

  /* If the minipool starts before the end of FIX->INSN then this FIX
     can not be placed into the current pool.  Furthermore, adding the
     new constant pool entry may cause the pool to start FIX_SIZE bytes
     earlier.  */
  if (minipool_vector_head &&
      (fix->address + get_attr_length (fix->insn)
       >= minipool_vector_head->max_address - fix->fix_size))
    return NULL;

  /* Scan the pool to see if a constant with the same value has
     already been added.  While we are doing this, also note the
     location where we must insert the constant if it doesn't already
     exist.  */
  for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
    {
      if (GET_CODE (fix->value) == GET_CODE (mp->value)
	  && fix->mode == mp->mode
	  && (!LABEL_P (fix->value)
	      || (CODE_LABEL_NUMBER (fix->value)
		  == CODE_LABEL_NUMBER (mp->value)))
	  && rtx_equal_p (fix->value, mp->value))
	{
	  /* More than one fix references this entry.  */
	  mp->refcount++;
	  return move_minipool_fix_forward_ref (mp, max_mp, max_address);
	}

      /* Note the insertion point if necessary.  */
      if (max_mp == NULL
	  && mp->max_address > max_address)
	max_mp = mp;

      /* If we are inserting an 8-bytes aligned quantity and
	 we have not already found an insertion point, then
	 make sure that all such 8-byte aligned quantities are
	 placed at the start of the pool.  */
      if (ARM_DOUBLEWORD_ALIGN
	  && max_mp == NULL
	  && fix->fix_size >= 8
	  && mp->fix_size < 8)
	{
	  max_mp = mp;
	  max_address = mp->max_address;
	}
    }

  /* The value is not currently in the minipool, so we need to create
     a new entry for it.  If MAX_MP is NULL, the entry will be put on
     the end of the list since the placement is less constrained than
     any existing entry.  Otherwise, we insert the new fix before
     MAX_MP and, if necessary, adjust the constraints on the other
     entries.  */
  mp = XNEW (Mnode);
  mp->fix_size = fix->fix_size;
  mp->mode = fix->mode;
  mp->value = fix->value;
  mp->refcount = 1;
  /* Not yet required for a backwards ref.  */
  mp->min_address = -65536;

  if (max_mp == NULL)
    {
      mp->max_address = max_address;
      mp->next = NULL;
      mp->prev = minipool_vector_tail;

      if (mp->prev == NULL)
	{
	  minipool_vector_head = mp;
	  minipool_vector_label = gen_label_rtx ();
	}
      else
	mp->prev->next = mp;

      minipool_vector_tail = mp;
    }
  else
    {
      if (max_address > max_mp->max_address - mp->fix_size)
	mp->max_address = max_mp->max_address - mp->fix_size;
      else
	mp->max_address = max_address;

      mp->next = max_mp;
      mp->prev = max_mp->prev;
      max_mp->prev = mp;
      if (mp->prev != NULL)
	mp->prev->next = mp;
      else
	minipool_vector_head = mp;
    }

  /* Save the new entry.  */
  max_mp = mp;

  /* Scan over the preceding entries and adjust their addresses as
     required.  */
  while (mp->prev != NULL
	 && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
    {
      mp->prev->max_address = mp->max_address - mp->prev->fix_size;
      mp = mp->prev;
    }

  return max_mp;
}

static Mnode *
move_minipool_fix_backward_ref (Mnode *mp, Mnode *min_mp,
				HOST_WIDE_INT  min_address)
{
  HOST_WIDE_INT offset;

  /* The code below assumes these are different.  */
  gcc_assert (mp != min_mp);

  if (min_mp == NULL)
    {
      if (min_address > mp->min_address)
	mp->min_address = min_address;
    }
  else
    {
      /* We will adjust this below if it is too loose.  */
      mp->min_address = min_address;

      /* Unlink MP from its current position.  Since min_mp is non-null,
	 mp->next must be non-null.  */
      mp->next->prev = mp->prev;
      if (mp->prev != NULL)
	mp->prev->next = mp->next;
      else
	minipool_vector_head = mp->next;

      /* Reinsert it after MIN_MP.  */
      mp->prev = min_mp;
      mp->next = min_mp->next;
      min_mp->next = mp;
      if (mp->next != NULL)
	mp->next->prev = mp;
      else
	minipool_vector_tail = mp;
    }

  min_mp = mp;

  offset = 0;
  for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
    {
      mp->offset = offset;
      if (mp->refcount > 0)
	offset += mp->fix_size;

      if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
	mp->next->min_address = mp->min_address + mp->fix_size;
    }

  return min_mp;
}

/* Add a constant to the minipool for a backward reference.  Returns the
   node added or NULL if the constant will not fit in this pool.

   Note that the code for insertion for a backwards reference can be
   somewhat confusing because the calculated offsets for each fix do
   not take into account the size of the pool (which is still under
   construction.  */
static Mnode *
add_minipool_backward_ref (Mfix *fix)
{
  /* If set, min_mp is the last pool_entry that has a lower constraint
     than the one we are trying to add.  */
  Mnode *min_mp = NULL;
  /* This can be negative, since it is only a constraint.  */
  HOST_WIDE_INT  min_address = fix->address - fix->backwards;
  Mnode *mp;

  /* If we can't reach the current pool from this insn, or if we can't
     insert this entry at the end of the pool without pushing other
     fixes out of range, then we don't try.  This ensures that we
     can't fail later on.  */
  if (min_address >= minipool_barrier->address
      || (minipool_vector_tail->min_address + fix->fix_size
	  >= minipool_barrier->address))
    return NULL;

  /* Scan the pool to see if a constant with the same value has
     already been added.  While we are doing this, also note the
     location where we must insert the constant if it doesn't already
     exist.  */
  for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
    {
      if (GET_CODE (fix->value) == GET_CODE (mp->value)
	  && fix->mode == mp->mode
	  && (!LABEL_P (fix->value)
	      || (CODE_LABEL_NUMBER (fix->value)
		  == CODE_LABEL_NUMBER (mp->value)))
	  && rtx_equal_p (fix->value, mp->value)
	  /* Check that there is enough slack to move this entry to the
	     end of the table (this is conservative).  */
	  && (mp->max_address
	      > (minipool_barrier->address
		 + minipool_vector_tail->offset
		 + minipool_vector_tail->fix_size)))
	{
	  mp->refcount++;
	  return move_minipool_fix_backward_ref (mp, min_mp, min_address);
	}

      if (min_mp != NULL)
	mp->min_address += fix->fix_size;
      else
	{
	  /* Note the insertion point if necessary.  */
	  if (mp->min_address < min_address)
	    {
	      /* For now, we do not allow the insertion of 8-byte alignment
		 requiring nodes anywhere but at the start of the pool.  */
	      if (ARM_DOUBLEWORD_ALIGN
		  && fix->fix_size >= 8 && mp->fix_size < 8)
		return NULL;
	      else
		min_mp = mp;
	    }
	  else if (mp->max_address
		   < minipool_barrier->address + mp->offset + fix->fix_size)
	    {
	      /* Inserting before this entry would push the fix beyond
		 its maximum address (which can happen if we have
		 re-located a forwards fix); force the new fix to come
		 after it.  */
	      if (ARM_DOUBLEWORD_ALIGN
		  && fix->fix_size >= 8 && mp->fix_size < 8)
		return NULL;
	      else
		{
		  min_mp = mp;
		  min_address = mp->min_address + fix->fix_size;
		}
	    }
	  /* Do not insert a non-8-byte aligned quantity before 8-byte
	     aligned quantities.  */
	  else if (ARM_DOUBLEWORD_ALIGN
		   && fix->fix_size < 8
		   && mp->fix_size >= 8)
	    {
	      min_mp = mp;
	      min_address = mp->min_address + fix->fix_size;
	    }
	}
    }

  /* We need to create a new entry.  */
  mp = XNEW (Mnode);
  mp->fix_size = fix->fix_size;
  mp->mode = fix->mode;
  mp->value = fix->value;
  mp->refcount = 1;
  mp->max_address = minipool_barrier->address + 65536;

  mp->min_address = min_address;

  if (min_mp == NULL)
    {
      mp->prev = NULL;
      mp->next = minipool_vector_head;

      if (mp->next == NULL)
	{
	  minipool_vector_tail = mp;
	  minipool_vector_label = gen_label_rtx ();
	}
      else
	mp->next->prev = mp;

      minipool_vector_head = mp;
    }
  else
    {
      mp->next = min_mp->next;
      mp->prev = min_mp;
      min_mp->next = mp;

      if (mp->next != NULL)
	mp->next->prev = mp;
      else
	minipool_vector_tail = mp;
    }

  /* Save the new entry.  */
  min_mp = mp;

  if (mp->prev)
    mp = mp->prev;
  else
    mp->offset = 0;

  /* Scan over the following entries and adjust their offsets.  */
  while (mp->next != NULL)
    {
      if (mp->next->min_address < mp->min_address + mp->fix_size)
	mp->next->min_address = mp->min_address + mp->fix_size;

      if (mp->refcount)
	mp->next->offset = mp->offset + mp->fix_size;
      else
	mp->next->offset = mp->offset;

      mp = mp->next;
    }

  return min_mp;
}

static void
assign_minipool_offsets (Mfix *barrier)
{
  HOST_WIDE_INT offset = 0;
  Mnode *mp;

  minipool_barrier = barrier;

  for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
    {
      mp->offset = offset;

      if (mp->refcount > 0)
	offset += mp->fix_size;
    }
}

/* Output the literal table */
static void
dump_minipool (rtx scan)
{
  Mnode * mp;
  Mnode * nmp;
  int align64 = 0;

  if (ARM_DOUBLEWORD_ALIGN)
    for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
      if (mp->refcount > 0 && mp->fix_size >= 8)
	{
	  align64 = 1;
	  break;
	}

  if (dump_file)
    fprintf (dump_file,
	     ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
	     INSN_UID (scan), (unsigned long) minipool_barrier->address, align64 ? 8 : 4);

  scan = emit_label_after (gen_label_rtx (), scan);
  scan = emit_insn_after (align64 ? gen_align_8 () : gen_align_4 (), scan);
  scan = emit_label_after (minipool_vector_label, scan);

  for (mp = minipool_vector_head; mp != NULL; mp = nmp)
    {
      if (mp->refcount > 0)
	{
	  if (dump_file)
	    {
	      fprintf (dump_file,
		       ";;  Offset %u, min %ld, max %ld ",
		       (unsigned) mp->offset, (unsigned long) mp->min_address,
		       (unsigned long) mp->max_address);
	      arm_print_value (dump_file, mp->value);
	      fputc ('\n', dump_file);
	    }

	  switch (mp->fix_size)
	    {
#ifdef HAVE_consttable_1
	    case 1:
	      scan = emit_insn_after (gen_consttable_1 (mp->value), scan);
	      break;

#endif
#ifdef HAVE_consttable_2
	    case 2:
	      scan = emit_insn_after (gen_consttable_2 (mp->value), scan);
	      break;

#endif
#ifdef HAVE_consttable_4
	    case 4:
	      scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
	      break;

#endif
#ifdef HAVE_consttable_8
	    case 8:
	      scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
	      break;

#endif
#ifdef HAVE_consttable_16
	    case 16:
              scan = emit_insn_after (gen_consttable_16 (mp->value), scan);
              break;

#endif
	    default:
	      gcc_unreachable ();
	    }
	}

      nmp = mp->next;
      free (mp);
    }

  minipool_vector_head = minipool_vector_tail = NULL;
  scan = emit_insn_after (gen_consttable_end (), scan);
  scan = emit_barrier_after (scan);
}

/* Return the cost of forcibly inserting a barrier after INSN.  */
static int
arm_barrier_cost (rtx insn)
{
  /* Basing the location of the pool on the loop depth is preferable,
     but at the moment, the basic block information seems to be
     corrupt by this stage of the compilation.  */
  int base_cost = 50;
  rtx next = next_nonnote_insn (insn);

  if (next != NULL && LABEL_P (next))
    base_cost -= 20;

  switch (GET_CODE (insn))
    {
    case CODE_LABEL:
      /* It will always be better to place the table before the label, rather
	 than after it.  */
      return 50;

    case INSN:
    case CALL_INSN:
      return base_cost;

    case JUMP_INSN:
      return base_cost - 10;

    default:
      return base_cost + 10;
    }
}

/* Find the best place in the insn stream in the range
   (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
   Create the barrier by inserting a jump and add a new fix entry for
   it.  */
static Mfix *
create_fix_barrier (Mfix *fix, HOST_WIDE_INT max_address)
{
  HOST_WIDE_INT count = 0;
  rtx barrier;
  rtx from = fix->insn;
  /* The instruction after which we will insert the jump.  */
  rtx selected = NULL;
  int selected_cost;
  /* The address at which the jump instruction will be placed.  */
  HOST_WIDE_INT selected_address;
  Mfix * new_fix;
  HOST_WIDE_INT max_count = max_address - fix->address;
  rtx label = gen_label_rtx ();

  selected_cost = arm_barrier_cost (from);
  selected_address = fix->address;

  while (from && count < max_count)
    {
      rtx tmp;
      int new_cost;

      /* This code shouldn't have been called if there was a natural barrier
	 within range.  */
      gcc_assert (!BARRIER_P (from));

      /* Count the length of this insn.  This must stay in sync with the
	 code that pushes minipool fixes.  */
      if (LABEL_P (from))
	count += get_label_padding (from);
      else
	count += get_attr_length (from);

      /* If there is a jump table, add its length.  */
      if (tablejump_p (from, NULL, &tmp))
	{
	  count += get_jump_table_size (tmp);

	  /* Jump tables aren't in a basic block, so base the cost on
	     the dispatch insn.  If we select this location, we will
	     still put the pool after the table.  */
	  new_cost = arm_barrier_cost (from);

	  if (count < max_count
	      && (!selected || new_cost <= selected_cost))
	    {
	      selected = tmp;
	      selected_cost = new_cost;
	      selected_address = fix->address + count;
	    }

	  /* Continue after the dispatch table.  */
	  from = NEXT_INSN (tmp);
	  continue;
	}

      new_cost = arm_barrier_cost (from);

      if (count < max_count
	  && (!selected || new_cost <= selected_cost))
	{
	  selected = from;
	  selected_cost = new_cost;
	  selected_address = fix->address + count;
	}

      from = NEXT_INSN (from);
    }

  /* Make sure that we found a place to insert the jump.  */
  gcc_assert (selected);

  /* Make sure we do not split a call and its corresponding
     CALL_ARG_LOCATION note.  */
  if (CALL_P (selected))
    {
      rtx next = NEXT_INSN (selected);
      if (next && NOTE_P (next)
	  && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
	  selected = next;
    }

  /* Create a new JUMP_INSN that branches around a barrier.  */
  from = emit_jump_insn_after (gen_jump (label), selected);
  JUMP_LABEL (from) = label;
  barrier = emit_barrier_after (from);
  emit_label_after (label, barrier);

  /* Create a minipool barrier entry for the new barrier.  */
  new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* new_fix));
  new_fix->insn = barrier;
  new_fix->address = selected_address;
  new_fix->next = fix->next;
  fix->next = new_fix;

  return new_fix;
}

/* Record that there is a natural barrier in the insn stream at
   ADDRESS.  */
static void
push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
{
  Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));

  fix->insn = insn;
  fix->address = address;

  fix->next = NULL;
  if (minipool_fix_head != NULL)
    minipool_fix_tail->next = fix;
  else
    minipool_fix_head = fix;

  minipool_fix_tail = fix;
}

/* Record INSN, which will need fixing up to load a value from the
   minipool.  ADDRESS is the offset of the insn since the start of the
   function; LOC is a pointer to the part of the insn which requires
   fixing; VALUE is the constant that must be loaded, which is of type
   MODE.  */
static void
push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx *loc,
		   enum machine_mode mode, rtx value)
{
  Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));

  fix->insn = insn;
  fix->address = address;
  fix->loc = loc;
  fix->mode = mode;
  fix->fix_size = MINIPOOL_FIX_SIZE (mode);
  fix->value = value;
  fix->forwards = get_attr_pool_range (insn);
  fix->backwards = get_attr_neg_pool_range (insn);
  fix->minipool = NULL;

  /* If an insn doesn't have a range defined for it, then it isn't
     expecting to be reworked by this code.  Better to stop now than
     to generate duff assembly code.  */
  gcc_assert (fix->forwards || fix->backwards);

  /* If an entry requires 8-byte alignment then assume all constant pools
     require 4 bytes of padding.  Trying to do this later on a per-pool
     basis is awkward because existing pool entries have to be modified.  */
  if (ARM_DOUBLEWORD_ALIGN && fix->fix_size >= 8)
    minipool_pad = 4;

  if (dump_file)
    {
      fprintf (dump_file,
	       ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
	       GET_MODE_NAME (mode),
	       INSN_UID (insn), (unsigned long) address,
	       -1 * (long)fix->backwards, (long)fix->forwards);
      arm_print_value (dump_file, fix->value);
      fprintf (dump_file, "\n");
    }

  /* Add it to the chain of fixes.  */
  fix->next = NULL;

  if (minipool_fix_head != NULL)
    minipool_fix_tail->next = fix;
  else
    minipool_fix_head = fix;

  minipool_fix_tail = fix;
}

/* Return maximum allowed cost of synthesizing a 64-bit constant VAL inline.
   Returns the number of insns needed, or 99 if we always want to synthesize
   the value.  */
int
arm_max_const_double_inline_cost ()
{
  /* Let the value get synthesized to avoid the use of literal pools.  */
  if (arm_disable_literal_pool)
    return 99;

  return ((optimize_size || arm_ld_sched) ? 3 : 4);
}

/* Return the cost of synthesizing a 64-bit constant VAL inline.
   Returns the number of insns needed, or 99 if we don't know how to
   do it.  */
int
arm_const_double_inline_cost (rtx val)
{
  rtx lowpart, highpart;
  enum machine_mode mode;

  mode = GET_MODE (val);

  if (mode == VOIDmode)
    mode = DImode;

  gcc_assert (GET_MODE_SIZE (mode) == 8);

  lowpart = gen_lowpart (SImode, val);
  highpart = gen_highpart_mode (SImode, mode, val);

  gcc_assert (CONST_INT_P (lowpart));
  gcc_assert (CONST_INT_P (highpart));

  return (arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (lowpart),
			    NULL_RTX, NULL_RTX, 0, 0)
	  + arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (highpart),
			      NULL_RTX, NULL_RTX, 0, 0));
}

/* Return true if it is worthwhile to split a 64-bit constant into two
   32-bit operations.  This is the case if optimizing for size, or
   if we have load delay slots, or if one 32-bit part can be done with
   a single data operation.  */
bool
arm_const_double_by_parts (rtx val)
{
  enum machine_mode mode = GET_MODE (val);
  rtx part;

  if (optimize_size || arm_ld_sched)
    return true;

  if (mode == VOIDmode)
    mode = DImode;

  part = gen_highpart_mode (SImode, mode, val);

  gcc_assert (CONST_INT_P (part));

  if (const_ok_for_arm (INTVAL (part))
      || const_ok_for_arm (~INTVAL (part)))
    return true;

  part = gen_lowpart (SImode, val);

  gcc_assert (CONST_INT_P (part));

  if (const_ok_for_arm (INTVAL (part))
      || const_ok_for_arm (~INTVAL (part)))
    return true;

  return false;
}

/* Return true if it is possible to inline both the high and low parts
   of a 64-bit constant into 32-bit data processing instructions.  */
bool
arm_const_double_by_immediates (rtx val)
{
  enum machine_mode mode = GET_MODE (val);
  rtx part;

  if (mode == VOIDmode)
    mode = DImode;

  part = gen_highpart_mode (SImode, mode, val);

  gcc_assert (CONST_INT_P (part));

  if (!const_ok_for_arm (INTVAL (part)))
    return false;

  part = gen_lowpart (SImode, val);

  gcc_assert (CONST_INT_P (part));

  if (!const_ok_for_arm (INTVAL (part)))
    return false;

  return true;
}

/* Scan INSN and note any of its operands that need fixing.
   If DO_PUSHES is false we do not actually push any of the fixups
   needed.  */
static void
note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
{
  int opno;

  extract_insn (insn);

  if (!constrain_operands (1))
    fatal_insn_not_found (insn);

  if (recog_data.n_alternatives == 0)
    return;

  /* Fill in recog_op_alt with information about the constraints of
     this insn.  */
  preprocess_constraints ();

  for (opno = 0; opno < recog_data.n_operands; opno++)
    {
      /* Things we need to fix can only occur in inputs.  */
      if (recog_data.operand_type[opno] != OP_IN)
	continue;

      /* If this alternative is a memory reference, then any mention
	 of constants in this alternative is really to fool reload
	 into allowing us to accept one there.  We need to fix them up
	 now so that we output the right code.  */
      if (recog_op_alt[opno][which_alternative].memory_ok)
	{
	  rtx op = recog_data.operand[opno];

	  if (CONSTANT_P (op))
	    {
	      if (do_pushes)
		push_minipool_fix (insn, address, recog_data.operand_loc[opno],
				   recog_data.operand_mode[opno], op);
	    }
	  else if (MEM_P (op)
		   && GET_CODE (XEXP (op, 0)) == SYMBOL_REF
		   && CONSTANT_POOL_ADDRESS_P (XEXP (op, 0)))
	    {
	      if (do_pushes)
		{
		  rtx cop = avoid_constant_pool_reference (op);

		  /* Casting the address of something to a mode narrower
		     than a word can cause avoid_constant_pool_reference()
		     to return the pool reference itself.  That's no good to
		     us here.  Lets just hope that we can use the
		     constant pool value directly.  */
		  if (op == cop)
		    cop = get_pool_constant (XEXP (op, 0));

		  push_minipool_fix (insn, address,
				     recog_data.operand_loc[opno],
				     recog_data.operand_mode[opno], cop);
		}

	    }
	}
    }

  return;
}

/* Rewrite move insn into subtract of 0 if the condition codes will
   be useful in next conditional jump insn.  */

static void
thumb1_reorg (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx dest, src;
      rtx pat, op0, set = NULL;
      rtx prev, insn = BB_END (bb);
      bool insn_clobbered = false;

      while (insn != BB_HEAD (bb) && DEBUG_INSN_P (insn))
	insn = PREV_INSN (insn);

      /* Find the last cbranchsi4_insn in basic block BB.  */
      if (INSN_CODE (insn) != CODE_FOR_cbranchsi4_insn)
	continue;

      /* Get the register with which we are comparing.  */
      pat = PATTERN (insn);
      op0 = XEXP (XEXP (SET_SRC (pat), 0), 0);

      /* Find the first flag setting insn before INSN in basic block BB.  */
      gcc_assert (insn != BB_HEAD (bb));
      for (prev = PREV_INSN (insn);
	   (!insn_clobbered
	    && prev != BB_HEAD (bb)
	    && (NOTE_P (prev)
		|| DEBUG_INSN_P (prev)
		|| ((set = single_set (prev)) != NULL
		    && get_attr_conds (prev) == CONDS_NOCOND)));
	   prev = PREV_INSN (prev))
	{
	  if (reg_set_p (op0, prev))
	    insn_clobbered = true;
	}

      /* Skip if op0 is clobbered by insn other than prev. */
      if (insn_clobbered)
	continue;

      if (!set)
	continue;

      dest = SET_DEST (set);
      src = SET_SRC (set);
      if (!low_register_operand (dest, SImode)
	  || !low_register_operand (src, SImode))
	continue;

      /* Rewrite move into subtract of 0 if its operand is compared with ZERO
	 in INSN.  Both src and dest of the move insn are checked.  */
      if (REGNO (op0) == REGNO (src) || REGNO (op0) == REGNO (dest))
	{
	  dest = copy_rtx (dest);
	  src = copy_rtx (src);
	  src = gen_rtx_MINUS (SImode, src, const0_rtx);
	  PATTERN (prev) = gen_rtx_SET (VOIDmode, dest, src);
	  INSN_CODE (prev) = -1;
	  /* Set test register in INSN to dest.  */
	  XEXP (XEXP (SET_SRC (pat), 0), 0) = copy_rtx (dest);
	  INSN_CODE (insn) = -1;
	}
    }
}

/* Convert instructions to their cc-clobbering variant if possible, since
   that allows us to use smaller encodings.  */

static void
thumb2_reorg (void)
{
  basic_block bb;
  regset_head live;

  INIT_REG_SET (&live);

  /* We are freeing block_for_insn in the toplev to keep compatibility
     with old MDEP_REORGS that are not CFG based.  Recompute it now.  */
  compute_bb_for_insn ();
  df_analyze ();

  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx insn;

      COPY_REG_SET (&live, DF_LR_OUT (bb));
      df_simulate_initialize_backwards (bb, &live);
      FOR_BB_INSNS_REVERSE (bb, insn)
	{
	  if (NONJUMP_INSN_P (insn)
	      && !REGNO_REG_SET_P (&live, CC_REGNUM)
	      && GET_CODE (PATTERN (insn)) == SET)
	    {
	      enum {SKIP, CONV, SWAP_CONV} action = SKIP;
	      rtx pat = PATTERN (insn);
	      rtx dst = XEXP (pat, 0);
	      rtx src = XEXP (pat, 1);
	      rtx op0 = NULL_RTX, op1 = NULL_RTX;

	      if (!OBJECT_P (src))
		  op0 = XEXP (src, 0);

	      if (BINARY_P (src))
		  op1 = XEXP (src, 1);

	      if (low_register_operand (dst, SImode))
		{
		  switch (GET_CODE (src))
		    {
		    case PLUS:
		      /* Adding two registers and storing the result
			 in the first source is already a 16-bit
			 operation.  */
		      if (rtx_equal_p (dst, op0)
			  && register_operand (op1, SImode))
			break;

		      if (low_register_operand (op0, SImode))
			{
			  /* ADDS <Rd>,<Rn>,<Rm>  */
			  if (low_register_operand (op1, SImode))
			    action = CONV;
			  /* ADDS <Rdn>,#<imm8>  */
			  /* SUBS <Rdn>,#<imm8>  */
			  else if (rtx_equal_p (dst, op0)
				   && CONST_INT_P (op1)
				   && IN_RANGE (INTVAL (op1), -255, 255))
			    action = CONV;
			  /* ADDS <Rd>,<Rn>,#<imm3>  */
			  /* SUBS <Rd>,<Rn>,#<imm3>  */
			  else if (CONST_INT_P (op1)
				   && IN_RANGE (INTVAL (op1), -7, 7))
			    action = CONV;
			}
		      /* ADCS <Rd>, <Rn>  */
		      else if (GET_CODE (XEXP (src, 0)) == PLUS
			      && rtx_equal_p (XEXP (XEXP (src, 0), 0), dst)
			      && low_register_operand (XEXP (XEXP (src, 0), 1),
						       SImode)
			      && COMPARISON_P (op1)
			      && cc_register (XEXP (op1, 0), VOIDmode)
			      && maybe_get_arm_condition_code (op1) == ARM_CS
			      && XEXP (op1, 1) == const0_rtx)
		        action = CONV;
		      break;

		    case MINUS:
		      /* RSBS <Rd>,<Rn>,#0
			 Not handled here: see NEG below.  */
		      /* SUBS <Rd>,<Rn>,#<imm3>
			 SUBS <Rdn>,#<imm8>
			 Not handled here: see PLUS above.  */
		      /* SUBS <Rd>,<Rn>,<Rm>  */
		      if (low_register_operand (op0, SImode)
			  && low_register_operand (op1, SImode))
			    action = CONV;
		      break;

		    case MULT:
		      /* MULS <Rdm>,<Rn>,<Rdm>
			 As an exception to the rule, this is only used
			 when optimizing for size since MULS is slow on all
			 known implementations.  We do not even want to use
			 MULS in cold code, if optimizing for speed, so we
			 test the global flag here.  */
		      if (!optimize_size)
			break;
		      /* else fall through.  */
		    case AND:
		    case IOR:
		    case XOR:
		      /* ANDS <Rdn>,<Rm>  */
		      if (rtx_equal_p (dst, op0)
			  && low_register_operand (op1, SImode))
			action = CONV;
		      else if (rtx_equal_p (dst, op1)
			       && low_register_operand (op0, SImode))
			action = SWAP_CONV;
		      break;

		    case ASHIFTRT:
		    case ASHIFT:
		    case LSHIFTRT:
		      /* ASRS <Rdn>,<Rm> */
		      /* LSRS <Rdn>,<Rm> */
		      /* LSLS <Rdn>,<Rm> */
		      if (rtx_equal_p (dst, op0)
			  && low_register_operand (op1, SImode))
			action = CONV;
		      /* ASRS <Rd>,<Rm>,#<imm5> */
		      /* LSRS <Rd>,<Rm>,#<imm5> */
		      /* LSLS <Rd>,<Rm>,#<imm5> */
		      else if (low_register_operand (op0, SImode)
			       && CONST_INT_P (op1)
			       && IN_RANGE (INTVAL (op1), 0, 31))
			action = CONV;
		      break;

		    case ROTATERT:
		      /* RORS <Rdn>,<Rm>  */
		      if (rtx_equal_p (dst, op0)
			  && low_register_operand (op1, SImode))
			action = CONV;
		      break;

		    case NOT:
		    case NEG:
		      /* MVNS <Rd>,<Rm>  */
		      /* NEGS <Rd>,<Rm>  (a.k.a RSBS)  */
		      if (low_register_operand (op0, SImode))
			action = CONV;
		      break;

		    case CONST_INT:
		      /* MOVS <Rd>,#<imm8>  */
		      if (CONST_INT_P (src)
			  && IN_RANGE (INTVAL (src), 0, 255))
			action = CONV;
		      break;

		    case REG:
		      /* MOVS and MOV<c> with registers have different
			 encodings, so are not relevant here.  */
		      break;

		    default:
		      break;
		    }
		}

	      if (action != SKIP)
		{
		  rtx ccreg = gen_rtx_REG (CCmode, CC_REGNUM);
		  rtx clobber = gen_rtx_CLOBBER (VOIDmode, ccreg);
		  rtvec vec;

		  if (action == SWAP_CONV)
		    {
		      src = copy_rtx (src);
		      XEXP (src, 0) = op1;
		      XEXP (src, 1) = op0;
		      pat = gen_rtx_SET (VOIDmode, dst, src);
		      vec = gen_rtvec (2, pat, clobber);
		    }
		  else /* action == CONV */
		    vec = gen_rtvec (2, pat, clobber);

		  PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
		  INSN_CODE (insn) = -1;
		}
	    }

	  if (NONDEBUG_INSN_P (insn))
	    df_simulate_one_insn_backwards (bb, insn, &live);
	}
    }

  CLEAR_REG_SET (&live);
}

/* Gcc puts the pool in the wrong place for ARM, since we can only
   load addresses a limited distance around the pc.  We do some
   special munging to move the constant pool values to the correct
   point in the code.  */
static void
arm_reorg (void)
{
  rtx insn;
  HOST_WIDE_INT address = 0;
  Mfix * fix;

  if (TARGET_THUMB1)
    thumb1_reorg ();
  else if (TARGET_THUMB2)
    thumb2_reorg ();

  /* Ensure all insns that must be split have been split at this point.
     Otherwise, the pool placement code below may compute incorrect
     insn lengths.  Note that when optimizing, all insns have already
     been split at this point.  */
  if (!optimize)
    split_all_insns_noflow ();

  minipool_fix_head = minipool_fix_tail = NULL;

  /* The first insn must always be a note, or the code below won't
     scan it properly.  */
  insn = get_insns ();
  gcc_assert (NOTE_P (insn));
  minipool_pad = 0;

  /* Scan all the insns and record the operands that will need fixing.  */
  for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
    {
      if (BARRIER_P (insn))
	push_minipool_barrier (insn, address);
      else if (INSN_P (insn))
	{
	  rtx table;

	  note_invalid_constants (insn, address, true);
	  address += get_attr_length (insn);

	  /* If the insn is a vector jump, add the size of the table
	     and skip the table.  */
	  if (tablejump_p (insn, NULL, &table))
	    {
	      address += get_jump_table_size (table);
	      insn = table;
	    }
	}
      else if (LABEL_P (insn))
	/* Add the worst-case padding due to alignment.  We don't add
	   the _current_ padding because the minipool insertions
	   themselves might change it.  */
	address += get_label_padding (insn);
    }

  fix = minipool_fix_head;

  /* Now scan the fixups and perform the required changes.  */
  while (fix)
    {
      Mfix * ftmp;
      Mfix * fdel;
      Mfix *  last_added_fix;
      Mfix * last_barrier = NULL;
      Mfix * this_fix;

      /* Skip any further barriers before the next fix.  */
      while (fix && BARRIER_P (fix->insn))
	fix = fix->next;

      /* No more fixes.  */
      if (fix == NULL)
	break;

      last_added_fix = NULL;

      for (ftmp = fix; ftmp; ftmp = ftmp->next)
	{
	  if (BARRIER_P (ftmp->insn))
	    {
	      if (ftmp->address >= minipool_vector_head->max_address)
		break;

	      last_barrier = ftmp;
	    }
	  else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
	    break;

	  last_added_fix = ftmp;  /* Keep track of the last fix added.  */
	}

      /* If we found a barrier, drop back to that; any fixes that we
	 could have reached but come after the barrier will now go in
	 the next mini-pool.  */
      if (last_barrier != NULL)
	{
	  /* Reduce the refcount for those fixes that won't go into this
	     pool after all.  */
	  for (fdel = last_barrier->next;
	       fdel && fdel != ftmp;
	       fdel = fdel->next)
	    {
	      fdel->minipool->refcount--;
	      fdel->minipool = NULL;
	    }

	  ftmp = last_barrier;
	}
      else
        {
	  /* ftmp is first fix that we can't fit into this pool and
	     there no natural barriers that we could use.  Insert a
	     new barrier in the code somewhere between the previous
	     fix and this one, and arrange to jump around it.  */
	  HOST_WIDE_INT max_address;

	  /* The last item on the list of fixes must be a barrier, so
	     we can never run off the end of the list of fixes without
	     last_barrier being set.  */
	  gcc_assert (ftmp);

	  max_address = minipool_vector_head->max_address;
	  /* Check that there isn't another fix that is in range that
	     we couldn't fit into this pool because the pool was
	     already too large: we need to put the pool before such an
	     instruction.  The pool itself may come just after the
	     fix because create_fix_barrier also allows space for a
	     jump instruction.  */
	  if (ftmp->address < max_address)
	    max_address = ftmp->address + 1;

	  last_barrier = create_fix_barrier (last_added_fix, max_address);
	}

      assign_minipool_offsets (last_barrier);

      while (ftmp)
	{
	  if (!BARRIER_P (ftmp->insn)
	      && ((ftmp->minipool = add_minipool_backward_ref (ftmp))
		  == NULL))
	    break;

	  ftmp = ftmp->next;
	}

      /* Scan over the fixes we have identified for this pool, fixing them
	 up and adding the constants to the pool itself.  */
      for (this_fix = fix; this_fix && ftmp != this_fix;
	   this_fix = this_fix->next)
	if (!BARRIER_P (this_fix->insn))
	  {
	    rtx addr
	      = plus_constant (Pmode,
			       gen_rtx_LABEL_REF (VOIDmode,
						  minipool_vector_label),
			       this_fix->minipool->offset);
	    *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
	  }

      dump_minipool (last_barrier->insn);
      fix = ftmp;
    }

  /* From now on we must synthesize any constants that we can't handle
     directly.  This can happen if the RTL gets split during final
     instruction generation.  */
  after_arm_reorg = 1;

  /* Free the minipool memory.  */
  obstack_free (&minipool_obstack, minipool_startobj);
}

/* Routines to output assembly language.  */

/* If the rtx is the correct value then return the string of the number.
   In this way we can ensure that valid double constants are generated even
   when cross compiling.  */
const char *
fp_immediate_constant (rtx x)
{
  REAL_VALUE_TYPE r;

  if (!fp_consts_inited)
    init_fp_table ();

  REAL_VALUE_FROM_CONST_DOUBLE (r, x);

  gcc_assert (REAL_VALUES_EQUAL (r, value_fp0));
  return "0";
}

/* As for fp_immediate_constant, but value is passed directly, not in rtx.  */
static const char *
fp_const_from_val (REAL_VALUE_TYPE *r)
{
  if (!fp_consts_inited)
    init_fp_table ();

  gcc_assert (REAL_VALUES_EQUAL (*r, value_fp0));
  return "0";
}

/* OPERANDS[0] is the entire list of insns that constitute pop,
   OPERANDS[1] is the base register, RETURN_PC is true iff return insn
   is in the list, UPDATE is true iff the list contains explicit
   update of base register.  */
void
arm_output_multireg_pop (rtx *operands, bool return_pc, rtx cond, bool reverse,
                         bool update)
{
  int i;
  char pattern[100];
  int offset;
  const char *conditional;
  int num_saves = XVECLEN (operands[0], 0);
  unsigned int regno;
  unsigned int regno_base = REGNO (operands[1]);

  offset = 0;
  offset += update ? 1 : 0;
  offset += return_pc ? 1 : 0;

  /* Is the base register in the list?  */
  for (i = offset; i < num_saves; i++)
    {
      regno = REGNO (XEXP (XVECEXP (operands[0], 0, i), 0));
      /* If SP is in the list, then the base register must be SP.  */
      gcc_assert ((regno != SP_REGNUM) || (regno_base == SP_REGNUM));
      /* If base register is in the list, there must be no explicit update.  */
      if (regno == regno_base)
        gcc_assert (!update);
    }

  conditional = reverse ? "%?%D0" : "%?%d0";
  if ((regno_base == SP_REGNUM) && TARGET_UNIFIED_ASM)
    {
      /* Output pop (not stmfd) because it has a shorter encoding.  */
      gcc_assert (update);
      sprintf (pattern, "pop%s\t{", conditional);
    }
  else
    {
      /* Output ldmfd when the base register is SP, otherwise output ldmia.
         It's just a convention, their semantics are identical.  */
      if (regno_base == SP_REGNUM)
        sprintf (pattern, "ldm%sfd\t", conditional);
      else if (TARGET_UNIFIED_ASM)
        sprintf (pattern, "ldmia%s\t", conditional);
      else
        sprintf (pattern, "ldm%sia\t", conditional);

      strcat (pattern, reg_names[regno_base]);
      if (update)
        strcat (pattern, "!, {");
      else
        strcat (pattern, ", {");
    }

  /* Output the first destination register.  */
  strcat (pattern,
          reg_names[REGNO (XEXP (XVECEXP (operands[0], 0, offset), 0))]);

  /* Output the rest of the destination registers.  */
  for (i = offset + 1; i < num_saves; i++)
    {
      strcat (pattern, ", ");
      strcat (pattern,
              reg_names[REGNO (XEXP (XVECEXP (operands[0], 0, i), 0))]);
    }

  strcat (pattern, "}");

  if (IS_INTERRUPT (arm_current_func_type ()) && return_pc)
    strcat (pattern, "^");

  output_asm_insn (pattern, &cond);
}


/* Output the assembly for a store multiple.  */

const char *
vfp_output_fstmd (rtx * operands)
{
  char pattern[100];
  int p;
  int base;
  int i;

  strcpy (pattern, "fstmfdd%?\t%m0!, {%P1");
  p = strlen (pattern);

  gcc_assert (REG_P (operands[1]));

  base = (REGNO (operands[1]) - FIRST_VFP_REGNUM) / 2;
  for (i = 1; i < XVECLEN (operands[2], 0); i++)
    {
      p += sprintf (&pattern[p], ", d%d", base + i);
    }
  strcpy (&pattern[p], "}");

  output_asm_insn (pattern, operands);
  return "";
}


/* Emit RTL to save block of VFP register pairs to the stack.  Returns the
   number of bytes pushed.  */

static int
vfp_emit_fstmd (int base_reg, int count)
{
  rtx par;
  rtx dwarf;
  rtx tmp, reg;
  int i;

  /* Workaround ARM10 VFPr1 bug.  Data corruption can occur when exactly two
     register pairs are stored by a store multiple insn.  We avoid this
     by pushing an extra pair.  */
  if (count == 2 && !arm_arch6)
    {
      if (base_reg == LAST_VFP_REGNUM - 3)
	base_reg -= 2;
      count++;
    }

  /* FSTMD may not store more than 16 doubleword registers at once.  Split
     larger stores into multiple parts (up to a maximum of two, in
     practice).  */
  if (count > 16)
    {
      int saved;
      /* NOTE: base_reg is an internal register number, so each D register
         counts as 2.  */
      saved = vfp_emit_fstmd (base_reg + 32, count - 16);
      saved += vfp_emit_fstmd (base_reg, 16);
      return saved;
    }

  par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
  dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));

  reg = gen_rtx_REG (DFmode, base_reg);
  base_reg += 2;

  XVECEXP (par, 0, 0)
    = gen_rtx_SET (VOIDmode,
		   gen_frame_mem
		   (BLKmode,
		    gen_rtx_PRE_MODIFY (Pmode,
					stack_pointer_rtx,
					plus_constant
					(Pmode, stack_pointer_rtx,
					 - (count * 8)))
		    ),
		   gen_rtx_UNSPEC (BLKmode,
				   gen_rtvec (1, reg),
				   UNSPEC_PUSH_MULT));

  tmp = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
		     plus_constant (Pmode, stack_pointer_rtx, -(count * 8)));
  RTX_FRAME_RELATED_P (tmp) = 1;
  XVECEXP (dwarf, 0, 0) = tmp;

  tmp = gen_rtx_SET (VOIDmode,
		     gen_frame_mem (DFmode, stack_pointer_rtx),
		     reg);
  RTX_FRAME_RELATED_P (tmp) = 1;
  XVECEXP (dwarf, 0, 1) = tmp;

  for (i = 1; i < count; i++)
    {
      reg = gen_rtx_REG (DFmode, base_reg);
      base_reg += 2;
      XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);

      tmp = gen_rtx_SET (VOIDmode,
			 gen_frame_mem (DFmode,
					plus_constant (Pmode,
						       stack_pointer_rtx,
						       i * 8)),
			 reg);
      RTX_FRAME_RELATED_P (tmp) = 1;
      XVECEXP (dwarf, 0, i + 1) = tmp;
    }

  par = emit_insn (par);
  add_reg_note (par, REG_FRAME_RELATED_EXPR, dwarf);
  RTX_FRAME_RELATED_P (par) = 1;

  return count * 8;
}

/* Emit a call instruction with pattern PAT.  ADDR is the address of
   the call target.  */

void
arm_emit_call_insn (rtx pat, rtx addr)
{
  rtx insn;

  insn = emit_call_insn (pat);

  /* The PIC register is live on entry to VxWorks PIC PLT entries.
     If the call might use such an entry, add a use of the PIC register
     to the instruction's CALL_INSN_FUNCTION_USAGE.  */
  if (TARGET_VXWORKS_RTP
      && flag_pic
      && GET_CODE (addr) == SYMBOL_REF
      && (SYMBOL_REF_DECL (addr)
	  ? !targetm.binds_local_p (SYMBOL_REF_DECL (addr))
	  : !SYMBOL_REF_LOCAL_P (addr)))
    {
      require_pic_register ();
      use_reg (&CALL_INSN_FUNCTION_USAGE (insn), cfun->machine->pic_reg);
    }
}

/* Output a 'call' insn.  */
const char *
output_call (rtx *operands)
{
  gcc_assert (!arm_arch5); /* Patterns should call blx <reg> directly.  */

  /* Handle calls to lr using ip (which may be clobbered in subr anyway).  */
  if (REGNO (operands[0]) == LR_REGNUM)
    {
      operands[0] = gen_rtx_REG (SImode, IP_REGNUM);
      output_asm_insn ("mov%?\t%0, %|lr", operands);
    }

  output_asm_insn ("mov%?\t%|lr, %|pc", operands);

  if (TARGET_INTERWORK || arm_arch4t)
    output_asm_insn ("bx%?\t%0", operands);
  else
    output_asm_insn ("mov%?\t%|pc, %0", operands);

  return "";
}

/* Output a 'call' insn that is a reference in memory. This is
   disabled for ARMv5 and we prefer a blx instead because otherwise
   there's a significant performance overhead.  */
const char *
output_call_mem (rtx *operands)
{
  gcc_assert (!arm_arch5);
  if (TARGET_INTERWORK)
    {
      output_asm_insn ("ldr%?\t%|ip, %0", operands);
      output_asm_insn ("mov%?\t%|lr, %|pc", operands);
      output_asm_insn ("bx%?\t%|ip", operands);
    }
  else if (regno_use_in (LR_REGNUM, operands[0]))
    {
      /* LR is used in the memory address.  We load the address in the
	 first instruction.  It's safe to use IP as the target of the
	 load since the call will kill it anyway.  */
      output_asm_insn ("ldr%?\t%|ip, %0", operands);
      output_asm_insn ("mov%?\t%|lr, %|pc", operands);
      if (arm_arch4t)
	output_asm_insn ("bx%?\t%|ip", operands);
      else
	output_asm_insn ("mov%?\t%|pc, %|ip", operands);
    }
  else
    {
      output_asm_insn ("mov%?\t%|lr, %|pc", operands);
      output_asm_insn ("ldr%?\t%|pc, %0", operands);
    }

  return "";
}


/* Output a move from arm registers to arm registers of a long double
   OPERANDS[0] is the destination.
   OPERANDS[1] is the source.  */
const char *
output_mov_long_double_arm_from_arm (rtx *operands)
{
  /* We have to be careful here because the two might overlap.  */
  int dest_start = REGNO (operands[0]);
  int src_start = REGNO (operands[1]);
  rtx ops[2];
  int i;

  if (dest_start < src_start)
    {
      for (i = 0; i < 3; i++)
	{
	  ops[0] = gen_rtx_REG (SImode, dest_start + i);
	  ops[1] = gen_rtx_REG (SImode, src_start + i);
	  output_asm_insn ("mov%?\t%0, %1", ops);
	}
    }
  else
    {
      for (i = 2; i >= 0; i--)
	{
	  ops[0] = gen_rtx_REG (SImode, dest_start + i);
	  ops[1] = gen_rtx_REG (SImode, src_start + i);
	  output_asm_insn ("mov%?\t%0, %1", ops);
	}
    }

  return "";
}

void
arm_emit_movpair (rtx dest, rtx src)
 {
  /* If the src is an immediate, simplify it.  */
  if (CONST_INT_P (src))
    {
      HOST_WIDE_INT val = INTVAL (src);
      emit_set_insn (dest, GEN_INT (val & 0x0000ffff));
      if ((val >> 16) & 0x0000ffff)
        emit_set_insn (gen_rtx_ZERO_EXTRACT (SImode, dest, GEN_INT (16),
                                             GEN_INT (16)),
                       GEN_INT ((val >> 16) & 0x0000ffff));
      return;
    }
   emit_set_insn (dest, gen_rtx_HIGH (SImode, src));
   emit_set_insn (dest, gen_rtx_LO_SUM (SImode, dest, src));
 }

/* Output a move between double words.  It must be REG<-MEM
   or MEM<-REG.  */
const char *
output_move_double (rtx *operands, bool emit, int *count)
{
  enum rtx_code code0 = GET_CODE (operands[0]);
  enum rtx_code code1 = GET_CODE (operands[1]);
  rtx otherops[3];
  if (count)
    *count = 1;

  /* The only case when this might happen is when
     you are looking at the length of a DImode instruction
     that has an invalid constant in it.  */
  if (code0 == REG && code1 != MEM)
    {
      gcc_assert (!emit);
      *count = 2;
      return "";
    }

  if (code0 == REG)
    {
      unsigned int reg0 = REGNO (operands[0]);

      otherops[0] = gen_rtx_REG (SImode, 1 + reg0);

      gcc_assert (code1 == MEM);  /* Constraints should ensure this.  */

      switch (GET_CODE (XEXP (operands[1], 0)))
	{
	case REG:

	  if (emit)
	    {
	      if (TARGET_LDRD
		  && !(fix_cm3_ldrd && reg0 == REGNO(XEXP (operands[1], 0))))
		output_asm_insn ("ldr%(d%)\t%0, [%m1]", operands);
	      else
		output_asm_insn ("ldm%(ia%)\t%m1, %M0", operands);
	    }
	  break;

	case PRE_INC:
	  gcc_assert (TARGET_LDRD);
	  if (emit)
	    output_asm_insn ("ldr%(d%)\t%0, [%m1, #8]!", operands);
	  break;

	case PRE_DEC:
	  if (emit)
	    {
	      if (TARGET_LDRD)
		output_asm_insn ("ldr%(d%)\t%0, [%m1, #-8]!", operands);
	      else
		output_asm_insn ("ldm%(db%)\t%m1!, %M0", operands);
	    }
	  break;

	case POST_INC:
	  if (emit)
	    {
	      if (TARGET_LDRD)
		output_asm_insn ("ldr%(d%)\t%0, [%m1], #8", operands);
	      else
		output_asm_insn ("ldm%(ia%)\t%m1!, %M0", operands);
	    }
	  break;

	case POST_DEC:
	  gcc_assert (TARGET_LDRD);
	  if (emit)
	    output_asm_insn ("ldr%(d%)\t%0, [%m1], #-8", operands);
	  break;

	case PRE_MODIFY:
	case POST_MODIFY:
	  /* Autoicrement addressing modes should never have overlapping
	     base and destination registers, and overlapping index registers
	     are already prohibited, so this doesn't need to worry about
	     fix_cm3_ldrd.  */
	  otherops[0] = operands[0];
	  otherops[1] = XEXP (XEXP (XEXP (operands[1], 0), 1), 0);
	  otherops[2] = XEXP (XEXP (XEXP (operands[1], 0), 1), 1);

	  if (GET_CODE (XEXP (operands[1], 0)) == PRE_MODIFY)
	    {
	      if (reg_overlap_mentioned_p (otherops[0], otherops[2]))
		{
		  /* Registers overlap so split out the increment.  */
		  if (emit)
		    {
		      output_asm_insn ("add%?\t%1, %1, %2", otherops);
		      output_asm_insn ("ldr%(d%)\t%0, [%1] @split", otherops);
		    }
		  if (count)
		    *count = 2;
		}
	      else
		{
		  /* Use a single insn if we can.
		     FIXME: IWMMXT allows offsets larger than ldrd can
		     handle, fix these up with a pair of ldr.  */
		  if (TARGET_THUMB2
		      || !CONST_INT_P (otherops[2])
		      || (INTVAL (otherops[2]) > -256
			  && INTVAL (otherops[2]) < 256))
		    {
		      if (emit)
			output_asm_insn ("ldr%(d%)\t%0, [%1, %2]!", otherops);
		    }
		  else
		    {
		      if (emit)
			{
			  output_asm_insn ("ldr%?\t%0, [%1, %2]!", otherops);
			  output_asm_insn ("ldr%?\t%H0, [%1, #4]", otherops);
			}
		      if (count)
			*count = 2;

		    }
		}
	    }
	  else
	    {
	      /* Use a single insn if we can.
		 FIXME: IWMMXT allows offsets larger than ldrd can handle,
		 fix these up with a pair of ldr.  */
	      if (TARGET_THUMB2
		  || !CONST_INT_P (otherops[2])
		  || (INTVAL (otherops[2]) > -256
		      && INTVAL (otherops[2]) < 256))
		{
		  if (emit)
		    output_asm_insn ("ldr%(d%)\t%0, [%1], %2", otherops);
		}
	      else
		{
		  if (emit)
		    {
		      output_asm_insn ("ldr%?\t%H0, [%1, #4]", otherops);
		      output_asm_insn ("ldr%?\t%0, [%1], %2", otherops);
		    }
		  if (count)
		    *count = 2;
		}
	    }
	  break;

	case LABEL_REF:
	case CONST:
	  /* We might be able to use ldrd %0, %1 here.  However the range is
	     different to ldr/adr, and it is broken on some ARMv7-M
	     implementations.  */
	  /* Use the second register of the pair to avoid problematic
	     overlap.  */
	  otherops[1] = operands[1];
	  if (emit)
	    output_asm_insn ("adr%?\t%0, %1", otherops);
	  operands[1] = otherops[0];
	  if (emit)
	    {
	      if (TARGET_LDRD)
		output_asm_insn ("ldr%(d%)\t%0, [%1]", operands);
	      else
		output_asm_insn ("ldm%(ia%)\t%1, %M0", operands);
	    }

	  if (count)
	    *count = 2;
	  break;

	  /* ??? This needs checking for thumb2.  */
	default:
	  if (arm_add_operand (XEXP (XEXP (operands[1], 0), 1),
			       GET_MODE (XEXP (XEXP (operands[1], 0), 1))))
	    {
	      otherops[0] = operands[0];
	      otherops[1] = XEXP (XEXP (operands[1], 0), 0);
	      otherops[2] = XEXP (XEXP (operands[1], 0), 1);

	      if (GET_CODE (XEXP (operands[1], 0)) == PLUS)
		{
		  if (CONST_INT_P (otherops[2]) && !TARGET_LDRD)
		    {
		      switch ((int) INTVAL (otherops[2]))
			{
			case -8:
			  if (emit)
			    output_asm_insn ("ldm%(db%)\t%1, %M0", otherops);
			  return "";
			case -4:
			  if (TARGET_THUMB2)
			    break;
			  if (emit)
			    output_asm_insn ("ldm%(da%)\t%1, %M0", otherops);
			  return "";
			case 4:
			  if (TARGET_THUMB2)
			    break;
			  if (emit)
			    output_asm_insn ("ldm%(ib%)\t%1, %M0", otherops);
			  return "";
			}
		    }
		  otherops[0] = gen_rtx_REG(SImode, REGNO(operands[0]) + 1);
		  operands[1] = otherops[0];
		  if (TARGET_LDRD
		      && (REG_P (otherops[2])
			  || TARGET_THUMB2
			  || (CONST_INT_P (otherops[2])
			      && INTVAL (otherops[2]) > -256
			      && INTVAL (otherops[2]) < 256)))
		    {
		      if (reg_overlap_mentioned_p (operands[0],
						   otherops[2]))
			{
			  rtx tmp;
			  /* Swap base and index registers over to
			     avoid a conflict.  */
			  tmp = otherops[1];
			  otherops[1] = otherops[2];
			  otherops[2] = tmp;
			}
		      /* If both registers conflict, it will usually
			 have been fixed by a splitter.  */
		      if (reg_overlap_mentioned_p (operands[0], otherops[2])
			  || (fix_cm3_ldrd && reg0 == REGNO (otherops[1])))
			{
			  if (emit)
			    {
			      output_asm_insn ("add%?\t%0, %1, %2", otherops);
			      output_asm_insn ("ldr%(d%)\t%0, [%1]", operands);
			    }
			  if (count)
			    *count = 2;
			}
		      else
			{
			  otherops[0] = operands[0];
			  if (emit)
			    output_asm_insn ("ldr%(d%)\t%0, [%1, %2]", otherops);
			}
		      return "";
		    }

		  if (CONST_INT_P (otherops[2]))
		    {
		      if (emit)
			{
			  if (!(const_ok_for_arm (INTVAL (otherops[2]))))
			    output_asm_insn ("sub%?\t%0, %1, #%n2", otherops);
			  else
			    output_asm_insn ("add%?\t%0, %1, %2", otherops);
			}
		    }
		  else
		    {
		      if (emit)
			output_asm_insn ("add%?\t%0, %1, %2", otherops);
		    }
		}
	      else
		{
		  if (emit)
		    output_asm_insn ("sub%?\t%0, %1, %2", otherops);
		}

	      if (count)
		*count = 2;

	      if (TARGET_LDRD)
		return "ldr%(d%)\t%0, [%1]";

	      return "ldm%(ia%)\t%1, %M0";
	    }
	  else
	    {
	      otherops[1] = adjust_address (operands[1], SImode, 4);
	      /* Take care of overlapping base/data reg.  */
	      if (reg_mentioned_p (operands[0], operands[1]))
		{
		  if (emit)
		    {
		      output_asm_insn ("ldr%?\t%0, %1", otherops);
		      output_asm_insn ("ldr%?\t%0, %1", operands);
		    }
		  if (count)
		    *count = 2;

		}
	      else
		{
		  if (emit)
		    {
		      output_asm_insn ("ldr%?\t%0, %1", operands);
		      output_asm_insn ("ldr%?\t%0, %1", otherops);
		    }
		  if (count)
		    *count = 2;
		}
	    }
	}
    }
  else
    {
      /* Constraints should ensure this.  */
      gcc_assert (code0 == MEM && code1 == REG);
      gcc_assert ((REGNO (operands[1]) != IP_REGNUM)
                  || (TARGET_ARM && TARGET_LDRD));

      switch (GET_CODE (XEXP (operands[0], 0)))
        {
	case REG:
	  if (emit)
	    {
	      if (TARGET_LDRD)
		output_asm_insn ("str%(d%)\t%1, [%m0]", operands);
	      else
		output_asm_insn ("stm%(ia%)\t%m0, %M1", operands);
	    }
	  break;

        case PRE_INC:
	  gcc_assert (TARGET_LDRD);
	  if (emit)
	    output_asm_insn ("str%(d%)\t%1, [%m0, #8]!", operands);
	  break;

        case PRE_DEC:
	  if (emit)
	    {
	      if (TARGET_LDRD)
		output_asm_insn ("str%(d%)\t%1, [%m0, #-8]!", operands);
	      else
		output_asm_insn ("stm%(db%)\t%m0!, %M1", operands);
	    }
	  break;

        case POST_INC:
	  if (emit)
	    {
	      if (TARGET_LDRD)
		output_asm_insn ("str%(d%)\t%1, [%m0], #8", operands);
	      else
		output_asm_insn ("stm%(ia%)\t%m0!, %M1", operands);
	    }
	  break;

        case POST_DEC:
	  gcc_assert (TARGET_LDRD);
	  if (emit)
	    output_asm_insn ("str%(d%)\t%1, [%m0], #-8", operands);
	  break;

	case PRE_MODIFY:
	case POST_MODIFY:
	  otherops[0] = operands[1];
	  otherops[1] = XEXP (XEXP (XEXP (operands[0], 0), 1), 0);
	  otherops[2] = XEXP (XEXP (XEXP (operands[0], 0), 1), 1);

	  /* IWMMXT allows offsets larger than ldrd can handle,
	     fix these up with a pair of ldr.  */
	  if (!TARGET_THUMB2
	      && CONST_INT_P (otherops[2])
	      && (INTVAL(otherops[2]) <= -256
		  || INTVAL(otherops[2]) >= 256))
	    {
	      if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
		{
		  if (emit)
		    {
		      output_asm_insn ("str%?\t%0, [%1, %2]!", otherops);
		      output_asm_insn ("str%?\t%H0, [%1, #4]", otherops);
		    }
		  if (count)
		    *count = 2;
		}
	      else
		{
		  if (emit)
		    {
		      output_asm_insn ("str%?\t%H0, [%1, #4]", otherops);
		      output_asm_insn ("str%?\t%0, [%1], %2", otherops);
		    }
		  if (count)
		    *count = 2;
		}
	    }
	  else if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
	    {
	      if (emit)
		output_asm_insn ("str%(d%)\t%0, [%1, %2]!", otherops);
	    }
	  else
	    {
	      if (emit)
		output_asm_insn ("str%(d%)\t%0, [%1], %2", otherops);
	    }
	  break;

	case PLUS:
	  otherops[2] = XEXP (XEXP (operands[0], 0), 1);
	  if (CONST_INT_P (otherops[2]) && !TARGET_LDRD)
	    {
	      switch ((int) INTVAL (XEXP (XEXP (operands[0], 0), 1)))
		{
		case -8:
		  if (emit)
		    output_asm_insn ("stm%(db%)\t%m0, %M1", operands);
		  return "";

		case -4:
		  if (TARGET_THUMB2)
		    break;
		  if (emit)
		    output_asm_insn ("stm%(da%)\t%m0, %M1", operands);
		  return "";

		case 4:
		  if (TARGET_THUMB2)
		    break;
		  if (emit)
		    output_asm_insn ("stm%(ib%)\t%m0, %M1", operands);
		  return "";
		}
	    }
	  if (TARGET_LDRD
	      && (REG_P (otherops[2])
		  || TARGET_THUMB2
		  || (CONST_INT_P (otherops[2])
		      && INTVAL (otherops[2]) > -256
		      && INTVAL (otherops[2]) < 256)))
	    {
	      otherops[0] = operands[1];
	      otherops[1] = XEXP (XEXP (operands[0], 0), 0);
	      if (emit)
		output_asm_insn ("str%(d%)\t%0, [%1, %2]", otherops);
	      return "";
	    }
	  /* Fall through */

        default:
	  otherops[0] = adjust_address (operands[0], SImode, 4);
	  otherops[1] = operands[1];
	  if (emit)
	    {
	      output_asm_insn ("str%?\t%1, %0", operands);
	      output_asm_insn ("str%?\t%H1, %0", otherops);
	    }
	  if (count)
	    *count = 2;
	}
    }

  return "";
}

/* Output a move, load or store for quad-word vectors in ARM registers.  Only
   handles MEMs accepted by neon_vector_mem_operand with TYPE=1.  */

const char *
output_move_quad (rtx *operands)
{
  if (REG_P (operands[0]))
    {
      /* Load, or reg->reg move.  */

      if (MEM_P (operands[1]))
        {
          switch (GET_CODE (XEXP (operands[1], 0)))
            {
            case REG:
              output_asm_insn ("ldm%(ia%)\t%m1, %M0", operands);
              break;

            case LABEL_REF:
            case CONST:
              output_asm_insn ("adr%?\t%0, %1", operands);
              output_asm_insn ("ldm%(ia%)\t%0, %M0", operands);
              break;

            default:
              gcc_unreachable ();
            }
        }
      else
        {
          rtx ops[2];
          int dest, src, i;

          gcc_assert (REG_P (operands[1]));

          dest = REGNO (operands[0]);
          src = REGNO (operands[1]);

          /* This seems pretty dumb, but hopefully GCC won't try to do it
             very often.  */
          if (dest < src)
            for (i = 0; i < 4; i++)
              {
                ops[0] = gen_rtx_REG (SImode, dest + i);
                ops[1] = gen_rtx_REG (SImode, src + i);
                output_asm_insn ("mov%?\t%0, %1", ops);
              }
          else
            for (i = 3; i >= 0; i--)
              {
                ops[0] = gen_rtx_REG (SImode, dest + i);
                ops[1] = gen_rtx_REG (SImode, src + i);
                output_asm_insn ("mov%?\t%0, %1", ops);
              }
        }
    }
  else
    {
      gcc_assert (MEM_P (operands[0]));
      gcc_assert (REG_P (operands[1]));
      gcc_assert (!reg_overlap_mentioned_p (operands[1], operands[0]));

      switch (GET_CODE (XEXP (operands[0], 0)))
        {
        case REG:
          output_asm_insn ("stm%(ia%)\t%m0, %M1", operands);
          break;

        default:
          gcc_unreachable ();
        }
    }

  return "";
}

/* Output a VFP load or store instruction.  */

const char *
output_move_vfp (rtx *operands)
{
  rtx reg, mem, addr, ops[2];
  int load = REG_P (operands[0]);
  int dp = GET_MODE_SIZE (GET_MODE (operands[0])) == 8;
  int integer_p = GET_MODE_CLASS (GET_MODE (operands[0])) == MODE_INT;
  const char *templ;
  char buff[50];
  enum machine_mode mode;

  reg = operands[!load];
  mem = operands[load];

  mode = GET_MODE (reg);

  gcc_assert (REG_P (reg));
  gcc_assert (IS_VFP_REGNUM (REGNO (reg)));
  gcc_assert (mode == SFmode
	      || mode == DFmode
	      || mode == SImode
	      || mode == DImode
              || (TARGET_NEON && VALID_NEON_DREG_MODE (mode)));
  gcc_assert (MEM_P (mem));

  addr = XEXP (mem, 0);

  switch (GET_CODE (addr))
    {
    case PRE_DEC:
      templ = "f%smdb%c%%?\t%%0!, {%%%s1}%s";
      ops[0] = XEXP (addr, 0);
      ops[1] = reg;
      break;

    case POST_INC:
      templ = "f%smia%c%%?\t%%0!, {%%%s1}%s";
      ops[0] = XEXP (addr, 0);
      ops[1] = reg;
      break;

    default:
      templ = "f%s%c%%?\t%%%s0, %%1%s";
      ops[0] = reg;
      ops[1] = mem;
      break;
    }

  sprintf (buff, templ,
	   load ? "ld" : "st",
	   dp ? 'd' : 's',
	   dp ? "P" : "",
	   integer_p ? "\t%@ int" : "");
  output_asm_insn (buff, ops);

  return "";
}

/* Output a Neon double-word or quad-word load or store, or a load
   or store for larger structure modes.

   WARNING: The ordering of elements is weird in big-endian mode,
   because the EABI requires that vectors stored in memory appear
   as though they were stored by a VSTM, as required by the EABI.
   GCC RTL defines element ordering based on in-memory order.
   This can be different from the architectural ordering of elements
   within a NEON register. The intrinsics defined in arm_neon.h use the
   NEON register element ordering, not the GCC RTL element ordering.

   For example, the in-memory ordering of a big-endian a quadword
   vector with 16-bit elements when stored from register pair {d0,d1}
   will be (lowest address first, d0[N] is NEON register element N):

     [d0[3], d0[2], d0[1], d0[0], d1[7], d1[6], d1[5], d1[4]]

   When necessary, quadword registers (dN, dN+1) are moved to ARM
   registers from rN in the order:

     dN -> (rN+1, rN), dN+1 -> (rN+3, rN+2)

   So that STM/LDM can be used on vectors in ARM registers, and the
   same memory layout will result as if VSTM/VLDM were used.

   Instead of VSTM/VLDM we prefer to use VST1.64/VLD1.64 where
   possible, which allows use of appropriate alignment tags.
   Note that the choice of "64" is independent of the actual vector
   element size; this size simply ensures that the behavior is
   equivalent to VSTM/VLDM in both little-endian and big-endian mode.

   Due to limitations of those instructions, use of VST1.64/VLD1.64
   is not possible if:
    - the address contains PRE_DEC, or
    - the mode refers to more than 4 double-word registers

   In those cases, it would be possible to replace VSTM/VLDM by a
   sequence of instructions; this is not currently implemented since
   this is not certain to actually improve performance.  */

const char *
output_move_neon (rtx *operands)
{
  rtx reg, mem, addr, ops[2];
  int regno, nregs, load = REG_P (operands[0]);
  const char *templ;
  char buff[50];
  enum machine_mode mode;

  reg = operands[!load];
  mem = operands[load];

  mode = GET_MODE (reg);

  gcc_assert (REG_P (reg));
  regno = REGNO (reg);
  nregs = HARD_REGNO_NREGS (regno, mode) / 2;
  gcc_assert (VFP_REGNO_OK_FOR_DOUBLE (regno)
	      || NEON_REGNO_OK_FOR_QUAD (regno));
  gcc_assert (VALID_NEON_DREG_MODE (mode)
	      || VALID_NEON_QREG_MODE (mode)
	      || VALID_NEON_STRUCT_MODE (mode));
  gcc_assert (MEM_P (mem));

  addr = XEXP (mem, 0);

  /* Strip off const from addresses like (const (plus (...))).  */
  if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS)
    addr = XEXP (addr, 0);

  switch (GET_CODE (addr))
    {
    case POST_INC:
      /* We have to use vldm / vstm for too-large modes.  */
      if (nregs > 4)
	{
	  templ = "v%smia%%?\t%%0!, %%h1";
	  ops[0] = XEXP (addr, 0);
	}
      else
	{
	  templ = "v%s1.64\t%%h1, %%A0";
	  ops[0] = mem;
	}
      ops[1] = reg;
      break;

    case PRE_DEC:
      /* We have to use vldm / vstm in this case, since there is no
	 pre-decrement form of the vld1 / vst1 instructions.  */
      templ = "v%smdb%%?\t%%0!, %%h1";
      ops[0] = XEXP (addr, 0);
      ops[1] = reg;
      break;

    case POST_MODIFY:
      /* FIXME: Not currently enabled in neon_vector_mem_operand.  */
      gcc_unreachable ();

    case LABEL_REF:
    case PLUS:
      {
	int i;
	int overlap = -1;
	for (i = 0; i < nregs; i++)
	  {
	    /* We're only using DImode here because it's a convenient size.  */
	    ops[0] = gen_rtx_REG (DImode, REGNO (reg) + 2 * i);
	    ops[1] = adjust_address (mem, DImode, 8 * i);
	    if (reg_overlap_mentioned_p (ops[0], mem))
	      {
		gcc_assert (overlap == -1);
		overlap = i;
	      }
	    else
	      {
		sprintf (buff, "v%sr%%?\t%%P0, %%1", load ? "ld" : "st");
		output_asm_insn (buff, ops);
	      }
	  }
	if (overlap != -1)
	  {
	    ops[0] = gen_rtx_REG (DImode, REGNO (reg) + 2 * overlap);
	    ops[1] = adjust_address (mem, SImode, 8 * overlap);
	    sprintf (buff, "v%sr%%?\t%%P0, %%1", load ? "ld" : "st");
	    output_asm_insn (buff, ops);
	  }

        return "";
      }

    default:
      /* We have to use vldm / vstm for too-large modes.  */
      if (nregs > 4)
	templ = "v%smia%%?\t%%m0, %%h1";
      else
	templ = "v%s1.64\t%%h1, %%A0";

      ops[0] = mem;
      ops[1] = reg;
    }

  sprintf (buff, templ, load ? "ld" : "st");
  output_asm_insn (buff, ops);

  return "";
}

/* Compute and return the length of neon_mov<mode>, where <mode> is
   one of VSTRUCT modes: EI, OI, CI or XI.  */
int
arm_attr_length_move_neon (rtx insn)
{
  rtx reg, mem, addr;
  int load;
  enum machine_mode mode;

  extract_insn_cached (insn);

  if (REG_P (recog_data.operand[0]) && REG_P (recog_data.operand[1]))
    {
      mode = GET_MODE (recog_data.operand[0]);
      switch (mode)
	{
	case EImode:
	case OImode:
	  return 8;
	case CImode:
	  return 12;
	case XImode:
	  return 16;
	default:
	  gcc_unreachable ();
	}
    }

  load = REG_P (recog_data.operand[0]);
  reg = recog_data.operand[!load];
  mem = recog_data.operand[load];

  gcc_assert (MEM_P (mem));

  mode = GET_MODE (reg);
  addr = XEXP (mem, 0);

  /* Strip off const from addresses like (const (plus (...))).  */
  if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS)
    addr = XEXP (addr, 0);

  if (GET_CODE (addr) == LABEL_REF || GET_CODE (addr) == PLUS)
    {
      int insns = HARD_REGNO_NREGS (REGNO (reg), mode) / 2;
      return insns * 4;
    }
  else
    return 4;
}

/* Return nonzero if the offset in the address is an immediate.  Otherwise,
   return zero.  */

int
arm_address_offset_is_imm (rtx insn)
{
  rtx mem, addr;

  extract_insn_cached (insn);

  if (REG_P (recog_data.operand[0]))
    return 0;

  mem = recog_data.operand[0];

  gcc_assert (MEM_P (mem));

  addr = XEXP (mem, 0);

  if (REG_P (addr)
      || (GET_CODE (addr) == PLUS
	  && REG_P (XEXP (addr, 0))
	  && CONST_INT_P (XEXP (addr, 1))))
    return 1;
  else
    return 0;
}

/* Output an ADD r, s, #n where n may be too big for one instruction.
   If adding zero to one register, output nothing.  */
const char *
output_add_immediate (rtx *operands)
{
  HOST_WIDE_INT n = INTVAL (operands[2]);

  if (n != 0 || REGNO (operands[0]) != REGNO (operands[1]))
    {
      if (n < 0)
	output_multi_immediate (operands,
				"sub%?\t%0, %1, %2", "sub%?\t%0, %0, %2", 2,
				-n);
      else
	output_multi_immediate (operands,
				"add%?\t%0, %1, %2", "add%?\t%0, %0, %2", 2,
				n);
    }

  return "";
}

/* Output a multiple immediate operation.
   OPERANDS is the vector of operands referred to in the output patterns.
   INSTR1 is the output pattern to use for the first constant.
   INSTR2 is the output pattern to use for subsequent constants.
   IMMED_OP is the index of the constant slot in OPERANDS.
   N is the constant value.  */
static const char *
output_multi_immediate (rtx *operands, const char *instr1, const char *instr2,
			int immed_op, HOST_WIDE_INT n)
{
#if HOST_BITS_PER_WIDE_INT > 32
  n &= 0xffffffff;
#endif

  if (n == 0)
    {
      /* Quick and easy output.  */
      operands[immed_op] = const0_rtx;
      output_asm_insn (instr1, operands);
    }
  else
    {
      int i;
      const char * instr = instr1;

      /* Note that n is never zero here (which would give no output).  */
      for (i = 0; i < 32; i += 2)
	{
	  if (n & (3 << i))
	    {
	      operands[immed_op] = GEN_INT (n & (255 << i));
	      output_asm_insn (instr, operands);
	      instr = instr2;
	      i += 6;
	    }
	}
    }

  return "";
}

/* Return the name of a shifter operation.  */
static const char *
arm_shift_nmem(enum rtx_code code)
{
  switch (code)
    {
    case ASHIFT:
      return ARM_LSL_NAME;

    case ASHIFTRT:
      return "asr";

    case LSHIFTRT:
      return "lsr";

    case ROTATERT:
      return "ror";

    default:
      abort();
    }
}

/* Return the appropriate ARM instruction for the operation code.
   The returned result should not be overwritten.  OP is the rtx of the
   operation.  SHIFT_FIRST_ARG is TRUE if the first argument of the operator
   was shifted.  */
const char *
arithmetic_instr (rtx op, int shift_first_arg)
{
  switch (GET_CODE (op))
    {
    case PLUS:
      return "add";

    case MINUS:
      return shift_first_arg ? "rsb" : "sub";

    case IOR:
      return "orr";

    case XOR:
      return "eor";

    case AND:
      return "and";

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
    case ROTATERT:
      return arm_shift_nmem(GET_CODE(op));

    default:
      gcc_unreachable ();
    }
}

/* Ensure valid constant shifts and return the appropriate shift mnemonic
   for the operation code.  The returned result should not be overwritten.
   OP is the rtx code of the shift.
   On exit, *AMOUNTP will be -1 if the shift is by a register, or a constant
   shift.  */
static const char *
shift_op (rtx op, HOST_WIDE_INT *amountp)
{
  const char * mnem;
  enum rtx_code code = GET_CODE (op);

  switch (code)
    {
    case ROTATE:
      if (!CONST_INT_P (XEXP (op, 1)))
	{
	  output_operand_lossage ("invalid shift operand");
	  return NULL;
	}

      code = ROTATERT;
      *amountp = 32 - INTVAL (XEXP (op, 1));
      mnem = "ror";
      break;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
    case ROTATERT:
      mnem = arm_shift_nmem(code);
      if (CONST_INT_P (XEXP (op, 1)))
	{
	  *amountp = INTVAL (XEXP (op, 1));
	}
      else if (REG_P (XEXP (op, 1)))
	{
	  *amountp = -1;
	  return mnem;
	}
      else
	{
	  output_operand_lossage ("invalid shift operand");
	  return NULL;
	}
      break;

    case MULT:
      /* We never have to worry about the amount being other than a
	 power of 2, since this case can never be reloaded from a reg.  */
      if (!CONST_INT_P (XEXP (op, 1)))
	{
	  output_operand_lossage ("invalid shift operand");
	  return NULL;
	}

      *amountp = INTVAL (XEXP (op, 1)) & 0xFFFFFFFF;

      /* Amount must be a power of two.  */
      if (*amountp & (*amountp - 1))
	{
	  output_operand_lossage ("invalid shift operand");
	  return NULL;
	}

      *amountp = int_log2 (*amountp);
      return ARM_LSL_NAME;

    default:
      output_operand_lossage ("invalid shift operand");
      return NULL;
    }

  /* This is not 100% correct, but follows from the desire to merge
     multiplication by a power of 2 with the recognizer for a
     shift.  >=32 is not a valid shift for "lsl", so we must try and
     output a shift that produces the correct arithmetical result.
     Using lsr #32 is identical except for the fact that the carry bit
     is not set correctly if we set the flags; but we never use the
     carry bit from such an operation, so we can ignore that.  */
  if (code == ROTATERT)
    /* Rotate is just modulo 32.  */
    *amountp &= 31;
  else if (*amountp != (*amountp & 31))
    {
      if (code == ASHIFT)
	mnem = "lsr";
      *amountp = 32;
    }

  /* Shifts of 0 are no-ops.  */
  if (*amountp == 0)
    return NULL;

  return mnem;
}

/* Obtain the shift from the POWER of two.  */

static HOST_WIDE_INT
int_log2 (HOST_WIDE_INT power)
{
  HOST_WIDE_INT shift = 0;

  while ((((HOST_WIDE_INT) 1 << shift) & power) == 0)
    {
      gcc_assert (shift <= 31);
      shift++;
    }

  return shift;
}

/* Output a .ascii pseudo-op, keeping track of lengths.  This is
   because /bin/as is horribly restrictive.  The judgement about
   whether or not each character is 'printable' (and can be output as
   is) or not (and must be printed with an octal escape) must be made
   with reference to the *host* character set -- the situation is
   similar to that discussed in the comments above pp_c_char in
   c-pretty-print.c.  */

#define MAX_ASCII_LEN 51

void
output_ascii_pseudo_op (FILE *stream, const unsigned char *p, int len)
{
  int i;
  int len_so_far = 0;

  fputs ("\t.ascii\t\"", stream);

  for (i = 0; i < len; i++)
    {
      int c = p[i];

      if (len_so_far >= MAX_ASCII_LEN)
	{
	  fputs ("\"\n\t.ascii\t\"", stream);
	  len_so_far = 0;
	}

      if (ISPRINT (c))
	{
	  if (c == '\\' || c == '\"')
	    {
	      putc ('\\', stream);
	      len_so_far++;
	    }
	  putc (c, stream);
	  len_so_far++;
	}
      else
	{
	  fprintf (stream, "\\%03o", c);
	  len_so_far += 4;
	}
    }

  fputs ("\"\n", stream);
}

/* Compute the register save mask for registers 0 through 12
   inclusive.  This code is used by arm_compute_save_reg_mask.  */

static unsigned long
arm_compute_save_reg0_reg12_mask (void)
{
  unsigned long func_type = arm_current_func_type ();
  unsigned long save_reg_mask = 0;
  unsigned int reg;

  if (IS_INTERRUPT (func_type))
    {
      unsigned int max_reg;
      /* Interrupt functions must not corrupt any registers,
	 even call clobbered ones.  If this is a leaf function
	 we can just examine the registers used by the RTL, but
	 otherwise we have to assume that whatever function is
	 called might clobber anything, and so we have to save
	 all the call-clobbered registers as well.  */
      if (ARM_FUNC_TYPE (func_type) == ARM_FT_FIQ)
	/* FIQ handlers have registers r8 - r12 banked, so
	   we only need to check r0 - r7, Normal ISRs only
	   bank r14 and r15, so we must check up to r12.
	   r13 is the stack pointer which is always preserved,
	   so we do not need to consider it here.  */
	max_reg = 7;
      else
	max_reg = 12;

      for (reg = 0; reg <= max_reg; reg++)
	if (df_regs_ever_live_p (reg)
	    || (! crtl->is_leaf && call_used_regs[reg]))
	  save_reg_mask |= (1 << reg);

      /* Also save the pic base register if necessary.  */
      if (flag_pic
	  && !TARGET_SINGLE_PIC_BASE
	  && arm_pic_register != INVALID_REGNUM
	  && crtl->uses_pic_offset_table)
	save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
    }
  else if (IS_VOLATILE(func_type))
    {
      /* For noreturn functions we historically omitted register saves
	 altogether.  However this really messes up debugging.  As a
	 compromise save just the frame pointers.  Combined with the link
	 register saved elsewhere this should be sufficient to get
	 a backtrace.  */
      if (frame_pointer_needed)
	save_reg_mask |= 1 << HARD_FRAME_POINTER_REGNUM;
      if (df_regs_ever_live_p (ARM_HARD_FRAME_POINTER_REGNUM))
	save_reg_mask |= 1 << ARM_HARD_FRAME_POINTER_REGNUM;
      if (df_regs_ever_live_p (THUMB_HARD_FRAME_POINTER_REGNUM))
	save_reg_mask |= 1 << THUMB_HARD_FRAME_POINTER_REGNUM;
    }
  else
    {
      /* In the normal case we only need to save those registers
	 which are call saved and which are used by this function.  */
      for (reg = 0; reg <= 11; reg++)
	if (df_regs_ever_live_p (reg) && ! call_used_regs[reg])
	  save_reg_mask |= (1 << reg);

      /* Handle the frame pointer as a special case.  */
      if (frame_pointer_needed)
	save_reg_mask |= 1 << HARD_FRAME_POINTER_REGNUM;

      /* If we aren't loading the PIC register,
	 don't stack it even though it may be live.  */
      if (flag_pic
	  && !TARGET_SINGLE_PIC_BASE
	  && arm_pic_register != INVALID_REGNUM
	  && (df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM)
	      || crtl->uses_pic_offset_table))
	save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;

      /* The prologue will copy SP into R0, so save it.  */
      if (IS_STACKALIGN (func_type))
	save_reg_mask |= 1;
    }

  /* Save registers so the exception handler can modify them.  */
  if (crtl->calls_eh_return)
    {
      unsigned int i;

      for (i = 0; ; i++)
	{
	  reg = EH_RETURN_DATA_REGNO (i);
	  if (reg == INVALID_REGNUM)
	    break;
	  save_reg_mask |= 1 << reg;
	}
    }

  return save_reg_mask;
}

/* Return true if r3 is live at the start of the function.  */

static bool
arm_r3_live_at_start_p (void)
{
  /* Just look at cfg info, which is still close enough to correct at this
     point.  This gives false positives for broken functions that might use
     uninitialized data that happens to be allocated in r3, but who cares?  */
  return REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 3);
}

/* Compute the number of bytes used to store the static chain register on the
   stack, above the stack frame.  We need to know this accurately to get the
   alignment of the rest of the stack frame correct.  */

static int
arm_compute_static_chain_stack_bytes (void)
{
  /* See the defining assertion in arm_expand_prologue.  */
  if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM
      && IS_NESTED (arm_current_func_type ())
      && arm_r3_live_at_start_p ()
      && crtl->args.pretend_args_size == 0)
    return 4;

  return 0;
}

/* Compute a bit mask of which registers need to be
   saved on the stack for the current function.
   This is used by arm_get_frame_offsets, which may add extra registers.  */

static unsigned long
arm_compute_save_reg_mask (void)
{
  unsigned int save_reg_mask = 0;
  unsigned long func_type = arm_current_func_type ();
  unsigned int reg;

  if (IS_NAKED (func_type))
    /* This should never really happen.  */
    return 0;

  /* If we are creating a stack frame, then we must save the frame pointer,
     IP (which will hold the old stack pointer), LR and the PC.  */
  if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM)
    save_reg_mask |=
      (1 << ARM_HARD_FRAME_POINTER_REGNUM)
      | (1 << IP_REGNUM)
      | (1 << LR_REGNUM)
      | (1 << PC_REGNUM);

  save_reg_mask |= arm_compute_save_reg0_reg12_mask ();

  /* Decide if we need to save the link register.
     Interrupt routines have their own banked link register,
     so they never need to save it.
     Otherwise if we do not use the link register we do not need to save
     it.  If we are pushing other registers onto the stack however, we
     can save an instruction in the epilogue by pushing the link register
     now and then popping it back into the PC.  This incurs extra memory
     accesses though, so we only do it when optimizing for size, and only
     if we know that we will not need a fancy return sequence.  */
  if (df_regs_ever_live_p (LR_REGNUM)
      || (save_reg_mask
	  && optimize_size
	  && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
	  && !crtl->calls_eh_return))
    save_reg_mask |= 1 << LR_REGNUM;

  if (cfun->machine->lr_save_eliminated)
    save_reg_mask &= ~ (1 << LR_REGNUM);

  if (TARGET_REALLY_IWMMXT
      && ((bit_count (save_reg_mask)
	   + ARM_NUM_INTS (crtl->args.pretend_args_size +
			   arm_compute_static_chain_stack_bytes())
	   ) % 2) != 0)
    {
      /* The total number of registers that are going to be pushed
	 onto the stack is odd.  We need to ensure that the stack
	 is 64-bit aligned before we start to save iWMMXt registers,
	 and also before we start to create locals.  (A local variable
	 might be a double or long long which we will load/store using
	 an iWMMXt instruction).  Therefore we need to push another
	 ARM register, so that the stack will be 64-bit aligned.  We
	 try to avoid using the arg registers (r0 -r3) as they might be
	 used to pass values in a tail call.  */
      for (reg = 4; reg <= 12; reg++)
	if ((save_reg_mask & (1 << reg)) == 0)
	  break;

      if (reg <= 12)
	save_reg_mask |= (1 << reg);
      else
	{
	  cfun->machine->sibcall_blocked = 1;
	  save_reg_mask |= (1 << 3);
	}
    }

  /* We may need to push an additional register for use initializing the
     PIC base register.  */
  if (TARGET_THUMB2 && IS_NESTED (func_type) && flag_pic
      && (save_reg_mask & THUMB2_WORK_REGS) == 0)
    {
      reg = thumb_find_work_register (1 << 4);
      if (!call_used_regs[reg])
	save_reg_mask |= (1 << reg);
    }

  return save_reg_mask;
}


/* Compute a bit mask of which registers need to be
   saved on the stack for the current function.  */
static unsigned long
thumb1_compute_save_reg_mask (void)
{
  unsigned long mask;
  unsigned reg;

  mask = 0;
  for (reg = 0; reg < 12; reg ++)
    if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
      mask |= 1 << reg;

  if (flag_pic
      && !TARGET_SINGLE_PIC_BASE
      && arm_pic_register != INVALID_REGNUM
      && crtl->uses_pic_offset_table)
    mask |= 1 << PIC_OFFSET_TABLE_REGNUM;

  /* See if we might need r11 for calls to _interwork_r11_call_via_rN().  */
  if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
    mask |= 1 << ARM_HARD_FRAME_POINTER_REGNUM;

  /* LR will also be pushed if any lo regs are pushed.  */
  if (mask & 0xff || thumb_force_lr_save ())
    mask |= (1 << LR_REGNUM);

  /* Make sure we have a low work register if we need one.
     We will need one if we are going to push a high register,
     but we are not currently intending to push a low register.  */
  if ((mask & 0xff) == 0
      && ((mask & 0x0f00) || TARGET_BACKTRACE))
    {
      /* Use thumb_find_work_register to choose which register
	 we will use.  If the register is live then we will
	 have to push it.  Use LAST_LO_REGNUM as our fallback
	 choice for the register to select.  */
      reg = thumb_find_work_register (1 << LAST_LO_REGNUM);
      /* Make sure the register returned by thumb_find_work_register is
	 not part of the return value.  */
      if (reg * UNITS_PER_WORD <= (unsigned) arm_size_return_regs ())
	reg = LAST_LO_REGNUM;

      if (! call_used_regs[reg])
	mask |= 1 << reg;
    }

  /* The 504 below is 8 bytes less than 512 because there are two possible
     alignment words.  We can't tell here if they will be present or not so we
     have to play it safe and assume that they are. */
  if ((CALLER_INTERWORKING_SLOT_SIZE +
       ROUND_UP_WORD (get_frame_size ()) +
       crtl->outgoing_args_size) >= 504)
    {
      /* This is the same as the code in thumb1_expand_prologue() which
	 determines which register to use for stack decrement. */
      for (reg = LAST_ARG_REGNUM + 1; reg <= LAST_LO_REGNUM; reg++)
	if (mask & (1 << reg))
	  break;

      if (reg > LAST_LO_REGNUM)
	{
	  /* Make sure we have a register available for stack decrement. */
	  mask |= 1 << LAST_LO_REGNUM;
	}
    }

  return mask;
}


/* Return the number of bytes required to save VFP registers.  */
static int
arm_get_vfp_saved_size (void)
{
  unsigned int regno;
  int count;
  int saved;

  saved = 0;
  /* Space for saved VFP registers.  */
  if (TARGET_HARD_FLOAT && TARGET_VFP)
    {
      count = 0;
      for (regno = FIRST_VFP_REGNUM;
	   regno < LAST_VFP_REGNUM;
	   regno += 2)
	{
	  if ((!df_regs_ever_live_p (regno) || call_used_regs[regno])
	      && (!df_regs_ever_live_p (regno + 1) || call_used_regs[regno + 1]))
	    {
	      if (count > 0)
		{
		  /* Workaround ARM10 VFPr1 bug.  */
		  if (count == 2 && !arm_arch6)
		    count++;
		  saved += count * 8;
		}
	      count = 0;
	    }
	  else
	    count++;
	}
      if (count > 0)
	{
	  if (count == 2 && !arm_arch6)
	    count++;
	  saved += count * 8;
	}
    }
  return saved;
}


/* Generate a function exit sequence.  If REALLY_RETURN is false, then do
   everything bar the final return instruction.  If simple_return is true,
   then do not output epilogue, because it has already been emitted in RTL.  */
const char *
output_return_instruction (rtx operand, bool really_return, bool reverse,
                           bool simple_return)
{
  char conditional[10];
  char instr[100];
  unsigned reg;
  unsigned long live_regs_mask;
  unsigned long func_type;
  arm_stack_offsets *offsets;

  func_type = arm_current_func_type ();

  if (IS_NAKED (func_type))
    return "";

  if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
    {
      /* If this function was declared non-returning, and we have
	 found a tail call, then we have to trust that the called
	 function won't return.  */
      if (really_return)
	{
	  rtx ops[2];

	  /* Otherwise, trap an attempted return by aborting.  */
	  ops[0] = operand;
	  ops[1] = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)"
				       : "abort");
	  assemble_external_libcall (ops[1]);
	  output_asm_insn (reverse ? "bl%D0\t%a1" : "bl%d0\t%a1", ops);
	}

      return "";
    }

  gcc_assert (!cfun->calls_alloca || really_return);

  sprintf (conditional, "%%?%%%c0", reverse ? 'D' : 'd');

  cfun->machine->return_used_this_function = 1;

  offsets = arm_get_frame_offsets ();
  live_regs_mask = offsets->saved_regs_mask;

  if (!simple_return && live_regs_mask)
    {
      const char * return_reg;

      /* If we do not have any special requirements for function exit
	 (e.g. interworking) then we can load the return address
	 directly into the PC.  Otherwise we must load it into LR.  */
      if (really_return
	  && (IS_INTERRUPT (func_type) || !TARGET_INTERWORK))
	return_reg = reg_names[PC_REGNUM];
      else
	return_reg = reg_names[LR_REGNUM];

      if ((live_regs_mask & (1 << IP_REGNUM)) == (1 << IP_REGNUM))
	{
	  /* There are three possible reasons for the IP register
	     being saved.  1) a stack frame was created, in which case
	     IP contains the old stack pointer, or 2) an ISR routine
	     corrupted it, or 3) it was saved to align the stack on
	     iWMMXt.  In case 1, restore IP into SP, otherwise just
	     restore IP.  */
	  if (frame_pointer_needed)
	    {
	      live_regs_mask &= ~ (1 << IP_REGNUM);
	      live_regs_mask |=   (1 << SP_REGNUM);
	    }
	  else
	    gcc_assert (IS_INTERRUPT (func_type) || TARGET_REALLY_IWMMXT);
	}

      /* On some ARM architectures it is faster to use LDR rather than
	 LDM to load a single register.  On other architectures, the
	 cost is the same.  In 26 bit mode, or for exception handlers,
	 we have to use LDM to load the PC so that the CPSR is also
	 restored.  */
      for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
	if (live_regs_mask == (1U << reg))
	  break;

      if (reg <= LAST_ARM_REGNUM
	  && (reg != LR_REGNUM
	      || ! really_return
	      || ! IS_INTERRUPT (func_type)))
	{
	  sprintf (instr, "ldr%s\t%%|%s, [%%|sp], #4", conditional,
		   (reg == LR_REGNUM) ? return_reg : reg_names[reg]);
	}
      else
	{
	  char *p;
	  int first = 1;

	  /* Generate the load multiple instruction to restore the
	     registers.  Note we can get here, even if
	     frame_pointer_needed is true, but only if sp already
	     points to the base of the saved core registers.  */
	  if (live_regs_mask & (1 << SP_REGNUM))
	    {
	      unsigned HOST_WIDE_INT stack_adjust;

	      stack_adjust = offsets->outgoing_args - offsets->saved_regs;
	      gcc_assert (stack_adjust == 0 || stack_adjust == 4);

	      if (stack_adjust && arm_arch5 && TARGET_ARM)
		if (TARGET_UNIFIED_ASM)
		  sprintf (instr, "ldmib%s\t%%|sp, {", conditional);
		else
		  sprintf (instr, "ldm%sib\t%%|sp, {", conditional);
	      else
		{
		  /* If we can't use ldmib (SA110 bug),
		     then try to pop r3 instead.  */
		  if (stack_adjust)
		    live_regs_mask |= 1 << 3;

		  if (TARGET_UNIFIED_ASM)
		    sprintf (instr, "ldmfd%s\t%%|sp, {", conditional);
		  else
		    sprintf (instr, "ldm%sfd\t%%|sp, {", conditional);
		}
	    }
	  else
	    if (TARGET_UNIFIED_ASM)
	      sprintf (instr, "pop%s\t{", conditional);
	    else
	      sprintf (instr, "ldm%sfd\t%%|sp!, {", conditional);

	  p = instr + strlen (instr);

	  for (reg = 0; reg <= SP_REGNUM; reg++)
	    if (live_regs_mask & (1 << reg))
	      {
		int l = strlen (reg_names[reg]);

		if (first)
		  first = 0;
		else
		  {
		    memcpy (p, ", ", 2);
		    p += 2;
		  }

		memcpy (p, "%|", 2);
		memcpy (p + 2, reg_names[reg], l);
		p += l + 2;
	      }

	  if (live_regs_mask & (1 << LR_REGNUM))
	    {
	      sprintf (p, "%s%%|%s}", first ? "" : ", ", return_reg);
	      /* If returning from an interrupt, restore the CPSR.  */
	      if (IS_INTERRUPT (func_type))
		strcat (p, "^");
	    }
	  else
	    strcpy (p, "}");
	}

      output_asm_insn (instr, & operand);

      /* See if we need to generate an extra instruction to
	 perform the actual function return.  */
      if (really_return
	  && func_type != ARM_FT_INTERWORKED
	  && (live_regs_mask & (1 << LR_REGNUM)) != 0)
	{
	  /* The return has already been handled
	     by loading the LR into the PC.  */
          return "";
	}
    }

  if (really_return)
    {
      switch ((int) ARM_FUNC_TYPE (func_type))
	{
	case ARM_FT_ISR:
	case ARM_FT_FIQ:
	  /* ??? This is wrong for unified assembly syntax.  */
	  sprintf (instr, "sub%ss\t%%|pc, %%|lr, #4", conditional);
	  break;

	case ARM_FT_INTERWORKED:
	  sprintf (instr, "bx%s\t%%|lr", conditional);
	  break;

	case ARM_FT_EXCEPTION:
	  /* ??? This is wrong for unified assembly syntax.  */
	  sprintf (instr, "mov%ss\t%%|pc, %%|lr", conditional);
	  break;

	default:
	  /* Use bx if it's available.  */
	  if (arm_arch5 || arm_arch4t)
	    sprintf (instr, "bx%s\t%%|lr", conditional);
	  else
	    sprintf (instr, "mov%s\t%%|pc, %%|lr", conditional);
	  break;
	}

      output_asm_insn (instr, & operand);
    }

  return "";
}

/* Write the function name into the code section, directly preceding
   the function prologue.

   Code will be output similar to this:
     t0
	 .ascii "arm_poke_function_name", 0
	 .align
     t1
	 .word 0xff000000 + (t1 - t0)
     arm_poke_function_name
	 mov     ip, sp
	 stmfd   sp!, {fp, ip, lr, pc}
	 sub     fp, ip, #4

   When performing a stack backtrace, code can inspect the value
   of 'pc' stored at 'fp' + 0.  If the trace function then looks
   at location pc - 12 and the top 8 bits are set, then we know
   that there is a function name embedded immediately preceding this
   location and has length ((pc[-3]) & 0xff000000).

   We assume that pc is declared as a pointer to an unsigned long.

   It is of no benefit to output the function name if we are assembling
   a leaf function.  These function types will not contain a stack
   backtrace structure, therefore it is not possible to determine the
   function name.  */
void
arm_poke_function_name (FILE *stream, const char *name)
{
  unsigned long alignlength;
  unsigned long length;
  rtx           x;

  length      = strlen (name) + 1;
  alignlength = ROUND_UP_WORD (length);

  ASM_OUTPUT_ASCII (stream, name, length);
  ASM_OUTPUT_ALIGN (stream, 2);
  x = GEN_INT ((unsigned HOST_WIDE_INT) 0xff000000 + alignlength);
  assemble_aligned_integer (UNITS_PER_WORD, x);
}

/* Place some comments into the assembler stream
   describing the current function.  */
static void
arm_output_function_prologue (FILE *f, HOST_WIDE_INT frame_size)
{
  unsigned long func_type;

  /* ??? Do we want to print some of the below anyway?  */
  if (TARGET_THUMB1)
    return;

  /* Sanity check.  */
  gcc_assert (!arm_ccfsm_state && !arm_target_insn);

  func_type = arm_current_func_type ();

  switch ((int) ARM_FUNC_TYPE (func_type))
    {
    default:
    case ARM_FT_NORMAL:
      break;
    case ARM_FT_INTERWORKED:
      asm_fprintf (f, "\t%@ Function supports interworking.\n");
      break;
    case ARM_FT_ISR:
      asm_fprintf (f, "\t%@ Interrupt Service Routine.\n");
      break;
    case ARM_FT_FIQ:
      asm_fprintf (f, "\t%@ Fast Interrupt Service Routine.\n");
      break;
    case ARM_FT_EXCEPTION:
      asm_fprintf (f, "\t%@ ARM Exception Handler.\n");
      break;
    }

  if (IS_NAKED (func_type))
    asm_fprintf (f, "\t%@ Naked Function: prologue and epilogue provided by programmer.\n");

  if (IS_VOLATILE (func_type))
    asm_fprintf (f, "\t%@ Volatile: function does not return.\n");

  if (IS_NESTED (func_type))
    asm_fprintf (f, "\t%@ Nested: function declared inside another function.\n");
  if (IS_STACKALIGN (func_type))
    asm_fprintf (f, "\t%@ Stack Align: May be called with mis-aligned SP.\n");

  asm_fprintf (f, "\t%@ args = %d, pretend = %d, frame = %wd\n",
	       crtl->args.size,
	       crtl->args.pretend_args_size, frame_size);

  asm_fprintf (f, "\t%@ frame_needed = %d, uses_anonymous_args = %d\n",
	       frame_pointer_needed,
	       cfun->machine->uses_anonymous_args);

  if (cfun->machine->lr_save_eliminated)
    asm_fprintf (f, "\t%@ link register save eliminated.\n");

  if (crtl->calls_eh_return)
    asm_fprintf (f, "\t@ Calls __builtin_eh_return.\n");

}

static void
arm_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
			      HOST_WIDE_INT frame_size ATTRIBUTE_UNUSED)
{
  arm_stack_offsets *offsets;

  if (TARGET_THUMB1)
    {
      int regno;

      /* Emit any call-via-reg trampolines that are needed for v4t support
	 of call_reg and call_value_reg type insns.  */
      for (regno = 0; regno < LR_REGNUM; regno++)
	{
	  rtx label = cfun->machine->call_via[regno];

	  if (label != NULL)
	    {
	      switch_to_section (function_section (current_function_decl));
	      targetm.asm_out.internal_label (asm_out_file, "L",
					      CODE_LABEL_NUMBER (label));
	      asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
	    }
	}

      /* ??? Probably not safe to set this here, since it assumes that a
	 function will be emitted as assembly immediately after we generate
	 RTL for it.  This does not happen for inline functions.  */
      cfun->machine->return_used_this_function = 0;
    }
  else /* TARGET_32BIT */
    {
      /* We need to take into account any stack-frame rounding.  */
      offsets = arm_get_frame_offsets ();

      gcc_assert (!use_return_insn (FALSE, NULL)
		  || (cfun->machine->return_used_this_function != 0)
		  || offsets->saved_regs == offsets->outgoing_args
		  || frame_pointer_needed);

      /* Reset the ARM-specific per-function variables.  */
      after_arm_reorg = 0;
    }
}

/* Generate and emit a sequence of insns equivalent to PUSH, but using
   STR and STRD.  If an even number of registers are being pushed, one
   or more STRD patterns are created for each register pair.  If an
   odd number of registers are pushed, emit an initial STR followed by
   as many STRD instructions as are needed.  This works best when the
   stack is initially 64-bit aligned (the normal case), since it
   ensures that each STRD is also 64-bit aligned.  */
static void
thumb2_emit_strd_push (unsigned long saved_regs_mask)
{
  int num_regs = 0;
  int i;
  int regno;
  rtx par = NULL_RTX;
  rtx dwarf = NULL_RTX;
  rtx tmp;
  bool first = true;

  num_regs = bit_count (saved_regs_mask);

  /* Must be at least one register to save, and can't save SP or PC.  */
  gcc_assert (num_regs > 0 && num_regs <= 14);
  gcc_assert (!(saved_regs_mask & (1 << SP_REGNUM)));
  gcc_assert (!(saved_regs_mask & (1 << PC_REGNUM)));

  /* Create sequence for DWARF info.  All the frame-related data for
     debugging is held in this wrapper.  */
  dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (num_regs + 1));

  /* Describe the stack adjustment.  */
  tmp = gen_rtx_SET (VOIDmode,
		      stack_pointer_rtx,
		      plus_constant (Pmode, stack_pointer_rtx, -4 * num_regs));
  RTX_FRAME_RELATED_P (tmp) = 1;
  XVECEXP (dwarf, 0, 0) = tmp;

  /* Find the first register.  */
  for (regno = 0; (saved_regs_mask & (1 << regno)) == 0; regno++)
    ;

  i = 0;

  /* If there's an odd number of registers to push.  Start off by
     pushing a single register.  This ensures that subsequent strd
     operations are dword aligned (assuming that SP was originally
     64-bit aligned).  */
  if ((num_regs & 1) != 0)
    {
      rtx reg, mem, insn;

      reg = gen_rtx_REG (SImode, regno);
      if (num_regs == 1)
	mem = gen_frame_mem (Pmode, gen_rtx_PRE_DEC (Pmode,
						     stack_pointer_rtx));
      else
	mem = gen_frame_mem (Pmode,
			     gen_rtx_PRE_MODIFY
			     (Pmode, stack_pointer_rtx,
			      plus_constant (Pmode, stack_pointer_rtx,
					     -4 * num_regs)));

      tmp = gen_rtx_SET (VOIDmode, mem, reg);
      RTX_FRAME_RELATED_P (tmp) = 1;
      insn = emit_insn (tmp);
      RTX_FRAME_RELATED_P (insn) = 1;
      add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
      tmp = gen_rtx_SET (VOIDmode, gen_frame_mem (Pmode, stack_pointer_rtx),
			 reg);
      RTX_FRAME_RELATED_P (tmp) = 1;
      i++;
      regno++;
      XVECEXP (dwarf, 0, i) = tmp;
      first = false;
    }

  while (i < num_regs)
    if (saved_regs_mask & (1 << regno))
      {
	rtx reg1, reg2, mem1, mem2;
	rtx tmp0, tmp1, tmp2;
	int regno2;

	/* Find the register to pair with this one.  */
	for (regno2 = regno + 1; (saved_regs_mask & (1 << regno2)) == 0;
	     regno2++)
	  ;

	reg1 = gen_rtx_REG (SImode, regno);
	reg2 = gen_rtx_REG (SImode, regno2);

	if (first)
	  {
	    rtx insn;

	    first = false;
	    mem1 = gen_frame_mem (Pmode, plus_constant (Pmode,
							stack_pointer_rtx,
							-4 * num_regs));
	    mem2 = gen_frame_mem (Pmode, plus_constant (Pmode,
							stack_pointer_rtx,
							-4 * (num_regs - 1)));
	    tmp0 = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
				plus_constant (Pmode, stack_pointer_rtx,
					       -4 * (num_regs)));
	    tmp1 = gen_rtx_SET (VOIDmode, mem1, reg1);
	    tmp2 = gen_rtx_SET (VOIDmode, mem2, reg2);
	    RTX_FRAME_RELATED_P (tmp0) = 1;
	    RTX_FRAME_RELATED_P (tmp1) = 1;
	    RTX_FRAME_RELATED_P (tmp2) = 1;
	    par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (3));
	    XVECEXP (par, 0, 0) = tmp0;
	    XVECEXP (par, 0, 1) = tmp1;
	    XVECEXP (par, 0, 2) = tmp2;
	    insn = emit_insn (par);
	    RTX_FRAME_RELATED_P (insn) = 1;
	    add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
	  }
	else
	  {
	    mem1 = gen_frame_mem (Pmode, plus_constant (Pmode,
							stack_pointer_rtx,
							4 * i));
	    mem2 = gen_frame_mem (Pmode, plus_constant (Pmode,
							stack_pointer_rtx,
							4 * (i + 1)));
	    tmp1 = gen_rtx_SET (VOIDmode, mem1, reg1);
	    tmp2 = gen_rtx_SET (VOIDmode, mem2, reg2);
	    RTX_FRAME_RELATED_P (tmp1) = 1;
	    RTX_FRAME_RELATED_P (tmp2) = 1;
	    par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
	    XVECEXP (par, 0, 0) = tmp1;
	    XVECEXP (par, 0, 1) = tmp2;
	    emit_insn (par);
	  }

	/* Create unwind information.  This is an approximation.  */
	tmp1 = gen_rtx_SET (VOIDmode,
			    gen_frame_mem (Pmode,
					   plus_constant (Pmode,
							  stack_pointer_rtx,
							  4 * i)),
			    reg1);
	tmp2 = gen_rtx_SET (VOIDmode,
			    gen_frame_mem (Pmode,
					   plus_constant (Pmode,
							  stack_pointer_rtx,
							  4 * (i + 1))),
			    reg2);

	RTX_FRAME_RELATED_P (tmp1) = 1;
	RTX_FRAME_RELATED_P (tmp2) = 1;
	XVECEXP (dwarf, 0, i + 1) = tmp1;
	XVECEXP (dwarf, 0, i + 2) = tmp2;
	i += 2;
	regno = regno2 + 1;
      }
    else
      regno++;

  return;
}

/* STRD in ARM mode requires consecutive registers.  This function emits STRD
   whenever possible, otherwise it emits single-word stores.  The first store
   also allocates stack space for all saved registers, using writeback with
   post-addressing mode.  All other stores use offset addressing.  If no STRD
   can be emitted, this function emits a sequence of single-word stores,
   and not an STM as before, because single-word stores provide more freedom
   scheduling and can be turned into an STM by peephole optimizations.  */
static void
arm_emit_strd_push (unsigned long saved_regs_mask)
{
  int num_regs = 0;
  int i, j, dwarf_index  = 0;
  int offset = 0;
  rtx dwarf = NULL_RTX;
  rtx insn = NULL_RTX;
  rtx tmp, mem;

  /* TODO: A more efficient code can be emitted by changing the
     layout, e.g., first push all pairs that can use STRD to keep the
     stack aligned, and then push all other registers.  */
  for (i = 0; i <= LAST_ARM_REGNUM; i++)
    if (saved_regs_mask & (1 << i))
      num_regs++;

  gcc_assert (!(saved_regs_mask & (1 << SP_REGNUM)));
  gcc_assert (!(saved_regs_mask & (1 << PC_REGNUM)));
  gcc_assert (num_regs > 0);

  /* Create sequence for DWARF info.  */
  dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (num_regs + 1));

  /* For dwarf info, we generate explicit stack update.  */
  tmp = gen_rtx_SET (VOIDmode,
                     stack_pointer_rtx,
                     plus_constant (Pmode, stack_pointer_rtx, -4 * num_regs));
  RTX_FRAME_RELATED_P (tmp) = 1;
  XVECEXP (dwarf, 0, dwarf_index++) = tmp;

  /* Save registers.  */
  offset = - 4 * num_regs;
  j = 0;
  while (j <= LAST_ARM_REGNUM)
    if (saved_regs_mask & (1 << j))
      {
        if ((j % 2 == 0)
            && (saved_regs_mask & (1 << (j + 1))))
          {
            /* Current register and previous register form register pair for
               which STRD can be generated.  */
            if (offset < 0)
              {
                /* Allocate stack space for all saved registers.  */
                tmp = plus_constant (Pmode, stack_pointer_rtx, offset);
                tmp = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, tmp);
                mem = gen_frame_mem (DImode, tmp);
                offset = 0;
              }
            else if (offset > 0)
              mem = gen_frame_mem (DImode,
                                   plus_constant (Pmode,
                                                  stack_pointer_rtx,
                                                  offset));
            else
              mem = gen_frame_mem (DImode, stack_pointer_rtx);

            tmp = gen_rtx_SET (DImode, mem, gen_rtx_REG (DImode, j));
            RTX_FRAME_RELATED_P (tmp) = 1;
            tmp = emit_insn (tmp);

            /* Record the first store insn.  */
            if (dwarf_index == 1)
              insn = tmp;

            /* Generate dwarf info.  */
            mem = gen_frame_mem (SImode,
                                 plus_constant (Pmode,
                                                stack_pointer_rtx,
                                                offset));
            tmp = gen_rtx_SET (SImode, mem, gen_rtx_REG (SImode, j));
            RTX_FRAME_RELATED_P (tmp) = 1;
            XVECEXP (dwarf, 0, dwarf_index++) = tmp;

            mem = gen_frame_mem (SImode,
                                 plus_constant (Pmode,
                                                stack_pointer_rtx,
                                                offset + 4));
            tmp = gen_rtx_SET (SImode, mem, gen_rtx_REG (SImode, j + 1));
            RTX_FRAME_RELATED_P (tmp) = 1;
            XVECEXP (dwarf, 0, dwarf_index++) = tmp;

            offset += 8;
            j += 2;
          }
        else
          {
            /* Emit a single word store.  */
            if (offset < 0)
              {
                /* Allocate stack space for all saved registers.  */
                tmp = plus_constant (Pmode, stack_pointer_rtx, offset);
                tmp = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, tmp);
                mem = gen_frame_mem (SImode, tmp);
                offset = 0;
              }
            else if (offset > 0)
              mem = gen_frame_mem (SImode,
                                   plus_constant (Pmode,
                                                  stack_pointer_rtx,
                                                  offset));
            else
              mem = gen_frame_mem (SImode, stack_pointer_rtx);

            tmp = gen_rtx_SET (SImode, mem, gen_rtx_REG (SImode, j));
            RTX_FRAME_RELATED_P (tmp) = 1;
            tmp = emit_insn (tmp);

            /* Record the first store insn.  */
            if (dwarf_index == 1)
              insn = tmp;

            /* Generate dwarf info.  */
            mem = gen_frame_mem (SImode,
                                 plus_constant(Pmode,
                                               stack_pointer_rtx,
                                               offset));
            tmp = gen_rtx_SET (SImode, mem, gen_rtx_REG (SImode, j));
            RTX_FRAME_RELATED_P (tmp) = 1;
            XVECEXP (dwarf, 0, dwarf_index++) = tmp;

            offset += 4;
            j += 1;
          }
      }
    else
      j++;

  /* Attach dwarf info to the first insn we generate.  */
  gcc_assert (insn != NULL_RTX);
  add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Generate and emit an insn that we will recognize as a push_multi.
   Unfortunately, since this insn does not reflect very well the actual
   semantics of the operation, we need to annotate the insn for the benefit
   of DWARF2 frame unwind information.  DWARF_REGS_MASK is a subset of
   MASK for registers that should be annotated for DWARF2 frame unwind
   information.  */
static rtx
emit_multi_reg_push (unsigned long mask, unsigned long dwarf_regs_mask)
{
  int num_regs = 0;
  int num_dwarf_regs = 0;
  int i, j;
  rtx par;
  rtx dwarf;
  int dwarf_par_index;
  rtx tmp, reg;

  /* We don't record the PC in the dwarf frame information.  */
  dwarf_regs_mask &= ~(1 << PC_REGNUM);

  for (i = 0; i <= LAST_ARM_REGNUM; i++)
    {
      if (mask & (1 << i))
	num_regs++;
      if (dwarf_regs_mask & (1 << i))
	num_dwarf_regs++;
    }

  gcc_assert (num_regs && num_regs <= 16);
  gcc_assert ((dwarf_regs_mask & ~mask) == 0);

  /* For the body of the insn we are going to generate an UNSPEC in
     parallel with several USEs.  This allows the insn to be recognized
     by the push_multi pattern in the arm.md file.

     The body of the insn looks something like this:

       (parallel [
           (set (mem:BLK (pre_modify:SI (reg:SI sp)
	                                (const_int:SI <num>)))
	        (unspec:BLK [(reg:SI r4)] UNSPEC_PUSH_MULT))
           (use (reg:SI XX))
           (use (reg:SI YY))
	   ...
        ])

     For the frame note however, we try to be more explicit and actually
     show each register being stored into the stack frame, plus a (single)
     decrement of the stack pointer.  We do it this way in order to be
     friendly to the stack unwinding code, which only wants to see a single
     stack decrement per instruction.  The RTL we generate for the note looks
     something like this:

      (sequence [
           (set (reg:SI sp) (plus:SI (reg:SI sp) (const_int -20)))
           (set (mem:SI (reg:SI sp)) (reg:SI r4))
           (set (mem:SI (plus:SI (reg:SI sp) (const_int 4))) (reg:SI XX))
           (set (mem:SI (plus:SI (reg:SI sp) (const_int 8))) (reg:SI YY))
	   ...
        ])

     FIXME:: In an ideal world the PRE_MODIFY would not exist and
     instead we'd have a parallel expression detailing all
     the stores to the various memory addresses so that debug
     information is more up-to-date. Remember however while writing
     this to take care of the constraints with the push instruction.

     Note also that this has to be taken care of for the VFP registers.

     For more see PR43399.  */

  par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_regs));
  dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (num_dwarf_regs + 1));
  dwarf_par_index = 1;

  for (i = 0; i <= LAST_ARM_REGNUM; i++)
    {
      if (mask & (1 << i))
	{
	  reg = gen_rtx_REG (SImode, i);

	  XVECEXP (par, 0, 0)
	    = gen_rtx_SET (VOIDmode,
			   gen_frame_mem
			   (BLKmode,
			    gen_rtx_PRE_MODIFY (Pmode,
						stack_pointer_rtx,
						plus_constant
						(Pmode, stack_pointer_rtx,
						 -4 * num_regs))
			    ),
			   gen_rtx_UNSPEC (BLKmode,
					   gen_rtvec (1, reg),
					   UNSPEC_PUSH_MULT));

	  if (dwarf_regs_mask & (1 << i))
	    {
	      tmp = gen_rtx_SET (VOIDmode,
				 gen_frame_mem (SImode, stack_pointer_rtx),
				 reg);
	      RTX_FRAME_RELATED_P (tmp) = 1;
	      XVECEXP (dwarf, 0, dwarf_par_index++) = tmp;
	    }

	  break;
	}
    }

  for (j = 1, i++; j < num_regs; i++)
    {
      if (mask & (1 << i))
	{
	  reg = gen_rtx_REG (SImode, i);

	  XVECEXP (par, 0, j) = gen_rtx_USE (VOIDmode, reg);

	  if (dwarf_regs_mask & (1 << i))
	    {
	      tmp
		= gen_rtx_SET (VOIDmode,
			       gen_frame_mem
			       (SImode,
				plus_constant (Pmode, stack_pointer_rtx,
					       4 * j)),
			       reg);
	      RTX_FRAME_RELATED_P (tmp) = 1;
	      XVECEXP (dwarf, 0, dwarf_par_index++) = tmp;
	    }

	  j++;
	}
    }

  par = emit_insn (par);

  tmp = gen_rtx_SET (VOIDmode,
		     stack_pointer_rtx,
		     plus_constant (Pmode, stack_pointer_rtx, -4 * num_regs));
  RTX_FRAME_RELATED_P (tmp) = 1;
  XVECEXP (dwarf, 0, 0) = tmp;

  add_reg_note (par, REG_FRAME_RELATED_EXPR, dwarf);

  return par;
}

/* Add a REG_CFA_ADJUST_CFA REG note to INSN.
   SIZE is the offset to be adjusted.
   DEST and SRC might be stack_pointer_rtx or hard_frame_pointer_rtx.  */
static void
arm_add_cfa_adjust_cfa_note (rtx insn, int size, rtx dest, rtx src)
{
  rtx dwarf;

  RTX_FRAME_RELATED_P (insn) = 1;
  dwarf = gen_rtx_SET (VOIDmode, dest, plus_constant (Pmode, src, size));
  add_reg_note (insn, REG_CFA_ADJUST_CFA, dwarf);
}

/* Generate and emit an insn pattern that we will recognize as a pop_multi.
   SAVED_REGS_MASK shows which registers need to be restored.

   Unfortunately, since this insn does not reflect very well the actual
   semantics of the operation, we need to annotate the insn for the benefit
   of DWARF2 frame unwind information.  */
static void
arm_emit_multi_reg_pop (unsigned long saved_regs_mask)
{
  int num_regs = 0;
  int i, j;
  rtx par;
  rtx dwarf = NULL_RTX;
  rtx tmp, reg;
  bool return_in_pc;
  int offset_adj;
  int emit_update;

  return_in_pc = (saved_regs_mask & (1 << PC_REGNUM)) ? true : false;
  offset_adj = return_in_pc ? 1 : 0;
  for (i = 0; i <= LAST_ARM_REGNUM; i++)
    if (saved_regs_mask & (1 << i))
      num_regs++;

  gcc_assert (num_regs && num_regs <= 16);

  /* If SP is in reglist, then we don't emit SP update insn.  */
  emit_update = (saved_regs_mask & (1 << SP_REGNUM)) ? 0 : 1;

  /* The parallel needs to hold num_regs SETs
     and one SET for the stack update.  */
  par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_regs + emit_update + offset_adj));

  if (return_in_pc)
    {
      tmp = ret_rtx;
      XVECEXP (par, 0, 0) = tmp;
    }

  if (emit_update)
    {
      /* Increment the stack pointer, based on there being
         num_regs 4-byte registers to restore.  */
      tmp = gen_rtx_SET (VOIDmode,
                         stack_pointer_rtx,
                         plus_constant (Pmode,
                                        stack_pointer_rtx,
                                        4 * num_regs));
      RTX_FRAME_RELATED_P (tmp) = 1;
      XVECEXP (par, 0, offset_adj) = tmp;
    }

  /* Now restore every reg, which may include PC.  */
  for (j = 0, i = 0; j < num_regs; i++)
    if (saved_regs_mask & (1 << i))
      {
        reg = gen_rtx_REG (SImode, i);
        if ((num_regs == 1) && emit_update && !return_in_pc)
          {
            /* Emit single load with writeback.  */
            tmp = gen_frame_mem (SImode,
                                 gen_rtx_POST_INC (Pmode,
                                                   stack_pointer_rtx));
            tmp = emit_insn (gen_rtx_SET (VOIDmode, reg, tmp));
            REG_NOTES (tmp) = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
            return;
          }

        tmp = gen_rtx_SET (VOIDmode,
                           reg,
                           gen_frame_mem
                           (SImode,
                            plus_constant (Pmode, stack_pointer_rtx, 4 * j)));
        RTX_FRAME_RELATED_P (tmp) = 1;
        XVECEXP (par, 0, j + emit_update + offset_adj) = tmp;

        /* We need to maintain a sequence for DWARF info too.  As dwarf info
           should not have PC, skip PC.  */
        if (i != PC_REGNUM)
          dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);

        j++;
      }

  if (return_in_pc)
    par = emit_jump_insn (par);
  else
    par = emit_insn (par);

  REG_NOTES (par) = dwarf;
  if (!return_in_pc)
    arm_add_cfa_adjust_cfa_note (par, UNITS_PER_WORD * num_regs,
				 stack_pointer_rtx, stack_pointer_rtx);
}

/* Generate and emit an insn pattern that we will recognize as a pop_multi
   of NUM_REGS consecutive VFP regs, starting at FIRST_REG.

   Unfortunately, since this insn does not reflect very well the actual
   semantics of the operation, we need to annotate the insn for the benefit
   of DWARF2 frame unwind information.  */
static void
arm_emit_vfp_multi_reg_pop (int first_reg, int num_regs, rtx base_reg)
{
  int i, j;
  rtx par;
  rtx dwarf = NULL_RTX;
  rtx tmp, reg;

  gcc_assert (num_regs && num_regs <= 32);

    /* Workaround ARM10 VFPr1 bug.  */
  if (num_regs == 2 && !arm_arch6)
    {
      if (first_reg == 15)
        first_reg--;

      num_regs++;
    }

  /* We can emit at most 16 D-registers in a single pop_multi instruction, and
     there could be up to 32 D-registers to restore.
     If there are more than 16 D-registers, make two recursive calls,
     each of which emits one pop_multi instruction.  */
  if (num_regs > 16)
    {
      arm_emit_vfp_multi_reg_pop (first_reg, 16, base_reg);
      arm_emit_vfp_multi_reg_pop (first_reg + 16, num_regs - 16, base_reg);
      return;
    }

  /* The parallel needs to hold num_regs SETs
     and one SET for the stack update.  */
  par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_regs + 1));

  /* Increment the stack pointer, based on there being
     num_regs 8-byte registers to restore.  */
  tmp = gen_rtx_SET (VOIDmode,
                     base_reg,
                     plus_constant (Pmode, base_reg, 8 * num_regs));
  RTX_FRAME_RELATED_P (tmp) = 1;
  XVECEXP (par, 0, 0) = tmp;

  /* Now show every reg that will be restored, using a SET for each.  */
  for (j = 0, i=first_reg; j < num_regs; i += 2)
    {
      reg = gen_rtx_REG (DFmode, i);

      tmp = gen_rtx_SET (VOIDmode,
                         reg,
                         gen_frame_mem
                         (DFmode,
                          plus_constant (Pmode, base_reg, 8 * j)));
      RTX_FRAME_RELATED_P (tmp) = 1;
      XVECEXP (par, 0, j + 1) = tmp;

      dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);

      j++;
    }

  par = emit_insn (par);
  REG_NOTES (par) = dwarf;

  /* Make sure cfa doesn't leave with IP_REGNUM to allow unwinding fron FP.  */
  if (TARGET_VFP && REGNO (base_reg) == IP_REGNUM)
    {
      RTX_FRAME_RELATED_P (par) = 1;
      add_reg_note (par, REG_CFA_DEF_CFA, hard_frame_pointer_rtx);
    }
  else
    arm_add_cfa_adjust_cfa_note (par, 2 * UNITS_PER_WORD * num_regs,
				 base_reg, base_reg);
}

/* Generate and emit a pattern that will be recognized as LDRD pattern.  If even
   number of registers are being popped, multiple LDRD patterns are created for
   all register pairs.  If odd number of registers are popped, last register is
   loaded by using LDR pattern.  */
static void
thumb2_emit_ldrd_pop (unsigned long saved_regs_mask)
{
  int num_regs = 0;
  int i, j;
  rtx par = NULL_RTX;
  rtx dwarf = NULL_RTX;
  rtx tmp, reg, tmp1;
  bool return_in_pc;

  return_in_pc = (saved_regs_mask & (1 << PC_REGNUM)) ? true : false;
  for (i = 0; i <= LAST_ARM_REGNUM; i++)
    if (saved_regs_mask & (1 << i))
      num_regs++;

  gcc_assert (num_regs && num_regs <= 16);

  /* We cannot generate ldrd for PC.  Hence, reduce the count if PC is
     to be popped.  So, if num_regs is even, now it will become odd,
     and we can generate pop with PC.  If num_regs is odd, it will be
     even now, and ldr with return can be generated for PC.  */
  if (return_in_pc)
    num_regs--;

  gcc_assert (!(saved_regs_mask & (1 << SP_REGNUM)));

  /* Var j iterates over all the registers to gather all the registers in
     saved_regs_mask.  Var i gives index of saved registers in stack frame.
     A PARALLEL RTX of register-pair is created here, so that pattern for
     LDRD can be matched.  As PC is always last register to be popped, and
     we have already decremented num_regs if PC, we don't have to worry
     about PC in this loop.  */
  for (i = 0, j = 0; i < (num_regs - (num_regs % 2)); j++)
    if (saved_regs_mask & (1 << j))
      {
        /* Create RTX for memory load.  */
        reg = gen_rtx_REG (SImode, j);
        tmp = gen_rtx_SET (SImode,
                           reg,
                           gen_frame_mem (SImode,
                               plus_constant (Pmode,
                                              stack_pointer_rtx, 4 * i)));
        RTX_FRAME_RELATED_P (tmp) = 1;

        if (i % 2 == 0)
          {
            /* When saved-register index (i) is even, the RTX to be emitted is
               yet to be created.  Hence create it first.  The LDRD pattern we
               are generating is :
               [ (SET (reg_t0) (MEM (PLUS (SP) (NUM))))
                 (SET (reg_t1) (MEM (PLUS (SP) (NUM + 4)))) ]
               where target registers need not be consecutive.  */
            par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
            dwarf = NULL_RTX;
          }

        /* ith register is added in PARALLEL RTX.  If i is even, the reg_i is
           added as 0th element and if i is odd, reg_i is added as 1st element
           of LDRD pattern shown above.  */
        XVECEXP (par, 0, (i % 2)) = tmp;
        dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);

        if ((i % 2) == 1)
          {
            /* When saved-register index (i) is odd, RTXs for both the registers
               to be loaded are generated in above given LDRD pattern, and the
               pattern can be emitted now.  */
            par = emit_insn (par);
            REG_NOTES (par) = dwarf;
	    RTX_FRAME_RELATED_P (par) = 1;
          }

        i++;
      }

  /* If the number of registers pushed is odd AND return_in_pc is false OR
     number of registers are even AND return_in_pc is true, last register is
     popped using LDR.  It can be PC as well.  Hence, adjust the stack first and
     then LDR with post increment.  */

  /* Increment the stack pointer, based on there being
     num_regs 4-byte registers to restore.  */
  tmp = gen_rtx_SET (VOIDmode,
                     stack_pointer_rtx,
                     plus_constant (Pmode, stack_pointer_rtx, 4 * i));
  RTX_FRAME_RELATED_P (tmp) = 1;
  tmp = emit_insn (tmp);
  if (!return_in_pc)
    {
      arm_add_cfa_adjust_cfa_note (tmp, UNITS_PER_WORD * i,
				   stack_pointer_rtx, stack_pointer_rtx);
    }

  dwarf = NULL_RTX;

  if (((num_regs % 2) == 1 && !return_in_pc)
      || ((num_regs % 2) == 0 && return_in_pc))
    {
      /* Scan for the single register to be popped.  Skip until the saved
         register is found.  */
      for (; (saved_regs_mask & (1 << j)) == 0; j++);

      /* Gen LDR with post increment here.  */
      tmp1 = gen_rtx_MEM (SImode,
                          gen_rtx_POST_INC (SImode,
                                            stack_pointer_rtx));
      set_mem_alias_set (tmp1, get_frame_alias_set ());

      reg = gen_rtx_REG (SImode, j);
      tmp = gen_rtx_SET (SImode, reg, tmp1);
      RTX_FRAME_RELATED_P (tmp) = 1;
      dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);

      if (return_in_pc)
        {
          /* If return_in_pc, j must be PC_REGNUM.  */
          gcc_assert (j == PC_REGNUM);
          par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
          XVECEXP (par, 0, 0) = ret_rtx;
          XVECEXP (par, 0, 1) = tmp;
          par = emit_jump_insn (par);
        }
      else
        {
          par = emit_insn (tmp);
	  REG_NOTES (par) = dwarf;
	  arm_add_cfa_adjust_cfa_note (par, UNITS_PER_WORD,
				       stack_pointer_rtx, stack_pointer_rtx);
        }

    }
  else if ((num_regs % 2) == 1 && return_in_pc)
    {
      /* There are 2 registers to be popped.  So, generate the pattern
         pop_multiple_with_stack_update_and_return to pop in PC.  */
      arm_emit_multi_reg_pop (saved_regs_mask & (~((1 << j) - 1)));
    }

  return;
}

/* LDRD in ARM mode needs consecutive registers as operands.  This function
   emits LDRD whenever possible, otherwise it emits single-word loads. It uses
   offset addressing and then generates one separate stack udpate. This provides
   more scheduling freedom, compared to writeback on every load.  However,
   if the function returns using load into PC directly
   (i.e., if PC is in SAVED_REGS_MASK), the stack needs to be updated
   before the last load.  TODO: Add a peephole optimization to recognize
   the new epilogue sequence as an LDM instruction whenever possible.  TODO: Add
   peephole optimization to merge the load at stack-offset zero
   with the stack update instruction using load with writeback
   in post-index addressing mode.  */
static void
arm_emit_ldrd_pop (unsigned long saved_regs_mask)
{
  int j = 0;
  int offset = 0;
  rtx par = NULL_RTX;
  rtx dwarf = NULL_RTX;
  rtx tmp, mem;

  /* Restore saved registers.  */
  gcc_assert (!((saved_regs_mask & (1 << SP_REGNUM))));
  j = 0;
  while (j <= LAST_ARM_REGNUM)
    if (saved_regs_mask & (1 << j))
      {
        if ((j % 2) == 0
            && (saved_regs_mask & (1 << (j + 1)))
            && (j + 1) != PC_REGNUM)
          {
            /* Current register and next register form register pair for which
               LDRD can be generated. PC is always the last register popped, and
               we handle it separately.  */
            if (offset > 0)
              mem = gen_frame_mem (DImode,
                                   plus_constant (Pmode,
                                                  stack_pointer_rtx,
                                                  offset));
            else
              mem = gen_frame_mem (DImode, stack_pointer_rtx);

            tmp = gen_rtx_SET (DImode, gen_rtx_REG (DImode, j), mem);
            tmp = emit_insn (tmp);
	    RTX_FRAME_RELATED_P (tmp) = 1;

            /* Generate dwarf info.  */

            dwarf = alloc_reg_note (REG_CFA_RESTORE,
                                    gen_rtx_REG (SImode, j),
                                    NULL_RTX);
            dwarf = alloc_reg_note (REG_CFA_RESTORE,
                                    gen_rtx_REG (SImode, j + 1),
                                    dwarf);

            REG_NOTES (tmp) = dwarf;

            offset += 8;
            j += 2;
          }
        else if (j != PC_REGNUM)
          {
            /* Emit a single word load.  */
            if (offset > 0)
              mem = gen_frame_mem (SImode,
                                   plus_constant (Pmode,
                                                  stack_pointer_rtx,
                                                  offset));
            else
              mem = gen_frame_mem (SImode, stack_pointer_rtx);

            tmp = gen_rtx_SET (SImode, gen_rtx_REG (SImode, j), mem);
            tmp = emit_insn (tmp);
	    RTX_FRAME_RELATED_P (tmp) = 1;

            /* Generate dwarf info.  */
            REG_NOTES (tmp) = alloc_reg_note (REG_CFA_RESTORE,
                                              gen_rtx_REG (SImode, j),
                                              NULL_RTX);

            offset += 4;
            j += 1;
          }
        else /* j == PC_REGNUM */
          j++;
      }
    else
      j++;

  /* Update the stack.  */
  if (offset > 0)
    {
      tmp = gen_rtx_SET (Pmode,
                         stack_pointer_rtx,
                         plus_constant (Pmode,
                                        stack_pointer_rtx,
                                        offset));
      tmp = emit_insn (tmp);
      arm_add_cfa_adjust_cfa_note (tmp, offset,
				   stack_pointer_rtx, stack_pointer_rtx);
      offset = 0;
    }

  if (saved_regs_mask & (1 << PC_REGNUM))
    {
      /* Only PC is to be popped.  */
      par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
      XVECEXP (par, 0, 0) = ret_rtx;
      tmp = gen_rtx_SET (SImode,
                         gen_rtx_REG (SImode, PC_REGNUM),
                         gen_frame_mem (SImode,
                                        gen_rtx_POST_INC (SImode,
                                                          stack_pointer_rtx)));
      RTX_FRAME_RELATED_P (tmp) = 1;
      XVECEXP (par, 0, 1) = tmp;
      par = emit_jump_insn (par);

      /* Generate dwarf info.  */
      dwarf = alloc_reg_note (REG_CFA_RESTORE,
                              gen_rtx_REG (SImode, PC_REGNUM),
                              NULL_RTX);
      REG_NOTES (par) = dwarf;
      arm_add_cfa_adjust_cfa_note (par, UNITS_PER_WORD,
				   stack_pointer_rtx, stack_pointer_rtx);
    }
}

/* Calculate the size of the return value that is passed in registers.  */
static unsigned
arm_size_return_regs (void)
{
  enum machine_mode mode;

  if (crtl->return_rtx != 0)
    mode = GET_MODE (crtl->return_rtx);
  else
    mode = DECL_MODE (DECL_RESULT (current_function_decl));

  return GET_MODE_SIZE (mode);
}

/* Return true if the current function needs to save/restore LR.  */
static bool
thumb_force_lr_save (void)
{
  return !cfun->machine->lr_save_eliminated
	 && (!leaf_function_p ()
	     || thumb_far_jump_used_p ()
	     || df_regs_ever_live_p (LR_REGNUM));
}

/* We do not know if r3 will be available because
   we do have an indirect tailcall happening in this
   particular case.  */
static bool
is_indirect_tailcall_p (rtx call)
{
  rtx pat = PATTERN (call);

  /* Indirect tail call.  */
  pat = XVECEXP (pat, 0, 0);
  if (GET_CODE (pat) == SET)
    pat = SET_SRC (pat);

  pat = XEXP (XEXP (pat, 0), 0);
  return REG_P (pat);
}

/* Return true if r3 is used by any of the tail call insns in the
   current function.  */
static bool
any_sibcall_could_use_r3 (void)
{
  edge_iterator ei;
  edge e;

  if (!crtl->tail_call_emit)
    return false;
  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    if (e->flags & EDGE_SIBCALL)
      {
	rtx call = BB_END (e->src);
	if (!CALL_P (call))
	  call = prev_nonnote_nondebug_insn (call);
	gcc_assert (CALL_P (call) && SIBLING_CALL_P (call));
	if (find_regno_fusage (call, USE, 3)
	    || is_indirect_tailcall_p (call))
	  return true;
      }
  return false;
}


/* Compute the distance from register FROM to register TO.
   These can be the arg pointer (26), the soft frame pointer (25),
   the stack pointer (13) or the hard frame pointer (11).
   In thumb mode r7 is used as the soft frame pointer, if needed.
   Typical stack layout looks like this:

       old stack pointer -> |    |
                             ----
                            |    | \
                            |    |   saved arguments for
                            |    |   vararg functions
			    |    | /
                              --
   hard FP & arg pointer -> |    | \
                            |    |   stack
                            |    |   frame
                            |    | /
                              --
                            |    | \
                            |    |   call saved
                            |    |   registers
      soft frame pointer -> |    | /
                              --
                            |    | \
                            |    |   local
                            |    |   variables
     locals base pointer -> |    | /
                              --
                            |    | \
                            |    |   outgoing
                            |    |   arguments
   current stack pointer -> |    | /
                              --

  For a given function some or all of these stack components
  may not be needed, giving rise to the possibility of
  eliminating some of the registers.

  The values returned by this function must reflect the behavior
  of arm_expand_prologue() and arm_compute_save_reg_mask().

  The sign of the number returned reflects the direction of stack
  growth, so the values are positive for all eliminations except
  from the soft frame pointer to the hard frame pointer.

  SFP may point just inside the local variables block to ensure correct
  alignment.  */


/* Calculate stack offsets.  These are used to calculate register elimination
   offsets and in prologue/epilogue code.  Also calculates which registers
   should be saved.  */

static arm_stack_offsets *
arm_get_frame_offsets (void)
{
  struct arm_stack_offsets *offsets;
  unsigned long func_type;
  int leaf;
  int saved;
  int core_saved;
  HOST_WIDE_INT frame_size;
  int i;

  offsets = &cfun->machine->stack_offsets;

  /* We need to know if we are a leaf function.  Unfortunately, it
     is possible to be called after start_sequence has been called,
     which causes get_insns to return the insns for the sequence,
     not the function, which will cause leaf_function_p to return
     the incorrect result.

     to know about leaf functions once reload has completed, and the
     frame size cannot be changed after that time, so we can safely
     use the cached value.  */

  if (reload_completed)
    return offsets;

  /* Initially this is the size of the local variables.  It will translated
     into an offset once we have determined the size of preceding data.  */
  frame_size = ROUND_UP_WORD (get_frame_size ());

  leaf = leaf_function_p ();

  /* Space for variadic functions.  */
  offsets->saved_args = crtl->args.pretend_args_size;

  /* In Thumb mode this is incorrect, but never used.  */
  offsets->frame
    = (offsets->saved_args
       + arm_compute_static_chain_stack_bytes ()
       + (frame_pointer_needed ? 4 : 0));

  if (TARGET_32BIT)
    {
      unsigned int regno;

      offsets->saved_regs_mask = arm_compute_save_reg_mask ();
      core_saved = bit_count (offsets->saved_regs_mask) * 4;
      saved = core_saved;

      /* We know that SP will be doubleword aligned on entry, and we must
	 preserve that condition at any subroutine call.  We also require the
	 soft frame pointer to be doubleword aligned.  */

      if (TARGET_REALLY_IWMMXT)
	{
	  /* Check for the call-saved iWMMXt registers.  */
	  for (regno = FIRST_IWMMXT_REGNUM;
	       regno <= LAST_IWMMXT_REGNUM;
	       regno++)
	    if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
	      saved += 8;
	}

      func_type = arm_current_func_type ();
      /* Space for saved VFP registers.  */
      if (! IS_VOLATILE (func_type)
	  && TARGET_HARD_FLOAT && TARGET_VFP)
	saved += arm_get_vfp_saved_size ();
    }
  else /* TARGET_THUMB1 */
    {
      offsets->saved_regs_mask = thumb1_compute_save_reg_mask ();
      core_saved = bit_count (offsets->saved_regs_mask) * 4;
      saved = core_saved;
      if (TARGET_BACKTRACE)
	saved += 16;
    }

  /* Saved registers include the stack frame.  */
  offsets->saved_regs
    = offsets->saved_args + arm_compute_static_chain_stack_bytes () + saved;
  offsets->soft_frame = offsets->saved_regs + CALLER_INTERWORKING_SLOT_SIZE;

  /* A leaf function does not need any stack alignment if it has nothing
     on the stack.  */
  if (leaf && frame_size == 0
      /* However if it calls alloca(), we have a dynamically allocated
	 block of BIGGEST_ALIGNMENT on stack, so still do stack alignment.  */
      && ! cfun->calls_alloca)
    {
      offsets->outgoing_args = offsets->soft_frame;
      offsets->locals_base = offsets->soft_frame;
      return offsets;
    }

  /* Ensure SFP has the correct alignment.  */
  if (ARM_DOUBLEWORD_ALIGN
      && (offsets->soft_frame & 7))
    {
      offsets->soft_frame += 4;
      /* Try to align stack by pushing an extra reg.  Don't bother doing this
         when there is a stack frame as the alignment will be rolled into
	 the normal stack adjustment.  */
      if (frame_size + crtl->outgoing_args_size == 0)
	{
	  int reg = -1;

	  /* If it is safe to use r3, then do so.  This sometimes
	     generates better code on Thumb-2 by avoiding the need to
	     use 32-bit push/pop instructions.  */
          if (! any_sibcall_could_use_r3 ()
	      && arm_size_return_regs () <= 12
	      && (offsets->saved_regs_mask & (1 << 3)) == 0
              && (TARGET_THUMB2
		  || !(TARGET_LDRD && current_tune->prefer_ldrd_strd)))
	    {
	      reg = 3;
	    }
	  else
	    for (i = 4; i <= (TARGET_THUMB1 ? LAST_LO_REGNUM : 11); i++)
	      {
		/* Avoid fixed registers; they may be changed at
		   arbitrary times so it's unsafe to restore them
		   during the epilogue.  */
		if (!fixed_regs[i]
		    && (offsets->saved_regs_mask & (1 << i)) == 0)
		  {
		    reg = i;
		    break;
		  }
	      }

	  if (reg != -1)
	    {
	      offsets->saved_regs += 4;
	      offsets->saved_regs_mask |= (1 << reg);
	    }
	}
    }

  offsets->locals_base = offsets->soft_frame + frame_size;
  offsets->outgoing_args = (offsets->locals_base
			    + crtl->outgoing_args_size);

  if (ARM_DOUBLEWORD_ALIGN)
    {
      /* Ensure SP remains doubleword aligned.  */
      if (offsets->outgoing_args & 7)
	offsets->outgoing_args += 4;
      gcc_assert (!(offsets->outgoing_args & 7));
    }

  return offsets;
}


/* Calculate the relative offsets for the different stack pointers.  Positive
   offsets are in the direction of stack growth.  */

HOST_WIDE_INT
arm_compute_initial_elimination_offset (unsigned int from, unsigned int to)
{
  arm_stack_offsets *offsets;

  offsets = arm_get_frame_offsets ();

  /* OK, now we have enough information to compute the distances.
     There must be an entry in these switch tables for each pair
     of registers in ELIMINABLE_REGS, even if some of the entries
     seem to be redundant or useless.  */
  switch (from)
    {
    case ARG_POINTER_REGNUM:
      switch (to)
	{
	case THUMB_HARD_FRAME_POINTER_REGNUM:
	  return 0;

	case FRAME_POINTER_REGNUM:
	  /* This is the reverse of the soft frame pointer
	     to hard frame pointer elimination below.  */
	  return offsets->soft_frame - offsets->saved_args;

	case ARM_HARD_FRAME_POINTER_REGNUM:
	  /* This is only non-zero in the case where the static chain register
	     is stored above the frame.  */
	  return offsets->frame - offsets->saved_args - 4;

	case STACK_POINTER_REGNUM:
	  /* If nothing has been pushed on the stack at all
	     then this will return -4.  This *is* correct!  */
	  return offsets->outgoing_args - (offsets->saved_args + 4);

	default:
	  gcc_unreachable ();
	}
      gcc_unreachable ();

    case FRAME_POINTER_REGNUM:
      switch (to)
	{
	case THUMB_HARD_FRAME_POINTER_REGNUM:
	  return 0;

	case ARM_HARD_FRAME_POINTER_REGNUM:
	  /* The hard frame pointer points to the top entry in the
	     stack frame.  The soft frame pointer to the bottom entry
	     in the stack frame.  If there is no stack frame at all,
	     then they are identical.  */

	  return offsets->frame - offsets->soft_frame;

	case STACK_POINTER_REGNUM:
	  return offsets->outgoing_args - offsets->soft_frame;

	default:
	  gcc_unreachable ();
	}
      gcc_unreachable ();

    default:
      /* You cannot eliminate from the stack pointer.
	 In theory you could eliminate from the hard frame
	 pointer to the stack pointer, but this will never
	 happen, since if a stack frame is not needed the
	 hard frame pointer will never be used.  */
      gcc_unreachable ();
    }
}

/* Given FROM and TO register numbers, say whether this elimination is
   allowed.  Frame pointer elimination is automatically handled.

   All eliminations are permissible.  Note that ARG_POINTER_REGNUM and
   HARD_FRAME_POINTER_REGNUM are in fact the same thing.  If we need a frame
   pointer, we must eliminate FRAME_POINTER_REGNUM into
   HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or
   ARG_POINTER_REGNUM.  */

bool
arm_can_eliminate (const int from, const int to)
{
  return ((to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM) ? false :
          (to == STACK_POINTER_REGNUM && frame_pointer_needed) ? false :
          (to == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? false :
          (to == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? false :
           true);
}

/* Emit RTL to save coprocessor registers on function entry.  Returns the
   number of bytes pushed.  */

static int
arm_save_coproc_regs(void)
{
  int saved_size = 0;
  unsigned reg;
  unsigned start_reg;
  rtx insn;

  for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
    if (df_regs_ever_live_p (reg) && ! call_used_regs[reg])
      {
	insn = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
	insn = gen_rtx_MEM (V2SImode, insn);
	insn = emit_set_insn (insn, gen_rtx_REG (V2SImode, reg));
	RTX_FRAME_RELATED_P (insn) = 1;
	saved_size += 8;
      }

  if (TARGET_HARD_FLOAT && TARGET_VFP)
    {
      start_reg = FIRST_VFP_REGNUM;

      for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
	{
	  if ((!df_regs_ever_live_p (reg) || call_used_regs[reg])
	      && (!df_regs_ever_live_p (reg + 1) || call_used_regs[reg + 1]))
	    {
	      if (start_reg != reg)
		saved_size += vfp_emit_fstmd (start_reg,
					      (reg - start_reg) / 2);
	      start_reg = reg + 2;
	    }
	}
      if (start_reg != reg)
	saved_size += vfp_emit_fstmd (start_reg,
				      (reg - start_reg) / 2);
    }
  return saved_size;
}


/* Set the Thumb frame pointer from the stack pointer.  */

static void
thumb_set_frame_pointer (arm_stack_offsets *offsets)
{
  HOST_WIDE_INT amount;
  rtx insn, dwarf;

  amount = offsets->outgoing_args - offsets->locals_base;
  if (amount < 1024)
    insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
				  stack_pointer_rtx, GEN_INT (amount)));
  else
    {
      emit_insn (gen_movsi (hard_frame_pointer_rtx, GEN_INT (amount)));
      /* Thumb-2 RTL patterns expect sp as the first input.  Thumb-1
         expects the first two operands to be the same.  */
      if (TARGET_THUMB2)
	{
	  insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
					stack_pointer_rtx,
					hard_frame_pointer_rtx));
	}
      else
	{
	  insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
					hard_frame_pointer_rtx,
					stack_pointer_rtx));
	}
      dwarf = gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
			   plus_constant (Pmode, stack_pointer_rtx, amount));
      RTX_FRAME_RELATED_P (dwarf) = 1;
      add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
    }

  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Generate the prologue instructions for entry into an ARM or Thumb-2
   function.  */
void
arm_expand_prologue (void)
{
  rtx amount;
  rtx insn;
  rtx ip_rtx;
  unsigned long live_regs_mask;
  unsigned long func_type;
  int fp_offset = 0;
  int saved_pretend_args = 0;
  int saved_regs = 0;
  unsigned HOST_WIDE_INT args_to_push;
  arm_stack_offsets *offsets;

  func_type = arm_current_func_type ();

  /* Naked functions don't have prologues.  */
  if (IS_NAKED (func_type))
    return;

  /* Make a copy of c_f_p_a_s as we may need to modify it locally.  */
  args_to_push = crtl->args.pretend_args_size;

  /* Compute which register we will have to save onto the stack.  */
  offsets = arm_get_frame_offsets ();
  live_regs_mask = offsets->saved_regs_mask;

  ip_rtx = gen_rtx_REG (SImode, IP_REGNUM);

  if (IS_STACKALIGN (func_type))
    {
      rtx r0, r1;

      /* Handle a word-aligned stack pointer.  We generate the following:

	  mov r0, sp
	  bic r1, r0, #7
	  mov sp, r1
	  <save and restore r0 in normal prologue/epilogue>
	  mov sp, r0
	  bx lr

	 The unwinder doesn't need to know about the stack realignment.
	 Just tell it we saved SP in r0.  */
      gcc_assert (TARGET_THUMB2 && !arm_arch_notm && args_to_push == 0);

      r0 = gen_rtx_REG (SImode, 0);
      r1 = gen_rtx_REG (SImode, 1);

      insn = emit_insn (gen_movsi (r0, stack_pointer_rtx));
      RTX_FRAME_RELATED_P (insn) = 1;
      add_reg_note (insn, REG_CFA_REGISTER, NULL);

      emit_insn (gen_andsi3 (r1, r0, GEN_INT (~(HOST_WIDE_INT)7)));

      /* ??? The CFA changes here, which may cause GDB to conclude that it
	 has entered a different function.  That said, the unwind info is
	 correct, individually, before and after this instruction because
	 we've described the save of SP, which will override the default
	 handling of SP as restoring from the CFA.  */
      emit_insn (gen_movsi (stack_pointer_rtx, r1));
    }

  /* For APCS frames, if IP register is clobbered
     when creating frame, save that register in a special
     way.  */
  if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM)
    {
      if (IS_INTERRUPT (func_type))
	{
	  /* Interrupt functions must not corrupt any registers.
	     Creating a frame pointer however, corrupts the IP
	     register, so we must push it first.  */
	  emit_multi_reg_push (1 << IP_REGNUM, 1 << IP_REGNUM);

	  /* Do not set RTX_FRAME_RELATED_P on this insn.
	     The dwarf stack unwinding code only wants to see one
	     stack decrement per function, and this is not it.  If
	     this instruction is labeled as being part of the frame
	     creation sequence then dwarf2out_frame_debug_expr will
	     die when it encounters the assignment of IP to FP
	     later on, since the use of SP here establishes SP as
	     the CFA register and not IP.

	     Anyway this instruction is not really part of the stack
	     frame creation although it is part of the prologue.  */
	}
      else if (IS_NESTED (func_type))
	{
	  /* The static chain register is the same as the IP register
	     used as a scratch register during stack frame creation.
	     To get around this need to find somewhere to store IP
	     whilst the frame is being created.  We try the following
	     places in order:

	       1. The last argument register r3 if it is available.
	       2. A slot on the stack above the frame if there are no
		  arguments to push onto the stack.
	       3. Register r3 again, after pushing the argument registers
	          onto the stack, if this is a varargs function.
	       4. The last slot on the stack created for the arguments to
		  push, if this isn't a varargs function.

	     Note - we only need to tell the dwarf2 backend about the SP
	     adjustment in the second variant; the static chain register
	     doesn't need to be unwound, as it doesn't contain a value
	     inherited from the caller.  */

	  if (!arm_r3_live_at_start_p ())
	    insn = emit_set_insn (gen_rtx_REG (SImode, 3), ip_rtx);
	  else if (args_to_push == 0)
	    {
	      rtx addr, dwarf;

	      gcc_assert(arm_compute_static_chain_stack_bytes() == 4);
	      saved_regs += 4;

	      addr = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
	      insn = emit_set_insn (gen_frame_mem (SImode, addr), ip_rtx);
	      fp_offset = 4;

	      /* Just tell the dwarf backend that we adjusted SP.  */
	      dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
				   plus_constant (Pmode, stack_pointer_rtx,
						  -fp_offset));
	      RTX_FRAME_RELATED_P (insn) = 1;
	      add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
	    }
	  else
	    {
	      /* Store the args on the stack.  */
	      if (cfun->machine->uses_anonymous_args)
		{
		  insn
		    = emit_multi_reg_push ((0xf0 >> (args_to_push / 4)) & 0xf,
					   (0xf0 >> (args_to_push / 4)) & 0xf);
		  emit_set_insn (gen_rtx_REG (SImode, 3), ip_rtx);
		  saved_pretend_args = 1;
		}
	      else
		{
		  rtx addr, dwarf;

		  if (args_to_push == 4)
		    addr = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
		  else
		    addr
		      = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
					    plus_constant (Pmode,
							   stack_pointer_rtx,
							   -args_to_push));

		  insn = emit_set_insn (gen_frame_mem (SImode, addr), ip_rtx);

		  /* Just tell the dwarf backend that we adjusted SP.  */
		  dwarf
		    = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
				   plus_constant (Pmode, stack_pointer_rtx,
						  -args_to_push));
		  add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
		}

	      RTX_FRAME_RELATED_P (insn) = 1;
	      fp_offset = args_to_push;
	      args_to_push = 0;
	    }
	}

      insn = emit_set_insn (ip_rtx,
			    plus_constant (Pmode, stack_pointer_rtx,
					   fp_offset));
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  if (args_to_push)
    {
      /* Push the argument registers, or reserve space for them.  */
      if (cfun->machine->uses_anonymous_args)
	insn = emit_multi_reg_push
	  ((0xf0 >> (args_to_push / 4)) & 0xf,
	   (0xf0 >> (args_to_push / 4)) & 0xf);
      else
	insn = emit_insn
	  (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
		       GEN_INT (- args_to_push)));
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* If this is an interrupt service routine, and the link register
     is going to be pushed, and we're not generating extra
     push of IP (needed when frame is needed and frame layout if apcs),
     subtracting four from LR now will mean that the function return
     can be done with a single instruction.  */
  if ((func_type == ARM_FT_ISR || func_type == ARM_FT_FIQ)
      && (live_regs_mask & (1 << LR_REGNUM)) != 0
      && !(frame_pointer_needed && TARGET_APCS_FRAME)
      && TARGET_ARM)
    {
      rtx lr = gen_rtx_REG (SImode, LR_REGNUM);

      emit_set_insn (lr, plus_constant (SImode, lr, -4));
    }

  if (live_regs_mask)
    {
      unsigned long dwarf_regs_mask = live_regs_mask;

      saved_regs += bit_count (live_regs_mask) * 4;
      if (optimize_size && !frame_pointer_needed
	  && saved_regs == offsets->saved_regs - offsets->saved_args)
	{
	  /* If no coprocessor registers are being pushed and we don't have
	     to worry about a frame pointer then push extra registers to
	     create the stack frame.  This is done is a way that does not
	     alter the frame layout, so is independent of the epilogue.  */
	  int n;
	  int frame;
	  n = 0;
	  while (n < 8 && (live_regs_mask & (1 << n)) == 0)
	    n++;
	  frame = offsets->outgoing_args - (offsets->saved_args + saved_regs);
	  if (frame && n * 4 >= frame)
	    {
	      n = frame / 4;
	      live_regs_mask |= (1 << n) - 1;
	      saved_regs += frame;
	    }
	}

      if (TARGET_LDRD
	  && current_tune->prefer_ldrd_strd
          && !optimize_function_for_size_p (cfun))
        {
	  gcc_checking_assert (live_regs_mask == dwarf_regs_mask);
          if (TARGET_THUMB2)
	    thumb2_emit_strd_push (live_regs_mask);
          else if (TARGET_ARM
                   && !TARGET_APCS_FRAME
                   && !IS_INTERRUPT (func_type))
	    arm_emit_strd_push (live_regs_mask);
          else
            {
	      insn = emit_multi_reg_push (live_regs_mask, live_regs_mask);
              RTX_FRAME_RELATED_P (insn) = 1;
            }
        }
      else
        {
	  insn = emit_multi_reg_push (live_regs_mask, dwarf_regs_mask);
          RTX_FRAME_RELATED_P (insn) = 1;
        }
    }

  if (! IS_VOLATILE (func_type))
    saved_regs += arm_save_coproc_regs ();

  if (frame_pointer_needed && TARGET_ARM)
    {
      /* Create the new frame pointer.  */
      if (TARGET_APCS_FRAME)
	{
	  insn = GEN_INT (-(4 + args_to_push + fp_offset));
	  insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx, ip_rtx, insn));
	  RTX_FRAME_RELATED_P (insn) = 1;

	  if (IS_NESTED (func_type))
	    {
	      /* Recover the static chain register.  */
	      if (!arm_r3_live_at_start_p () || saved_pretend_args)
		insn = gen_rtx_REG (SImode, 3);
	      else
		{
		  insn = plus_constant (Pmode, hard_frame_pointer_rtx, 4);
		  insn = gen_frame_mem (SImode, insn);
		}
	      emit_set_insn (ip_rtx, insn);
	      /* Add a USE to stop propagate_one_insn() from barfing.  */
	      emit_insn (gen_force_register_use (ip_rtx));
	    }
	}
      else
	{
	  insn = GEN_INT (saved_regs - 4);
	  insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
					stack_pointer_rtx, insn));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
    }

  if (flag_stack_usage_info)
    current_function_static_stack_size
      = offsets->outgoing_args - offsets->saved_args;

  if (offsets->outgoing_args != offsets->saved_args + saved_regs)
    {
      /* This add can produce multiple insns for a large constant, so we
	 need to get tricky.  */
      rtx last = get_last_insn ();

      amount = GEN_INT (offsets->saved_args + saved_regs
			- offsets->outgoing_args);

      insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
				    amount));
      do
	{
	  last = last ? NEXT_INSN (last) : get_insns ();
	  RTX_FRAME_RELATED_P (last) = 1;
	}
      while (last != insn);

      /* If the frame pointer is needed, emit a special barrier that
	 will prevent the scheduler from moving stores to the frame
	 before the stack adjustment.  */
      if (frame_pointer_needed)
	insn = emit_insn (gen_stack_tie (stack_pointer_rtx,
					 hard_frame_pointer_rtx));
    }


  if (frame_pointer_needed && TARGET_THUMB2)
    thumb_set_frame_pointer (offsets);

  if (flag_pic && arm_pic_register != INVALID_REGNUM)
    {
      unsigned long mask;

      mask = live_regs_mask;
      mask &= THUMB2_WORK_REGS;
      if (!IS_NESTED (func_type))
	mask |= (1 << IP_REGNUM);
      arm_load_pic_register (mask);
    }

  /* If we are profiling, make sure no instructions are scheduled before
     the call to mcount.  Similarly if the user has requested no
     scheduling in the prolog.  Similarly if we want non-call exceptions
     using the EABI unwinder, to prevent faulting instructions from being
     swapped with a stack adjustment.  */
  if (crtl->profile || !TARGET_SCHED_PROLOG
      || (arm_except_unwind_info (&global_options) == UI_TARGET
	  && cfun->can_throw_non_call_exceptions))
    emit_insn (gen_blockage ());

  /* If the link register is being kept alive, with the return address in it,
     then make sure that it does not get reused by the ce2 pass.  */
  if ((live_regs_mask & (1 << LR_REGNUM)) == 0)
    cfun->machine->lr_save_eliminated = 1;
}

/* Print condition code to STREAM.  Helper function for arm_print_operand.  */
static void
arm_print_condition (FILE *stream)
{
  if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4)
    {
      /* Branch conversion is not implemented for Thumb-2.  */
      if (TARGET_THUMB)
	{
	  output_operand_lossage ("predicated Thumb instruction");
	  return;
	}
      if (current_insn_predicate != NULL)
	{
	  output_operand_lossage
	    ("predicated instruction in conditional sequence");
	  return;
	}

      fputs (arm_condition_codes[arm_current_cc], stream);
    }
  else if (current_insn_predicate)
    {
      enum arm_cond_code code;

      if (TARGET_THUMB1)
	{
	  output_operand_lossage ("predicated Thumb instruction");
	  return;
	}

      code = get_arm_condition_code (current_insn_predicate);
      fputs (arm_condition_codes[code], stream);
    }
}


/* If CODE is 'd', then the X is a condition operand and the instruction
   should only be executed if the condition is true.
   if CODE is 'D', then the X is a condition operand and the instruction
   should only be executed if the condition is false: however, if the mode
   of the comparison is CCFPEmode, then always execute the instruction -- we
   do this because in these circumstances !GE does not necessarily imply LT;
   in these cases the instruction pattern will take care to make sure that
   an instruction containing %d will follow, thereby undoing the effects of
   doing this instruction unconditionally.
   If CODE is 'N' then X is a floating point operand that must be negated
   before output.
   If CODE is 'B' then output a bitwise inverted value of X (a const int).
   If X is a REG and CODE is `M', output a ldm/stm style multi-reg.  */
static void
arm_print_operand (FILE *stream, rtx x, int code)
{
  switch (code)
    {
    case '@':
      fputs (ASM_COMMENT_START, stream);
      return;

    case '_':
      fputs (user_label_prefix, stream);
      return;

    case '|':
      fputs (REGISTER_PREFIX, stream);
      return;

    case '?':
      arm_print_condition (stream);
      return;

    case '(':
      /* Nothing in unified syntax, otherwise the current condition code.  */
      if (!TARGET_UNIFIED_ASM)
	arm_print_condition (stream);
      break;

    case ')':
      /* The current condition code in unified syntax, otherwise nothing.  */
      if (TARGET_UNIFIED_ASM)
	arm_print_condition (stream);
      break;

    case '.':
      /* The current condition code for a condition code setting instruction.
	 Preceded by 's' in unified syntax, otherwise followed by 's'.  */
      if (TARGET_UNIFIED_ASM)
	{
	  fputc('s', stream);
	  arm_print_condition (stream);
	}
      else
	{
	  arm_print_condition (stream);
	  fputc('s', stream);
	}
      return;

    case '!':
      /* If the instruction is conditionally executed then print
	 the current condition code, otherwise print 's'.  */
      gcc_assert (TARGET_THUMB2 && TARGET_UNIFIED_ASM);
      if (current_insn_predicate)
	arm_print_condition (stream);
      else
	fputc('s', stream);
      break;

    /* %# is a "break" sequence. It doesn't output anything, but is used to
       separate e.g. operand numbers from following text, if that text consists
       of further digits which we don't want to be part of the operand
       number.  */
    case '#':
      return;

    case 'N':
      {
	REAL_VALUE_TYPE r;
	REAL_VALUE_FROM_CONST_DOUBLE (r, x);
	r = real_value_negate (&r);
	fprintf (stream, "%s", fp_const_from_val (&r));
      }
      return;

    /* An integer or symbol address without a preceding # sign.  */
    case 'c':
      switch (GET_CODE (x))
	{
	case CONST_INT:
	  fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
	  break;

	case SYMBOL_REF:
	  output_addr_const (stream, x);
	  break;

	case CONST:
	  if (GET_CODE (XEXP (x, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
	    {
	      output_addr_const (stream, x);
	      break;
	    }
	  /* Fall through.  */

	default:
	  output_operand_lossage ("Unsupported operand for code '%c'", code);
	}
      return;

    /* An integer that we want to print in HEX.  */
    case 'x':
      switch (GET_CODE (x))
	{
	case CONST_INT:
	  fprintf (stream, "#" HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
	  break;

	default:
	  output_operand_lossage ("Unsupported operand for code '%c'", code);
	}
      return;

    case 'B':
      if (CONST_INT_P (x))
	{
	  HOST_WIDE_INT val;
	  val = ARM_SIGN_EXTEND (~INTVAL (x));
	  fprintf (stream, HOST_WIDE_INT_PRINT_DEC, val);
	}
      else
	{
	  putc ('~', stream);
	  output_addr_const (stream, x);
	}
      return;

    case 'L':
      /* The low 16 bits of an immediate constant.  */
      fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL(x) & 0xffff);
      return;

    case 'i':
      fprintf (stream, "%s", arithmetic_instr (x, 1));
      return;

    case 'I':
      fprintf (stream, "%s", arithmetic_instr (x, 0));
      return;

    case 'S':
      {
	HOST_WIDE_INT val;
	const char *shift;

	shift = shift_op (x, &val);

	if (shift)
	  {
	    fprintf (stream, ", %s ", shift);
	    if (val == -1)
	      arm_print_operand (stream, XEXP (x, 1), 0);
	    else
	      fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, val);
	  }
      }
      return;

      /* An explanation of the 'Q', 'R' and 'H' register operands:

	 In a pair of registers containing a DI or DF value the 'Q'
	 operand returns the register number of the register containing
	 the least significant part of the value.  The 'R' operand returns
	 the register number of the register containing the most
	 significant part of the value.

	 The 'H' operand returns the higher of the two register numbers.
	 On a run where WORDS_BIG_ENDIAN is true the 'H' operand is the
	 same as the 'Q' operand, since the most significant part of the
	 value is held in the lower number register.  The reverse is true
	 on systems where WORDS_BIG_ENDIAN is false.

	 The purpose of these operands is to distinguish between cases
	 where the endian-ness of the values is important (for example
	 when they are added together), and cases where the endian-ness
	 is irrelevant, but the order of register operations is important.
	 For example when loading a value from memory into a register
	 pair, the endian-ness does not matter.  Provided that the value
	 from the lower memory address is put into the lower numbered
	 register, and the value from the higher address is put into the
	 higher numbered register, the load will work regardless of whether
	 the value being loaded is big-wordian or little-wordian.  The
	 order of the two register loads can matter however, if the address
	 of the memory location is actually held in one of the registers
	 being overwritten by the load.

	 The 'Q' and 'R' constraints are also available for 64-bit
	 constants.  */
    case 'Q':
      if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	{
	  rtx part = gen_lowpart (SImode, x);
	  fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, INTVAL (part));
	  return;
	}

      if (!REG_P (x) || REGNO (x) > LAST_ARM_REGNUM)
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 1 : 0));
      return;

    case 'R':
      if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	{
	  enum machine_mode mode = GET_MODE (x);
	  rtx part;

	  if (mode == VOIDmode)
	    mode = DImode;
	  part = gen_highpart_mode (SImode, mode, x);
	  fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, INTVAL (part));
	  return;
	}

      if (!REG_P (x) || REGNO (x) > LAST_ARM_REGNUM)
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 0 : 1));
      return;

    case 'H':
      if (!REG_P (x) || REGNO (x) > LAST_ARM_REGNUM)
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      asm_fprintf (stream, "%r", REGNO (x) + 1);
      return;

    case 'J':
      if (!REG_P (x) || REGNO (x) > LAST_ARM_REGNUM)
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 3 : 2));
      return;

    case 'K':
      if (!REG_P (x) || REGNO (x) > LAST_ARM_REGNUM)
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 2 : 3));
      return;

    case 'm':
      asm_fprintf (stream, "%r",
		   REG_P (XEXP (x, 0))
		   ? REGNO (XEXP (x, 0)) : REGNO (XEXP (XEXP (x, 0), 0)));
      return;

    case 'M':
      asm_fprintf (stream, "{%r-%r}",
		   REGNO (x),
		   REGNO (x) + ARM_NUM_REGS (GET_MODE (x)) - 1);
      return;

    /* Like 'M', but writing doubleword vector registers, for use by Neon
       insns.  */
    case 'h':
      {
        int regno = (REGNO (x) - FIRST_VFP_REGNUM) / 2;
        int numregs = ARM_NUM_REGS (GET_MODE (x)) / 2;
        if (numregs == 1)
          asm_fprintf (stream, "{d%d}", regno);
        else
          asm_fprintf (stream, "{d%d-d%d}", regno, regno + numregs - 1);
      }
      return;

    case 'd':
      /* CONST_TRUE_RTX means always -- that's the default.  */
      if (x == const_true_rtx)
	return;

      if (!COMPARISON_P (x))
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      fputs (arm_condition_codes[get_arm_condition_code (x)],
	     stream);
      return;

    case 'D':
      /* CONST_TRUE_RTX means not always -- i.e. never.  We shouldn't ever
	 want to do that.  */
      if (x == const_true_rtx)
	{
	  output_operand_lossage ("instruction never executed");
	  return;
	}
      if (!COMPARISON_P (x))
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      fputs (arm_condition_codes[ARM_INVERSE_CONDITION_CODE
				 (get_arm_condition_code (x))],
	     stream);
      return;

    case 's':
    case 'V':
    case 'W':
    case 'X':
    case 'Y':
    case 'Z':
      /* Former Maverick support, removed after GCC-4.7.  */
      output_operand_lossage ("obsolete Maverick format code '%c'", code);
      return;

    case 'U':
      if (!REG_P (x)
	  || REGNO (x) < FIRST_IWMMXT_GR_REGNUM
	  || REGNO (x) > LAST_IWMMXT_GR_REGNUM)
	/* Bad value for wCG register number.  */
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      else
	fprintf (stream, "%d", REGNO (x) - FIRST_IWMMXT_GR_REGNUM);
      return;

      /* Print an iWMMXt control register name.  */
    case 'w':
      if (!CONST_INT_P (x)
	  || INTVAL (x) < 0
	  || INTVAL (x) >= 16)
	/* Bad value for wC register number.  */
	{
	  output_operand_lossage ("invalid operand for code '%c'", code);
	  return;
	}

      else
	{
	  static const char * wc_reg_names [16] =
	    {
	      "wCID",  "wCon",  "wCSSF", "wCASF",
	      "wC4",   "wC5",   "wC6",   "wC7",
	      "wCGR0", "wCGR1", "wCGR2", "wCGR3",
	      "wC12",  "wC13",  "wC14",  "wC15"
	    };

	  fputs (wc_reg_names [INTVAL (x)], stream);
	}
      return;

    /* Print the high single-precision register of a VFP double-precision
       register.  */
    case 'p':
      {
        int mode = GET_MODE (x);
        int regno;

        if (GET_MODE_SIZE (mode) != 8 || !REG_P (x))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

        regno = REGNO (x);
        if (!VFP_REGNO_OK_FOR_DOUBLE (regno))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

	fprintf (stream, "s%d", regno - FIRST_VFP_REGNUM + 1);
      }
      return;

    /* Print a VFP/Neon double precision or quad precision register name.  */
    case 'P':
    case 'q':
      {
	int mode = GET_MODE (x);
	int is_quad = (code == 'q');
	int regno;

	if (GET_MODE_SIZE (mode) != (is_quad ? 16 : 8))
	  {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
	  }

	if (!REG_P (x)
	    || !IS_VFP_REGNUM (REGNO (x)))
	  {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
	  }

	regno = REGNO (x);
	if ((is_quad && !NEON_REGNO_OK_FOR_QUAD (regno))
            || (!is_quad && !VFP_REGNO_OK_FOR_DOUBLE (regno)))
	  {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
	  }

	fprintf (stream, "%c%d", is_quad ? 'q' : 'd',
	  (regno - FIRST_VFP_REGNUM) >> (is_quad ? 2 : 1));
      }
      return;

    /* These two codes print the low/high doubleword register of a Neon quad
       register, respectively.  For pair-structure types, can also print
       low/high quadword registers.  */
    case 'e':
    case 'f':
      {
        int mode = GET_MODE (x);
        int regno;

        if ((GET_MODE_SIZE (mode) != 16
	     && GET_MODE_SIZE (mode) != 32) || !REG_P (x))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

        regno = REGNO (x);
        if (!NEON_REGNO_OK_FOR_QUAD (regno))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

        if (GET_MODE_SIZE (mode) == 16)
          fprintf (stream, "d%d", ((regno - FIRST_VFP_REGNUM) >> 1)
				  + (code == 'f' ? 1 : 0));
        else
          fprintf (stream, "q%d", ((regno - FIRST_VFP_REGNUM) >> 2)
				  + (code == 'f' ? 1 : 0));
      }
      return;

    /* Print a VFPv3 floating-point constant, represented as an integer
       index.  */
    case 'G':
      {
        int index = vfp3_const_double_index (x);
	gcc_assert (index != -1);
	fprintf (stream, "%d", index);
      }
      return;

    /* Print bits representing opcode features for Neon.

       Bit 0 is 1 for signed, 0 for unsigned.  Floats count as signed
       and polynomials as unsigned.

       Bit 1 is 1 for floats and polynomials, 0 for ordinary integers.

       Bit 2 is 1 for rounding functions, 0 otherwise.  */

    /* Identify the type as 's', 'u', 'p' or 'f'.  */
    case 'T':
      {
        HOST_WIDE_INT bits = INTVAL (x);
        fputc ("uspf"[bits & 3], stream);
      }
      return;

    /* Likewise, but signed and unsigned integers are both 'i'.  */
    case 'F':
      {
        HOST_WIDE_INT bits = INTVAL (x);
        fputc ("iipf"[bits & 3], stream);
      }
      return;

    /* As for 'T', but emit 'u' instead of 'p'.  */
    case 't':
      {
        HOST_WIDE_INT bits = INTVAL (x);
        fputc ("usuf"[bits & 3], stream);
      }
      return;

    /* Bit 2: rounding (vs none).  */
    case 'O':
      {
        HOST_WIDE_INT bits = INTVAL (x);
        fputs ((bits & 4) != 0 ? "r" : "", stream);
      }
      return;

    /* Memory operand for vld1/vst1 instruction.  */
    case 'A':
      {
	rtx addr;
	bool postinc = FALSE;
	unsigned align, memsize, align_bits;

	gcc_assert (MEM_P (x));
	addr = XEXP (x, 0);
	if (GET_CODE (addr) == POST_INC)
	  {
	    postinc = 1;
	    addr = XEXP (addr, 0);
	  }
	asm_fprintf (stream, "[%r", REGNO (addr));

	/* We know the alignment of this access, so we can emit a hint in the
	   instruction (for some alignments) as an aid to the memory subsystem
	   of the target.  */
	align = MEM_ALIGN (x) >> 3;
	memsize = MEM_SIZE (x);

	/* Only certain alignment specifiers are supported by the hardware.  */
	/* Note that ARM EABI only guarentees 8-byte stack alignment. While GCC
	   honors stricter alignment of composite type in user code, it doesn't
	   observe the alignment of memory passed as an extra argument for function
	   returning large composite type.  See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57271 */
	if (memsize == 32 && (align % 32) == 0 && !TARGET_AAPCS_BASED)
	  align_bits = 256;
	else if ((memsize == 16 || memsize == 32) && (align % 16) == 0 && !TARGET_AAPCS_BASED)
	  align_bits = 128;
	else if (memsize >= 8 && (align % 8) == 0)
	  align_bits = 64;
	else
	  align_bits = 0;

	if (align_bits != 0)
	  asm_fprintf (stream, ":%d", align_bits);

	asm_fprintf (stream, "]");

	if (postinc)
	  fputs("!", stream);
      }
      return;

    case 'C':
      {
	rtx addr;

	gcc_assert (MEM_P (x));
	addr = XEXP (x, 0);
	gcc_assert (REG_P (addr));
	asm_fprintf (stream, "[%r]", REGNO (addr));
      }
      return;

    /* Translate an S register number into a D register number and element index.  */
    case 'y':
      {
        int mode = GET_MODE (x);
        int regno;

        if (GET_MODE_SIZE (mode) != 4 || !REG_P (x))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

        regno = REGNO (x);
        if (!VFP_REGNO_OK_FOR_SINGLE (regno))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

	regno = regno - FIRST_VFP_REGNUM;
	fprintf (stream, "d%d[%d]", regno / 2, regno % 2);
      }
      return;

    case 'v':
	gcc_assert (CONST_DOUBLE_P (x));
	int result;
	result = vfp3_const_double_for_fract_bits (x);
	if (result == 0)
	  result = vfp3_const_double_for_bits (x);
	fprintf (stream, "#%d", result);
	return;

    /* Register specifier for vld1.16/vst1.16.  Translate the S register
       number into a D register number and element index.  */
    case 'z':
      {
        int mode = GET_MODE (x);
        int regno;

        if (GET_MODE_SIZE (mode) != 2 || !REG_P (x))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

        regno = REGNO (x);
        if (!VFP_REGNO_OK_FOR_SINGLE (regno))
          {
	    output_operand_lossage ("invalid operand for code '%c'", code);
	    return;
          }

	regno = regno - FIRST_VFP_REGNUM;
	fprintf (stream, "d%d[%d]", regno/2, ((regno % 2) ? 2 : 0));
      }
      return;

    default:
      if (x == 0)
	{
	  output_operand_lossage ("missing operand");
	  return;
	}

      switch (GET_CODE (x))
	{
	case REG:
	  asm_fprintf (stream, "%r", REGNO (x));
	  break;

	case MEM:
	  output_memory_reference_mode = GET_MODE (x);
	  output_address (XEXP (x, 0));
	  break;

	case CONST_DOUBLE:
          if (TARGET_NEON)
            {
              char fpstr[20];
              real_to_decimal (fpstr, CONST_DOUBLE_REAL_VALUE (x),
			       sizeof (fpstr), 0, 1);
              fprintf (stream, "#%s", fpstr);
            }
          else
	    fprintf (stream, "#%s", fp_immediate_constant (x));
	  break;

	default:
	  gcc_assert (GET_CODE (x) != NEG);
	  fputc ('#', stream);
	  if (GET_CODE (x) == HIGH)
	    {
	      fputs (":lower16:", stream);
	      x = XEXP (x, 0);
	    }

	  output_addr_const (stream, x);
	  break;
	}
    }
}

/* Target hook for printing a memory address.  */
static void
arm_print_operand_address (FILE *stream, rtx x)
{
  if (TARGET_32BIT)
    {
      int is_minus = GET_CODE (x) == MINUS;

      if (REG_P (x))
	asm_fprintf (stream, "[%r]", REGNO (x));
      else if (GET_CODE (x) == PLUS || is_minus)
	{
	  rtx base = XEXP (x, 0);
	  rtx index = XEXP (x, 1);
	  HOST_WIDE_INT offset = 0;
	  if (!REG_P (base)
	      || (REG_P (index) && REGNO (index) == SP_REGNUM))
	    {
	      /* Ensure that BASE is a register.  */
	      /* (one of them must be).  */
	      /* Also ensure the SP is not used as in index register.  */
	      rtx temp = base;
	      base = index;
	      index = temp;
	    }
	  switch (GET_CODE (index))
	    {
	    case CONST_INT:
	      offset = INTVAL (index);
	      if (is_minus)
		offset = -offset;
	      asm_fprintf (stream, "[%r, #%wd]",
			   REGNO (base), offset);
	      break;

	    case REG:
	      asm_fprintf (stream, "[%r, %s%r]",
			   REGNO (base), is_minus ? "-" : "",
			   REGNO (index));
	      break;

	    case MULT:
	    case ASHIFTRT:
	    case LSHIFTRT:
	    case ASHIFT:
	    case ROTATERT:
	      {
		asm_fprintf (stream, "[%r, %s%r",
			     REGNO (base), is_minus ? "-" : "",
			     REGNO (XEXP (index, 0)));
		arm_print_operand (stream, index, 'S');
		fputs ("]", stream);
		break;
	      }

	    default:
	      gcc_unreachable ();
	    }
	}
      else if (GET_CODE (x) == PRE_INC || GET_CODE (x) == POST_INC
	       || GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_DEC)
	{
	  extern enum machine_mode output_memory_reference_mode;

	  gcc_assert (REG_P (XEXP (x, 0)));

	  if (GET_CODE (x) == PRE_DEC || GET_CODE (x) == PRE_INC)
	    asm_fprintf (stream, "[%r, #%s%d]!",
			 REGNO (XEXP (x, 0)),
			 GET_CODE (x) == PRE_DEC ? "-" : "",
			 GET_MODE_SIZE (output_memory_reference_mode));
	  else
	    asm_fprintf (stream, "[%r], #%s%d",
			 REGNO (XEXP (x, 0)),
			 GET_CODE (x) == POST_DEC ? "-" : "",
			 GET_MODE_SIZE (output_memory_reference_mode));
	}
      else if (GET_CODE (x) == PRE_MODIFY)
	{
	  asm_fprintf (stream, "[%r, ", REGNO (XEXP (x, 0)));
	  if (CONST_INT_P (XEXP (XEXP (x, 1), 1)))
	    asm_fprintf (stream, "#%wd]!",
			 INTVAL (XEXP (XEXP (x, 1), 1)));
	  else
	    asm_fprintf (stream, "%r]!",
			 REGNO (XEXP (XEXP (x, 1), 1)));
	}
      else if (GET_CODE (x) == POST_MODIFY)
	{
	  asm_fprintf (stream, "[%r], ", REGNO (XEXP (x, 0)));
	  if (CONST_INT_P (XEXP (XEXP (x, 1), 1)))
	    asm_fprintf (stream, "#%wd",
			 INTVAL (XEXP (XEXP (x, 1), 1)));
	  else
	    asm_fprintf (stream, "%r",
			 REGNO (XEXP (XEXP (x, 1), 1)));
	}
      else output_addr_const (stream, x);
    }
  else
    {
      if (REG_P (x))
	asm_fprintf (stream, "[%r]", REGNO (x));
      else if (GET_CODE (x) == POST_INC)
	asm_fprintf (stream, "%r!", REGNO (XEXP (x, 0)));
      else if (GET_CODE (x) == PLUS)
	{
	  gcc_assert (REG_P (XEXP (x, 0)));
	  if (CONST_INT_P (XEXP (x, 1)))
	    asm_fprintf (stream, "[%r, #%wd]",
			 REGNO (XEXP (x, 0)),
			 INTVAL (XEXP (x, 1)));
	  else
	    asm_fprintf (stream, "[%r, %r]",
			 REGNO (XEXP (x, 0)),
			 REGNO (XEXP (x, 1)));
	}
      else
	output_addr_const (stream, x);
    }
}

/* Target hook for indicating whether a punctuation character for
   TARGET_PRINT_OPERAND is valid.  */
static bool
arm_print_operand_punct_valid_p (unsigned char code)
{
  return (code == '@' || code == '|' || code == '.'
	  || code == '(' || code == ')' || code == '#'
	  || (TARGET_32BIT && (code == '?'))
	  || (TARGET_THUMB2 && (code == '!'))
	  || (TARGET_THUMB && (code == '_')));
}

/* Target hook for assembling integer objects.  The ARM version needs to
   handle word-sized values specially.  */
static bool
arm_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
  enum machine_mode mode;

  if (size == UNITS_PER_WORD && aligned_p)
    {
      fputs ("\t.word\t", asm_out_file);
      output_addr_const (asm_out_file, x);

      /* Mark symbols as position independent.  We only do this in the
	 .text segment, not in the .data segment.  */
      if (NEED_GOT_RELOC && flag_pic && making_const_table &&
	  (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF))
	{
	  /* See legitimize_pic_address for an explanation of the
	     TARGET_VXWORKS_RTP check.  */
	  if (!arm_pic_data_is_text_relative
	      || (GET_CODE (x) == SYMBOL_REF && !SYMBOL_REF_LOCAL_P (x)))
	    fputs ("(GOT)", asm_out_file);
	  else
	    fputs ("(GOTOFF)", asm_out_file);
	}
      fputc ('\n', asm_out_file);
      return true;
    }

  mode = GET_MODE (x);

  if (arm_vector_mode_supported_p (mode))
    {
      int i, units;

      gcc_assert (GET_CODE (x) == CONST_VECTOR);

      units = CONST_VECTOR_NUNITS (x);
      size = GET_MODE_SIZE (GET_MODE_INNER (mode));

      if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
        for (i = 0; i < units; i++)
	  {
	    rtx elt = CONST_VECTOR_ELT (x, i);
	    assemble_integer
	      (elt, size, i == 0 ? BIGGEST_ALIGNMENT : size * BITS_PER_UNIT, 1);
	  }
      else
        for (i = 0; i < units; i++)
          {
            rtx elt = CONST_VECTOR_ELT (x, i);
            REAL_VALUE_TYPE rval;

            REAL_VALUE_FROM_CONST_DOUBLE (rval, elt);

            assemble_real
              (rval, GET_MODE_INNER (mode),
              i == 0 ? BIGGEST_ALIGNMENT : size * BITS_PER_UNIT);
          }

      return true;
    }

  return default_assemble_integer (x, size, aligned_p);
}

static void
arm_elf_asm_cdtor (rtx symbol, int priority, bool is_ctor)
{
  section *s;

  if (!TARGET_AAPCS_BASED)
    {
      (is_ctor ?
       default_named_section_asm_out_constructor
       : default_named_section_asm_out_destructor) (symbol, priority);
      return;
    }

  /* Put these in the .init_array section, using a special relocation.  */
  if (priority != DEFAULT_INIT_PRIORITY)
    {
      char buf[18];
      sprintf (buf, "%s.%.5u",
	       is_ctor ? ".init_array" : ".fini_array",
	       priority);
      s = get_section (buf, SECTION_WRITE, NULL_TREE);
    }
  else if (is_ctor)
    s = ctors_section;
  else
    s = dtors_section;

  switch_to_section (s);
  assemble_align (POINTER_SIZE);
  fputs ("\t.word\t", asm_out_file);
  output_addr_const (asm_out_file, symbol);
  fputs ("(target1)\n", asm_out_file);
}

/* Add a function to the list of static constructors.  */

static void
arm_elf_asm_constructor (rtx symbol, int priority)
{
  arm_elf_asm_cdtor (symbol, priority, /*is_ctor=*/true);
}

/* Add a function to the list of static destructors.  */

static void
arm_elf_asm_destructor (rtx symbol, int priority)
{
  arm_elf_asm_cdtor (symbol, priority, /*is_ctor=*/false);
}

/* A finite state machine takes care of noticing whether or not instructions
   can be conditionally executed, and thus decrease execution time and code
   size by deleting branch instructions.  The fsm is controlled by
   final_prescan_insn, and controls the actions of ASM_OUTPUT_OPCODE.  */

/* The state of the fsm controlling condition codes are:
   0: normal, do nothing special
   1: make ASM_OUTPUT_OPCODE not output this instruction
   2: make ASM_OUTPUT_OPCODE not output this instruction
   3: make instructions conditional
   4: make instructions conditional

   State transitions (state->state by whom under condition):
   0 -> 1 final_prescan_insn if the `target' is a label
   0 -> 2 final_prescan_insn if the `target' is an unconditional branch
   1 -> 3 ASM_OUTPUT_OPCODE after not having output the conditional branch
   2 -> 4 ASM_OUTPUT_OPCODE after not having output the conditional branch
   3 -> 0 (*targetm.asm_out.internal_label) if the `target' label is reached
          (the target label has CODE_LABEL_NUMBER equal to arm_target_label).
   4 -> 0 final_prescan_insn if the `target' unconditional branch is reached
          (the target insn is arm_target_insn).

   If the jump clobbers the conditions then we use states 2 and 4.

   A similar thing can be done with conditional return insns.

   XXX In case the `target' is an unconditional branch, this conditionalising
   of the instructions always reduces code size, but not always execution
   time.  But then, I want to reduce the code size to somewhere near what
   /bin/cc produces.  */

/* In addition to this, state is maintained for Thumb-2 COND_EXEC
   instructions.  When a COND_EXEC instruction is seen the subsequent
   instructions are scanned so that multiple conditional instructions can be
   combined into a single IT block.  arm_condexec_count and arm_condexec_mask
   specify the length and true/false mask for the IT block.  These will be
   decremented/zeroed by arm_asm_output_opcode as the insns are output.  */

/* Returns the index of the ARM condition code string in
   `arm_condition_codes', or ARM_NV if the comparison is invalid.
   COMPARISON should be an rtx like `(eq (...) (...))'.  */

enum arm_cond_code
maybe_get_arm_condition_code (rtx comparison)
{
  enum machine_mode mode = GET_MODE (XEXP (comparison, 0));
  enum arm_cond_code code;
  enum rtx_code comp_code = GET_CODE (comparison);

  if (GET_MODE_CLASS (mode) != MODE_CC)
    mode = SELECT_CC_MODE (comp_code, XEXP (comparison, 0),
			   XEXP (comparison, 1));

  switch (mode)
    {
    case CC_DNEmode: code = ARM_NE; goto dominance;
    case CC_DEQmode: code = ARM_EQ; goto dominance;
    case CC_DGEmode: code = ARM_GE; goto dominance;
    case CC_DGTmode: code = ARM_GT; goto dominance;
    case CC_DLEmode: code = ARM_LE; goto dominance;
    case CC_DLTmode: code = ARM_LT; goto dominance;
    case CC_DGEUmode: code = ARM_CS; goto dominance;
    case CC_DGTUmode: code = ARM_HI; goto dominance;
    case CC_DLEUmode: code = ARM_LS; goto dominance;
    case CC_DLTUmode: code = ARM_CC;

    dominance:
      if (comp_code == EQ)
	return ARM_INVERSE_CONDITION_CODE (code);
      if (comp_code == NE)
	return code;
      return ARM_NV;

    case CC_NOOVmode:
      switch (comp_code)
	{
	case NE: return ARM_NE;
	case EQ: return ARM_EQ;
	case GE: return ARM_PL;
	case LT: return ARM_MI;
	default: return ARM_NV;
	}

    case CC_Zmode:
      switch (comp_code)
	{
	case NE: return ARM_NE;
	case EQ: return ARM_EQ;
	default: return ARM_NV;
	}

    case CC_Nmode:
      switch (comp_code)
	{
	case NE: return ARM_MI;
	case EQ: return ARM_PL;
	default: return ARM_NV;
	}

    case CCFPEmode:
    case CCFPmode:
      /* We can handle all cases except UNEQ and LTGT.  */
      switch (comp_code)
	{
	case GE: return ARM_GE;
	case GT: return ARM_GT;
	case LE: return ARM_LS;
	case LT: return ARM_MI;
	case NE: return ARM_NE;
	case EQ: return ARM_EQ;
	case ORDERED: return ARM_VC;
	case UNORDERED: return ARM_VS;
	case UNLT: return ARM_LT;
	case UNLE: return ARM_LE;
	case UNGT: return ARM_HI;
	case UNGE: return ARM_PL;
	  /* UNEQ and LTGT do not have a representation.  */
	case UNEQ: /* Fall through.  */
	case LTGT: /* Fall through.  */
	default: return ARM_NV;
	}

    case CC_SWPmode:
      switch (comp_code)
	{
	case NE: return ARM_NE;
	case EQ: return ARM_EQ;
	case GE: return ARM_LE;
	case GT: return ARM_LT;
	case LE: return ARM_GE;
	case LT: return ARM_GT;
	case GEU: return ARM_LS;
	case GTU: return ARM_CC;
	case LEU: return ARM_CS;
	case LTU: return ARM_HI;
	default: return ARM_NV;
	}

    case CC_Cmode:
      switch (comp_code)
	{
	case LTU: return ARM_CS;
	case GEU: return ARM_CC;
	default: return ARM_NV;
	}

    case CC_CZmode:
      switch (comp_code)
	{
	case NE: return ARM_NE;
	case EQ: return ARM_EQ;
	case GEU: return ARM_CS;
	case GTU: return ARM_HI;
	case LEU: return ARM_LS;
	case LTU: return ARM_CC;
	default: return ARM_NV;
	}

    case CC_NCVmode:
      switch (comp_code)
	{
	case GE: return ARM_GE;
	case LT: return ARM_LT;
	case GEU: return ARM_CS;
	case LTU: return ARM_CC;
	default: return ARM_NV;
	}

    case CCmode:
      switch (comp_code)
	{
	case NE: return ARM_NE;
	case EQ: return ARM_EQ;
	case GE: return ARM_GE;
	case GT: return ARM_GT;
	case LE: return ARM_LE;
	case LT: return ARM_LT;
	case GEU: return ARM_CS;
	case GTU: return ARM_HI;
	case LEU: return ARM_LS;
	case LTU: return ARM_CC;
	default: return ARM_NV;
	}

    default: gcc_unreachable ();
    }
}

/* Like maybe_get_arm_condition_code, but never return ARM_NV.  */
static enum arm_cond_code
get_arm_condition_code (rtx comparison)
{
  enum arm_cond_code code = maybe_get_arm_condition_code (comparison);
  gcc_assert (code != ARM_NV);
  return code;
}

/* Tell arm_asm_output_opcode to output IT blocks for conditionally executed
   instructions.  */
void
thumb2_final_prescan_insn (rtx insn)
{
  rtx first_insn = insn;
  rtx body = PATTERN (insn);
  rtx predicate;
  enum arm_cond_code code;
  int n;
  int mask;
  int max;

  /* max_insns_skipped in the tune was already taken into account in the
     cost model of ifcvt pass when generating COND_EXEC insns.  At this stage
     just emit the IT blocks as we can.  It does not make sense to split
     the IT blocks.  */
  max = MAX_INSN_PER_IT_BLOCK;

  /* Remove the previous insn from the count of insns to be output.  */
  if (arm_condexec_count)
      arm_condexec_count--;

  /* Nothing to do if we are already inside a conditional block.  */
  if (arm_condexec_count)
    return;

  if (GET_CODE (body) != COND_EXEC)
    return;

  /* Conditional jumps are implemented directly.  */
  if (JUMP_P (insn))
    return;

  predicate = COND_EXEC_TEST (body);
  arm_current_cc = get_arm_condition_code (predicate);

  n = get_attr_ce_count (insn);
  arm_condexec_count = 1;
  arm_condexec_mask = (1 << n) - 1;
  arm_condexec_masklen = n;
  /* See if subsequent instructions can be combined into the same block.  */
  for (;;)
    {
      insn = next_nonnote_insn (insn);

      /* Jumping into the middle of an IT block is illegal, so a label or
         barrier terminates the block.  */
      if (!NONJUMP_INSN_P (insn) && !JUMP_P (insn))
	break;

      body = PATTERN (insn);
      /* USE and CLOBBER aren't really insns, so just skip them.  */
      if (GET_CODE (body) == USE
	  || GET_CODE (body) == CLOBBER)
	continue;

      /* ??? Recognize conditional jumps, and combine them with IT blocks.  */
      if (GET_CODE (body) != COND_EXEC)
	break;
      /* Maximum number of conditionally executed instructions in a block.  */
      n = get_attr_ce_count (insn);
      if (arm_condexec_masklen + n > max)
	break;

      predicate = COND_EXEC_TEST (body);
      code = get_arm_condition_code (predicate);
      mask = (1 << n) - 1;
      if (arm_current_cc == code)
	arm_condexec_mask |= (mask << arm_condexec_masklen);
      else if (arm_current_cc != ARM_INVERSE_CONDITION_CODE(code))
	break;

      arm_condexec_count++;
      arm_condexec_masklen += n;

      /* A jump must be the last instruction in a conditional block.  */
      if (JUMP_P (insn))
	break;
    }
  /* Restore recog_data (getting the attributes of other insns can
     destroy this array, but final.c assumes that it remains intact
     across this call).  */
  extract_constrain_insn_cached (first_insn);
}

void
arm_final_prescan_insn (rtx insn)
{
  /* BODY will hold the body of INSN.  */
  rtx body = PATTERN (insn);

  /* This will be 1 if trying to repeat the trick, and things need to be
     reversed if it appears to fail.  */
  int reverse = 0;

  /* If we start with a return insn, we only succeed if we find another one.  */
  int seeking_return = 0;
  enum rtx_code return_code = UNKNOWN;

  /* START_INSN will hold the insn from where we start looking.  This is the
     first insn after the following code_label if REVERSE is true.  */
  rtx start_insn = insn;

  /* If in state 4, check if the target branch is reached, in order to
     change back to state 0.  */
  if (arm_ccfsm_state == 4)
    {
      if (insn == arm_target_insn)
	{
	  arm_target_insn = NULL;
	  arm_ccfsm_state = 0;
	}
      return;
    }

  /* If in state 3, it is possible to repeat the trick, if this insn is an
     unconditional branch to a label, and immediately following this branch
     is the previous target label which is only used once, and the label this
     branch jumps to is not too far off.  */
  if (arm_ccfsm_state == 3)
    {
      if (simplejump_p (insn))
	{
	  start_insn = next_nonnote_insn (start_insn);
	  if (BARRIER_P (start_insn))
	    {
	      /* XXX Isn't this always a barrier?  */
	      start_insn = next_nonnote_insn (start_insn);
	    }
	  if (LABEL_P (start_insn)
	      && CODE_LABEL_NUMBER (start_insn) == arm_target_label
	      && LABEL_NUSES (start_insn) == 1)
	    reverse = TRUE;
	  else
	    return;
	}
      else if (ANY_RETURN_P (body))
        {
	  start_insn = next_nonnote_insn (start_insn);
	  if (BARRIER_P (start_insn))
	    start_insn = next_nonnote_insn (start_insn);
	  if (LABEL_P (start_insn)
	      && CODE_LABEL_NUMBER (start_insn) == arm_target_label
	      && LABEL_NUSES (start_insn) == 1)
	    {
	      reverse = TRUE;
	      seeking_return = 1;
	      return_code = GET_CODE (body);
	    }
	  else
	    return;
        }
      else
	return;
    }

  gcc_assert (!arm_ccfsm_state || reverse);
  if (!JUMP_P (insn))
    return;

  /* This jump might be paralleled with a clobber of the condition codes
     the jump should always come first */
  if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
    body = XVECEXP (body, 0, 0);

  if (reverse
      || (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
	  && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
    {
      int insns_skipped;
      int fail = FALSE, succeed = FALSE;
      /* Flag which part of the IF_THEN_ELSE is the LABEL_REF.  */
      int then_not_else = TRUE;
      rtx this_insn = start_insn, label = 0;

      /* Register the insn jumped to.  */
      if (reverse)
        {
	  if (!seeking_return)
	    label = XEXP (SET_SRC (body), 0);
        }
      else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
	label = XEXP (XEXP (SET_SRC (body), 1), 0);
      else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
	{
	  label = XEXP (XEXP (SET_SRC (body), 2), 0);
	  then_not_else = FALSE;
	}
      else if (ANY_RETURN_P (XEXP (SET_SRC (body), 1)))
	{
	  seeking_return = 1;
	  return_code = GET_CODE (XEXP (SET_SRC (body), 1));
	}
      else if (ANY_RETURN_P (XEXP (SET_SRC (body), 2)))
        {
	  seeking_return = 1;
	  return_code = GET_CODE (XEXP (SET_SRC (body), 2));
	  then_not_else = FALSE;
        }
      else
	gcc_unreachable ();

      /* See how many insns this branch skips, and what kind of insns.  If all
	 insns are okay, and the label or unconditional branch to the same
	 label is not too far away, succeed.  */
      for (insns_skipped = 0;
	   !fail && !succeed && insns_skipped++ < max_insns_skipped;)
	{
	  rtx scanbody;

	  this_insn = next_nonnote_insn (this_insn);
	  if (!this_insn)
	    break;

	  switch (GET_CODE (this_insn))
	    {
	    case CODE_LABEL:
	      /* Succeed if it is the target label, otherwise fail since
		 control falls in from somewhere else.  */
	      if (this_insn == label)
		{
		  arm_ccfsm_state = 1;
		  succeed = TRUE;
		}
	      else
		fail = TRUE;
	      break;

	    case BARRIER:
	      /* Succeed if the following insn is the target label.
		 Otherwise fail.
		 If return insns are used then the last insn in a function
		 will be a barrier.  */
	      this_insn = next_nonnote_insn (this_insn);
	      if (this_insn && this_insn == label)
		{
		  arm_ccfsm_state = 1;
		  succeed = TRUE;
		}
	      else
		fail = TRUE;
	      break;

	    case CALL_INSN:
	      /* The AAPCS says that conditional calls should not be
		 used since they make interworking inefficient (the
		 linker can't transform BL<cond> into BLX).  That's
		 only a problem if the machine has BLX.  */
	      if (arm_arch5)
		{
		  fail = TRUE;
		  break;
		}

	      /* Succeed if the following insn is the target label, or
		 if the following two insns are a barrier and the
		 target label.  */
	      this_insn = next_nonnote_insn (this_insn);
	      if (this_insn && BARRIER_P (this_insn))
		this_insn = next_nonnote_insn (this_insn);

	      if (this_insn && this_insn == label
		  && insns_skipped < max_insns_skipped)
		{
		  arm_ccfsm_state = 1;
		  succeed = TRUE;
		}
	      else
		fail = TRUE;
	      break;

	    case JUMP_INSN:
      	      /* If this is an unconditional branch to the same label, succeed.
		 If it is to another label, do nothing.  If it is conditional,
		 fail.  */
	      /* XXX Probably, the tests for SET and the PC are
		 unnecessary.  */

	      scanbody = PATTERN (this_insn);
	      if (GET_CODE (scanbody) == SET
		  && GET_CODE (SET_DEST (scanbody)) == PC)
		{
		  if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
		      && XEXP (SET_SRC (scanbody), 0) == label && !reverse)
		    {
		      arm_ccfsm_state = 2;
		      succeed = TRUE;
		    }
		  else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
		    fail = TRUE;
		}
	      /* Fail if a conditional return is undesirable (e.g. on a
		 StrongARM), but still allow this if optimizing for size.  */
	      else if (GET_CODE (scanbody) == return_code
		       && !use_return_insn (TRUE, NULL)
		       && !optimize_size)
		fail = TRUE;
	      else if (GET_CODE (scanbody) == return_code)
	        {
		  arm_ccfsm_state = 2;
		  succeed = TRUE;
	        }
	      else if (GET_CODE (scanbody) == PARALLEL)
	        {
		  switch (get_attr_conds (this_insn))
		    {
		    case CONDS_NOCOND:
		      break;
		    default:
		      fail = TRUE;
		      break;
		    }
		}
	      else
		fail = TRUE;	/* Unrecognized jump (e.g. epilogue).  */

	      break;

	    case INSN:
	      /* Instructions using or affecting the condition codes make it
		 fail.  */
	      scanbody = PATTERN (this_insn);
	      if (!(GET_CODE (scanbody) == SET
		    || GET_CODE (scanbody) == PARALLEL)
		  || get_attr_conds (this_insn) != CONDS_NOCOND)
		fail = TRUE;
	      break;

	    default:
	      break;
	    }
	}
      if (succeed)
	{
	  if ((!seeking_return) && (arm_ccfsm_state == 1 || reverse))
	    arm_target_label = CODE_LABEL_NUMBER (label);
	  else
	    {
	      gcc_assert (seeking_return || arm_ccfsm_state == 2);

	      while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
	        {
		  this_insn = next_nonnote_insn (this_insn);
		  gcc_assert (!this_insn
			      || (!BARRIER_P (this_insn)
				  && !LABEL_P (this_insn)));
	        }
	      if (!this_insn)
	        {
		  /* Oh, dear! we ran off the end.. give up.  */
		  extract_constrain_insn_cached (insn);
		  arm_ccfsm_state = 0;
		  arm_target_insn = NULL;
		  return;
	        }
	      arm_target_insn = this_insn;
	    }

	  /* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
	     what it was.  */
	  if (!reverse)
	    arm_current_cc = get_arm_condition_code (XEXP (SET_SRC (body), 0));

	  if (reverse || then_not_else)
	    arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
	}

      /* Restore recog_data (getting the attributes of other insns can
	 destroy this array, but final.c assumes that it remains intact
	 across this call.  */
      extract_constrain_insn_cached (insn);
    }
}

/* Output IT instructions.  */
void
thumb2_asm_output_opcode (FILE * stream)
{
  char buff[5];
  int n;

  if (arm_condexec_mask)
    {
      for (n = 0; n < arm_condexec_masklen; n++)
	buff[n] = (arm_condexec_mask & (1 << n)) ? 't' : 'e';
      buff[n] = 0;
      asm_fprintf(stream, "i%s\t%s\n\t", buff,
		  arm_condition_codes[arm_current_cc]);
      arm_condexec_mask = 0;
    }
}

/* Returns true if REGNO is a valid register
   for holding a quantity of type MODE.  */
int
arm_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
{
  if (GET_MODE_CLASS (mode) == MODE_CC)
    return (regno == CC_REGNUM
	    || (TARGET_HARD_FLOAT && TARGET_VFP
		&& regno == VFPCC_REGNUM));

  if (TARGET_THUMB1)
    /* For the Thumb we only allow values bigger than SImode in
       registers 0 - 6, so that there is always a second low
       register available to hold the upper part of the value.
       We probably we ought to ensure that the register is the
       start of an even numbered register pair.  */
    return (ARM_NUM_REGS (mode) < 2) || (regno < LAST_LO_REGNUM);

  if (TARGET_HARD_FLOAT && TARGET_VFP
      && IS_VFP_REGNUM (regno))
    {
      if (mode == SFmode || mode == SImode)
	return VFP_REGNO_OK_FOR_SINGLE (regno);

      if (mode == DFmode)
	return VFP_REGNO_OK_FOR_DOUBLE (regno);

      /* VFP registers can hold HFmode values, but there is no point in
	 putting them there unless we have hardware conversion insns. */
      if (mode == HFmode)
	return TARGET_FP16 && VFP_REGNO_OK_FOR_SINGLE (regno);

      if (TARGET_NEON)
        return (VALID_NEON_DREG_MODE (mode) && VFP_REGNO_OK_FOR_DOUBLE (regno))
               || (VALID_NEON_QREG_MODE (mode)
                   && NEON_REGNO_OK_FOR_QUAD (regno))
	       || (mode == TImode && NEON_REGNO_OK_FOR_NREGS (regno, 2))
	       || (mode == EImode && NEON_REGNO_OK_FOR_NREGS (regno, 3))
	       || (mode == OImode && NEON_REGNO_OK_FOR_NREGS (regno, 4))
	       || (mode == CImode && NEON_REGNO_OK_FOR_NREGS (regno, 6))
	       || (mode == XImode && NEON_REGNO_OK_FOR_NREGS (regno, 8));

      return FALSE;
    }

  if (TARGET_REALLY_IWMMXT)
    {
      if (IS_IWMMXT_GR_REGNUM (regno))
	return mode == SImode;

      if (IS_IWMMXT_REGNUM (regno))
	return VALID_IWMMXT_REG_MODE (mode);
    }

  /* We allow almost any value to be stored in the general registers.
     Restrict doubleword quantities to even register pairs so that we can
     use ldrd.  Do not allow very large Neon structure opaque modes in
     general registers; they would use too many.  */
  if (regno <= LAST_ARM_REGNUM)
    return !(TARGET_LDRD && GET_MODE_SIZE (mode) > 4 && (regno & 1) != 0)
      && ARM_NUM_REGS (mode) <= 4;

  if (regno == FRAME_POINTER_REGNUM
      || regno == ARG_POINTER_REGNUM)
    /* We only allow integers in the fake hard registers.  */
    return GET_MODE_CLASS (mode) == MODE_INT;

  return FALSE;
}

/* Implement MODES_TIEABLE_P.  */

bool
arm_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2)
{
  if (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2))
    return true;

  /* We specifically want to allow elements of "structure" modes to
     be tieable to the structure.  This more general condition allows
     other rarer situations too.  */
  if (TARGET_NEON
      && (VALID_NEON_DREG_MODE (mode1)
	  || VALID_NEON_QREG_MODE (mode1)
	  || VALID_NEON_STRUCT_MODE (mode1))
      && (VALID_NEON_DREG_MODE (mode2)
	  || VALID_NEON_QREG_MODE (mode2)
	  || VALID_NEON_STRUCT_MODE (mode2)))
    return true;

  return false;
}

/* For efficiency and historical reasons LO_REGS, HI_REGS and CC_REGS are
   not used in arm mode.  */

enum reg_class
arm_regno_class (int regno)
{
  if (TARGET_THUMB1)
    {
      if (regno == STACK_POINTER_REGNUM)
	return STACK_REG;
      if (regno == CC_REGNUM)
	return CC_REG;
      if (regno < 8)
	return LO_REGS;
      return HI_REGS;
    }

  if (TARGET_THUMB2 && regno < 8)
    return LO_REGS;

  if (   regno <= LAST_ARM_REGNUM
      || regno == FRAME_POINTER_REGNUM
      || regno == ARG_POINTER_REGNUM)
    return TARGET_THUMB2 ? HI_REGS : GENERAL_REGS;

  if (regno == CC_REGNUM || regno == VFPCC_REGNUM)
    return TARGET_THUMB2 ? CC_REG : NO_REGS;

  if (IS_VFP_REGNUM (regno))
    {
      if (regno <= D7_VFP_REGNUM)
	return VFP_D0_D7_REGS;
      else if (regno <= LAST_LO_VFP_REGNUM)
        return VFP_LO_REGS;
      else
        return VFP_HI_REGS;
    }

  if (IS_IWMMXT_REGNUM (regno))
    return IWMMXT_REGS;

  if (IS_IWMMXT_GR_REGNUM (regno))
    return IWMMXT_GR_REGS;

  return NO_REGS;
}

/* Handle a special case when computing the offset
   of an argument from the frame pointer.  */
int
arm_debugger_arg_offset (int value, rtx addr)
{
  rtx insn;

  /* We are only interested if dbxout_parms() failed to compute the offset.  */
  if (value != 0)
    return 0;

  /* We can only cope with the case where the address is held in a register.  */
  if (!REG_P (addr))
    return 0;

  /* If we are using the frame pointer to point at the argument, then
     an offset of 0 is correct.  */
  if (REGNO (addr) == (unsigned) HARD_FRAME_POINTER_REGNUM)
    return 0;

  /* If we are using the stack pointer to point at the
     argument, then an offset of 0 is correct.  */
  /* ??? Check this is consistent with thumb2 frame layout.  */
  if ((TARGET_THUMB || !frame_pointer_needed)
      && REGNO (addr) == SP_REGNUM)
    return 0;

  /* Oh dear.  The argument is pointed to by a register rather
     than being held in a register, or being stored at a known
     offset from the frame pointer.  Since GDB only understands
     those two kinds of argument we must translate the address
     held in the register into an offset from the frame pointer.
     We do this by searching through the insns for the function
     looking to see where this register gets its value.  If the
     register is initialized from the frame pointer plus an offset
     then we are in luck and we can continue, otherwise we give up.

     This code is exercised by producing debugging information
     for a function with arguments like this:

           double func (double a, double b, int c, double d) {return d;}

     Without this code the stab for parameter 'd' will be set to
     an offset of 0 from the frame pointer, rather than 8.  */

  /* The if() statement says:

     If the insn is a normal instruction
     and if the insn is setting the value in a register
     and if the register being set is the register holding the address of the argument
     and if the address is computing by an addition
     that involves adding to a register
     which is the frame pointer
     a constant integer

     then...  */

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (   NONJUMP_INSN_P (insn)
	  && GET_CODE (PATTERN (insn)) == SET
	  && REGNO    (XEXP (PATTERN (insn), 0)) == REGNO (addr)
	  && GET_CODE (XEXP (PATTERN (insn), 1)) == PLUS
	  && REG_P (XEXP (XEXP (PATTERN (insn), 1), 0))
	  && REGNO    (XEXP (XEXP (PATTERN (insn), 1), 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
	  && CONST_INT_P (XEXP (XEXP (PATTERN (insn), 1), 1))
	     )
	{
	  value = INTVAL (XEXP (XEXP (PATTERN (insn), 1), 1));

	  break;
	}
    }

  if (value == 0)
    {
      debug_rtx (addr);
      warning (0, "unable to compute real location of stacked parameter");
      value = 8; /* XXX magic hack */
    }

  return value;
}

typedef enum {
  T_V8QI,
  T_V4HI,
  T_V4HF,
  T_V2SI,
  T_V2SF,
  T_DI,
  T_V16QI,
  T_V8HI,
  T_V4SI,
  T_V4SF,
  T_V2DI,
  T_TI,
  T_EI,
  T_OI,
  T_MAX		/* Size of enum.  Keep last.  */
} neon_builtin_type_mode;

#define TYPE_MODE_BIT(X) (1 << (X))

#define TB_DREG (TYPE_MODE_BIT (T_V8QI) | TYPE_MODE_BIT (T_V4HI)	\
		 | TYPE_MODE_BIT (T_V4HF) | TYPE_MODE_BIT (T_V2SI)	\
		 | TYPE_MODE_BIT (T_V2SF) | TYPE_MODE_BIT (T_DI))
#define TB_QREG (TYPE_MODE_BIT (T_V16QI) | TYPE_MODE_BIT (T_V8HI)	\
		 | TYPE_MODE_BIT (T_V4SI) | TYPE_MODE_BIT (T_V4SF)	\
		 | TYPE_MODE_BIT (T_V2DI) | TYPE_MODE_BIT (T_TI))

#define v8qi_UP  T_V8QI
#define v4hi_UP  T_V4HI
#define v4hf_UP  T_V4HF
#define v2si_UP  T_V2SI
#define v2sf_UP  T_V2SF
#define di_UP    T_DI
#define v16qi_UP T_V16QI
#define v8hi_UP  T_V8HI
#define v4si_UP  T_V4SI
#define v4sf_UP  T_V4SF
#define v2di_UP  T_V2DI
#define ti_UP	 T_TI
#define ei_UP	 T_EI
#define oi_UP	 T_OI

#define UP(X) X##_UP

typedef enum {
  NEON_BINOP,
  NEON_TERNOP,
  NEON_UNOP,
  NEON_GETLANE,
  NEON_SETLANE,
  NEON_CREATE,
  NEON_RINT,
  NEON_DUP,
  NEON_DUPLANE,
  NEON_COMBINE,
  NEON_SPLIT,
  NEON_LANEMUL,
  NEON_LANEMULL,
  NEON_LANEMULH,
  NEON_LANEMAC,
  NEON_SCALARMUL,
  NEON_SCALARMULL,
  NEON_SCALARMULH,
  NEON_SCALARMAC,
  NEON_CONVERT,
  NEON_FLOAT_WIDEN,
  NEON_FLOAT_NARROW,
  NEON_FIXCONV,
  NEON_SELECT,
  NEON_RESULTPAIR,
  NEON_REINTERP,
  NEON_VTBL,
  NEON_VTBX,
  NEON_LOAD1,
  NEON_LOAD1LANE,
  NEON_STORE1,
  NEON_STORE1LANE,
  NEON_LOADSTRUCT,
  NEON_LOADSTRUCTLANE,
  NEON_STORESTRUCT,
  NEON_STORESTRUCTLANE,
  NEON_LOGICBINOP,
  NEON_SHIFTINSERT,
  NEON_SHIFTIMM,
  NEON_SHIFTACC
} neon_itype;

typedef struct {
  const char *name;
  const neon_itype itype;
  const neon_builtin_type_mode mode;
  const enum insn_code code;
  unsigned int fcode;
} neon_builtin_datum;

#define CF(N,X) CODE_FOR_neon_##N##X

#define VAR1(T, N, A) \
  {#N, NEON_##T, UP (A), CF (N, A), 0}
#define VAR2(T, N, A, B) \
  VAR1 (T, N, A), \
  {#N, NEON_##T, UP (B), CF (N, B), 0}
#define VAR3(T, N, A, B, C) \
  VAR2 (T, N, A, B), \
  {#N, NEON_##T, UP (C), CF (N, C), 0}
#define VAR4(T, N, A, B, C, D) \
  VAR3 (T, N, A, B, C), \
  {#N, NEON_##T, UP (D), CF (N, D), 0}
#define VAR5(T, N, A, B, C, D, E) \
  VAR4 (T, N, A, B, C, D), \
  {#N, NEON_##T, UP (E), CF (N, E), 0}
#define VAR6(T, N, A, B, C, D, E, F) \
  VAR5 (T, N, A, B, C, D, E), \
  {#N, NEON_##T, UP (F), CF (N, F), 0}
#define VAR7(T, N, A, B, C, D, E, F, G) \
  VAR6 (T, N, A, B, C, D, E, F), \
  {#N, NEON_##T, UP (G), CF (N, G), 0}
#define VAR8(T, N, A, B, C, D, E, F, G, H) \
  VAR7 (T, N, A, B, C, D, E, F, G), \
  {#N, NEON_##T, UP (H), CF (N, H), 0}
#define VAR9(T, N, A, B, C, D, E, F, G, H, I) \
  VAR8 (T, N, A, B, C, D, E, F, G, H), \
  {#N, NEON_##T, UP (I), CF (N, I), 0}
#define VAR10(T, N, A, B, C, D, E, F, G, H, I, J) \
  VAR9 (T, N, A, B, C, D, E, F, G, H, I), \
  {#N, NEON_##T, UP (J), CF (N, J), 0}

/* The NEON builtin data can be found in arm_neon_builtins.def.
   The mode entries in the following table correspond to the "key" type of the
   instruction variant, i.e. equivalent to that which would be specified after
   the assembler mnemonic, which usually refers to the last vector operand.
   (Signed/unsigned/polynomial types are not differentiated between though, and
   are all mapped onto the same mode for a given element size.) The modes
   listed per instruction should be the same as those defined for that
   instruction's pattern in neon.md.  */

static neon_builtin_datum neon_builtin_data[] =
{
#include "arm_neon_builtins.def"
};

#undef CF
#undef VAR1
#undef VAR2
#undef VAR3
#undef VAR4
#undef VAR5
#undef VAR6
#undef VAR7
#undef VAR8
#undef VAR9
#undef VAR10

#define CF(N,X) ARM_BUILTIN_NEON_##N##X
#define VAR1(T, N, A) \
  CF (N, A)
#define VAR2(T, N, A, B) \
  VAR1 (T, N, A), \
  CF (N, B)
#define VAR3(T, N, A, B, C) \
  VAR2 (T, N, A, B), \
  CF (N, C)
#define VAR4(T, N, A, B, C, D) \
  VAR3 (T, N, A, B, C), \
  CF (N, D)
#define VAR5(T, N, A, B, C, D, E) \
  VAR4 (T, N, A, B, C, D), \
  CF (N, E)
#define VAR6(T, N, A, B, C, D, E, F) \
  VAR5 (T, N, A, B, C, D, E), \
  CF (N, F)
#define VAR7(T, N, A, B, C, D, E, F, G) \
  VAR6 (T, N, A, B, C, D, E, F), \
  CF (N, G)
#define VAR8(T, N, A, B, C, D, E, F, G, H) \
  VAR7 (T, N, A, B, C, D, E, F, G), \
  CF (N, H)
#define VAR9(T, N, A, B, C, D, E, F, G, H, I) \
  VAR8 (T, N, A, B, C, D, E, F, G, H), \
  CF (N, I)
#define VAR10(T, N, A, B, C, D, E, F, G, H, I, J) \
  VAR9 (T, N, A, B, C, D, E, F, G, H, I), \
  CF (N, J)
enum arm_builtins
{
  ARM_BUILTIN_GETWCGR0,
  ARM_BUILTIN_GETWCGR1,
  ARM_BUILTIN_GETWCGR2,
  ARM_BUILTIN_GETWCGR3,

  ARM_BUILTIN_SETWCGR0,
  ARM_BUILTIN_SETWCGR1,
  ARM_BUILTIN_SETWCGR2,
  ARM_BUILTIN_SETWCGR3,

  ARM_BUILTIN_WZERO,

  ARM_BUILTIN_WAVG2BR,
  ARM_BUILTIN_WAVG2HR,
  ARM_BUILTIN_WAVG2B,
  ARM_BUILTIN_WAVG2H,

  ARM_BUILTIN_WACCB,
  ARM_BUILTIN_WACCH,
  ARM_BUILTIN_WACCW,

  ARM_BUILTIN_WMACS,
  ARM_BUILTIN_WMACSZ,
  ARM_BUILTIN_WMACU,
  ARM_BUILTIN_WMACUZ,

  ARM_BUILTIN_WSADB,
  ARM_BUILTIN_WSADBZ,
  ARM_BUILTIN_WSADH,
  ARM_BUILTIN_WSADHZ,

  ARM_BUILTIN_WALIGNI,
  ARM_BUILTIN_WALIGNR0,
  ARM_BUILTIN_WALIGNR1,
  ARM_BUILTIN_WALIGNR2,
  ARM_BUILTIN_WALIGNR3,

  ARM_BUILTIN_TMIA,
  ARM_BUILTIN_TMIAPH,
  ARM_BUILTIN_TMIABB,
  ARM_BUILTIN_TMIABT,
  ARM_BUILTIN_TMIATB,
  ARM_BUILTIN_TMIATT,

  ARM_BUILTIN_TMOVMSKB,
  ARM_BUILTIN_TMOVMSKH,
  ARM_BUILTIN_TMOVMSKW,

  ARM_BUILTIN_TBCSTB,
  ARM_BUILTIN_TBCSTH,
  ARM_BUILTIN_TBCSTW,

  ARM_BUILTIN_WMADDS,
  ARM_BUILTIN_WMADDU,

  ARM_BUILTIN_WPACKHSS,
  ARM_BUILTIN_WPACKWSS,
  ARM_BUILTIN_WPACKDSS,
  ARM_BUILTIN_WPACKHUS,
  ARM_BUILTIN_WPACKWUS,
  ARM_BUILTIN_WPACKDUS,

  ARM_BUILTIN_WADDB,
  ARM_BUILTIN_WADDH,
  ARM_BUILTIN_WADDW,
  ARM_BUILTIN_WADDSSB,
  ARM_BUILTIN_WADDSSH,
  ARM_BUILTIN_WADDSSW,
  ARM_BUILTIN_WADDUSB,
  ARM_BUILTIN_WADDUSH,
  ARM_BUILTIN_WADDUSW,
  ARM_BUILTIN_WSUBB,
  ARM_BUILTIN_WSUBH,
  ARM_BUILTIN_WSUBW,
  ARM_BUILTIN_WSUBSSB,
  ARM_BUILTIN_WSUBSSH,
  ARM_BUILTIN_WSUBSSW,
  ARM_BUILTIN_WSUBUSB,
  ARM_BUILTIN_WSUBUSH,
  ARM_BUILTIN_WSUBUSW,

  ARM_BUILTIN_WAND,
  ARM_BUILTIN_WANDN,
  ARM_BUILTIN_WOR,
  ARM_BUILTIN_WXOR,

  ARM_BUILTIN_WCMPEQB,
  ARM_BUILTIN_WCMPEQH,
  ARM_BUILTIN_WCMPEQW,
  ARM_BUILTIN_WCMPGTUB,
  ARM_BUILTIN_WCMPGTUH,
  ARM_BUILTIN_WCMPGTUW,
  ARM_BUILTIN_WCMPGTSB,
  ARM_BUILTIN_WCMPGTSH,
  ARM_BUILTIN_WCMPGTSW,

  ARM_BUILTIN_TEXTRMSB,
  ARM_BUILTIN_TEXTRMSH,
  ARM_BUILTIN_TEXTRMSW,
  ARM_BUILTIN_TEXTRMUB,
  ARM_BUILTIN_TEXTRMUH,
  ARM_BUILTIN_TEXTRMUW,
  ARM_BUILTIN_TINSRB,
  ARM_BUILTIN_TINSRH,
  ARM_BUILTIN_TINSRW,

  ARM_BUILTIN_WMAXSW,
  ARM_BUILTIN_WMAXSH,
  ARM_BUILTIN_WMAXSB,
  ARM_BUILTIN_WMAXUW,
  ARM_BUILTIN_WMAXUH,
  ARM_BUILTIN_WMAXUB,
  ARM_BUILTIN_WMINSW,
  ARM_BUILTIN_WMINSH,
  ARM_BUILTIN_WMINSB,
  ARM_BUILTIN_WMINUW,
  ARM_BUILTIN_WMINUH,
  ARM_BUILTIN_WMINUB,

  ARM_BUILTIN_WMULUM,
  ARM_BUILTIN_WMULSM,
  ARM_BUILTIN_WMULUL,

  ARM_BUILTIN_PSADBH,
  ARM_BUILTIN_WSHUFH,

  ARM_BUILTIN_WSLLH,
  ARM_BUILTIN_WSLLW,
  ARM_BUILTIN_WSLLD,
  ARM_BUILTIN_WSRAH,
  ARM_BUILTIN_WSRAW,
  ARM_BUILTIN_WSRAD,
  ARM_BUILTIN_WSRLH,
  ARM_BUILTIN_WSRLW,
  ARM_BUILTIN_WSRLD,
  ARM_BUILTIN_WRORH,
  ARM_BUILTIN_WRORW,
  ARM_BUILTIN_WRORD,
  ARM_BUILTIN_WSLLHI,
  ARM_BUILTIN_WSLLWI,
  ARM_BUILTIN_WSLLDI,
  ARM_BUILTIN_WSRAHI,
  ARM_BUILTIN_WSRAWI,
  ARM_BUILTIN_WSRADI,
  ARM_BUILTIN_WSRLHI,
  ARM_BUILTIN_WSRLWI,
  ARM_BUILTIN_WSRLDI,
  ARM_BUILTIN_WRORHI,
  ARM_BUILTIN_WRORWI,
  ARM_BUILTIN_WRORDI,

  ARM_BUILTIN_WUNPCKIHB,
  ARM_BUILTIN_WUNPCKIHH,
  ARM_BUILTIN_WUNPCKIHW,
  ARM_BUILTIN_WUNPCKILB,
  ARM_BUILTIN_WUNPCKILH,
  ARM_BUILTIN_WUNPCKILW,

  ARM_BUILTIN_WUNPCKEHSB,
  ARM_BUILTIN_WUNPCKEHSH,
  ARM_BUILTIN_WUNPCKEHSW,
  ARM_BUILTIN_WUNPCKEHUB,
  ARM_BUILTIN_WUNPCKEHUH,
  ARM_BUILTIN_WUNPCKEHUW,
  ARM_BUILTIN_WUNPCKELSB,
  ARM_BUILTIN_WUNPCKELSH,
  ARM_BUILTIN_WUNPCKELSW,
  ARM_BUILTIN_WUNPCKELUB,
  ARM_BUILTIN_WUNPCKELUH,
  ARM_BUILTIN_WUNPCKELUW,

  ARM_BUILTIN_WABSB,
  ARM_BUILTIN_WABSH,
  ARM_BUILTIN_WABSW,

  ARM_BUILTIN_WADDSUBHX,
  ARM_BUILTIN_WSUBADDHX,

  ARM_BUILTIN_WABSDIFFB,
  ARM_BUILTIN_WABSDIFFH,
  ARM_BUILTIN_WABSDIFFW,

  ARM_BUILTIN_WADDCH,
  ARM_BUILTIN_WADDCW,

  ARM_BUILTIN_WAVG4,
  ARM_BUILTIN_WAVG4R,

  ARM_BUILTIN_WMADDSX,
  ARM_BUILTIN_WMADDUX,

  ARM_BUILTIN_WMADDSN,
  ARM_BUILTIN_WMADDUN,

  ARM_BUILTIN_WMULWSM,
  ARM_BUILTIN_WMULWUM,

  ARM_BUILTIN_WMULWSMR,
  ARM_BUILTIN_WMULWUMR,

  ARM_BUILTIN_WMULWL,

  ARM_BUILTIN_WMULSMR,
  ARM_BUILTIN_WMULUMR,

  ARM_BUILTIN_WQMULM,
  ARM_BUILTIN_WQMULMR,

  ARM_BUILTIN_WQMULWM,
  ARM_BUILTIN_WQMULWMR,

  ARM_BUILTIN_WADDBHUSM,
  ARM_BUILTIN_WADDBHUSL,

  ARM_BUILTIN_WQMIABB,
  ARM_BUILTIN_WQMIABT,
  ARM_BUILTIN_WQMIATB,
  ARM_BUILTIN_WQMIATT,

  ARM_BUILTIN_WQMIABBN,
  ARM_BUILTIN_WQMIABTN,
  ARM_BUILTIN_WQMIATBN,
  ARM_BUILTIN_WQMIATTN,

  ARM_BUILTIN_WMIABB,
  ARM_BUILTIN_WMIABT,
  ARM_BUILTIN_WMIATB,
  ARM_BUILTIN_WMIATT,

  ARM_BUILTIN_WMIABBN,
  ARM_BUILTIN_WMIABTN,
  ARM_BUILTIN_WMIATBN,
  ARM_BUILTIN_WMIATTN,

  ARM_BUILTIN_WMIAWBB,
  ARM_BUILTIN_WMIAWBT,
  ARM_BUILTIN_WMIAWTB,
  ARM_BUILTIN_WMIAWTT,

  ARM_BUILTIN_WMIAWBBN,
  ARM_BUILTIN_WMIAWBTN,
  ARM_BUILTIN_WMIAWTBN,
  ARM_BUILTIN_WMIAWTTN,

  ARM_BUILTIN_WMERGE,

  ARM_BUILTIN_CRC32B,
  ARM_BUILTIN_CRC32H,
  ARM_BUILTIN_CRC32W,
  ARM_BUILTIN_CRC32CB,
  ARM_BUILTIN_CRC32CH,
  ARM_BUILTIN_CRC32CW,

#undef CRYPTO1
#undef CRYPTO2
#undef CRYPTO3

#define CRYPTO1(L, U, M1, M2) \
  ARM_BUILTIN_CRYPTO_##U,
#define CRYPTO2(L, U, M1, M2, M3) \
  ARM_BUILTIN_CRYPTO_##U,
#define CRYPTO3(L, U, M1, M2, M3, M4) \
  ARM_BUILTIN_CRYPTO_##U,

#include "crypto.def"

#undef CRYPTO1
#undef CRYPTO2
#undef CRYPTO3

#include "arm_neon_builtins.def"

  ,ARM_BUILTIN_MAX
};

#define ARM_BUILTIN_NEON_BASE (ARM_BUILTIN_MAX - ARRAY_SIZE (neon_builtin_data))

#undef CF
#undef VAR1
#undef VAR2
#undef VAR3
#undef VAR4
#undef VAR5
#undef VAR6
#undef VAR7
#undef VAR8
#undef VAR9
#undef VAR10

static GTY(()) tree arm_builtin_decls[ARM_BUILTIN_MAX];

#define NUM_DREG_TYPES 5
#define NUM_QREG_TYPES 6

static void
arm_init_neon_builtins (void)
{
  unsigned int i, fcode;
  tree decl;

  tree neon_intQI_type_node;
  tree neon_intHI_type_node;
  tree neon_floatHF_type_node;
  tree neon_polyQI_type_node;
  tree neon_polyHI_type_node;
  tree neon_intSI_type_node;
  tree neon_intDI_type_node;
  tree neon_intUTI_type_node;
  tree neon_float_type_node;

  tree intQI_pointer_node;
  tree intHI_pointer_node;
  tree intSI_pointer_node;
  tree intDI_pointer_node;
  tree float_pointer_node;

  tree const_intQI_node;
  tree const_intHI_node;
  tree const_intSI_node;
  tree const_intDI_node;
  tree const_float_node;

  tree const_intQI_pointer_node;
  tree const_intHI_pointer_node;
  tree const_intSI_pointer_node;
  tree const_intDI_pointer_node;
  tree const_float_pointer_node;

  tree V8QI_type_node;
  tree V4HI_type_node;
  tree V4HF_type_node;
  tree V2SI_type_node;
  tree V2SF_type_node;
  tree V16QI_type_node;
  tree V8HI_type_node;
  tree V4SI_type_node;
  tree V4SF_type_node;
  tree V2DI_type_node;

  tree intUQI_type_node;
  tree intUHI_type_node;
  tree intUSI_type_node;
  tree intUDI_type_node;

  tree intEI_type_node;
  tree intOI_type_node;
  tree intCI_type_node;
  tree intXI_type_node;

  tree V8QI_pointer_node;
  tree V4HI_pointer_node;
  tree V2SI_pointer_node;
  tree V2SF_pointer_node;
  tree V16QI_pointer_node;
  tree V8HI_pointer_node;
  tree V4SI_pointer_node;
  tree V4SF_pointer_node;
  tree V2DI_pointer_node;

  tree void_ftype_pv8qi_v8qi_v8qi;
  tree void_ftype_pv4hi_v4hi_v4hi;
  tree void_ftype_pv2si_v2si_v2si;
  tree void_ftype_pv2sf_v2sf_v2sf;
  tree void_ftype_pdi_di_di;
  tree void_ftype_pv16qi_v16qi_v16qi;
  tree void_ftype_pv8hi_v8hi_v8hi;
  tree void_ftype_pv4si_v4si_v4si;
  tree void_ftype_pv4sf_v4sf_v4sf;
  tree void_ftype_pv2di_v2di_v2di;

  tree reinterp_ftype_dreg[NUM_DREG_TYPES][NUM_DREG_TYPES];
  tree reinterp_ftype_qreg[NUM_QREG_TYPES][NUM_QREG_TYPES];
  tree dreg_types[NUM_DREG_TYPES], qreg_types[NUM_QREG_TYPES];

  /* Create distinguished type nodes for NEON vector element types,
     and pointers to values of such types, so we can detect them later.  */
  neon_intQI_type_node = make_signed_type (GET_MODE_PRECISION (QImode));
  neon_intHI_type_node = make_signed_type (GET_MODE_PRECISION (HImode));
  neon_polyQI_type_node = make_signed_type (GET_MODE_PRECISION (QImode));
  neon_polyHI_type_node = make_signed_type (GET_MODE_PRECISION (HImode));
  neon_intSI_type_node = make_signed_type (GET_MODE_PRECISION (SImode));
  neon_intDI_type_node = make_signed_type (GET_MODE_PRECISION (DImode));
  neon_float_type_node = make_node (REAL_TYPE);
  TYPE_PRECISION (neon_float_type_node) = FLOAT_TYPE_SIZE;
  layout_type (neon_float_type_node);
  neon_floatHF_type_node = make_node (REAL_TYPE);
  TYPE_PRECISION (neon_floatHF_type_node) = GET_MODE_PRECISION (HFmode);
  layout_type (neon_floatHF_type_node);

  /* Define typedefs which exactly correspond to the modes we are basing vector
     types on.  If you change these names you'll need to change
     the table used by arm_mangle_type too.  */
  (*lang_hooks.types.register_builtin_type) (neon_intQI_type_node,
					     "__builtin_neon_qi");
  (*lang_hooks.types.register_builtin_type) (neon_intHI_type_node,
					     "__builtin_neon_hi");
  (*lang_hooks.types.register_builtin_type) (neon_floatHF_type_node,
					     "__builtin_neon_hf");
  (*lang_hooks.types.register_builtin_type) (neon_intSI_type_node,
					     "__builtin_neon_si");
  (*lang_hooks.types.register_builtin_type) (neon_float_type_node,
					     "__builtin_neon_sf");
  (*lang_hooks.types.register_builtin_type) (neon_intDI_type_node,
					     "__builtin_neon_di");
  (*lang_hooks.types.register_builtin_type) (neon_polyQI_type_node,
					     "__builtin_neon_poly8");
  (*lang_hooks.types.register_builtin_type) (neon_polyHI_type_node,
					     "__builtin_neon_poly16");

  intQI_pointer_node = build_pointer_type (neon_intQI_type_node);
  intHI_pointer_node = build_pointer_type (neon_intHI_type_node);
  intSI_pointer_node = build_pointer_type (neon_intSI_type_node);
  intDI_pointer_node = build_pointer_type (neon_intDI_type_node);
  float_pointer_node = build_pointer_type (neon_float_type_node);

  /* Next create constant-qualified versions of the above types.  */
  const_intQI_node = build_qualified_type (neon_intQI_type_node,
					   TYPE_QUAL_CONST);
  const_intHI_node = build_qualified_type (neon_intHI_type_node,
					   TYPE_QUAL_CONST);
  const_intSI_node = build_qualified_type (neon_intSI_type_node,
					   TYPE_QUAL_CONST);
  const_intDI_node = build_qualified_type (neon_intDI_type_node,
					   TYPE_QUAL_CONST);
  const_float_node = build_qualified_type (neon_float_type_node,
					   TYPE_QUAL_CONST);

  const_intQI_pointer_node = build_pointer_type (const_intQI_node);
  const_intHI_pointer_node = build_pointer_type (const_intHI_node);
  const_intSI_pointer_node = build_pointer_type (const_intSI_node);
  const_intDI_pointer_node = build_pointer_type (const_intDI_node);
  const_float_pointer_node = build_pointer_type (const_float_node);

  /* Now create vector types based on our NEON element types.  */
  /* 64-bit vectors.  */
  V8QI_type_node =
    build_vector_type_for_mode (neon_intQI_type_node, V8QImode);
  V4HI_type_node =
    build_vector_type_for_mode (neon_intHI_type_node, V4HImode);
  V4HF_type_node =
    build_vector_type_for_mode (neon_floatHF_type_node, V4HFmode);
  V2SI_type_node =
    build_vector_type_for_mode (neon_intSI_type_node, V2SImode);
  V2SF_type_node =
    build_vector_type_for_mode (neon_float_type_node, V2SFmode);
  /* 128-bit vectors.  */
  V16QI_type_node =
    build_vector_type_for_mode (neon_intQI_type_node, V16QImode);
  V8HI_type_node =
    build_vector_type_for_mode (neon_intHI_type_node, V8HImode);
  V4SI_type_node =
    build_vector_type_for_mode (neon_intSI_type_node, V4SImode);
  V4SF_type_node =
    build_vector_type_for_mode (neon_float_type_node, V4SFmode);
  V2DI_type_node =
    build_vector_type_for_mode (neon_intDI_type_node, V2DImode);

  /* Unsigned integer types for various mode sizes.  */
  intUQI_type_node = make_unsigned_type (GET_MODE_PRECISION (QImode));
  intUHI_type_node = make_unsigned_type (GET_MODE_PRECISION (HImode));
  intUSI_type_node = make_unsigned_type (GET_MODE_PRECISION (SImode));
  intUDI_type_node = make_unsigned_type (GET_MODE_PRECISION (DImode));
  neon_intUTI_type_node = make_unsigned_type (GET_MODE_PRECISION (TImode));


  (*lang_hooks.types.register_builtin_type) (intUQI_type_node,
					     "__builtin_neon_uqi");
  (*lang_hooks.types.register_builtin_type) (intUHI_type_node,
					     "__builtin_neon_uhi");
  (*lang_hooks.types.register_builtin_type) (intUSI_type_node,
					     "__builtin_neon_usi");
  (*lang_hooks.types.register_builtin_type) (intUDI_type_node,
					     "__builtin_neon_udi");
  (*lang_hooks.types.register_builtin_type) (intUDI_type_node,
					     "__builtin_neon_poly64");
  (*lang_hooks.types.register_builtin_type) (neon_intUTI_type_node,
					     "__builtin_neon_poly128");

  /* Opaque integer types for structures of vectors.  */
  intEI_type_node = make_signed_type (GET_MODE_PRECISION (EImode));
  intOI_type_node = make_signed_type (GET_MODE_PRECISION (OImode));
  intCI_type_node = make_signed_type (GET_MODE_PRECISION (CImode));
  intXI_type_node = make_signed_type (GET_MODE_PRECISION (XImode));

  (*lang_hooks.types.register_builtin_type) (intTI_type_node,
					     "__builtin_neon_ti");
  (*lang_hooks.types.register_builtin_type) (intEI_type_node,
					     "__builtin_neon_ei");
  (*lang_hooks.types.register_builtin_type) (intOI_type_node,
					     "__builtin_neon_oi");
  (*lang_hooks.types.register_builtin_type) (intCI_type_node,
					     "__builtin_neon_ci");
  (*lang_hooks.types.register_builtin_type) (intXI_type_node,
					     "__builtin_neon_xi");

  /* Pointers to vector types.  */
  V8QI_pointer_node = build_pointer_type (V8QI_type_node);
  V4HI_pointer_node = build_pointer_type (V4HI_type_node);
  V2SI_pointer_node = build_pointer_type (V2SI_type_node);
  V2SF_pointer_node = build_pointer_type (V2SF_type_node);
  V16QI_pointer_node = build_pointer_type (V16QI_type_node);
  V8HI_pointer_node = build_pointer_type (V8HI_type_node);
  V4SI_pointer_node = build_pointer_type (V4SI_type_node);
  V4SF_pointer_node = build_pointer_type (V4SF_type_node);
  V2DI_pointer_node = build_pointer_type (V2DI_type_node);

  /* Operations which return results as pairs.  */
  void_ftype_pv8qi_v8qi_v8qi =
    build_function_type_list (void_type_node, V8QI_pointer_node, V8QI_type_node,
  			      V8QI_type_node, NULL);
  void_ftype_pv4hi_v4hi_v4hi =
    build_function_type_list (void_type_node, V4HI_pointer_node, V4HI_type_node,
  			      V4HI_type_node, NULL);
  void_ftype_pv2si_v2si_v2si =
    build_function_type_list (void_type_node, V2SI_pointer_node, V2SI_type_node,
  			      V2SI_type_node, NULL);
  void_ftype_pv2sf_v2sf_v2sf =
    build_function_type_list (void_type_node, V2SF_pointer_node, V2SF_type_node,
  			      V2SF_type_node, NULL);
  void_ftype_pdi_di_di =
    build_function_type_list (void_type_node, intDI_pointer_node,
			      neon_intDI_type_node, neon_intDI_type_node, NULL);
  void_ftype_pv16qi_v16qi_v16qi =
    build_function_type_list (void_type_node, V16QI_pointer_node,
			      V16QI_type_node, V16QI_type_node, NULL);
  void_ftype_pv8hi_v8hi_v8hi =
    build_function_type_list (void_type_node, V8HI_pointer_node, V8HI_type_node,
  			      V8HI_type_node, NULL);
  void_ftype_pv4si_v4si_v4si =
    build_function_type_list (void_type_node, V4SI_pointer_node, V4SI_type_node,
  			      V4SI_type_node, NULL);
  void_ftype_pv4sf_v4sf_v4sf =
    build_function_type_list (void_type_node, V4SF_pointer_node, V4SF_type_node,
  			      V4SF_type_node, NULL);
  void_ftype_pv2di_v2di_v2di =
    build_function_type_list (void_type_node, V2DI_pointer_node, V2DI_type_node,
			      V2DI_type_node, NULL);

  if (TARGET_CRYPTO && TARGET_HARD_FLOAT)
  {
    tree V4USI_type_node =
      build_vector_type_for_mode (intUSI_type_node, V4SImode);

    tree V16UQI_type_node =
      build_vector_type_for_mode (intUQI_type_node, V16QImode);

    tree v16uqi_ftype_v16uqi
      = build_function_type_list (V16UQI_type_node, V16UQI_type_node, NULL_TREE);

    tree v16uqi_ftype_v16uqi_v16uqi
      = build_function_type_list (V16UQI_type_node, V16UQI_type_node,
                                  V16UQI_type_node, NULL_TREE);

    tree v4usi_ftype_v4usi
      = build_function_type_list (V4USI_type_node, V4USI_type_node, NULL_TREE);

    tree v4usi_ftype_v4usi_v4usi
      = build_function_type_list (V4USI_type_node, V4USI_type_node,
                                  V4USI_type_node, NULL_TREE);

    tree v4usi_ftype_v4usi_v4usi_v4usi
      = build_function_type_list (V4USI_type_node, V4USI_type_node,
                                  V4USI_type_node, V4USI_type_node, NULL_TREE);

    tree uti_ftype_udi_udi
      = build_function_type_list (neon_intUTI_type_node, intUDI_type_node,
                                  intUDI_type_node, NULL_TREE);

    #undef CRYPTO1
    #undef CRYPTO2
    #undef CRYPTO3
    #undef C
    #undef N
    #undef CF
    #undef FT1
    #undef FT2
    #undef FT3

    #define C(U) \
      ARM_BUILTIN_CRYPTO_##U
    #define N(L) \
      "__builtin_arm_crypto_"#L
    #define FT1(R, A) \
      R##_ftype_##A
    #define FT2(R, A1, A2) \
      R##_ftype_##A1##_##A2
    #define FT3(R, A1, A2, A3) \
      R##_ftype_##A1##_##A2##_##A3
    #define CRYPTO1(L, U, R, A) \
      arm_builtin_decls[C (U)] = add_builtin_function (N (L), FT1 (R, A), \
                                                       C (U), BUILT_IN_MD, \
                                                       NULL, NULL_TREE);
    #define CRYPTO2(L, U, R, A1, A2) \
      arm_builtin_decls[C (U)] = add_builtin_function (N (L), FT2 (R, A1, A2), \
                                                       C (U), BUILT_IN_MD, \
                                                       NULL, NULL_TREE);

    #define CRYPTO3(L, U, R, A1, A2, A3) \
      arm_builtin_decls[C (U)] = add_builtin_function (N (L), FT3 (R, A1, A2, A3), \
                                                       C (U), BUILT_IN_MD, \
                                                       NULL, NULL_TREE);
    #include "crypto.def"

    #undef CRYPTO1
    #undef CRYPTO2
    #undef CRYPTO3
    #undef C
    #undef N
    #undef FT1
    #undef FT2
    #undef FT3
  }
  dreg_types[0] = V8QI_type_node;
  dreg_types[1] = V4HI_type_node;
  dreg_types[2] = V2SI_type_node;
  dreg_types[3] = V2SF_type_node;
  dreg_types[4] = neon_intDI_type_node;

  qreg_types[0] = V16QI_type_node;
  qreg_types[1] = V8HI_type_node;
  qreg_types[2] = V4SI_type_node;
  qreg_types[3] = V4SF_type_node;
  qreg_types[4] = V2DI_type_node;
  qreg_types[5] = neon_intUTI_type_node;

  for (i = 0; i < NUM_QREG_TYPES; i++)
    {
      int j;
      for (j = 0; j < NUM_QREG_TYPES; j++)
        {
          if (i < NUM_DREG_TYPES && j < NUM_DREG_TYPES)
            reinterp_ftype_dreg[i][j]
              = build_function_type_list (dreg_types[i], dreg_types[j], NULL);

          reinterp_ftype_qreg[i][j]
            = build_function_type_list (qreg_types[i], qreg_types[j], NULL);
        }
    }

  for (i = 0, fcode = ARM_BUILTIN_NEON_BASE;
       i < ARRAY_SIZE (neon_builtin_data);
       i++, fcode++)
    {
      neon_builtin_datum *d = &neon_builtin_data[i];

      const char* const modenames[] = {
	"v8qi", "v4hi", "v4hf", "v2si", "v2sf", "di",
	"v16qi", "v8hi", "v4si", "v4sf", "v2di",
	"ti", "ei", "oi"
      };
      char namebuf[60];
      tree ftype = NULL;
      int is_load = 0, is_store = 0;

      gcc_assert (ARRAY_SIZE (modenames) == T_MAX);

      d->fcode = fcode;

      switch (d->itype)
	{
	case NEON_LOAD1:
	case NEON_LOAD1LANE:
	case NEON_LOADSTRUCT:
	case NEON_LOADSTRUCTLANE:
	  is_load = 1;
	  /* Fall through.  */
	case NEON_STORE1:
	case NEON_STORE1LANE:
	case NEON_STORESTRUCT:
	case NEON_STORESTRUCTLANE:
	  if (!is_load)
	    is_store = 1;
	  /* Fall through.  */
	case NEON_UNOP:
	case NEON_RINT:
	case NEON_BINOP:
	case NEON_LOGICBINOP:
	case NEON_SHIFTINSERT:
	case NEON_TERNOP:
	case NEON_GETLANE:
	case NEON_SETLANE:
	case NEON_CREATE:
	case NEON_DUP:
	case NEON_DUPLANE:
	case NEON_SHIFTIMM:
	case NEON_SHIFTACC:
	case NEON_COMBINE:
	case NEON_SPLIT:
	case NEON_CONVERT:
	case NEON_FIXCONV:
	case NEON_LANEMUL:
	case NEON_LANEMULL:
	case NEON_LANEMULH:
	case NEON_LANEMAC:
	case NEON_SCALARMUL:
	case NEON_SCALARMULL:
	case NEON_SCALARMULH:
	case NEON_SCALARMAC:
	case NEON_SELECT:
	case NEON_VTBL:
	case NEON_VTBX:
	  {
	    int k;
	    tree return_type = void_type_node, args = void_list_node;

	    /* Build a function type directly from the insn_data for
	       this builtin.  The build_function_type() function takes
	       care of removing duplicates for us.  */
	    for (k = insn_data[d->code].n_generator_args - 1; k >= 0; k--)
	      {
		tree eltype;

		if (is_load && k == 1)
		  {
		    /* Neon load patterns always have the memory
		       operand in the operand 1 position.  */
		    gcc_assert (insn_data[d->code].operand[k].predicate
				== neon_struct_operand);

		    switch (d->mode)
		      {
		      case T_V8QI:
		      case T_V16QI:
			eltype = const_intQI_pointer_node;
			break;

		      case T_V4HI:
		      case T_V8HI:
			eltype = const_intHI_pointer_node;
			break;

		      case T_V2SI:
		      case T_V4SI:
			eltype = const_intSI_pointer_node;
			break;

		      case T_V2SF:
		      case T_V4SF:
			eltype = const_float_pointer_node;
			break;

		      case T_DI:
		      case T_V2DI:
			eltype = const_intDI_pointer_node;
			break;

		      default: gcc_unreachable ();
		      }
		  }
		else if (is_store && k == 0)
		  {
		    /* Similarly, Neon store patterns use operand 0 as
		       the memory location to store to.  */
		    gcc_assert (insn_data[d->code].operand[k].predicate
				== neon_struct_operand);

		    switch (d->mode)
		      {
		      case T_V8QI:
		      case T_V16QI:
			eltype = intQI_pointer_node;
			break;

		      case T_V4HI:
		      case T_V8HI:
			eltype = intHI_pointer_node;
			break;

		      case T_V2SI:
		      case T_V4SI:
			eltype = intSI_pointer_node;
			break;

		      case T_V2SF:
		      case T_V4SF:
			eltype = float_pointer_node;
			break;

		      case T_DI:
		      case T_V2DI:
			eltype = intDI_pointer_node;
			break;

		      default: gcc_unreachable ();
		      }
		  }
		else
		  {
		    switch (insn_data[d->code].operand[k].mode)
		      {
		      case VOIDmode: eltype = void_type_node; break;
			/* Scalars.  */
		      case QImode: eltype = neon_intQI_type_node; break;
		      case HImode: eltype = neon_intHI_type_node; break;
		      case SImode: eltype = neon_intSI_type_node; break;
		      case SFmode: eltype = neon_float_type_node; break;
		      case DImode: eltype = neon_intDI_type_node; break;
		      case TImode: eltype = intTI_type_node; break;
		      case EImode: eltype = intEI_type_node; break;
		      case OImode: eltype = intOI_type_node; break;
		      case CImode: eltype = intCI_type_node; break;
		      case XImode: eltype = intXI_type_node; break;
			/* 64-bit vectors.  */
		      case V8QImode: eltype = V8QI_type_node; break;
		      case V4HImode: eltype = V4HI_type_node; break;
		      case V2SImode: eltype = V2SI_type_node; break;
		      case V2SFmode: eltype = V2SF_type_node; break;
			/* 128-bit vectors.  */
		      case V16QImode: eltype = V16QI_type_node; break;
		      case V8HImode: eltype = V8HI_type_node; break;
		      case V4SImode: eltype = V4SI_type_node; break;
		      case V4SFmode: eltype = V4SF_type_node; break;
		      case V2DImode: eltype = V2DI_type_node; break;
		      default: gcc_unreachable ();
		      }
		  }

		if (k == 0 && !is_store)
		  return_type = eltype;
		else
		  args = tree_cons (NULL_TREE, eltype, args);
	      }

	    ftype = build_function_type (return_type, args);
	  }
	  break;

	case NEON_RESULTPAIR:
	  {
	    switch (insn_data[d->code].operand[1].mode)
	      {
	      case V8QImode: ftype = void_ftype_pv8qi_v8qi_v8qi; break;
	      case V4HImode: ftype = void_ftype_pv4hi_v4hi_v4hi; break;
	      case V2SImode: ftype = void_ftype_pv2si_v2si_v2si; break;
	      case V2SFmode: ftype = void_ftype_pv2sf_v2sf_v2sf; break;
	      case DImode: ftype = void_ftype_pdi_di_di; break;
	      case V16QImode: ftype = void_ftype_pv16qi_v16qi_v16qi; break;
	      case V8HImode: ftype = void_ftype_pv8hi_v8hi_v8hi; break;
	      case V4SImode: ftype = void_ftype_pv4si_v4si_v4si; break;
	      case V4SFmode: ftype = void_ftype_pv4sf_v4sf_v4sf; break;
	      case V2DImode: ftype = void_ftype_pv2di_v2di_v2di; break;
	      default: gcc_unreachable ();
	      }
	  }
	  break;

	case NEON_REINTERP:
	  {
	    /* We iterate over NUM_DREG_TYPES doubleword types,
	       then NUM_QREG_TYPES quadword  types.
	       V4HF is not a type used in reinterpret, so we translate
	       d->mode to the correct index in reinterp_ftype_dreg.  */
	    bool qreg_p
	      = GET_MODE_SIZE (insn_data[d->code].operand[0].mode) > 8;
	    int rhs = (d->mode - ((!qreg_p && (d->mode > T_V4HF)) ? 1 : 0))
	              % NUM_QREG_TYPES;
	    switch (insn_data[d->code].operand[0].mode)
	      {
	      case V8QImode: ftype = reinterp_ftype_dreg[0][rhs]; break;
	      case V4HImode: ftype = reinterp_ftype_dreg[1][rhs]; break;
	      case V2SImode: ftype = reinterp_ftype_dreg[2][rhs]; break;
	      case V2SFmode: ftype = reinterp_ftype_dreg[3][rhs]; break;
	      case DImode: ftype = reinterp_ftype_dreg[4][rhs]; break;
	      case V16QImode: ftype = reinterp_ftype_qreg[0][rhs]; break;
	      case V8HImode: ftype = reinterp_ftype_qreg[1][rhs]; break;
	      case V4SImode: ftype = reinterp_ftype_qreg[2][rhs]; break;
	      case V4SFmode: ftype = reinterp_ftype_qreg[3][rhs]; break;
	      case V2DImode: ftype = reinterp_ftype_qreg[4][rhs]; break;
	      case TImode: ftype = reinterp_ftype_qreg[5][rhs]; break;
	      default: gcc_unreachable ();
	      }
	  }
	  break;
	case NEON_FLOAT_WIDEN:
	  {
	    tree eltype = NULL_TREE;
	    tree return_type = NULL_TREE;

	    switch (insn_data[d->code].operand[1].mode)
	    {
	      case V4HFmode:
	        eltype = V4HF_type_node;
	        return_type = V4SF_type_node;
	        break;
	      default: gcc_unreachable ();
	    }
	    ftype = build_function_type_list (return_type, eltype, NULL);
	    break;
	  }
	case NEON_FLOAT_NARROW:
	  {
	    tree eltype = NULL_TREE;
	    tree return_type = NULL_TREE;

	    switch (insn_data[d->code].operand[1].mode)
	    {
	      case V4SFmode:
	        eltype = V4SF_type_node;
	        return_type = V4HF_type_node;
	        break;
	      default: gcc_unreachable ();
	    }
	    ftype = build_function_type_list (return_type, eltype, NULL);
	    break;
	  }
	default:
	  gcc_unreachable ();
	}

      gcc_assert (ftype != NULL);

      sprintf (namebuf, "__builtin_neon_%s%s", d->name, modenames[d->mode]);

      decl = add_builtin_function (namebuf, ftype, fcode, BUILT_IN_MD, NULL,
				   NULL_TREE);
      arm_builtin_decls[fcode] = decl;
    }
}

#undef NUM_DREG_TYPES
#undef NUM_QREG_TYPES

#define def_mbuiltin(MASK, NAME, TYPE, CODE)				\
  do									\
    {									\
      if ((MASK) & insn_flags)						\
	{								\
	  tree bdecl;							\
	  bdecl = add_builtin_function ((NAME), (TYPE), (CODE),		\
					BUILT_IN_MD, NULL, NULL_TREE);	\
	  arm_builtin_decls[CODE] = bdecl;				\
	}								\
    }									\
  while (0)

struct builtin_description
{
  const unsigned int       mask;
  const enum insn_code     icode;
  const char * const       name;
  const enum arm_builtins  code;
  const enum rtx_code      comparison;
  const unsigned int       flag;
};

static const struct builtin_description bdesc_2arg[] =
{
#define IWMMXT_BUILTIN(code, string, builtin) \
  { FL_IWMMXT, CODE_FOR_##code, "__builtin_arm_" string, \
    ARM_BUILTIN_##builtin, UNKNOWN, 0 },

#define IWMMXT2_BUILTIN(code, string, builtin) \
  { FL_IWMMXT2, CODE_FOR_##code, "__builtin_arm_" string, \
    ARM_BUILTIN_##builtin, UNKNOWN, 0 },

  IWMMXT_BUILTIN (addv8qi3, "waddb", WADDB)
  IWMMXT_BUILTIN (addv4hi3, "waddh", WADDH)
  IWMMXT_BUILTIN (addv2si3, "waddw", WADDW)
  IWMMXT_BUILTIN (subv8qi3, "wsubb", WSUBB)
  IWMMXT_BUILTIN (subv4hi3, "wsubh", WSUBH)
  IWMMXT_BUILTIN (subv2si3, "wsubw", WSUBW)
  IWMMXT_BUILTIN (ssaddv8qi3, "waddbss", WADDSSB)
  IWMMXT_BUILTIN (ssaddv4hi3, "waddhss", WADDSSH)
  IWMMXT_BUILTIN (ssaddv2si3, "waddwss", WADDSSW)
  IWMMXT_BUILTIN (sssubv8qi3, "wsubbss", WSUBSSB)
  IWMMXT_BUILTIN (sssubv4hi3, "wsubhss", WSUBSSH)
  IWMMXT_BUILTIN (sssubv2si3, "wsubwss", WSUBSSW)
  IWMMXT_BUILTIN (usaddv8qi3, "waddbus", WADDUSB)
  IWMMXT_BUILTIN (usaddv4hi3, "waddhus", WADDUSH)
  IWMMXT_BUILTIN (usaddv2si3, "waddwus", WADDUSW)
  IWMMXT_BUILTIN (ussubv8qi3, "wsubbus", WSUBUSB)
  IWMMXT_BUILTIN (ussubv4hi3, "wsubhus", WSUBUSH)
  IWMMXT_BUILTIN (ussubv2si3, "wsubwus", WSUBUSW)
  IWMMXT_BUILTIN (mulv4hi3, "wmulul", WMULUL)
  IWMMXT_BUILTIN (smulv4hi3_highpart, "wmulsm", WMULSM)
  IWMMXT_BUILTIN (umulv4hi3_highpart, "wmulum", WMULUM)
  IWMMXT_BUILTIN (eqv8qi3, "wcmpeqb", WCMPEQB)
  IWMMXT_BUILTIN (eqv4hi3, "wcmpeqh", WCMPEQH)
  IWMMXT_BUILTIN (eqv2si3, "wcmpeqw", WCMPEQW)
  IWMMXT_BUILTIN (gtuv8qi3, "wcmpgtub", WCMPGTUB)
  IWMMXT_BUILTIN (gtuv4hi3, "wcmpgtuh", WCMPGTUH)
  IWMMXT_BUILTIN (gtuv2si3, "wcmpgtuw", WCMPGTUW)
  IWMMXT_BUILTIN (gtv8qi3, "wcmpgtsb", WCMPGTSB)
  IWMMXT_BUILTIN (gtv4hi3, "wcmpgtsh", WCMPGTSH)
  IWMMXT_BUILTIN (gtv2si3, "wcmpgtsw", WCMPGTSW)
  IWMMXT_BUILTIN (umaxv8qi3, "wmaxub", WMAXUB)
  IWMMXT_BUILTIN (smaxv8qi3, "wmaxsb", WMAXSB)
  IWMMXT_BUILTIN (umaxv4hi3, "wmaxuh", WMAXUH)
  IWMMXT_BUILTIN (smaxv4hi3, "wmaxsh", WMAXSH)
  IWMMXT_BUILTIN (umaxv2si3, "wmaxuw", WMAXUW)
  IWMMXT_BUILTIN (smaxv2si3, "wmaxsw", WMAXSW)
  IWMMXT_BUILTIN (uminv8qi3, "wminub", WMINUB)
  IWMMXT_BUILTIN (sminv8qi3, "wminsb", WMINSB)
  IWMMXT_BUILTIN (uminv4hi3, "wminuh", WMINUH)
  IWMMXT_BUILTIN (sminv4hi3, "wminsh", WMINSH)
  IWMMXT_BUILTIN (uminv2si3, "wminuw", WMINUW)
  IWMMXT_BUILTIN (sminv2si3, "wminsw", WMINSW)
  IWMMXT_BUILTIN (iwmmxt_anddi3, "wand", WAND)
  IWMMXT_BUILTIN (iwmmxt_nanddi3, "wandn", WANDN)
  IWMMXT_BUILTIN (iwmmxt_iordi3, "wor", WOR)
  IWMMXT_BUILTIN (iwmmxt_xordi3, "wxor", WXOR)
  IWMMXT_BUILTIN (iwmmxt_uavgv8qi3, "wavg2b", WAVG2B)
  IWMMXT_BUILTIN (iwmmxt_uavgv4hi3, "wavg2h", WAVG2H)
  IWMMXT_BUILTIN (iwmmxt_uavgrndv8qi3, "wavg2br", WAVG2BR)
  IWMMXT_BUILTIN (iwmmxt_uavgrndv4hi3, "wavg2hr", WAVG2HR)
  IWMMXT_BUILTIN (iwmmxt_wunpckilb, "wunpckilb", WUNPCKILB)
  IWMMXT_BUILTIN (iwmmxt_wunpckilh, "wunpckilh", WUNPCKILH)
  IWMMXT_BUILTIN (iwmmxt_wunpckilw, "wunpckilw", WUNPCKILW)
  IWMMXT_BUILTIN (iwmmxt_wunpckihb, "wunpckihb", WUNPCKIHB)
  IWMMXT_BUILTIN (iwmmxt_wunpckihh, "wunpckihh", WUNPCKIHH)
  IWMMXT_BUILTIN (iwmmxt_wunpckihw, "wunpckihw", WUNPCKIHW)
  IWMMXT2_BUILTIN (iwmmxt_waddsubhx, "waddsubhx", WADDSUBHX)
  IWMMXT2_BUILTIN (iwmmxt_wsubaddhx, "wsubaddhx", WSUBADDHX)
  IWMMXT2_BUILTIN (iwmmxt_wabsdiffb, "wabsdiffb", WABSDIFFB)
  IWMMXT2_BUILTIN (iwmmxt_wabsdiffh, "wabsdiffh", WABSDIFFH)
  IWMMXT2_BUILTIN (iwmmxt_wabsdiffw, "wabsdiffw", WABSDIFFW)
  IWMMXT2_BUILTIN (iwmmxt_avg4, "wavg4", WAVG4)
  IWMMXT2_BUILTIN (iwmmxt_avg4r, "wavg4r", WAVG4R)
  IWMMXT2_BUILTIN (iwmmxt_wmulwsm, "wmulwsm", WMULWSM)
  IWMMXT2_BUILTIN (iwmmxt_wmulwum, "wmulwum", WMULWUM)
  IWMMXT2_BUILTIN (iwmmxt_wmulwsmr, "wmulwsmr", WMULWSMR)
  IWMMXT2_BUILTIN (iwmmxt_wmulwumr, "wmulwumr", WMULWUMR)
  IWMMXT2_BUILTIN (iwmmxt_wmulwl, "wmulwl", WMULWL)
  IWMMXT2_BUILTIN (iwmmxt_wmulsmr, "wmulsmr", WMULSMR)
  IWMMXT2_BUILTIN (iwmmxt_wmulumr, "wmulumr", WMULUMR)
  IWMMXT2_BUILTIN (iwmmxt_wqmulm, "wqmulm", WQMULM)
  IWMMXT2_BUILTIN (iwmmxt_wqmulmr, "wqmulmr", WQMULMR)
  IWMMXT2_BUILTIN (iwmmxt_wqmulwm, "wqmulwm", WQMULWM)
  IWMMXT2_BUILTIN (iwmmxt_wqmulwmr, "wqmulwmr", WQMULWMR)
  IWMMXT_BUILTIN (iwmmxt_walignr0, "walignr0", WALIGNR0)
  IWMMXT_BUILTIN (iwmmxt_walignr1, "walignr1", WALIGNR1)
  IWMMXT_BUILTIN (iwmmxt_walignr2, "walignr2", WALIGNR2)
  IWMMXT_BUILTIN (iwmmxt_walignr3, "walignr3", WALIGNR3)

#define IWMMXT_BUILTIN2(code, builtin) \
  { FL_IWMMXT, CODE_FOR_##code, NULL, ARM_BUILTIN_##builtin, UNKNOWN, 0 },

#define IWMMXT2_BUILTIN2(code, builtin) \
  { FL_IWMMXT2, CODE_FOR_##code, NULL, ARM_BUILTIN_##builtin, UNKNOWN, 0 },

  IWMMXT2_BUILTIN2 (iwmmxt_waddbhusm, WADDBHUSM)
  IWMMXT2_BUILTIN2 (iwmmxt_waddbhusl, WADDBHUSL)
  IWMMXT_BUILTIN2 (iwmmxt_wpackhss, WPACKHSS)
  IWMMXT_BUILTIN2 (iwmmxt_wpackwss, WPACKWSS)
  IWMMXT_BUILTIN2 (iwmmxt_wpackdss, WPACKDSS)
  IWMMXT_BUILTIN2 (iwmmxt_wpackhus, WPACKHUS)
  IWMMXT_BUILTIN2 (iwmmxt_wpackwus, WPACKWUS)
  IWMMXT_BUILTIN2 (iwmmxt_wpackdus, WPACKDUS)
  IWMMXT_BUILTIN2 (iwmmxt_wmacuz, WMACUZ)
  IWMMXT_BUILTIN2 (iwmmxt_wmacsz, WMACSZ)

#define CRC32_BUILTIN(L, U) \
  {0, CODE_FOR_##L, "__builtin_arm_"#L, ARM_BUILTIN_##U, \
   UNKNOWN, 0},
   CRC32_BUILTIN (crc32b, CRC32B)
   CRC32_BUILTIN (crc32h, CRC32H)
   CRC32_BUILTIN (crc32w, CRC32W)
   CRC32_BUILTIN (crc32cb, CRC32CB)
   CRC32_BUILTIN (crc32ch, CRC32CH)
   CRC32_BUILTIN (crc32cw, CRC32CW)
#undef CRC32_BUILTIN


#define CRYPTO_BUILTIN(L, U) \
  {0, CODE_FOR_crypto_##L, "__builtin_arm_crypto_"#L, ARM_BUILTIN_CRYPTO_##U, \
   UNKNOWN, 0},
#undef CRYPTO1
#undef CRYPTO2
#undef CRYPTO3
#define CRYPTO2(L, U, R, A1, A2) CRYPTO_BUILTIN (L, U)
#define CRYPTO1(L, U, R, A)
#define CRYPTO3(L, U, R, A1, A2, A3)
#include "crypto.def"
#undef CRYPTO1
#undef CRYPTO2
#undef CRYPTO3

};

static const struct builtin_description bdesc_1arg[] =
{
  IWMMXT_BUILTIN (iwmmxt_tmovmskb, "tmovmskb", TMOVMSKB)
  IWMMXT_BUILTIN (iwmmxt_tmovmskh, "tmovmskh", TMOVMSKH)
  IWMMXT_BUILTIN (iwmmxt_tmovmskw, "tmovmskw", TMOVMSKW)
  IWMMXT_BUILTIN (iwmmxt_waccb, "waccb", WACCB)
  IWMMXT_BUILTIN (iwmmxt_wacch, "wacch", WACCH)
  IWMMXT_BUILTIN (iwmmxt_waccw, "waccw", WACCW)
  IWMMXT_BUILTIN (iwmmxt_wunpckehub, "wunpckehub", WUNPCKEHUB)
  IWMMXT_BUILTIN (iwmmxt_wunpckehuh, "wunpckehuh", WUNPCKEHUH)
  IWMMXT_BUILTIN (iwmmxt_wunpckehuw, "wunpckehuw", WUNPCKEHUW)
  IWMMXT_BUILTIN (iwmmxt_wunpckehsb, "wunpckehsb", WUNPCKEHSB)
  IWMMXT_BUILTIN (iwmmxt_wunpckehsh, "wunpckehsh", WUNPCKEHSH)
  IWMMXT_BUILTIN (iwmmxt_wunpckehsw, "wunpckehsw", WUNPCKEHSW)
  IWMMXT_BUILTIN (iwmmxt_wunpckelub, "wunpckelub", WUNPCKELUB)
  IWMMXT_BUILTIN (iwmmxt_wunpckeluh, "wunpckeluh", WUNPCKELUH)
  IWMMXT_BUILTIN (iwmmxt_wunpckeluw, "wunpckeluw", WUNPCKELUW)
  IWMMXT_BUILTIN (iwmmxt_wunpckelsb, "wunpckelsb", WUNPCKELSB)
  IWMMXT_BUILTIN (iwmmxt_wunpckelsh, "wunpckelsh", WUNPCKELSH)
  IWMMXT_BUILTIN (iwmmxt_wunpckelsw, "wunpckelsw", WUNPCKELSW)
  IWMMXT2_BUILTIN (iwmmxt_wabsv8qi3, "wabsb", WABSB)
  IWMMXT2_BUILTIN (iwmmxt_wabsv4hi3, "wabsh", WABSH)
  IWMMXT2_BUILTIN (iwmmxt_wabsv2si3, "wabsw", WABSW)
  IWMMXT_BUILTIN (tbcstv8qi, "tbcstb", TBCSTB)
  IWMMXT_BUILTIN (tbcstv4hi, "tbcsth", TBCSTH)
  IWMMXT_BUILTIN (tbcstv2si, "tbcstw", TBCSTW)

#define CRYPTO1(L, U, R, A) CRYPTO_BUILTIN (L, U)
#define CRYPTO2(L, U, R, A1, A2)
#define CRYPTO3(L, U, R, A1, A2, A3)
#include "crypto.def"
#undef CRYPTO1
#undef CRYPTO2
#undef CRYPTO3
};

static const struct builtin_description bdesc_3arg[] =
{
#define CRYPTO3(L, U, R, A1, A2, A3) CRYPTO_BUILTIN (L, U)
#define CRYPTO1(L, U, R, A)
#define CRYPTO2(L, U, R, A1, A2)
#include "crypto.def"
#undef CRYPTO1
#undef CRYPTO2
#undef CRYPTO3
 };
#undef CRYPTO_BUILTIN

/* Set up all the iWMMXt builtins.  This is not called if
   TARGET_IWMMXT is zero.  */

static void
arm_init_iwmmxt_builtins (void)
{
  const struct builtin_description * d;
  size_t i;

  tree V2SI_type_node = build_vector_type_for_mode (intSI_type_node, V2SImode);
  tree V4HI_type_node = build_vector_type_for_mode (intHI_type_node, V4HImode);
  tree V8QI_type_node = build_vector_type_for_mode (intQI_type_node, V8QImode);

  tree v8qi_ftype_v8qi_v8qi_int
    = build_function_type_list (V8QI_type_node,
				V8QI_type_node, V8QI_type_node,
				integer_type_node, NULL_TREE);
  tree v4hi_ftype_v4hi_int
    = build_function_type_list (V4HI_type_node,
				V4HI_type_node, integer_type_node, NULL_TREE);
  tree v2si_ftype_v2si_int
    = build_function_type_list (V2SI_type_node,
				V2SI_type_node, integer_type_node, NULL_TREE);
  tree v2si_ftype_di_di
    = build_function_type_list (V2SI_type_node,
				long_long_integer_type_node,
				long_long_integer_type_node,
				NULL_TREE);
  tree di_ftype_di_int
    = build_function_type_list (long_long_integer_type_node,
				long_long_integer_type_node,
				integer_type_node, NULL_TREE);
  tree di_ftype_di_int_int
    = build_function_type_list (long_long_integer_type_node,
				long_long_integer_type_node,
				integer_type_node,
				integer_type_node, NULL_TREE);
  tree int_ftype_v8qi
    = build_function_type_list (integer_type_node,
				V8QI_type_node, NULL_TREE);
  tree int_ftype_v4hi
    = build_function_type_list (integer_type_node,
				V4HI_type_node, NULL_TREE);
  tree int_ftype_v2si
    = build_function_type_list (integer_type_node,
				V2SI_type_node, NULL_TREE);
  tree int_ftype_v8qi_int
    = build_function_type_list (integer_type_node,
				V8QI_type_node, integer_type_node, NULL_TREE);
  tree int_ftype_v4hi_int
    = build_function_type_list (integer_type_node,
				V4HI_type_node, integer_type_node, NULL_TREE);
  tree int_ftype_v2si_int
    = build_function_type_list (integer_type_node,
				V2SI_type_node, integer_type_node, NULL_TREE);
  tree v8qi_ftype_v8qi_int_int
    = build_function_type_list (V8QI_type_node,
				V8QI_type_node, integer_type_node,
				integer_type_node, NULL_TREE);
  tree v4hi_ftype_v4hi_int_int
    = build_function_type_list (V4HI_type_node,
				V4HI_type_node, integer_type_node,
				integer_type_node, NULL_TREE);
  tree v2si_ftype_v2si_int_int
    = build_function_type_list (V2SI_type_node,
				V2SI_type_node, integer_type_node,
				integer_type_node, NULL_TREE);
  /* Miscellaneous.  */
  tree v8qi_ftype_v4hi_v4hi
    = build_function_type_list (V8QI_type_node,
				V4HI_type_node, V4HI_type_node, NULL_TREE);
  tree v4hi_ftype_v2si_v2si
    = build_function_type_list (V4HI_type_node,
				V2SI_type_node, V2SI_type_node, NULL_TREE);
  tree v8qi_ftype_v4hi_v8qi
    = build_function_type_list (V8QI_type_node,
	                        V4HI_type_node, V8QI_type_node, NULL_TREE);
  tree v2si_ftype_v4hi_v4hi
    = build_function_type_list (V2SI_type_node,
				V4HI_type_node, V4HI_type_node, NULL_TREE);
  tree v2si_ftype_v8qi_v8qi
    = build_function_type_list (V2SI_type_node,
				V8QI_type_node, V8QI_type_node, NULL_TREE);
  tree v4hi_ftype_v4hi_di
    = build_function_type_list (V4HI_type_node,
				V4HI_type_node, long_long_integer_type_node,
				NULL_TREE);
  tree v2si_ftype_v2si_di
    = build_function_type_list (V2SI_type_node,
				V2SI_type_node, long_long_integer_type_node,
				NULL_TREE);
  tree di_ftype_void
    = build_function_type_list (long_long_unsigned_type_node, NULL_TREE);
  tree int_ftype_void
    = build_function_type_list (integer_type_node, NULL_TREE);
  tree di_ftype_v8qi
    = build_function_type_list (long_long_integer_type_node,
				V8QI_type_node, NULL_TREE);
  tree di_ftype_v4hi
    = build_function_type_list (long_long_integer_type_node,
				V4HI_type_node, NULL_TREE);
  tree di_ftype_v2si
    = build_function_type_list (long_long_integer_type_node,
				V2SI_type_node, NULL_TREE);
  tree v2si_ftype_v4hi
    = build_function_type_list (V2SI_type_node,
				V4HI_type_node, NULL_TREE);
  tree v4hi_ftype_v8qi
    = build_function_type_list (V4HI_type_node,
				V8QI_type_node, NULL_TREE);
  tree v8qi_ftype_v8qi
    = build_function_type_list (V8QI_type_node,
	                        V8QI_type_node, NULL_TREE);
  tree v4hi_ftype_v4hi
    = build_function_type_list (V4HI_type_node,
	                        V4HI_type_node, NULL_TREE);
  tree v2si_ftype_v2si
    = build_function_type_list (V2SI_type_node,
	                        V2SI_type_node, NULL_TREE);

  tree di_ftype_di_v4hi_v4hi
    = build_function_type_list (long_long_unsigned_type_node,
				long_long_unsigned_type_node,
				V4HI_type_node, V4HI_type_node,
				NULL_TREE);

  tree di_ftype_v4hi_v4hi
    = build_function_type_list (long_long_unsigned_type_node,
				V4HI_type_node,V4HI_type_node,
				NULL_TREE);

  tree v2si_ftype_v2si_v4hi_v4hi
    = build_function_type_list (V2SI_type_node,
                                V2SI_type_node, V4HI_type_node,
                                V4HI_type_node, NULL_TREE);

  tree v2si_ftype_v2si_v8qi_v8qi
    = build_function_type_list (V2SI_type_node,
                                V2SI_type_node, V8QI_type_node,
                                V8QI_type_node, NULL_TREE);

  tree di_ftype_di_v2si_v2si
     = build_function_type_list (long_long_unsigned_type_node,
                                 long_long_unsigned_type_node,
                                 V2SI_type_node, V2SI_type_node,
                                 NULL_TREE);

   tree di_ftype_di_di_int
     = build_function_type_list (long_long_unsigned_type_node,
                                 long_long_unsigned_type_node,
                                 long_long_unsigned_type_node,
                                 integer_type_node, NULL_TREE);

   tree void_ftype_int
     = build_function_type_list (void_type_node,
                                 integer_type_node, NULL_TREE);

   tree v8qi_ftype_char
     = build_function_type_list (V8QI_type_node,
                                 signed_char_type_node, NULL_TREE);

   tree v4hi_ftype_short
     = build_function_type_list (V4HI_type_node,
                                 short_integer_type_node, NULL_TREE);

   tree v2si_ftype_int
     = build_function_type_list (V2SI_type_node,
                                 integer_type_node, NULL_TREE);

  /* Normal vector binops.  */
  tree v8qi_ftype_v8qi_v8qi
    = build_function_type_list (V8QI_type_node,
				V8QI_type_node, V8QI_type_node, NULL_TREE);
  tree v4hi_ftype_v4hi_v4hi
    = build_function_type_list (V4HI_type_node,
				V4HI_type_node,V4HI_type_node, NULL_TREE);
  tree v2si_ftype_v2si_v2si
    = build_function_type_list (V2SI_type_node,
				V2SI_type_node, V2SI_type_node, NULL_TREE);
  tree di_ftype_di_di
    = build_function_type_list (long_long_unsigned_type_node,
				long_long_unsigned_type_node,
				long_long_unsigned_type_node,
				NULL_TREE);

  /* Add all builtins that are more or less simple operations on two
     operands.  */
  for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
    {
      /* Use one of the operands; the target can have a different mode for
	 mask-generating compares.  */
      enum machine_mode mode;
      tree type;

      if (d->name == 0 || !(d->mask == FL_IWMMXT || d->mask == FL_IWMMXT2))
	continue;

      mode = insn_data[d->icode].operand[1].mode;

      switch (mode)
	{
	case V8QImode:
	  type = v8qi_ftype_v8qi_v8qi;
	  break;
	case V4HImode:
	  type = v4hi_ftype_v4hi_v4hi;
	  break;
	case V2SImode:
	  type = v2si_ftype_v2si_v2si;
	  break;
	case DImode:
	  type = di_ftype_di_di;
	  break;

	default:
	  gcc_unreachable ();
	}

      def_mbuiltin (d->mask, d->name, type, d->code);
    }

  /* Add the remaining MMX insns with somewhat more complicated types.  */
#define iwmmx_mbuiltin(NAME, TYPE, CODE)			\
  def_mbuiltin (FL_IWMMXT, "__builtin_arm_" NAME, (TYPE),	\
		ARM_BUILTIN_ ## CODE)

#define iwmmx2_mbuiltin(NAME, TYPE, CODE)                      \
  def_mbuiltin (FL_IWMMXT2, "__builtin_arm_" NAME, (TYPE),     \
               ARM_BUILTIN_ ## CODE)

  iwmmx_mbuiltin ("wzero", di_ftype_void, WZERO);
  iwmmx_mbuiltin ("setwcgr0", void_ftype_int, SETWCGR0);
  iwmmx_mbuiltin ("setwcgr1", void_ftype_int, SETWCGR1);
  iwmmx_mbuiltin ("setwcgr2", void_ftype_int, SETWCGR2);
  iwmmx_mbuiltin ("setwcgr3", void_ftype_int, SETWCGR3);
  iwmmx_mbuiltin ("getwcgr0", int_ftype_void, GETWCGR0);
  iwmmx_mbuiltin ("getwcgr1", int_ftype_void, GETWCGR1);
  iwmmx_mbuiltin ("getwcgr2", int_ftype_void, GETWCGR2);
  iwmmx_mbuiltin ("getwcgr3", int_ftype_void, GETWCGR3);

  iwmmx_mbuiltin ("wsllh", v4hi_ftype_v4hi_di, WSLLH);
  iwmmx_mbuiltin ("wsllw", v2si_ftype_v2si_di, WSLLW);
  iwmmx_mbuiltin ("wslld", di_ftype_di_di, WSLLD);
  iwmmx_mbuiltin ("wsllhi", v4hi_ftype_v4hi_int, WSLLHI);
  iwmmx_mbuiltin ("wsllwi", v2si_ftype_v2si_int, WSLLWI);
  iwmmx_mbuiltin ("wslldi", di_ftype_di_int, WSLLDI);

  iwmmx_mbuiltin ("wsrlh", v4hi_ftype_v4hi_di, WSRLH);
  iwmmx_mbuiltin ("wsrlw", v2si_ftype_v2si_di, WSRLW);
  iwmmx_mbuiltin ("wsrld", di_ftype_di_di, WSRLD);
  iwmmx_mbuiltin ("wsrlhi", v4hi_ftype_v4hi_int, WSRLHI);
  iwmmx_mbuiltin ("wsrlwi", v2si_ftype_v2si_int, WSRLWI);
  iwmmx_mbuiltin ("wsrldi", di_ftype_di_int, WSRLDI);

  iwmmx_mbuiltin ("wsrah", v4hi_ftype_v4hi_di, WSRAH);
  iwmmx_mbuiltin ("wsraw", v2si_ftype_v2si_di, WSRAW);
  iwmmx_mbuiltin ("wsrad", di_ftype_di_di, WSRAD);
  iwmmx_mbuiltin ("wsrahi", v4hi_ftype_v4hi_int, WSRAHI);
  iwmmx_mbuiltin ("wsrawi", v2si_ftype_v2si_int, WSRAWI);
  iwmmx_mbuiltin ("wsradi", di_ftype_di_int, WSRADI);

  iwmmx_mbuiltin ("wrorh", v4hi_ftype_v4hi_di, WRORH);
  iwmmx_mbuiltin ("wrorw", v2si_ftype_v2si_di, WRORW);
  iwmmx_mbuiltin ("wrord", di_ftype_di_di, WRORD);
  iwmmx_mbuiltin ("wrorhi", v4hi_ftype_v4hi_int, WRORHI);
  iwmmx_mbuiltin ("wrorwi", v2si_ftype_v2si_int, WRORWI);
  iwmmx_mbuiltin ("wrordi", di_ftype_di_int, WRORDI);

  iwmmx_mbuiltin ("wshufh", v4hi_ftype_v4hi_int, WSHUFH);

  iwmmx_mbuiltin ("wsadb", v2si_ftype_v2si_v8qi_v8qi, WSADB);
  iwmmx_mbuiltin ("wsadh", v2si_ftype_v2si_v4hi_v4hi, WSADH);
  iwmmx_mbuiltin ("wmadds", v2si_ftype_v4hi_v4hi, WMADDS);
  iwmmx2_mbuiltin ("wmaddsx", v2si_ftype_v4hi_v4hi, WMADDSX);
  iwmmx2_mbuiltin ("wmaddsn", v2si_ftype_v4hi_v4hi, WMADDSN);
  iwmmx_mbuiltin ("wmaddu", v2si_ftype_v4hi_v4hi, WMADDU);
  iwmmx2_mbuiltin ("wmaddux", v2si_ftype_v4hi_v4hi, WMADDUX);
  iwmmx2_mbuiltin ("wmaddun", v2si_ftype_v4hi_v4hi, WMADDUN);
  iwmmx_mbuiltin ("wsadbz", v2si_ftype_v8qi_v8qi, WSADBZ);
  iwmmx_mbuiltin ("wsadhz", v2si_ftype_v4hi_v4hi, WSADHZ);

  iwmmx_mbuiltin ("textrmsb", int_ftype_v8qi_int, TEXTRMSB);
  iwmmx_mbuiltin ("textrmsh", int_ftype_v4hi_int, TEXTRMSH);
  iwmmx_mbuiltin ("textrmsw", int_ftype_v2si_int, TEXTRMSW);
  iwmmx_mbuiltin ("textrmub", int_ftype_v8qi_int, TEXTRMUB);
  iwmmx_mbuiltin ("textrmuh", int_ftype_v4hi_int, TEXTRMUH);
  iwmmx_mbuiltin ("textrmuw", int_ftype_v2si_int, TEXTRMUW);
  iwmmx_mbuiltin ("tinsrb", v8qi_ftype_v8qi_int_int, TINSRB);
  iwmmx_mbuiltin ("tinsrh", v4hi_ftype_v4hi_int_int, TINSRH);
  iwmmx_mbuiltin ("tinsrw", v2si_ftype_v2si_int_int, TINSRW);

  iwmmx_mbuiltin ("waccb", di_ftype_v8qi, WACCB);
  iwmmx_mbuiltin ("wacch", di_ftype_v4hi, WACCH);
  iwmmx_mbuiltin ("waccw", di_ftype_v2si, WACCW);

  iwmmx_mbuiltin ("tmovmskb", int_ftype_v8qi, TMOVMSKB);
  iwmmx_mbuiltin ("tmovmskh", int_ftype_v4hi, TMOVMSKH);
  iwmmx_mbuiltin ("tmovmskw", int_ftype_v2si, TMOVMSKW);

  iwmmx2_mbuiltin ("waddbhusm", v8qi_ftype_v4hi_v8qi, WADDBHUSM);
  iwmmx2_mbuiltin ("waddbhusl", v8qi_ftype_v4hi_v8qi, WADDBHUSL);

  iwmmx_mbuiltin ("wpackhss", v8qi_ftype_v4hi_v4hi, WPACKHSS);
  iwmmx_mbuiltin ("wpackhus", v8qi_ftype_v4hi_v4hi, WPACKHUS);
  iwmmx_mbuiltin ("wpackwus", v4hi_ftype_v2si_v2si, WPACKWUS);
  iwmmx_mbuiltin ("wpackwss", v4hi_ftype_v2si_v2si, WPACKWSS);
  iwmmx_mbuiltin ("wpackdus", v2si_ftype_di_di, WPACKDUS);
  iwmmx_mbuiltin ("wpackdss", v2si_ftype_di_di, WPACKDSS);

  iwmmx_mbuiltin ("wunpckehub", v4hi_ftype_v8qi, WUNPCKEHUB);
  iwmmx_mbuiltin ("wunpckehuh", v2si_ftype_v4hi, WUNPCKEHUH);
  iwmmx_mbuiltin ("wunpckehuw", di_ftype_v2si, WUNPCKEHUW);
  iwmmx_mbuiltin ("wunpckehsb", v4hi_ftype_v8qi, WUNPCKEHSB);
  iwmmx_mbuiltin ("wunpckehsh", v2si_ftype_v4hi, WUNPCKEHSH);
  iwmmx_mbuiltin ("wunpckehsw", di_ftype_v2si, WUNPCKEHSW);
  iwmmx_mbuiltin ("wunpckelub", v4hi_ftype_v8qi, WUNPCKELUB);
  iwmmx_mbuiltin ("wunpckeluh", v2si_ftype_v4hi, WUNPCKELUH);
  iwmmx_mbuiltin ("wunpckeluw", di_ftype_v2si, WUNPCKELUW);
  iwmmx_mbuiltin ("wunpckelsb", v4hi_ftype_v8qi, WUNPCKELSB);
  iwmmx_mbuiltin ("wunpckelsh", v2si_ftype_v4hi, WUNPCKELSH);
  iwmmx_mbuiltin ("wunpckelsw", di_ftype_v2si, WUNPCKELSW);

  iwmmx_mbuiltin ("wmacs", di_ftype_di_v4hi_v4hi, WMACS);
  iwmmx_mbuiltin ("wmacsz", di_ftype_v4hi_v4hi, WMACSZ);
  iwmmx_mbuiltin ("wmacu", di_ftype_di_v4hi_v4hi, WMACU);
  iwmmx_mbuiltin ("wmacuz", di_ftype_v4hi_v4hi, WMACUZ);

  iwmmx_mbuiltin ("walign", v8qi_ftype_v8qi_v8qi_int, WALIGNI);
  iwmmx_mbuiltin ("tmia", di_ftype_di_int_int, TMIA);
  iwmmx_mbuiltin ("tmiaph", di_ftype_di_int_int, TMIAPH);
  iwmmx_mbuiltin ("tmiabb", di_ftype_di_int_int, TMIABB);
  iwmmx_mbuiltin ("tmiabt", di_ftype_di_int_int, TMIABT);
  iwmmx_mbuiltin ("tmiatb", di_ftype_di_int_int, TMIATB);
  iwmmx_mbuiltin ("tmiatt", di_ftype_di_int_int, TMIATT);

  iwmmx2_mbuiltin ("wabsb", v8qi_ftype_v8qi, WABSB);
  iwmmx2_mbuiltin ("wabsh", v4hi_ftype_v4hi, WABSH);
  iwmmx2_mbuiltin ("wabsw", v2si_ftype_v2si, WABSW);

  iwmmx2_mbuiltin ("wqmiabb", v2si_ftype_v2si_v4hi_v4hi, WQMIABB);
  iwmmx2_mbuiltin ("wqmiabt", v2si_ftype_v2si_v4hi_v4hi, WQMIABT);
  iwmmx2_mbuiltin ("wqmiatb", v2si_ftype_v2si_v4hi_v4hi, WQMIATB);
  iwmmx2_mbuiltin ("wqmiatt", v2si_ftype_v2si_v4hi_v4hi, WQMIATT);

  iwmmx2_mbuiltin ("wqmiabbn", v2si_ftype_v2si_v4hi_v4hi, WQMIABBN);
  iwmmx2_mbuiltin ("wqmiabtn", v2si_ftype_v2si_v4hi_v4hi, WQMIABTN);
  iwmmx2_mbuiltin ("wqmiatbn", v2si_ftype_v2si_v4hi_v4hi, WQMIATBN);
  iwmmx2_mbuiltin ("wqmiattn", v2si_ftype_v2si_v4hi_v4hi, WQMIATTN);

  iwmmx2_mbuiltin ("wmiabb", di_ftype_di_v4hi_v4hi, WMIABB);
  iwmmx2_mbuiltin ("wmiabt", di_ftype_di_v4hi_v4hi, WMIABT);
  iwmmx2_mbuiltin ("wmiatb", di_ftype_di_v4hi_v4hi, WMIATB);
  iwmmx2_mbuiltin ("wmiatt", di_ftype_di_v4hi_v4hi, WMIATT);

  iwmmx2_mbuiltin ("wmiabbn", di_ftype_di_v4hi_v4hi, WMIABBN);
  iwmmx2_mbuiltin ("wmiabtn", di_ftype_di_v4hi_v4hi, WMIABTN);
  iwmmx2_mbuiltin ("wmiatbn", di_ftype_di_v4hi_v4hi, WMIATBN);
  iwmmx2_mbuiltin ("wmiattn", di_ftype_di_v4hi_v4hi, WMIATTN);

  iwmmx2_mbuiltin ("wmiawbb", di_ftype_di_v2si_v2si, WMIAWBB);
  iwmmx2_mbuiltin ("wmiawbt", di_ftype_di_v2si_v2si, WMIAWBT);
  iwmmx2_mbuiltin ("wmiawtb", di_ftype_di_v2si_v2si, WMIAWTB);
  iwmmx2_mbuiltin ("wmiawtt", di_ftype_di_v2si_v2si, WMIAWTT);

  iwmmx2_mbuiltin ("wmiawbbn", di_ftype_di_v2si_v2si, WMIAWBBN);
  iwmmx2_mbuiltin ("wmiawbtn", di_ftype_di_v2si_v2si, WMIAWBTN);
  iwmmx2_mbuiltin ("wmiawtbn", di_ftype_di_v2si_v2si, WMIAWTBN);
  iwmmx2_mbuiltin ("wmiawttn", di_ftype_di_v2si_v2si, WMIAWTTN);

  iwmmx2_mbuiltin ("wmerge", di_ftype_di_di_int, WMERGE);

  iwmmx_mbuiltin ("tbcstb", v8qi_ftype_char, TBCSTB);
  iwmmx_mbuiltin ("tbcsth", v4hi_ftype_short, TBCSTH);
  iwmmx_mbuiltin ("tbcstw", v2si_ftype_int, TBCSTW);

#undef iwmmx_mbuiltin
#undef iwmmx2_mbuiltin
}

static void
arm_init_fp16_builtins (void)
{
  tree fp16_type = make_node (REAL_TYPE);
  TYPE_PRECISION (fp16_type) = 16;
  layout_type (fp16_type);
  (*lang_hooks.types.register_builtin_type) (fp16_type, "__fp16");
}

static void
arm_init_crc32_builtins ()
{
  tree si_ftype_si_qi
    = build_function_type_list (unsigned_intSI_type_node,
                                unsigned_intSI_type_node,
                                unsigned_intQI_type_node, NULL_TREE);
  tree si_ftype_si_hi
    = build_function_type_list (unsigned_intSI_type_node,
                                unsigned_intSI_type_node,
                                unsigned_intHI_type_node, NULL_TREE);
  tree si_ftype_si_si
    = build_function_type_list (unsigned_intSI_type_node,
                                unsigned_intSI_type_node,
                                unsigned_intSI_type_node, NULL_TREE);

  arm_builtin_decls[ARM_BUILTIN_CRC32B]
    = add_builtin_function ("__builtin_arm_crc32b", si_ftype_si_qi,
                            ARM_BUILTIN_CRC32B, BUILT_IN_MD, NULL, NULL_TREE);
  arm_builtin_decls[ARM_BUILTIN_CRC32H]
    = add_builtin_function ("__builtin_arm_crc32h", si_ftype_si_hi,
                            ARM_BUILTIN_CRC32H, BUILT_IN_MD, NULL, NULL_TREE);
  arm_builtin_decls[ARM_BUILTIN_CRC32W]
    = add_builtin_function ("__builtin_arm_crc32w", si_ftype_si_si,
                            ARM_BUILTIN_CRC32W, BUILT_IN_MD, NULL, NULL_TREE);
  arm_builtin_decls[ARM_BUILTIN_CRC32CB]
    = add_builtin_function ("__builtin_arm_crc32cb", si_ftype_si_qi,
                            ARM_BUILTIN_CRC32CB, BUILT_IN_MD, NULL, NULL_TREE);
  arm_builtin_decls[ARM_BUILTIN_CRC32CH]
    = add_builtin_function ("__builtin_arm_crc32ch", si_ftype_si_hi,
                            ARM_BUILTIN_CRC32CH, BUILT_IN_MD, NULL, NULL_TREE);
  arm_builtin_decls[ARM_BUILTIN_CRC32CW]
    = add_builtin_function ("__builtin_arm_crc32cw", si_ftype_si_si,
                            ARM_BUILTIN_CRC32CW, BUILT_IN_MD, NULL, NULL_TREE);
}

static void
arm_init_builtins (void)
{
  if (TARGET_REALLY_IWMMXT)
    arm_init_iwmmxt_builtins ();

  if (TARGET_NEON)
    arm_init_neon_builtins ();

  if (arm_fp16_format)
    arm_init_fp16_builtins ();

  if (TARGET_CRC32)
    arm_init_crc32_builtins ();
}

/* Return the ARM builtin for CODE.  */

static tree
arm_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
  if (code >= ARM_BUILTIN_MAX)
    return error_mark_node;

  return arm_builtin_decls[code];
}

/* Implement TARGET_INVALID_PARAMETER_TYPE.  */

static const char *
arm_invalid_parameter_type (const_tree t)
{
  if (SCALAR_FLOAT_TYPE_P (t) && TYPE_PRECISION (t) == 16)
    return N_("function parameters cannot have __fp16 type");
  return NULL;
}

/* Implement TARGET_INVALID_PARAMETER_TYPE.  */

static const char *
arm_invalid_return_type (const_tree t)
{
  if (SCALAR_FLOAT_TYPE_P (t) && TYPE_PRECISION (t) == 16)
    return N_("functions cannot return __fp16 type");
  return NULL;
}

/* Implement TARGET_PROMOTED_TYPE.  */

static tree
arm_promoted_type (const_tree t)
{
  if (SCALAR_FLOAT_TYPE_P (t) && TYPE_PRECISION (t) == 16)
    return float_type_node;
  return NULL_TREE;
}

/* Implement TARGET_CONVERT_TO_TYPE.
   Specifically, this hook implements the peculiarity of the ARM
   half-precision floating-point C semantics that requires conversions between
   __fp16 to or from double to do an intermediate conversion to float.  */

static tree
arm_convert_to_type (tree type, tree expr)
{
  tree fromtype = TREE_TYPE (expr);
  if (!SCALAR_FLOAT_TYPE_P (fromtype) || !SCALAR_FLOAT_TYPE_P (type))
    return NULL_TREE;
  if ((TYPE_PRECISION (fromtype) == 16 && TYPE_PRECISION (type) > 32)
      || (TYPE_PRECISION (type) == 16 && TYPE_PRECISION (fromtype) > 32))
    return convert (type, convert (float_type_node, expr));
  return NULL_TREE;
}

/* Implement TARGET_SCALAR_MODE_SUPPORTED_P.
   This simply adds HFmode as a supported mode; even though we don't
   implement arithmetic on this type directly, it's supported by
   optabs conversions, much the way the double-word arithmetic is
   special-cased in the default hook.  */

static bool
arm_scalar_mode_supported_p (enum machine_mode mode)
{
  if (mode == HFmode)
    return (arm_fp16_format != ARM_FP16_FORMAT_NONE);
  else if (ALL_FIXED_POINT_MODE_P (mode))
    return true;
  else
    return default_scalar_mode_supported_p (mode);
}

/* Errors in the source file can cause expand_expr to return const0_rtx
   where we expect a vector.  To avoid crashing, use one of the vector
   clear instructions.  */

static rtx
safe_vector_operand (rtx x, enum machine_mode mode)
{
  if (x != const0_rtx)
    return x;
  x = gen_reg_rtx (mode);

  emit_insn (gen_iwmmxt_clrdi (mode == DImode ? x
			       : gen_rtx_SUBREG (DImode, x, 0)));
  return x;
}

/* Function to expand ternary builtins.  */
static rtx
arm_expand_ternop_builtin (enum insn_code icode,
                           tree exp, rtx target)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  tree arg2 = CALL_EXPR_ARG (exp, 2);

  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  rtx op2 = expand_normal (arg2);
  rtx op3 = NULL_RTX;

  /* The sha1c, sha1p, sha1m crypto builtins require a different vec_select
     lane operand depending on endianness.  */
  bool builtin_sha1cpm_p = false;

  if (insn_data[icode].n_operands == 5)
    {
      gcc_assert (icode == CODE_FOR_crypto_sha1c
                  || icode == CODE_FOR_crypto_sha1p
                  || icode == CODE_FOR_crypto_sha1m);
      builtin_sha1cpm_p = true;
    }
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;
  enum machine_mode mode2 = insn_data[icode].operand[3].mode;


  if (VECTOR_MODE_P (mode0))
    op0 = safe_vector_operand (op0, mode0);
  if (VECTOR_MODE_P (mode1))
    op1 = safe_vector_operand (op1, mode1);
  if (VECTOR_MODE_P (mode2))
    op2 = safe_vector_operand (op2, mode2);

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  gcc_assert ((GET_MODE (op0) == mode0 || GET_MODE (op0) == VOIDmode)
	      && (GET_MODE (op1) == mode1 || GET_MODE (op1) == VOIDmode)
	      && (GET_MODE (op2) == mode2 || GET_MODE (op2) == VOIDmode));

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);
  if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
    op2 = copy_to_mode_reg (mode2, op2);
  if (builtin_sha1cpm_p)
    op3 = GEN_INT (TARGET_BIG_END ? 1 : 0);

  if (builtin_sha1cpm_p)
    pat = GEN_FCN (icode) (target, op0, op1, op2, op3);
  else
    pat = GEN_FCN (icode) (target, op0, op1, op2);
  if (! pat)
    return 0;
  emit_insn (pat);
  return target;
}

/* Subroutine of arm_expand_builtin to take care of binop insns.  */

static rtx
arm_expand_binop_builtin (enum insn_code icode,
			  tree exp, rtx target)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;

  if (VECTOR_MODE_P (mode0))
    op0 = safe_vector_operand (op0, mode0);
  if (VECTOR_MODE_P (mode1))
    op1 = safe_vector_operand (op1, mode1);

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  gcc_assert ((GET_MODE (op0) == mode0 || GET_MODE (op0) == VOIDmode)
	      && (GET_MODE (op1) == mode1 || GET_MODE (op1) == VOIDmode));

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  pat = GEN_FCN (icode) (target, op0, op1);
  if (! pat)
    return 0;
  emit_insn (pat);
  return target;
}

/* Subroutine of arm_expand_builtin to take care of unop insns.  */

static rtx
arm_expand_unop_builtin (enum insn_code icode,
			 tree exp, rtx target, int do_load)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  rtx op0 = expand_normal (arg0);
  rtx op1 = NULL_RTX;
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  bool builtin_sha1h_p = false;

  if (insn_data[icode].n_operands == 3)
    {
      gcc_assert (icode == CODE_FOR_crypto_sha1h);
      builtin_sha1h_p = true;
    }

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);
  if (do_load)
    op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
  else
    {
      if (VECTOR_MODE_P (mode0))
	op0 = safe_vector_operand (op0, mode0);

      if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);
    }
  if (builtin_sha1h_p)
    op1 = GEN_INT (TARGET_BIG_END ? 1 : 0);

  if (builtin_sha1h_p)
    pat = GEN_FCN (icode) (target, op0, op1);
  else
    pat = GEN_FCN (icode) (target, op0);
  if (! pat)
    return 0;
  emit_insn (pat);
  return target;
}

typedef enum {
  NEON_ARG_COPY_TO_REG,
  NEON_ARG_CONSTANT,
  NEON_ARG_MEMORY,
  NEON_ARG_STOP
} builtin_arg;

#define NEON_MAX_BUILTIN_ARGS 5

/* EXP is a pointer argument to a Neon load or store intrinsic.  Derive
   and return an expression for the accessed memory.

   The intrinsic function operates on a block of registers that has
   mode REG_MODE.  This block contains vectors of type TYPE_MODE.  The
   function references the memory at EXP of type TYPE and in mode
   MEM_MODE; this mode may be BLKmode if no more suitable mode is
   available.  */

static tree
neon_dereference_pointer (tree exp, tree type, enum machine_mode mem_mode,
			  enum machine_mode reg_mode,
			  neon_builtin_type_mode type_mode)
{
  HOST_WIDE_INT reg_size, vector_size, nvectors, nelems;
  tree elem_type, upper_bound, array_type;

  /* Work out the size of the register block in bytes.  */
  reg_size = GET_MODE_SIZE (reg_mode);

  /* Work out the size of each vector in bytes.  */
  gcc_assert (TYPE_MODE_BIT (type_mode) & (TB_DREG | TB_QREG));
  vector_size = (TYPE_MODE_BIT (type_mode) & TB_QREG ? 16 : 8);

  /* Work out how many vectors there are.  */
  gcc_assert (reg_size % vector_size == 0);
  nvectors = reg_size / vector_size;

  /* Work out the type of each element.  */
  gcc_assert (POINTER_TYPE_P (type));
  elem_type = TREE_TYPE (type);

  /* Work out how many elements are being loaded or stored.
     MEM_MODE == REG_MODE implies a one-to-one mapping between register
     and memory elements; anything else implies a lane load or store.  */
  if (mem_mode == reg_mode)
    nelems = vector_size * nvectors / int_size_in_bytes (elem_type);
  else
    nelems = nvectors;

  /* Create a type that describes the full access.  */
  upper_bound = build_int_cst (size_type_node, nelems - 1);
  array_type = build_array_type (elem_type, build_index_type (upper_bound));

  /* Dereference EXP using that type.  */
  return fold_build2 (MEM_REF, array_type, exp,
		      build_int_cst (build_pointer_type (array_type), 0));
}

/* Expand a Neon builtin.  */
static rtx
arm_expand_neon_args (rtx target, int icode, int have_retval,
		      neon_builtin_type_mode type_mode,
		      tree exp, int fcode, ...)
{
  va_list ap;
  rtx pat;
  tree arg[NEON_MAX_BUILTIN_ARGS];
  rtx op[NEON_MAX_BUILTIN_ARGS];
  tree arg_type;
  tree formals;
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode[NEON_MAX_BUILTIN_ARGS];
  enum machine_mode other_mode;
  int argc = 0;
  int opno;

  if (have_retval
      && (!target
	  || GET_MODE (target) != tmode
	  || !(*insn_data[icode].operand[0].predicate) (target, tmode)))
    target = gen_reg_rtx (tmode);

  va_start (ap, fcode);

  formals = TYPE_ARG_TYPES (TREE_TYPE (arm_builtin_decls[fcode]));

  for (;;)
    {
      builtin_arg thisarg = (builtin_arg) va_arg (ap, int);

      if (thisarg == NEON_ARG_STOP)
        break;
      else
        {
          opno = argc + have_retval;
          mode[argc] = insn_data[icode].operand[opno].mode;
          arg[argc] = CALL_EXPR_ARG (exp, argc);
	  arg_type = TREE_VALUE (formals);
          if (thisarg == NEON_ARG_MEMORY)
            {
              other_mode = insn_data[icode].operand[1 - opno].mode;
              arg[argc] = neon_dereference_pointer (arg[argc], arg_type,
						    mode[argc], other_mode,
						    type_mode);
            }

	  /* Use EXPAND_MEMORY for NEON_ARG_MEMORY to ensure a MEM_P
	     be returned.  */
	  op[argc] = expand_expr (arg[argc], NULL_RTX, VOIDmode,
				  (thisarg == NEON_ARG_MEMORY
				   ? EXPAND_MEMORY : EXPAND_NORMAL));

          switch (thisarg)
            {
            case NEON_ARG_COPY_TO_REG:
              /*gcc_assert (GET_MODE (op[argc]) == mode[argc]);*/
              if (!(*insn_data[icode].operand[opno].predicate)
                     (op[argc], mode[argc]))
                op[argc] = copy_to_mode_reg (mode[argc], op[argc]);
              break;

            case NEON_ARG_CONSTANT:
              /* FIXME: This error message is somewhat unhelpful.  */
              if (!(*insn_data[icode].operand[opno].predicate)
                    (op[argc], mode[argc]))
		error ("argument must be a constant");
              break;

            case NEON_ARG_MEMORY:
	      /* Check if expand failed.  */
	      if (op[argc] == const0_rtx)
		return 0;
	      gcc_assert (MEM_P (op[argc]));
	      PUT_MODE (op[argc], mode[argc]);
	      /* ??? arm_neon.h uses the same built-in functions for signed
		 and unsigned accesses, casting where necessary.  This isn't
		 alias safe.  */
	      set_mem_alias_set (op[argc], 0);
	      if (!(*insn_data[icode].operand[opno].predicate)
                    (op[argc], mode[argc]))
		op[argc] = (replace_equiv_address
			    (op[argc], force_reg (Pmode, XEXP (op[argc], 0))));
              break;

            case NEON_ARG_STOP:
              gcc_unreachable ();
            }

          argc++;
	  formals = TREE_CHAIN (formals);
        }
    }

  va_end (ap);

  if (have_retval)
    switch (argc)
      {
      case 1:
	pat = GEN_FCN (icode) (target, op[0]);
	break;

      case 2:
	pat = GEN_FCN (icode) (target, op[0], op[1]);
	break;

      case 3:
	pat = GEN_FCN (icode) (target, op[0], op[1], op[2]);
	break;

      case 4:
	pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]);
	break;

      case 5:
	pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3], op[4]);
	break;

      default:
	gcc_unreachable ();
      }
  else
    switch (argc)
      {
      case 1:
	pat = GEN_FCN (icode) (op[0]);
	break;

      case 2:
	pat = GEN_FCN (icode) (op[0], op[1]);
	break;

      case 3:
	pat = GEN_FCN (icode) (op[0], op[1], op[2]);
	break;

      case 4:
	pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
	break;

      case 5:
	pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3], op[4]);
        break;

      default:
	gcc_unreachable ();
      }

  if (!pat)
    return 0;

  emit_insn (pat);

  return target;
}

/* Expand a Neon builtin. These are "special" because they don't have symbolic
   constants defined per-instruction or per instruction-variant. Instead, the
   required info is looked up in the table neon_builtin_data.  */
static rtx
arm_expand_neon_builtin (int fcode, tree exp, rtx target)
{
  neon_builtin_datum *d = &neon_builtin_data[fcode - ARM_BUILTIN_NEON_BASE];
  neon_itype itype = d->itype;
  enum insn_code icode = d->code;
  neon_builtin_type_mode type_mode = d->mode;

  switch (itype)
    {
    case NEON_UNOP:
    case NEON_CONVERT:
    case NEON_DUPLANE:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT, NEON_ARG_STOP);

    case NEON_BINOP:
    case NEON_SETLANE:
    case NEON_SCALARMUL:
    case NEON_SCALARMULL:
    case NEON_SCALARMULH:
    case NEON_SHIFTINSERT:
    case NEON_LOGICBINOP:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
        NEON_ARG_STOP);

    case NEON_TERNOP:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
        NEON_ARG_CONSTANT, NEON_ARG_STOP);

    case NEON_GETLANE:
    case NEON_FIXCONV:
    case NEON_SHIFTIMM:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT, NEON_ARG_CONSTANT,
        NEON_ARG_STOP);

    case NEON_CREATE:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);

    case NEON_DUP:
    case NEON_RINT:
    case NEON_SPLIT:
    case NEON_FLOAT_WIDEN:
    case NEON_FLOAT_NARROW:
    case NEON_REINTERP:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);

    case NEON_COMBINE:
    case NEON_VTBL:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);

    case NEON_RESULTPAIR:
      return arm_expand_neon_args (target, icode, 0, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
        NEON_ARG_STOP);

    case NEON_LANEMUL:
    case NEON_LANEMULL:
    case NEON_LANEMULH:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
        NEON_ARG_CONSTANT, NEON_ARG_STOP);

    case NEON_LANEMAC:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
        NEON_ARG_CONSTANT, NEON_ARG_CONSTANT, NEON_ARG_STOP);

    case NEON_SHIFTACC:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
        NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
        NEON_ARG_CONSTANT, NEON_ARG_STOP);

    case NEON_SCALARMAC:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
	NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
        NEON_ARG_CONSTANT, NEON_ARG_STOP);

    case NEON_SELECT:
    case NEON_VTBX:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
	NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
        NEON_ARG_STOP);

    case NEON_LOAD1:
    case NEON_LOADSTRUCT:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
	NEON_ARG_MEMORY, NEON_ARG_STOP);

    case NEON_LOAD1LANE:
    case NEON_LOADSTRUCTLANE:
      return arm_expand_neon_args (target, icode, 1, type_mode, exp, fcode,
	NEON_ARG_MEMORY, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
	NEON_ARG_STOP);

    case NEON_STORE1:
    case NEON_STORESTRUCT:
      return arm_expand_neon_args (target, icode, 0, type_mode, exp, fcode,
	NEON_ARG_MEMORY, NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);

    case NEON_STORE1LANE:
    case NEON_STORESTRUCTLANE:
      return arm_expand_neon_args (target, icode, 0, type_mode, exp, fcode,
	NEON_ARG_MEMORY, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
	NEON_ARG_STOP);
    }

  gcc_unreachable ();
}

/* Emit code to reinterpret one Neon type as another, without altering bits.  */
void
neon_reinterpret (rtx dest, rtx src)
{
  emit_move_insn (dest, gen_lowpart (GET_MODE (dest), src));
}

/* Emit code to place a Neon pair result in memory locations (with equal
   registers).  */
void
neon_emit_pair_result_insn (enum machine_mode mode,
			    rtx (*intfn) (rtx, rtx, rtx, rtx), rtx destaddr,
                            rtx op1, rtx op2)
{
  rtx mem = gen_rtx_MEM (mode, destaddr);
  rtx tmp1 = gen_reg_rtx (mode);
  rtx tmp2 = gen_reg_rtx (mode);

  emit_insn (intfn (tmp1, op1, op2, tmp2));

  emit_move_insn (mem, tmp1);
  mem = adjust_address (mem, mode, GET_MODE_SIZE (mode));
  emit_move_insn (mem, tmp2);
}

/* Set up OPERANDS for a register copy from SRC to DEST, taking care
   not to early-clobber SRC registers in the process.

   We assume that the operands described by SRC and DEST represent a
   decomposed copy of OPERANDS[1] into OPERANDS[0].  COUNT is the
   number of components into which the copy has been decomposed.  */
void
neon_disambiguate_copy (rtx *operands, rtx *dest, rtx *src, unsigned int count)
{
  unsigned int i;

  if (!reg_overlap_mentioned_p (operands[0], operands[1])
      || REGNO (operands[0]) < REGNO (operands[1]))
    {
      for (i = 0; i < count; i++)
	{
	  operands[2 * i] = dest[i];
	  operands[2 * i + 1] = src[i];
	}
    }
  else
    {
      for (i = 0; i < count; i++)
	{
	  operands[2 * i] = dest[count - i - 1];
	  operands[2 * i + 1] = src[count - i - 1];
	}
    }
}

/* Split operands into moves from op[1] + op[2] into op[0].  */

void
neon_split_vcombine (rtx operands[3])
{
  unsigned int dest = REGNO (operands[0]);
  unsigned int src1 = REGNO (operands[1]);
  unsigned int src2 = REGNO (operands[2]);
  enum machine_mode halfmode = GET_MODE (operands[1]);
  unsigned int halfregs = HARD_REGNO_NREGS (src1, halfmode);
  rtx destlo, desthi;

  if (src1 == dest && src2 == dest + halfregs)
    {
      /* No-op move.  Can't split to nothing; emit something.  */
      emit_note (NOTE_INSN_DELETED);
      return;
    }

  /* Preserve register attributes for variable tracking.  */
  destlo = gen_rtx_REG_offset (operands[0], halfmode, dest, 0);
  desthi = gen_rtx_REG_offset (operands[0], halfmode, dest + halfregs,
			       GET_MODE_SIZE (halfmode));

  /* Special case of reversed high/low parts.  Use VSWP.  */
  if (src2 == dest && src1 == dest + halfregs)
    {
      rtx x = gen_rtx_SET (VOIDmode, destlo, operands[1]);
      rtx y = gen_rtx_SET (VOIDmode, desthi, operands[2]);
      emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x, y)));
      return;
    }

  if (!reg_overlap_mentioned_p (operands[2], destlo))
    {
      /* Try to avoid unnecessary moves if part of the result
	 is in the right place already.  */
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
    }
  else
    {
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
    }
}

/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */

static rtx
arm_expand_builtin (tree exp,
		    rtx target,
		    rtx subtarget ATTRIBUTE_UNUSED,
		    enum machine_mode mode ATTRIBUTE_UNUSED,
		    int ignore ATTRIBUTE_UNUSED)
{
  const struct builtin_description * d;
  enum insn_code    icode;
  tree              fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  tree              arg0;
  tree              arg1;
  tree              arg2;
  rtx               op0;
  rtx               op1;
  rtx               op2;
  rtx               pat;
  unsigned int      fcode = DECL_FUNCTION_CODE (fndecl);
  size_t            i;
  enum machine_mode tmode;
  enum machine_mode mode0;
  enum machine_mode mode1;
  enum machine_mode mode2;
  int opint;
  int selector;
  int mask;
  int imm;

  if (fcode >= ARM_BUILTIN_NEON_BASE)
    return arm_expand_neon_builtin (fcode, exp, target);

  switch (fcode)
    {
    case ARM_BUILTIN_TEXTRMSB:
    case ARM_BUILTIN_TEXTRMUB:
    case ARM_BUILTIN_TEXTRMSH:
    case ARM_BUILTIN_TEXTRMUH:
    case ARM_BUILTIN_TEXTRMSW:
    case ARM_BUILTIN_TEXTRMUW:
      icode = (fcode == ARM_BUILTIN_TEXTRMSB ? CODE_FOR_iwmmxt_textrmsb
	       : fcode == ARM_BUILTIN_TEXTRMUB ? CODE_FOR_iwmmxt_textrmub
	       : fcode == ARM_BUILTIN_TEXTRMSH ? CODE_FOR_iwmmxt_textrmsh
	       : fcode == ARM_BUILTIN_TEXTRMUH ? CODE_FOR_iwmmxt_textrmuh
	       : CODE_FOR_iwmmxt_textrmw);

      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      op0 = expand_normal (arg0);
      op1 = expand_normal (arg1);
      tmode = insn_data[icode].operand[0].mode;
      mode0 = insn_data[icode].operand[1].mode;
      mode1 = insn_data[icode].operand[2].mode;

      if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);
      if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
	{
	  /* @@@ better error message */
	  error ("selector must be an immediate");
	  return gen_reg_rtx (tmode);
	}

      opint = INTVAL (op1);
      if (fcode == ARM_BUILTIN_TEXTRMSB || fcode == ARM_BUILTIN_TEXTRMUB)
	{
	  if (opint > 7 || opint < 0)
	    error ("the range of selector should be in 0 to 7");
	}
      else if (fcode == ARM_BUILTIN_TEXTRMSH || fcode == ARM_BUILTIN_TEXTRMUH)
	{
	  if (opint > 3 || opint < 0)
	    error ("the range of selector should be in 0 to 3");
	}
      else /* ARM_BUILTIN_TEXTRMSW || ARM_BUILTIN_TEXTRMUW.  */
	{
	  if (opint > 1 || opint < 0)
	    error ("the range of selector should be in 0 to 1");
	}

      if (target == 0
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);
      pat = GEN_FCN (icode) (target, op0, op1);
      if (! pat)
	return 0;
      emit_insn (pat);
      return target;

    case ARM_BUILTIN_WALIGNI:
      /* If op2 is immediate, call walighi, else call walighr.  */
      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      arg2 = CALL_EXPR_ARG (exp, 2);
      op0 = expand_normal (arg0);
      op1 = expand_normal (arg1);
      op2 = expand_normal (arg2);
      if (CONST_INT_P (op2))
        {
	  icode = CODE_FOR_iwmmxt_waligni;
          tmode = insn_data[icode].operand[0].mode;
	  mode0 = insn_data[icode].operand[1].mode;
	  mode1 = insn_data[icode].operand[2].mode;
	  mode2 = insn_data[icode].operand[3].mode;
          if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
	    op0 = copy_to_mode_reg (mode0, op0);
          if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
	    op1 = copy_to_mode_reg (mode1, op1);
          gcc_assert ((*insn_data[icode].operand[3].predicate) (op2, mode2));
	  selector = INTVAL (op2);
	  if (selector > 7 || selector < 0)
	    error ("the range of selector should be in 0 to 7");
	}
      else
        {
	  icode = CODE_FOR_iwmmxt_walignr;
          tmode = insn_data[icode].operand[0].mode;
	  mode0 = insn_data[icode].operand[1].mode;
	  mode1 = insn_data[icode].operand[2].mode;
	  mode2 = insn_data[icode].operand[3].mode;
          if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
	    op0 = copy_to_mode_reg (mode0, op0);
          if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
	    op1 = copy_to_mode_reg (mode1, op1);
          if (!(*insn_data[icode].operand[3].predicate) (op2, mode2))
	    op2 = copy_to_mode_reg (mode2, op2);
	}
      if (target == 0
	  || GET_MODE (target) != tmode
	  || !(*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);
      pat = GEN_FCN (icode) (target, op0, op1, op2);
      if (!pat)
	return 0;
      emit_insn (pat);
      return target;

    case ARM_BUILTIN_TINSRB:
    case ARM_BUILTIN_TINSRH:
    case ARM_BUILTIN_TINSRW:
    case ARM_BUILTIN_WMERGE:
      icode = (fcode == ARM_BUILTIN_TINSRB ? CODE_FOR_iwmmxt_tinsrb
	       : fcode == ARM_BUILTIN_TINSRH ? CODE_FOR_iwmmxt_tinsrh
	       : fcode == ARM_BUILTIN_WMERGE ? CODE_FOR_iwmmxt_wmerge
	       : CODE_FOR_iwmmxt_tinsrw);
      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      arg2 = CALL_EXPR_ARG (exp, 2);
      op0 = expand_normal (arg0);
      op1 = expand_normal (arg1);
      op2 = expand_normal (arg2);
      tmode = insn_data[icode].operand[0].mode;
      mode0 = insn_data[icode].operand[1].mode;
      mode1 = insn_data[icode].operand[2].mode;
      mode2 = insn_data[icode].operand[3].mode;

      if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);
      if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
	op1 = copy_to_mode_reg (mode1, op1);
      if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
	{
	  error ("selector must be an immediate");
	  return const0_rtx;
	}
      if (icode == CODE_FOR_iwmmxt_wmerge)
	{
	  selector = INTVAL (op2);
	  if (selector > 7 || selector < 0)
	    error ("the range of selector should be in 0 to 7");
	}
      if ((icode == CODE_FOR_iwmmxt_tinsrb)
	  || (icode == CODE_FOR_iwmmxt_tinsrh)
	  || (icode == CODE_FOR_iwmmxt_tinsrw))
        {
	  mask = 0x01;
	  selector= INTVAL (op2);
	  if (icode == CODE_FOR_iwmmxt_tinsrb && (selector < 0 || selector > 7))
	    error ("the range of selector should be in 0 to 7");
	  else if (icode == CODE_FOR_iwmmxt_tinsrh && (selector < 0 ||selector > 3))
	    error ("the range of selector should be in 0 to 3");
	  else if (icode == CODE_FOR_iwmmxt_tinsrw && (selector < 0 ||selector > 1))
	    error ("the range of selector should be in 0 to 1");
	  mask <<= selector;
	  op2 = GEN_INT (mask);
	}
      if (target == 0
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);
      pat = GEN_FCN (icode) (target, op0, op1, op2);
      if (! pat)
	return 0;
      emit_insn (pat);
      return target;

    case ARM_BUILTIN_SETWCGR0:
    case ARM_BUILTIN_SETWCGR1:
    case ARM_BUILTIN_SETWCGR2:
    case ARM_BUILTIN_SETWCGR3:
      icode = (fcode == ARM_BUILTIN_SETWCGR0 ? CODE_FOR_iwmmxt_setwcgr0
	       : fcode == ARM_BUILTIN_SETWCGR1 ? CODE_FOR_iwmmxt_setwcgr1
	       : fcode == ARM_BUILTIN_SETWCGR2 ? CODE_FOR_iwmmxt_setwcgr2
	       : CODE_FOR_iwmmxt_setwcgr3);
      arg0 = CALL_EXPR_ARG (exp, 0);
      op0 = expand_normal (arg0);
      mode0 = insn_data[icode].operand[0].mode;
      if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
        op0 = copy_to_mode_reg (mode0, op0);
      pat = GEN_FCN (icode) (op0);
      if (!pat)
	return 0;
      emit_insn (pat);
      return 0;

    case ARM_BUILTIN_GETWCGR0:
    case ARM_BUILTIN_GETWCGR1:
    case ARM_BUILTIN_GETWCGR2:
    case ARM_BUILTIN_GETWCGR3:
      icode = (fcode == ARM_BUILTIN_GETWCGR0 ? CODE_FOR_iwmmxt_getwcgr0
	       : fcode == ARM_BUILTIN_GETWCGR1 ? CODE_FOR_iwmmxt_getwcgr1
	       : fcode == ARM_BUILTIN_GETWCGR2 ? CODE_FOR_iwmmxt_getwcgr2
	       : CODE_FOR_iwmmxt_getwcgr3);
      tmode = insn_data[icode].operand[0].mode;
      if (target == 0
	  || GET_MODE (target) != tmode
	  || !(*insn_data[icode].operand[0].predicate) (target, tmode))
        target = gen_reg_rtx (tmode);
      pat = GEN_FCN (icode) (target);
      if (!pat)
        return 0;
      emit_insn (pat);
      return target;

    case ARM_BUILTIN_WSHUFH:
      icode = CODE_FOR_iwmmxt_wshufh;
      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      op0 = expand_normal (arg0);
      op1 = expand_normal (arg1);
      tmode = insn_data[icode].operand[0].mode;
      mode1 = insn_data[icode].operand[1].mode;
      mode2 = insn_data[icode].operand[2].mode;

      if (! (*insn_data[icode].operand[1].predicate) (op0, mode1))
	op0 = copy_to_mode_reg (mode1, op0);
      if (! (*insn_data[icode].operand[2].predicate) (op1, mode2))
	{
	  error ("mask must be an immediate");
	  return const0_rtx;
	}
      selector = INTVAL (op1);
      if (selector < 0 || selector > 255)
	error ("the range of mask should be in 0 to 255");
      if (target == 0
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);
      pat = GEN_FCN (icode) (target, op0, op1);
      if (! pat)
	return 0;
      emit_insn (pat);
      return target;

    case ARM_BUILTIN_WMADDS:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wmadds, exp, target);
    case ARM_BUILTIN_WMADDSX:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wmaddsx, exp, target);
    case ARM_BUILTIN_WMADDSN:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wmaddsn, exp, target);
    case ARM_BUILTIN_WMADDU:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wmaddu, exp, target);
    case ARM_BUILTIN_WMADDUX:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wmaddux, exp, target);
    case ARM_BUILTIN_WMADDUN:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wmaddun, exp, target);
    case ARM_BUILTIN_WSADBZ:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadbz, exp, target);
    case ARM_BUILTIN_WSADHZ:
      return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadhz, exp, target);

      /* Several three-argument builtins.  */
    case ARM_BUILTIN_WMACS:
    case ARM_BUILTIN_WMACU:
    case ARM_BUILTIN_TMIA:
    case ARM_BUILTIN_TMIAPH:
    case ARM_BUILTIN_TMIATT:
    case ARM_BUILTIN_TMIATB:
    case ARM_BUILTIN_TMIABT:
    case ARM_BUILTIN_TMIABB:
    case ARM_BUILTIN_WQMIABB:
    case ARM_BUILTIN_WQMIABT:
    case ARM_BUILTIN_WQMIATB:
    case ARM_BUILTIN_WQMIATT:
    case ARM_BUILTIN_WQMIABBN:
    case ARM_BUILTIN_WQMIABTN:
    case ARM_BUILTIN_WQMIATBN:
    case ARM_BUILTIN_WQMIATTN:
    case ARM_BUILTIN_WMIABB:
    case ARM_BUILTIN_WMIABT:
    case ARM_BUILTIN_WMIATB:
    case ARM_BUILTIN_WMIATT:
    case ARM_BUILTIN_WMIABBN:
    case ARM_BUILTIN_WMIABTN:
    case ARM_BUILTIN_WMIATBN:
    case ARM_BUILTIN_WMIATTN:
    case ARM_BUILTIN_WMIAWBB:
    case ARM_BUILTIN_WMIAWBT:
    case ARM_BUILTIN_WMIAWTB:
    case ARM_BUILTIN_WMIAWTT:
    case ARM_BUILTIN_WMIAWBBN:
    case ARM_BUILTIN_WMIAWBTN:
    case ARM_BUILTIN_WMIAWTBN:
    case ARM_BUILTIN_WMIAWTTN:
    case ARM_BUILTIN_WSADB:
    case ARM_BUILTIN_WSADH:
      icode = (fcode == ARM_BUILTIN_WMACS ? CODE_FOR_iwmmxt_wmacs
	       : fcode == ARM_BUILTIN_WMACU ? CODE_FOR_iwmmxt_wmacu
	       : fcode == ARM_BUILTIN_TMIA ? CODE_FOR_iwmmxt_tmia
	       : fcode == ARM_BUILTIN_TMIAPH ? CODE_FOR_iwmmxt_tmiaph
	       : fcode == ARM_BUILTIN_TMIABB ? CODE_FOR_iwmmxt_tmiabb
	       : fcode == ARM_BUILTIN_TMIABT ? CODE_FOR_iwmmxt_tmiabt
	       : fcode == ARM_BUILTIN_TMIATB ? CODE_FOR_iwmmxt_tmiatb
	       : fcode == ARM_BUILTIN_TMIATT ? CODE_FOR_iwmmxt_tmiatt
	       : fcode == ARM_BUILTIN_WQMIABB ? CODE_FOR_iwmmxt_wqmiabb
	       : fcode == ARM_BUILTIN_WQMIABT ? CODE_FOR_iwmmxt_wqmiabt
	       : fcode == ARM_BUILTIN_WQMIATB ? CODE_FOR_iwmmxt_wqmiatb
	       : fcode == ARM_BUILTIN_WQMIATT ? CODE_FOR_iwmmxt_wqmiatt
	       : fcode == ARM_BUILTIN_WQMIABBN ? CODE_FOR_iwmmxt_wqmiabbn
	       : fcode == ARM_BUILTIN_WQMIABTN ? CODE_FOR_iwmmxt_wqmiabtn
	       : fcode == ARM_BUILTIN_WQMIATBN ? CODE_FOR_iwmmxt_wqmiatbn
	       : fcode == ARM_BUILTIN_WQMIATTN ? CODE_FOR_iwmmxt_wqmiattn
	       : fcode == ARM_BUILTIN_WMIABB ? CODE_FOR_iwmmxt_wmiabb
	       : fcode == ARM_BUILTIN_WMIABT ? CODE_FOR_iwmmxt_wmiabt
	       : fcode == ARM_BUILTIN_WMIATB ? CODE_FOR_iwmmxt_wmiatb
	       : fcode == ARM_BUILTIN_WMIATT ? CODE_FOR_iwmmxt_wmiatt
	       : fcode == ARM_BUILTIN_WMIABBN ? CODE_FOR_iwmmxt_wmiabbn
	       : fcode == ARM_BUILTIN_WMIABTN ? CODE_FOR_iwmmxt_wmiabtn
	       : fcode == ARM_BUILTIN_WMIATBN ? CODE_FOR_iwmmxt_wmiatbn
	       : fcode == ARM_BUILTIN_WMIATTN ? CODE_FOR_iwmmxt_wmiattn
	       : fcode == ARM_BUILTIN_WMIAWBB ? CODE_FOR_iwmmxt_wmiawbb
	       : fcode == ARM_BUILTIN_WMIAWBT ? CODE_FOR_iwmmxt_wmiawbt
	       : fcode == ARM_BUILTIN_WMIAWTB ? CODE_FOR_iwmmxt_wmiawtb
	       : fcode == ARM_BUILTIN_WMIAWTT ? CODE_FOR_iwmmxt_wmiawtt
	       : fcode == ARM_BUILTIN_WMIAWBBN ? CODE_FOR_iwmmxt_wmiawbbn
	       : fcode == ARM_BUILTIN_WMIAWBTN ? CODE_FOR_iwmmxt_wmiawbtn
	       : fcode == ARM_BUILTIN_WMIAWTBN ? CODE_FOR_iwmmxt_wmiawtbn
	       : fcode == ARM_BUILTIN_WMIAWTTN ? CODE_FOR_iwmmxt_wmiawttn
	       : fcode == ARM_BUILTIN_WSADB ? CODE_FOR_iwmmxt_wsadb
	       : CODE_FOR_iwmmxt_wsadh);
      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      arg2 = CALL_EXPR_ARG (exp, 2);
      op0 = expand_normal (arg0);
      op1 = expand_normal (arg1);
      op2 = expand_normal (arg2);
      tmode = insn_data[icode].operand[0].mode;
      mode0 = insn_data[icode].operand[1].mode;
      mode1 = insn_data[icode].operand[2].mode;
      mode2 = insn_data[icode].operand[3].mode;

      if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);
      if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
	op1 = copy_to_mode_reg (mode1, op1);
      if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
	op2 = copy_to_mode_reg (mode2, op2);
      if (target == 0
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);
      pat = GEN_FCN (icode) (target, op0, op1, op2);
      if (! pat)
	return 0;
      emit_insn (pat);
      return target;

    case ARM_BUILTIN_WZERO:
      target = gen_reg_rtx (DImode);
      emit_insn (gen_iwmmxt_clrdi (target));
      return target;

    case ARM_BUILTIN_WSRLHI:
    case ARM_BUILTIN_WSRLWI:
    case ARM_BUILTIN_WSRLDI:
    case ARM_BUILTIN_WSLLHI:
    case ARM_BUILTIN_WSLLWI:
    case ARM_BUILTIN_WSLLDI:
    case ARM_BUILTIN_WSRAHI:
    case ARM_BUILTIN_WSRAWI:
    case ARM_BUILTIN_WSRADI:
    case ARM_BUILTIN_WRORHI:
    case ARM_BUILTIN_WRORWI:
    case ARM_BUILTIN_WRORDI:
    case ARM_BUILTIN_WSRLH:
    case ARM_BUILTIN_WSRLW:
    case ARM_BUILTIN_WSRLD:
    case ARM_BUILTIN_WSLLH:
    case ARM_BUILTIN_WSLLW:
    case ARM_BUILTIN_WSLLD:
    case ARM_BUILTIN_WSRAH:
    case ARM_BUILTIN_WSRAW:
    case ARM_BUILTIN_WSRAD:
    case ARM_BUILTIN_WRORH:
    case ARM_BUILTIN_WRORW:
    case ARM_BUILTIN_WRORD:
      icode = (fcode == ARM_BUILTIN_WSRLHI ? CODE_FOR_lshrv4hi3_iwmmxt
	       : fcode == ARM_BUILTIN_WSRLWI ? CODE_FOR_lshrv2si3_iwmmxt
	       : fcode == ARM_BUILTIN_WSRLDI ? CODE_FOR_lshrdi3_iwmmxt
	       : fcode == ARM_BUILTIN_WSLLHI ? CODE_FOR_ashlv4hi3_iwmmxt
	       : fcode == ARM_BUILTIN_WSLLWI ? CODE_FOR_ashlv2si3_iwmmxt
	       : fcode == ARM_BUILTIN_WSLLDI ? CODE_FOR_ashldi3_iwmmxt
	       : fcode == ARM_BUILTIN_WSRAHI ? CODE_FOR_ashrv4hi3_iwmmxt
	       : fcode == ARM_BUILTIN_WSRAWI ? CODE_FOR_ashrv2si3_iwmmxt
	       : fcode == ARM_BUILTIN_WSRADI ? CODE_FOR_ashrdi3_iwmmxt
	       : fcode == ARM_BUILTIN_WRORHI ? CODE_FOR_rorv4hi3
	       : fcode == ARM_BUILTIN_WRORWI ? CODE_FOR_rorv2si3
	       : fcode == ARM_BUILTIN_WRORDI ? CODE_FOR_rordi3
	       : fcode == ARM_BUILTIN_WSRLH  ? CODE_FOR_lshrv4hi3_di
	       : fcode == ARM_BUILTIN_WSRLW  ? CODE_FOR_lshrv2si3_di
	       : fcode == ARM_BUILTIN_WSRLD  ? CODE_FOR_lshrdi3_di
	       : fcode == ARM_BUILTIN_WSLLH  ? CODE_FOR_ashlv4hi3_di
	       : fcode == ARM_BUILTIN_WSLLW  ? CODE_FOR_ashlv2si3_di
	       : fcode == ARM_BUILTIN_WSLLD  ? CODE_FOR_ashldi3_di
	       : fcode == ARM_BUILTIN_WSRAH  ? CODE_FOR_ashrv4hi3_di
	       : fcode == ARM_BUILTIN_WSRAW  ? CODE_FOR_ashrv2si3_di
	       : fcode == ARM_BUILTIN_WSRAD  ? CODE_FOR_ashrdi3_di
	       : fcode == ARM_BUILTIN_WRORH  ? CODE_FOR_rorv4hi3_di
	       : fcode == ARM_BUILTIN_WRORW  ? CODE_FOR_rorv2si3_di
	       : fcode == ARM_BUILTIN_WRORD  ? CODE_FOR_rordi3_di
	       : CODE_FOR_nothing);
      arg1 = CALL_EXPR_ARG (exp, 1);
      op1 = expand_normal (arg1);
      if (GET_MODE (op1) == VOIDmode)
	{
	  imm = INTVAL (op1);
	  if ((fcode == ARM_BUILTIN_WRORHI || fcode == ARM_BUILTIN_WRORWI
	       || fcode == ARM_BUILTIN_WRORH || fcode == ARM_BUILTIN_WRORW)
	      && (imm < 0 || imm > 32))
	    {
	      if (fcode == ARM_BUILTIN_WRORHI)
		error ("the range of count should be in 0 to 32.  please check the intrinsic _mm_rori_pi16 in code.");
	      else if (fcode == ARM_BUILTIN_WRORWI)
		error ("the range of count should be in 0 to 32.  please check the intrinsic _mm_rori_pi32 in code.");
	      else if (fcode == ARM_BUILTIN_WRORH)
		error ("the range of count should be in 0 to 32.  please check the intrinsic _mm_ror_pi16 in code.");
	      else
		error ("the range of count should be in 0 to 32.  please check the intrinsic _mm_ror_pi32 in code.");
	    }
	  else if ((fcode == ARM_BUILTIN_WRORDI || fcode == ARM_BUILTIN_WRORD)
		   && (imm < 0 || imm > 64))
	    {
	      if (fcode == ARM_BUILTIN_WRORDI)
		error ("the range of count should be in 0 to 64.  please check the intrinsic _mm_rori_si64 in code.");
	      else
		error ("the range of count should be in 0 to 64.  please check the intrinsic _mm_ror_si64 in code.");
	    }
	  else if (imm < 0)
	    {
	      if (fcode == ARM_BUILTIN_WSRLHI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srli_pi16 in code.");
	      else if (fcode == ARM_BUILTIN_WSRLWI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srli_pi32 in code.");
	      else if (fcode == ARM_BUILTIN_WSRLDI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srli_si64 in code.");
	      else if (fcode == ARM_BUILTIN_WSLLHI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_slli_pi16 in code.");
	      else if (fcode == ARM_BUILTIN_WSLLWI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_slli_pi32 in code.");
	      else if (fcode == ARM_BUILTIN_WSLLDI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_slli_si64 in code.");
	      else if (fcode == ARM_BUILTIN_WSRAHI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srai_pi16 in code.");
	      else if (fcode == ARM_BUILTIN_WSRAWI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srai_pi32 in code.");
	      else if (fcode == ARM_BUILTIN_WSRADI)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srai_si64 in code.");
	      else if (fcode == ARM_BUILTIN_WSRLH)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srl_pi16 in code.");
	      else if (fcode == ARM_BUILTIN_WSRLW)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srl_pi32 in code.");
	      else if (fcode == ARM_BUILTIN_WSRLD)
		error ("the count should be no less than 0.  please check the intrinsic _mm_srl_si64 in code.");
	      else if (fcode == ARM_BUILTIN_WSLLH)
		error ("the count should be no less than 0.  please check the intrinsic _mm_sll_pi16 in code.");
	      else if (fcode == ARM_BUILTIN_WSLLW)
		error ("the count should be no less than 0.  please check the intrinsic _mm_sll_pi32 in code.");
	      else if (fcode == ARM_BUILTIN_WSLLD)
		error ("the count should be no less than 0.  please check the intrinsic _mm_sll_si64 in code.");
	      else if (fcode == ARM_BUILTIN_WSRAH)
		error ("the count should be no less than 0.  please check the intrinsic _mm_sra_pi16 in code.");
	      else if (fcode == ARM_BUILTIN_WSRAW)
		error ("the count should be no less than 0.  please check the intrinsic _mm_sra_pi32 in code.");
	      else
		error ("the count should be no less than 0.  please check the intrinsic _mm_sra_si64 in code.");
	    }
	}
      return arm_expand_binop_builtin (icode, exp, target);

    default:
      break;
    }

  for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
    if (d->code == (const enum arm_builtins) fcode)
      return arm_expand_binop_builtin (d->icode, exp, target);

  for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
    if (d->code == (const enum arm_builtins) fcode)
      return arm_expand_unop_builtin (d->icode, exp, target, 0);

  for (i = 0, d = bdesc_3arg; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
    if (d->code == (const enum arm_builtins) fcode)
      return arm_expand_ternop_builtin (d->icode, exp, target);

  /* @@@ Should really do something sensible here.  */
  return NULL_RTX;
}

/* Return the number (counting from 0) of
   the least significant set bit in MASK.  */

inline static int
number_of_first_bit_set (unsigned mask)
{
  return ctz_hwi (mask);
}

/* Like emit_multi_reg_push, but allowing for a different set of
   registers to be described as saved.  MASK is the set of registers
   to be saved; REAL_REGS is the set of registers to be described as
   saved.  If REAL_REGS is 0, only describe the stack adjustment.  */

static rtx
thumb1_emit_multi_reg_push (unsigned long mask, unsigned long real_regs)
{
  unsigned long regno;
  rtx par[10], tmp, reg, insn;
  int i, j;

  /* Build the parallel of the registers actually being stored.  */
  for (i = 0; mask; ++i, mask &= mask - 1)
    {
      regno = ctz_hwi (mask);
      reg = gen_rtx_REG (SImode, regno);

      if (i == 0)
	tmp = gen_rtx_UNSPEC (BLKmode, gen_rtvec (1, reg), UNSPEC_PUSH_MULT);
      else
	tmp = gen_rtx_USE (VOIDmode, reg);

      par[i] = tmp;
    }

  tmp = plus_constant (Pmode, stack_pointer_rtx, -4 * i);
  tmp = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, tmp);
  tmp = gen_frame_mem (BLKmode, tmp);
  tmp = gen_rtx_SET (VOIDmode, tmp, par[0]);
  par[0] = tmp;

  tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (i, par));
  insn = emit_insn (tmp);

  /* Always build the stack adjustment note for unwind info.  */
  tmp = plus_constant (Pmode, stack_pointer_rtx, -4 * i);
  tmp = gen_rtx_SET (VOIDmode, stack_pointer_rtx, tmp);
  par[0] = tmp;

  /* Build the parallel of the registers recorded as saved for unwind.  */
  for (j = 0; real_regs; ++j, real_regs &= real_regs - 1)
    {
      regno = ctz_hwi (real_regs);
      reg = gen_rtx_REG (SImode, regno);

      tmp = plus_constant (Pmode, stack_pointer_rtx, j * 4);
      tmp = gen_frame_mem (SImode, tmp);
      tmp = gen_rtx_SET (VOIDmode, tmp, reg);
      RTX_FRAME_RELATED_P (tmp) = 1;
      par[j + 1] = tmp;
    }

  if (j == 0)
    tmp = par[0];
  else
    {
      RTX_FRAME_RELATED_P (par[0]) = 1;
      tmp = gen_rtx_SEQUENCE (VOIDmode, gen_rtvec_v (j + 1, par));
    }

  add_reg_note (insn, REG_FRAME_RELATED_EXPR, tmp);

  return insn;
}

/* Emit code to push or pop registers to or from the stack.  F is the
   assembly file.  MASK is the registers to pop.  */
static void
thumb_pop (FILE *f, unsigned long mask)
{
  int regno;
  int lo_mask = mask & 0xFF;
  int pushed_words = 0;

  gcc_assert (mask);

  if (lo_mask == 0 && (mask & (1 << PC_REGNUM)))
    {
      /* Special case.  Do not generate a POP PC statement here, do it in
	 thumb_exit() */
      thumb_exit (f, -1);
      return;
    }

  fprintf (f, "\tpop\t{");

  /* Look at the low registers first.  */
  for (regno = 0; regno <= LAST_LO_REGNUM; regno++, lo_mask >>= 1)
    {
      if (lo_mask & 1)
	{
	  asm_fprintf (f, "%r", regno);

	  if ((lo_mask & ~1) != 0)
	    fprintf (f, ", ");

	  pushed_words++;
	}
    }

  if (mask & (1 << PC_REGNUM))
    {
      /* Catch popping the PC.  */
      if (TARGET_INTERWORK || TARGET_BACKTRACE
	  || crtl->calls_eh_return)
	{
	  /* The PC is never poped directly, instead
	     it is popped into r3 and then BX is used.  */
	  fprintf (f, "}\n");

	  thumb_exit (f, -1);

	  return;
	}
      else
	{
	  if (mask & 0xFF)
	    fprintf (f, ", ");

	  asm_fprintf (f, "%r", PC_REGNUM);
	}
    }

  fprintf (f, "}\n");
}

/* Generate code to return from a thumb function.
   If 'reg_containing_return_addr' is -1, then the return address is
   actually on the stack, at the stack pointer.  */
static void
thumb_exit (FILE *f, int reg_containing_return_addr)
{
  unsigned regs_available_for_popping;
  unsigned regs_to_pop;
  int pops_needed;
  unsigned available;
  unsigned required;
  int mode;
  int size;
  int restore_a4 = FALSE;

  /* Compute the registers we need to pop.  */
  regs_to_pop = 0;
  pops_needed = 0;

  if (reg_containing_return_addr == -1)
    {
      regs_to_pop |= 1 << LR_REGNUM;
      ++pops_needed;
    }

  if (TARGET_BACKTRACE)
    {
      /* Restore the (ARM) frame pointer and stack pointer.  */
      regs_to_pop |= (1 << ARM_HARD_FRAME_POINTER_REGNUM) | (1 << SP_REGNUM);
      pops_needed += 2;
    }

  /* If there is nothing to pop then just emit the BX instruction and
     return.  */
  if (pops_needed == 0)
    {
      if (crtl->calls_eh_return)
	asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);

      asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
      return;
    }
  /* Otherwise if we are not supporting interworking and we have not created
     a backtrace structure and the function was not entered in ARM mode then
     just pop the return address straight into the PC.  */
  else if (!TARGET_INTERWORK
	   && !TARGET_BACKTRACE
	   && !is_called_in_ARM_mode (current_function_decl)
	   && !crtl->calls_eh_return)
    {
      asm_fprintf (f, "\tpop\t{%r}\n", PC_REGNUM);
      return;
    }

  /* Find out how many of the (return) argument registers we can corrupt.  */
  regs_available_for_popping = 0;

  /* If returning via __builtin_eh_return, the bottom three registers
     all contain information needed for the return.  */
  if (crtl->calls_eh_return)
    size = 12;
  else
    {
      /* If we can deduce the registers used from the function's
	 return value.  This is more reliable that examining
	 df_regs_ever_live_p () because that will be set if the register is
	 ever used in the function, not just if the register is used
	 to hold a return value.  */

      if (crtl->return_rtx != 0)
	mode = GET_MODE (crtl->return_rtx);
      else
	mode = DECL_MODE (DECL_RESULT (current_function_decl));

      size = GET_MODE_SIZE (mode);

      if (size == 0)
	{
	  /* In a void function we can use any argument register.
	     In a function that returns a structure on the stack
	     we can use the second and third argument registers.  */
	  if (mode == VOIDmode)
	    regs_available_for_popping =
	      (1 << ARG_REGISTER (1))
	      | (1 << ARG_REGISTER (2))
	      | (1 << ARG_REGISTER (3));
	  else
	    regs_available_for_popping =
	      (1 << ARG_REGISTER (2))
	      | (1 << ARG_REGISTER (3));
	}
      else if (size <= 4)
	regs_available_for_popping =
	  (1 << ARG_REGISTER (2))
	  | (1 << ARG_REGISTER (3));
      else if (size <= 8)
	regs_available_for_popping =
	  (1 << ARG_REGISTER (3));
    }

  /* Match registers to be popped with registers into which we pop them.  */
  for (available = regs_available_for_popping,
       required  = regs_to_pop;
       required != 0 && available != 0;
       available &= ~(available & - available),
       required  &= ~(required  & - required))
    -- pops_needed;

  /* If we have any popping registers left over, remove them.  */
  if (available > 0)
    regs_available_for_popping &= ~available;

  /* Otherwise if we need another popping register we can use
     the fourth argument register.  */
  else if (pops_needed)
    {
      /* If we have not found any free argument registers and
	 reg a4 contains the return address, we must move it.  */
      if (regs_available_for_popping == 0
	  && reg_containing_return_addr == LAST_ARG_REGNUM)
	{
	  asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
	  reg_containing_return_addr = LR_REGNUM;
	}
      else if (size > 12)
	{
	  /* Register a4 is being used to hold part of the return value,
	     but we have dire need of a free, low register.  */
	  restore_a4 = TRUE;

	  asm_fprintf (f, "\tmov\t%r, %r\n",IP_REGNUM, LAST_ARG_REGNUM);
	}

      if (reg_containing_return_addr != LAST_ARG_REGNUM)
	{
	  /* The fourth argument register is available.  */
	  regs_available_for_popping |= 1 << LAST_ARG_REGNUM;

	  --pops_needed;
	}
    }

  /* Pop as many registers as we can.  */
  thumb_pop (f, regs_available_for_popping);

  /* Process the registers we popped.  */
  if (reg_containing_return_addr == -1)
    {
      /* The return address was popped into the lowest numbered register.  */
      regs_to_pop &= ~(1 << LR_REGNUM);

      reg_containing_return_addr =
	number_of_first_bit_set (regs_available_for_popping);

      /* Remove this register for the mask of available registers, so that
         the return address will not be corrupted by further pops.  */
      regs_available_for_popping &= ~(1 << reg_containing_return_addr);
    }

  /* If we popped other registers then handle them here.  */
  if (regs_available_for_popping)
    {
      int frame_pointer;

      /* Work out which register currently contains the frame pointer.  */
      frame_pointer = number_of_first_bit_set (regs_available_for_popping);

      /* Move it into the correct place.  */
      asm_fprintf (f, "\tmov\t%r, %r\n",
		   ARM_HARD_FRAME_POINTER_REGNUM, frame_pointer);

      /* (Temporarily) remove it from the mask of popped registers.  */
      regs_available_for_popping &= ~(1 << frame_pointer);
      regs_to_pop &= ~(1 << ARM_HARD_FRAME_POINTER_REGNUM);

      if (regs_available_for_popping)
	{
	  int stack_pointer;

	  /* We popped the stack pointer as well,
	     find the register that contains it.  */
	  stack_pointer = number_of_first_bit_set (regs_available_for_popping);

	  /* Move it into the stack register.  */
	  asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, stack_pointer);

	  /* At this point we have popped all necessary registers, so
	     do not worry about restoring regs_available_for_popping
	     to its correct value:

	     assert (pops_needed == 0)
	     assert (regs_available_for_popping == (1 << frame_pointer))
	     assert (regs_to_pop == (1 << STACK_POINTER))  */
	}
      else
	{
	  /* Since we have just move the popped value into the frame
	     pointer, the popping register is available for reuse, and
	     we know that we still have the stack pointer left to pop.  */
	  regs_available_for_popping |= (1 << frame_pointer);
	}
    }

  /* If we still have registers left on the stack, but we no longer have
     any registers into which we can pop them, then we must move the return
     address into the link register and make available the register that
     contained it.  */
  if (regs_available_for_popping == 0 && pops_needed > 0)
    {
      regs_available_for_popping |= 1 << reg_containing_return_addr;

      asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM,
		   reg_containing_return_addr);

      reg_containing_return_addr = LR_REGNUM;
    }

  /* If we have registers left on the stack then pop some more.
     We know that at most we will want to pop FP and SP.  */
  if (pops_needed > 0)
    {
      int  popped_into;
      int  move_to;

      thumb_pop (f, regs_available_for_popping);

      /* We have popped either FP or SP.
	 Move whichever one it is into the correct register.  */
      popped_into = number_of_first_bit_set (regs_available_for_popping);
      move_to     = number_of_first_bit_set (regs_to_pop);

      asm_fprintf (f, "\tmov\t%r, %r\n", move_to, popped_into);

      regs_to_pop &= ~(1 << move_to);

      --pops_needed;
    }

  /* If we still have not popped everything then we must have only
     had one register available to us and we are now popping the SP.  */
  if (pops_needed > 0)
    {
      int  popped_into;

      thumb_pop (f, regs_available_for_popping);

      popped_into = number_of_first_bit_set (regs_available_for_popping);

      asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, popped_into);
      /*
	assert (regs_to_pop == (1 << STACK_POINTER))
	assert (pops_needed == 1)
      */
    }

  /* If necessary restore the a4 register.  */
  if (restore_a4)
    {
      if (reg_containing_return_addr != LR_REGNUM)
	{
	  asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
	  reg_containing_return_addr = LR_REGNUM;
	}

      asm_fprintf (f, "\tmov\t%r, %r\n", LAST_ARG_REGNUM, IP_REGNUM);
    }

  if (crtl->calls_eh_return)
    asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);

  /* Return to caller.  */
  asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
}

/* Scan INSN just before assembler is output for it.
   For Thumb-1, we track the status of the condition codes; this
   information is used in the cbranchsi4_insn pattern.  */
void
thumb1_final_prescan_insn (rtx insn)
{
  if (flag_print_asm_name)
    asm_fprintf (asm_out_file, "%@ 0x%04x\n",
		 INSN_ADDRESSES (INSN_UID (insn)));
  /* Don't overwrite the previous setter when we get to a cbranch.  */
  if (INSN_CODE (insn) != CODE_FOR_cbranchsi4_insn)
    {
      enum attr_conds conds;

      if (cfun->machine->thumb1_cc_insn)
	{
	  if (modified_in_p (cfun->machine->thumb1_cc_op0, insn)
	      || modified_in_p (cfun->machine->thumb1_cc_op1, insn))
	    CC_STATUS_INIT;
	}
      conds = get_attr_conds (insn);
      if (conds == CONDS_SET)
	{
	  rtx set = single_set (insn);
	  cfun->machine->thumb1_cc_insn = insn;
	  cfun->machine->thumb1_cc_op0 = SET_DEST (set);
	  cfun->machine->thumb1_cc_op1 = const0_rtx;
	  cfun->machine->thumb1_cc_mode = CC_NOOVmode;
	  if (INSN_CODE (insn) == CODE_FOR_thumb1_subsi3_insn)
	    {
	      rtx src1 = XEXP (SET_SRC (set), 1);
	      if (src1 == const0_rtx)
		cfun->machine->thumb1_cc_mode = CCmode;
	    }
	  else if (REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
	    {
	      /* Record the src register operand instead of dest because
		 cprop_hardreg pass propagates src.  */
	      cfun->machine->thumb1_cc_op0 = SET_SRC (set);
	    }
	}
      else if (conds != CONDS_NOCOND)
	cfun->machine->thumb1_cc_insn = NULL_RTX;
    }

    /* Check if unexpected far jump is used.  */
    if (cfun->machine->lr_save_eliminated
        && get_attr_far_jump (insn) == FAR_JUMP_YES)
      internal_error("Unexpected thumb1 far jump");
}

int
thumb_shiftable_const (unsigned HOST_WIDE_INT val)
{
  unsigned HOST_WIDE_INT mask = 0xff;
  int i;

  val = val & (unsigned HOST_WIDE_INT)0xffffffffu;
  if (val == 0) /* XXX */
    return 0;

  for (i = 0; i < 25; i++)
    if ((val & (mask << i)) == val)
      return 1;

  return 0;
}

/* Returns nonzero if the current function contains,
   or might contain a far jump.  */
static int
thumb_far_jump_used_p (void)
{
  rtx insn;
  bool far_jump = false;
  unsigned int func_size = 0;

  /* This test is only important for leaf functions.  */
  /* assert (!leaf_function_p ()); */

  /* If we have already decided that far jumps may be used,
     do not bother checking again, and always return true even if
     it turns out that they are not being used.  Once we have made
     the decision that far jumps are present (and that hence the link
     register will be pushed onto the stack) we cannot go back on it.  */
  if (cfun->machine->far_jump_used)
    return 1;

  /* If this function is not being called from the prologue/epilogue
     generation code then it must be being called from the
     INITIAL_ELIMINATION_OFFSET macro.  */
  if (!(ARM_DOUBLEWORD_ALIGN || reload_completed))
    {
      /* In this case we know that we are being asked about the elimination
	 of the arg pointer register.  If that register is not being used,
	 then there are no arguments on the stack, and we do not have to
	 worry that a far jump might force the prologue to push the link
	 register, changing the stack offsets.  In this case we can just
	 return false, since the presence of far jumps in the function will
	 not affect stack offsets.

	 If the arg pointer is live (or if it was live, but has now been
	 eliminated and so set to dead) then we do have to test to see if
	 the function might contain a far jump.  This test can lead to some
	 false negatives, since before reload is completed, then length of
	 branch instructions is not known, so gcc defaults to returning their
	 longest length, which in turn sets the far jump attribute to true.

	 A false negative will not result in bad code being generated, but it
	 will result in a needless push and pop of the link register.  We
	 hope that this does not occur too often.

	 If we need doubleword stack alignment this could affect the other
	 elimination offsets so we can't risk getting it wrong.  */
      if (df_regs_ever_live_p (ARG_POINTER_REGNUM))
	cfun->machine->arg_pointer_live = 1;
      else if (!cfun->machine->arg_pointer_live)
	return 0;
    }

  /* We should not change far_jump_used during or after reload, as there is
     no chance to change stack frame layout.  */
  if (reload_in_progress || reload_completed)
    return 0;

  /* Check to see if the function contains a branch
     insn with the far jump attribute set.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (JUMP_P (insn) && get_attr_far_jump (insn) == FAR_JUMP_YES)
	{
	  far_jump = true;
	}
      func_size += get_attr_length (insn);
    }

  /* Attribute far_jump will always be true for thumb1 before
     shorten_branch pass.  So checking far_jump attribute before
     shorten_branch isn't much useful.

     Following heuristic tries to estimate more accurately if a far jump
     may finally be used.  The heuristic is very conservative as there is
     no chance to roll-back the decision of not to use far jump.

     Thumb1 long branch offset is -2048 to 2046.  The worst case is each
     2-byte insn is associated with a 4 byte constant pool.  Using
     function size 2048/3 as the threshold is conservative enough.  */
  if (far_jump)
    {
      if ((func_size * 3) >= 2048)
        {
	  /* Record the fact that we have decided that
	     the function does use far jumps.  */
	  cfun->machine->far_jump_used = 1;
	  return 1;
	}
    }

  return 0;
}

/* Return nonzero if FUNC must be entered in ARM mode.  */
int
is_called_in_ARM_mode (tree func)
{
  gcc_assert (TREE_CODE (func) == FUNCTION_DECL);

  /* Ignore the problem about functions whose address is taken.  */
  if (TARGET_CALLEE_INTERWORKING && TREE_PUBLIC (func))
    return TRUE;

#ifdef ARM_PE
  return lookup_attribute ("interfacearm", DECL_ATTRIBUTES (func)) != NULL_TREE;
#else
  return FALSE;
#endif
}

/* Given the stack offsets and register mask in OFFSETS, decide how
   many additional registers to push instead of subtracting a constant
   from SP.  For epilogues the principle is the same except we use pop.
   FOR_PROLOGUE indicates which we're generating.  */
static int
thumb1_extra_regs_pushed (arm_stack_offsets *offsets, bool for_prologue)
{
  HOST_WIDE_INT amount;
  unsigned long live_regs_mask = offsets->saved_regs_mask;
  /* Extract a mask of the ones we can give to the Thumb's push/pop
     instruction.  */
  unsigned long l_mask = live_regs_mask & (for_prologue ? 0x40ff : 0xff);
  /* Then count how many other high registers will need to be pushed.  */
  unsigned long high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
  int n_free, reg_base, size;

  if (!for_prologue && frame_pointer_needed)
    amount = offsets->locals_base - offsets->saved_regs;
  else
    amount = offsets->outgoing_args - offsets->saved_regs;

  /* If the stack frame size is 512 exactly, we can save one load
     instruction, which should make this a win even when optimizing
     for speed.  */
  if (!optimize_size && amount != 512)
    return 0;

  /* Can't do this if there are high registers to push.  */
  if (high_regs_pushed != 0)
    return 0;

  /* Shouldn't do it in the prologue if no registers would normally
     be pushed at all.  In the epilogue, also allow it if we'll have
     a pop insn for the PC.  */
  if  (l_mask == 0
       && (for_prologue
	   || TARGET_BACKTRACE
	   || (live_regs_mask & 1 << LR_REGNUM) == 0
	   || TARGET_INTERWORK
	   || crtl->args.pretend_args_size != 0))
    return 0;

  /* Don't do this if thumb_expand_prologue wants to emit instructions
     between the push and the stack frame allocation.  */
  if (for_prologue
      && ((flag_pic && arm_pic_register != INVALID_REGNUM)
	  || (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)))
    return 0;

  reg_base = 0;
  n_free = 0;
  if (!for_prologue)
    {
      size = arm_size_return_regs ();
      reg_base = ARM_NUM_INTS (size);
      live_regs_mask >>= reg_base;
    }

  while (reg_base + n_free < 8 && !(live_regs_mask & 1)
	 && (for_prologue || call_used_regs[reg_base + n_free]))
    {
      live_regs_mask >>= 1;
      n_free++;
    }

  if (n_free == 0)
    return 0;
  gcc_assert (amount / 4 * 4 == amount);

  if (amount >= 512 && (amount - n_free * 4) < 512)
    return (amount - 508) / 4;
  if (amount <= n_free * 4)
    return amount / 4;
  return 0;
}

/* The bits which aren't usefully expanded as rtl.  */
const char *
thumb1_unexpanded_epilogue (void)
{
  arm_stack_offsets *offsets;
  int regno;
  unsigned long live_regs_mask = 0;
  int high_regs_pushed = 0;
  int extra_pop;
  int had_to_push_lr;
  int size;

  if (cfun->machine->return_used_this_function != 0)
    return "";

  if (IS_NAKED (arm_current_func_type ()))
    return "";

  offsets = arm_get_frame_offsets ();
  live_regs_mask = offsets->saved_regs_mask;
  high_regs_pushed = bit_count (live_regs_mask & 0x0f00);

  /* If we can deduce the registers used from the function's return value.
     This is more reliable that examining df_regs_ever_live_p () because that
     will be set if the register is ever used in the function, not just if
     the register is used to hold a return value.  */
  size = arm_size_return_regs ();

  extra_pop = thumb1_extra_regs_pushed (offsets, false);
  if (extra_pop > 0)
    {
      unsigned long extra_mask = (1 << extra_pop) - 1;
      live_regs_mask |= extra_mask << ARM_NUM_INTS (size);
    }

  /* The prolog may have pushed some high registers to use as
     work registers.  e.g. the testsuite file:
     gcc/testsuite/gcc/gcc.c-torture/execute/complex-2.c
     compiles to produce:
	push	{r4, r5, r6, r7, lr}
	mov	r7, r9
	mov	r6, r8
	push	{r6, r7}
     as part of the prolog.  We have to undo that pushing here.  */

  if (high_regs_pushed)
    {
      unsigned long mask = live_regs_mask & 0xff;
      int next_hi_reg;

      /* The available low registers depend on the size of the value we are
         returning.  */
      if (size <= 12)
	mask |=  1 << 3;
      if (size <= 8)
	mask |= 1 << 2;

      if (mask == 0)
	/* Oh dear!  We have no low registers into which we can pop
           high registers!  */
	internal_error
	  ("no low registers available for popping high registers");

      for (next_hi_reg = 8; next_hi_reg < 13; next_hi_reg++)
	if (live_regs_mask & (1 << next_hi_reg))
	  break;

      while (high_regs_pushed)
	{
	  /* Find lo register(s) into which the high register(s) can
             be popped.  */
	  for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
	    {
	      if (mask & (1 << regno))
		high_regs_pushed--;
	      if (high_regs_pushed == 0)
		break;
	    }

	  mask &= (2 << regno) - 1;	/* A noop if regno == 8 */

	  /* Pop the values into the low register(s).  */
	  thumb_pop (asm_out_file, mask);

	  /* Move the value(s) into the high registers.  */
	  for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
	    {
	      if (mask & (1 << regno))
		{
		  asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", next_hi_reg,
			       regno);

		  for (next_hi_reg++; next_hi_reg < 13; next_hi_reg++)
		    if (live_regs_mask & (1 << next_hi_reg))
		      break;
		}
	    }
	}
      live_regs_mask &= ~0x0f00;
    }

  had_to_push_lr = (live_regs_mask & (1 << LR_REGNUM)) != 0;
  live_regs_mask &= 0xff;

  if (crtl->args.pretend_args_size == 0 || TARGET_BACKTRACE)
    {
      /* Pop the return address into the PC.  */
      if (had_to_push_lr)
	live_regs_mask |= 1 << PC_REGNUM;

      /* Either no argument registers were pushed or a backtrace
	 structure was created which includes an adjusted stack
	 pointer, so just pop everything.  */
      if (live_regs_mask)
	thumb_pop (asm_out_file, live_regs_mask);

      /* We have either just popped the return address into the
	 PC or it is was kept in LR for the entire function.
	 Note that thumb_pop has already called thumb_exit if the
	 PC was in the list.  */
      if (!had_to_push_lr)
	thumb_exit (asm_out_file, LR_REGNUM);
    }
  else
    {
      /* Pop everything but the return address.  */
      if (live_regs_mask)
	thumb_pop (asm_out_file, live_regs_mask);

      if (had_to_push_lr)
	{
	  if (size > 12)
	    {
	      /* We have no free low regs, so save one.  */
	      asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", IP_REGNUM,
			   LAST_ARG_REGNUM);
	    }

	  /* Get the return address into a temporary register.  */
	  thumb_pop (asm_out_file, 1 << LAST_ARG_REGNUM);

	  if (size > 12)
	    {
	      /* Move the return address to lr.  */
	      asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LR_REGNUM,
			   LAST_ARG_REGNUM);
	      /* Restore the low register.  */
	      asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LAST_ARG_REGNUM,
			   IP_REGNUM);
	      regno = LR_REGNUM;
	    }
	  else
	    regno = LAST_ARG_REGNUM;
	}
      else
	regno = LR_REGNUM;

      /* Remove the argument registers that were pushed onto the stack.  */
      asm_fprintf (asm_out_file, "\tadd\t%r, %r, #%d\n",
		   SP_REGNUM, SP_REGNUM,
		   crtl->args.pretend_args_size);

      thumb_exit (asm_out_file, regno);
    }

  return "";
}

/* Functions to save and restore machine-specific function data.  */
static struct machine_function *
arm_init_machine_status (void)
{
  struct machine_function *machine;
  machine = ggc_alloc_cleared_machine_function ();

#if ARM_FT_UNKNOWN != 0
  machine->func_type = ARM_FT_UNKNOWN;
#endif
  return machine;
}

/* Return an RTX indicating where the return address to the
   calling function can be found.  */
rtx
arm_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return NULL_RTX;

  return get_hard_reg_initial_val (Pmode, LR_REGNUM);
}

/* Do anything needed before RTL is emitted for each function.  */
void
arm_init_expanders (void)
{
  /* Arrange to initialize and mark the machine per-function status.  */
  init_machine_status = arm_init_machine_status;

  /* This is to stop the combine pass optimizing away the alignment
     adjustment of va_arg.  */
  /* ??? It is claimed that this should not be necessary.  */
  if (cfun)
    mark_reg_pointer (arg_pointer_rtx, PARM_BOUNDARY);
}


/* Like arm_compute_initial_elimination offset.  Simpler because there
   isn't an ABI specified frame pointer for Thumb.  Instead, we set it
   to point at the base of the local variables after static stack
   space for a function has been allocated.  */

HOST_WIDE_INT
thumb_compute_initial_elimination_offset (unsigned int from, unsigned int to)
{
  arm_stack_offsets *offsets;

  offsets = arm_get_frame_offsets ();

  switch (from)
    {
    case ARG_POINTER_REGNUM:
      switch (to)
	{
	case STACK_POINTER_REGNUM:
	  return offsets->outgoing_args - offsets->saved_args;

	case FRAME_POINTER_REGNUM:
	  return offsets->soft_frame - offsets->saved_args;

	case ARM_HARD_FRAME_POINTER_REGNUM:
	  return offsets->saved_regs - offsets->saved_args;

	case THUMB_HARD_FRAME_POINTER_REGNUM:
	  return offsets->locals_base - offsets->saved_args;

	default:
	  gcc_unreachable ();
	}
      break;

    case FRAME_POINTER_REGNUM:
      switch (to)
	{
	case STACK_POINTER_REGNUM:
	  return offsets->outgoing_args - offsets->soft_frame;

	case ARM_HARD_FRAME_POINTER_REGNUM:
	  return offsets->saved_regs - offsets->soft_frame;

	case THUMB_HARD_FRAME_POINTER_REGNUM:
	  return offsets->locals_base - offsets->soft_frame;

	default:
	  gcc_unreachable ();
	}
      break;

    default:
      gcc_unreachable ();
    }
}

/* Generate the function's prologue.  */

void
thumb1_expand_prologue (void)
{
  rtx insn;

  HOST_WIDE_INT amount;
  arm_stack_offsets *offsets;
  unsigned long func_type;
  int regno;
  unsigned long live_regs_mask;
  unsigned long l_mask;
  unsigned high_regs_pushed = 0;

  func_type = arm_current_func_type ();

  /* Naked functions don't have prologues.  */
  if (IS_NAKED (func_type))
    return;

  if (IS_INTERRUPT (func_type))
    {
      error ("interrupt Service Routines cannot be coded in Thumb mode");
      return;
    }

  if (is_called_in_ARM_mode (current_function_decl))
    emit_insn (gen_prologue_thumb1_interwork ());

  offsets = arm_get_frame_offsets ();
  live_regs_mask = offsets->saved_regs_mask;

  /* Extract a mask of the ones we can give to the Thumb's push instruction.  */
  l_mask = live_regs_mask & 0x40ff;
  /* Then count how many other high registers will need to be pushed.  */
  high_regs_pushed = bit_count (live_regs_mask & 0x0f00);

  if (crtl->args.pretend_args_size)
    {
      rtx x = GEN_INT (-crtl->args.pretend_args_size);

      if (cfun->machine->uses_anonymous_args)
	{
	  int num_pushes = ARM_NUM_INTS (crtl->args.pretend_args_size);
	  unsigned long mask;

	  mask = 1ul << (LAST_ARG_REGNUM + 1);
	  mask -= 1ul << (LAST_ARG_REGNUM + 1 - num_pushes);

	  insn = thumb1_emit_multi_reg_push (mask, 0);
	}
      else
	{
	  insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
					stack_pointer_rtx, x));
	}
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  if (TARGET_BACKTRACE)
    {
      HOST_WIDE_INT offset = 0;
      unsigned work_register;
      rtx work_reg, x, arm_hfp_rtx;

      /* We have been asked to create a stack backtrace structure.
         The code looks like this:

	 0   .align 2
	 0   func:
         0     sub   SP, #16         Reserve space for 4 registers.
	 2     push  {R7}            Push low registers.
         4     add   R7, SP, #20     Get the stack pointer before the push.
         6     str   R7, [SP, #8]    Store the stack pointer
					(before reserving the space).
         8     mov   R7, PC          Get hold of the start of this code + 12.
        10     str   R7, [SP, #16]   Store it.
        12     mov   R7, FP          Get hold of the current frame pointer.
        14     str   R7, [SP, #4]    Store it.
        16     mov   R7, LR          Get hold of the current return address.
        18     str   R7, [SP, #12]   Store it.
        20     add   R7, SP, #16     Point at the start of the
					backtrace structure.
        22     mov   FP, R7          Put this value into the frame pointer.  */

      work_register = thumb_find_work_register (live_regs_mask);
      work_reg = gen_rtx_REG (SImode, work_register);
      arm_hfp_rtx = gen_rtx_REG (SImode, ARM_HARD_FRAME_POINTER_REGNUM);

      insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
				    stack_pointer_rtx, GEN_INT (-16)));
      RTX_FRAME_RELATED_P (insn) = 1;

      if (l_mask)
	{
	  insn = thumb1_emit_multi_reg_push (l_mask, l_mask);
	  RTX_FRAME_RELATED_P (insn) = 1;

	  offset = bit_count (l_mask) * UNITS_PER_WORD;
	}

      x = GEN_INT (offset + 16 + crtl->args.pretend_args_size);
      emit_insn (gen_addsi3 (work_reg, stack_pointer_rtx, x));

      x = plus_constant (Pmode, stack_pointer_rtx, offset + 4);
      x = gen_frame_mem (SImode, x);
      emit_move_insn (x, work_reg);

      /* Make sure that the instruction fetching the PC is in the right place
	 to calculate "start of backtrace creation code + 12".  */
      /* ??? The stores using the common WORK_REG ought to be enough to
	 prevent the scheduler from doing anything weird.  Failing that
	 we could always move all of the following into an UNSPEC_VOLATILE.  */
      if (l_mask)
	{
	  x = gen_rtx_REG (SImode, PC_REGNUM);
	  emit_move_insn (work_reg, x);

	  x = plus_constant (Pmode, stack_pointer_rtx, offset + 12);
	  x = gen_frame_mem (SImode, x);
	  emit_move_insn (x, work_reg);

	  emit_move_insn (work_reg, arm_hfp_rtx);

	  x = plus_constant (Pmode, stack_pointer_rtx, offset);
	  x = gen_frame_mem (SImode, x);
	  emit_move_insn (x, work_reg);
	}
      else
	{
	  emit_move_insn (work_reg, arm_hfp_rtx);

	  x = plus_constant (Pmode, stack_pointer_rtx, offset);
	  x = gen_frame_mem (SImode, x);
	  emit_move_insn (x, work_reg);

	  x = gen_rtx_REG (SImode, PC_REGNUM);
	  emit_move_insn (work_reg, x);

	  x = plus_constant (Pmode, stack_pointer_rtx, offset + 12);
	  x = gen_frame_mem (SImode, x);
	  emit_move_insn (x, work_reg);
	}

      x = gen_rtx_REG (SImode, LR_REGNUM);
      emit_move_insn (work_reg, x);

      x = plus_constant (Pmode, stack_pointer_rtx, offset + 8);
      x = gen_frame_mem (SImode, x);
      emit_move_insn (x, work_reg);

      x = GEN_INT (offset + 12);
      emit_insn (gen_addsi3 (work_reg, stack_pointer_rtx, x));

      emit_move_insn (arm_hfp_rtx, work_reg);
    }
  /* Optimization:  If we are not pushing any low registers but we are going
     to push some high registers then delay our first push.  This will just
     be a push of LR and we can combine it with the push of the first high
     register.  */
  else if ((l_mask & 0xff) != 0
	   || (high_regs_pushed == 0 && l_mask))
    {
      unsigned long mask = l_mask;
      mask |= (1 << thumb1_extra_regs_pushed (offsets, true)) - 1;
      insn = thumb1_emit_multi_reg_push (mask, mask);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  if (high_regs_pushed)
    {
      unsigned pushable_regs;
      unsigned next_hi_reg;
      unsigned arg_regs_num = TARGET_AAPCS_BASED ? crtl->args.info.aapcs_ncrn
						 : crtl->args.info.nregs;
      unsigned arg_regs_mask = (1 << arg_regs_num) - 1;

      for (next_hi_reg = 12; next_hi_reg > LAST_LO_REGNUM; next_hi_reg--)
	if (live_regs_mask & (1 << next_hi_reg))
	  break;

      /* Here we need to mask out registers used for passing arguments
	 even if they can be pushed.  This is to avoid using them to stash the high
	 registers.  Such kind of stash may clobber the use of arguments.  */
      pushable_regs = l_mask & (~arg_regs_mask) & 0xff;

      if (pushable_regs == 0)
	pushable_regs = 1 << thumb_find_work_register (live_regs_mask);

      while (high_regs_pushed > 0)
	{
	  unsigned long real_regs_mask = 0;

	  for (regno = LAST_LO_REGNUM; regno >= 0; regno --)
	    {
	      if (pushable_regs & (1 << regno))
		{
		  emit_move_insn (gen_rtx_REG (SImode, regno),
				  gen_rtx_REG (SImode, next_hi_reg));

		  high_regs_pushed --;
		  real_regs_mask |= (1 << next_hi_reg);

		  if (high_regs_pushed)
		    {
		      for (next_hi_reg --; next_hi_reg > LAST_LO_REGNUM;
			   next_hi_reg --)
			if (live_regs_mask & (1 << next_hi_reg))
			  break;
		    }
		  else
		    {
		      pushable_regs &= ~((1 << regno) - 1);
		      break;
		    }
		}
	    }

	  /* If we had to find a work register and we have not yet
	     saved the LR then add it to the list of regs to push.  */
	  if (l_mask == (1 << LR_REGNUM))
	    {
	      pushable_regs |= l_mask;
	      real_regs_mask |= l_mask;
	      l_mask = 0;
	    }

	  insn = thumb1_emit_multi_reg_push (pushable_regs, real_regs_mask);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
    }

  /* Load the pic register before setting the frame pointer,
     so we can use r7 as a temporary work register.  */
  if (flag_pic && arm_pic_register != INVALID_REGNUM)
    arm_load_pic_register (live_regs_mask);

  if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
    emit_move_insn (gen_rtx_REG (Pmode, ARM_HARD_FRAME_POINTER_REGNUM),
		    stack_pointer_rtx);

  if (flag_stack_usage_info)
    current_function_static_stack_size
      = offsets->outgoing_args - offsets->saved_args;

  amount = offsets->outgoing_args - offsets->saved_regs;
  amount -= 4 * thumb1_extra_regs_pushed (offsets, true);
  if (amount)
    {
      if (amount < 512)
	{
	  insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
					GEN_INT (- amount)));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
      else
	{
	  rtx reg, dwarf;

	  /* The stack decrement is too big for an immediate value in a single
	     insn.  In theory we could issue multiple subtracts, but after
	     three of them it becomes more space efficient to place the full
	     value in the constant pool and load into a register.  (Also the
	     ARM debugger really likes to see only one stack decrement per
	     function).  So instead we look for a scratch register into which
	     we can load the decrement, and then we subtract this from the
	     stack pointer.  Unfortunately on the thumb the only available
	     scratch registers are the argument registers, and we cannot use
	     these as they may hold arguments to the function.  Instead we
	     attempt to locate a call preserved register which is used by this
	     function.  If we can find one, then we know that it will have
	     been pushed at the start of the prologue and so we can corrupt
	     it now.  */
	  for (regno = LAST_ARG_REGNUM + 1; regno <= LAST_LO_REGNUM; regno++)
	    if (live_regs_mask & (1 << regno))
	      break;

	  gcc_assert(regno <= LAST_LO_REGNUM);

	  reg = gen_rtx_REG (SImode, regno);

	  emit_insn (gen_movsi (reg, GEN_INT (- amount)));

	  insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
					stack_pointer_rtx, reg));

	  dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
			       plus_constant (Pmode, stack_pointer_rtx,
					      -amount));
	  add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
    }

  if (frame_pointer_needed)
    thumb_set_frame_pointer (offsets);

  /* If we are profiling, make sure no instructions are scheduled before
     the call to mcount.  Similarly if the user has requested no
     scheduling in the prolog.  Similarly if we want non-call exceptions
     using the EABI unwinder, to prevent faulting instructions from being
     swapped with a stack adjustment.  */
  if (crtl->profile || !TARGET_SCHED_PROLOG
      || (arm_except_unwind_info (&global_options) == UI_TARGET
	  && cfun->can_throw_non_call_exceptions))
    emit_insn (gen_blockage ());

  cfun->machine->lr_save_eliminated = !thumb_force_lr_save ();
  if (live_regs_mask & 0xff)
    cfun->machine->lr_save_eliminated = 0;
}

/* Generate pattern *pop_multiple_with_stack_update_and_return if single
   POP instruction can be generated.  LR should be replaced by PC.  All
   the checks required are already done by  USE_RETURN_INSN ().  Hence,
   all we really need to check here is if single register is to be
   returned, or multiple register return.  */
void
thumb2_expand_return (bool simple_return)
{
  int i, num_regs;
  unsigned long saved_regs_mask;
  arm_stack_offsets *offsets;

  offsets = arm_get_frame_offsets ();
  saved_regs_mask = offsets->saved_regs_mask;

  for (i = 0, num_regs = 0; i <= LAST_ARM_REGNUM; i++)
    if (saved_regs_mask & (1 << i))
      num_regs++;

  if (!simple_return && saved_regs_mask)
    {
      if (num_regs == 1)
        {
          rtx par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
          rtx reg = gen_rtx_REG (SImode, PC_REGNUM);
          rtx addr = gen_rtx_MEM (SImode,
                                  gen_rtx_POST_INC (SImode,
                                                    stack_pointer_rtx));
          set_mem_alias_set (addr, get_frame_alias_set ());
          XVECEXP (par, 0, 0) = ret_rtx;
          XVECEXP (par, 0, 1) = gen_rtx_SET (SImode, reg, addr);
          RTX_FRAME_RELATED_P (XVECEXP (par, 0, 1)) = 1;
          emit_jump_insn (par);
        }
      else
        {
          saved_regs_mask &= ~ (1 << LR_REGNUM);
          saved_regs_mask |=   (1 << PC_REGNUM);
          arm_emit_multi_reg_pop (saved_regs_mask);
        }
    }
  else
    {
      emit_jump_insn (simple_return_rtx);
    }
}

void
thumb1_expand_epilogue (void)
{
  HOST_WIDE_INT amount;
  arm_stack_offsets *offsets;
  int regno;

  /* Naked functions don't have prologues.  */
  if (IS_NAKED (arm_current_func_type ()))
    return;

  offsets = arm_get_frame_offsets ();
  amount = offsets->outgoing_args - offsets->saved_regs;

  if (frame_pointer_needed)
    {
      emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
      amount = offsets->locals_base - offsets->saved_regs;
    }
  amount -= 4 * thumb1_extra_regs_pushed (offsets, false);

  gcc_assert (amount >= 0);
  if (amount)
    {
      emit_insn (gen_blockage ());

      if (amount < 512)
	emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
			       GEN_INT (amount)));
      else
	{
	  /* r3 is always free in the epilogue.  */
	  rtx reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);

	  emit_insn (gen_movsi (reg, GEN_INT (amount)));
	  emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg));
	}
    }

  /* Emit a USE (stack_pointer_rtx), so that
     the stack adjustment will not be deleted.  */
  emit_insn (gen_force_register_use (stack_pointer_rtx));

  if (crtl->profile || !TARGET_SCHED_PROLOG)
    emit_insn (gen_blockage ());

  /* Emit a clobber for each insn that will be restored in the epilogue,
     so that flow2 will get register lifetimes correct.  */
  for (regno = 0; regno < 13; regno++)
    if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
      emit_clobber (gen_rtx_REG (SImode, regno));

  if (! df_regs_ever_live_p (LR_REGNUM))
    emit_use (gen_rtx_REG (SImode, LR_REGNUM));
}

/* Epilogue code for APCS frame.  */
static void
arm_expand_epilogue_apcs_frame (bool really_return)
{
  unsigned long func_type;
  unsigned long saved_regs_mask;
  int num_regs = 0;
  int i;
  int floats_from_frame = 0;
  arm_stack_offsets *offsets;

  gcc_assert (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM);
  func_type = arm_current_func_type ();

  /* Get frame offsets for ARM.  */
  offsets = arm_get_frame_offsets ();
  saved_regs_mask = offsets->saved_regs_mask;

  /* Find the offset of the floating-point save area in the frame.  */
  floats_from_frame
    = (offsets->saved_args
       + arm_compute_static_chain_stack_bytes ()
       - offsets->frame);

  /* Compute how many core registers saved and how far away the floats are.  */
  for (i = 0; i <= LAST_ARM_REGNUM; i++)
    if (saved_regs_mask & (1 << i))
      {
        num_regs++;
        floats_from_frame += 4;
      }

  if (TARGET_HARD_FLOAT && TARGET_VFP)
    {
      int start_reg;
      rtx ip_rtx = gen_rtx_REG (SImode, IP_REGNUM);

      /* The offset is from IP_REGNUM.  */
      int saved_size = arm_get_vfp_saved_size ();
      if (saved_size > 0)
        {
	  rtx insn;
          floats_from_frame += saved_size;
          insn = emit_insn (gen_addsi3 (ip_rtx,
					hard_frame_pointer_rtx,
					GEN_INT (-floats_from_frame)));
	  arm_add_cfa_adjust_cfa_note (insn, -floats_from_frame,
				       ip_rtx, hard_frame_pointer_rtx);
        }

      /* Generate VFP register multi-pop.  */
      start_reg = FIRST_VFP_REGNUM;

      for (i = FIRST_VFP_REGNUM; i < LAST_VFP_REGNUM; i += 2)
        /* Look for a case where a reg does not need restoring.  */
        if ((!df_regs_ever_live_p (i) || call_used_regs[i])
            && (!df_regs_ever_live_p (i + 1)
                || call_used_regs[i + 1]))
          {
            if (start_reg != i)
              arm_emit_vfp_multi_reg_pop (start_reg,
                                          (i - start_reg) / 2,
                                          gen_rtx_REG (SImode,
                                                       IP_REGNUM));
            start_reg = i + 2;
          }

      /* Restore the remaining regs that we have discovered (or possibly
         even all of them, if the conditional in the for loop never
         fired).  */
      if (start_reg != i)
        arm_emit_vfp_multi_reg_pop (start_reg,
                                    (i - start_reg) / 2,
                                    gen_rtx_REG (SImode, IP_REGNUM));
    }

  if (TARGET_IWMMXT)
    {
      /* The frame pointer is guaranteed to be non-double-word aligned, as
         it is set to double-word-aligned old_stack_pointer - 4.  */
      rtx insn;
      int lrm_count = (num_regs % 2) ? (num_regs + 2) : (num_regs + 1);

      for (i = LAST_IWMMXT_REGNUM; i >= FIRST_IWMMXT_REGNUM; i--)
        if (df_regs_ever_live_p (i) && !call_used_regs[i])
          {
            rtx addr = gen_frame_mem (V2SImode,
                                 plus_constant (Pmode, hard_frame_pointer_rtx,
                                                - lrm_count * 4));
            insn = emit_insn (gen_movsi (gen_rtx_REG (V2SImode, i), addr));
            REG_NOTES (insn) = alloc_reg_note (REG_CFA_RESTORE,
                                               gen_rtx_REG (V2SImode, i),
                                               NULL_RTX);
            lrm_count += 2;
          }
    }

  /* saved_regs_mask should contain IP which contains old stack pointer
     at the time of activation creation.  Since SP and IP are adjacent registers,
     we can restore the value directly into SP.  */
  gcc_assert (saved_regs_mask & (1 << IP_REGNUM));
  saved_regs_mask &= ~(1 << IP_REGNUM);
  saved_regs_mask |= (1 << SP_REGNUM);

  /* There are two registers left in saved_regs_mask - LR and PC.  We
     only need to restore LR (the return address), but to
     save time we can load it directly into PC, unless we need a
     special function exit sequence, or we are not really returning.  */
  if (really_return
      && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
      && !crtl->calls_eh_return)
    /* Delete LR from the register mask, so that LR on
       the stack is loaded into the PC in the register mask.  */
    saved_regs_mask &= ~(1 << LR_REGNUM);
  else
    saved_regs_mask &= ~(1 << PC_REGNUM);

  num_regs = bit_count (saved_regs_mask);
  if ((offsets->outgoing_args != (1 + num_regs)) || cfun->calls_alloca)
    {
      rtx insn;
      emit_insn (gen_blockage ());
      /* Unwind the stack to just below the saved registers.  */
      insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
				    hard_frame_pointer_rtx,
				    GEN_INT (- 4 * num_regs)));

      arm_add_cfa_adjust_cfa_note (insn, - 4 * num_regs,
				   stack_pointer_rtx, hard_frame_pointer_rtx);
    }

  arm_emit_multi_reg_pop (saved_regs_mask);

  if (IS_INTERRUPT (func_type))
    {
      /* Interrupt handlers will have pushed the
         IP onto the stack, so restore it now.  */
      rtx insn;
      rtx addr = gen_rtx_MEM (SImode,
                              gen_rtx_POST_INC (SImode,
                              stack_pointer_rtx));
      set_mem_alias_set (addr, get_frame_alias_set ());
      insn = emit_insn (gen_movsi (gen_rtx_REG (SImode, IP_REGNUM), addr));
      REG_NOTES (insn) = alloc_reg_note (REG_CFA_RESTORE,
                                         gen_rtx_REG (SImode, IP_REGNUM),
                                         NULL_RTX);
    }

  if (!really_return || (saved_regs_mask & (1 << PC_REGNUM)))
    return;

  if (crtl->calls_eh_return)
    emit_insn (gen_addsi3 (stack_pointer_rtx,
			   stack_pointer_rtx,
			   gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)));

  if (IS_STACKALIGN (func_type))
    /* Restore the original stack pointer.  Before prologue, the stack was
       realigned and the original stack pointer saved in r0.  For details,
       see comment in arm_expand_prologue.  */
    emit_insn (gen_movsi (stack_pointer_rtx, gen_rtx_REG (SImode, 0)));

  emit_jump_insn (simple_return_rtx);
}

/* Generate RTL to represent ARM epilogue.  Really_return is true if the
   function is not a sibcall.  */
void
arm_expand_epilogue (bool really_return)
{
  unsigned long func_type;
  unsigned long saved_regs_mask;
  int num_regs = 0;
  int i;
  int amount;
  arm_stack_offsets *offsets;

  func_type = arm_current_func_type ();

  /* Naked functions don't have epilogue.  Hence, generate return pattern, and
     let output_return_instruction take care of instruction emission if any.  */
  if (IS_NAKED (func_type)
      || (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN))
    {
      if (really_return)
        emit_jump_insn (simple_return_rtx);
      return;
    }

  /* If we are throwing an exception, then we really must be doing a
     return, so we can't tail-call.  */
  gcc_assert (!crtl->calls_eh_return || really_return);

  if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM)
    {
      arm_expand_epilogue_apcs_frame (really_return);
      return;
    }

  /* Get frame offsets for ARM.  */
  offsets = arm_get_frame_offsets ();
  saved_regs_mask = offsets->saved_regs_mask;
  num_regs = bit_count (saved_regs_mask);

  if (frame_pointer_needed)
    {
      rtx insn;
      /* Restore stack pointer if necessary.  */
      if (TARGET_ARM)
        {
          /* In ARM mode, frame pointer points to first saved register.
             Restore stack pointer to last saved register.  */
          amount = offsets->frame - offsets->saved_regs;

          /* Force out any pending memory operations that reference stacked data
             before stack de-allocation occurs.  */
          emit_insn (gen_blockage ());
	  insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
			    hard_frame_pointer_rtx,
			    GEN_INT (amount)));
	  arm_add_cfa_adjust_cfa_note (insn, amount,
				       stack_pointer_rtx,
				       hard_frame_pointer_rtx);

          /* Emit USE(stack_pointer_rtx) to ensure that stack adjustment is not
             deleted.  */
          emit_insn (gen_force_register_use (stack_pointer_rtx));
        }
      else
        {
          /* In Thumb-2 mode, the frame pointer points to the last saved
             register.  */
	  amount = offsets->locals_base - offsets->saved_regs;
	  if (amount)
	    {
	      insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
				hard_frame_pointer_rtx,
				GEN_INT (amount)));
	      arm_add_cfa_adjust_cfa_note (insn, amount,
					   hard_frame_pointer_rtx,
					   hard_frame_pointer_rtx);
	    }

          /* Force out any pending memory operations that reference stacked data
             before stack de-allocation occurs.  */
          emit_insn (gen_blockage ());
	  insn = emit_insn (gen_movsi (stack_pointer_rtx,
				       hard_frame_pointer_rtx));
	  arm_add_cfa_adjust_cfa_note (insn, 0,
				       stack_pointer_rtx,
				       hard_frame_pointer_rtx);
          /* Emit USE(stack_pointer_rtx) to ensure that stack adjustment is not
             deleted.  */
          emit_insn (gen_force_register_use (stack_pointer_rtx));
        }
    }
  else
    {
      /* Pop off outgoing args and local frame to adjust stack pointer to
         last saved register.  */
      amount = offsets->outgoing_args - offsets->saved_regs;
      if (amount)
        {
	  rtx tmp;
          /* Force out any pending memory operations that reference stacked data
             before stack de-allocation occurs.  */
          emit_insn (gen_blockage ());
	  tmp = emit_insn (gen_addsi3 (stack_pointer_rtx,
				       stack_pointer_rtx,
				       GEN_INT (amount)));
	  arm_add_cfa_adjust_cfa_note (tmp, amount,
				       stack_pointer_rtx, stack_pointer_rtx);
          /* Emit USE(stack_pointer_rtx) to ensure that stack adjustment is
             not deleted.  */
          emit_insn (gen_force_register_use (stack_pointer_rtx));
        }
    }

  if (TARGET_HARD_FLOAT && TARGET_VFP)
    {
      /* Generate VFP register multi-pop.  */
      int end_reg = LAST_VFP_REGNUM + 1;

      /* Scan the registers in reverse order.  We need to match
         any groupings made in the prologue and generate matching
         vldm operations.  The need to match groups is because,
         unlike pop, vldm can only do consecutive regs.  */
      for (i = LAST_VFP_REGNUM - 1; i >= FIRST_VFP_REGNUM; i -= 2)
        /* Look for a case where a reg does not need restoring.  */
        if ((!df_regs_ever_live_p (i) || call_used_regs[i])
            && (!df_regs_ever_live_p (i + 1)
                || call_used_regs[i + 1]))
          {
            /* Restore the regs discovered so far (from reg+2 to
               end_reg).  */
            if (end_reg > i + 2)
              arm_emit_vfp_multi_reg_pop (i + 2,
                                          (end_reg - (i + 2)) / 2,
                                          stack_pointer_rtx);
            end_reg = i;
          }

      /* Restore the remaining regs that we have discovered (or possibly
         even all of them, if the conditional in the for loop never
         fired).  */
      if (end_reg > i + 2)
        arm_emit_vfp_multi_reg_pop (i + 2,
                                    (end_reg - (i + 2)) / 2,
                                    stack_pointer_rtx);
    }

  if (TARGET_IWMMXT)
    for (i = FIRST_IWMMXT_REGNUM; i <= LAST_IWMMXT_REGNUM; i++)
      if (df_regs_ever_live_p (i) && !call_used_regs[i])
        {
          rtx insn;
          rtx addr = gen_rtx_MEM (V2SImode,
                                  gen_rtx_POST_INC (SImode,
                                                    stack_pointer_rtx));
          set_mem_alias_set (addr, get_frame_alias_set ());
          insn = emit_insn (gen_movsi (gen_rtx_REG (V2SImode, i), addr));
          REG_NOTES (insn) = alloc_reg_note (REG_CFA_RESTORE,
                                             gen_rtx_REG (V2SImode, i),
                                             NULL_RTX);
	  arm_add_cfa_adjust_cfa_note (insn, UNITS_PER_WORD,
				       stack_pointer_rtx, stack_pointer_rtx);
        }

  if (saved_regs_mask)
    {
      rtx insn;
      bool return_in_pc = false;

      if (ARM_FUNC_TYPE (func_type) != ARM_FT_INTERWORKED
          && (TARGET_ARM || ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL)
          && !IS_STACKALIGN (func_type)
          && really_return
          && crtl->args.pretend_args_size == 0
          && saved_regs_mask & (1 << LR_REGNUM)
          && !crtl->calls_eh_return)
        {
          saved_regs_mask &= ~(1 << LR_REGNUM);
          saved_regs_mask |= (1 << PC_REGNUM);
          return_in_pc = true;
        }

      if (num_regs == 1 && (!IS_INTERRUPT (func_type) || !return_in_pc))
        {
          for (i = 0; i <= LAST_ARM_REGNUM; i++)
            if (saved_regs_mask & (1 << i))
              {
                rtx addr = gen_rtx_MEM (SImode,
                                        gen_rtx_POST_INC (SImode,
                                                          stack_pointer_rtx));
                set_mem_alias_set (addr, get_frame_alias_set ());

                if (i == PC_REGNUM)
                  {
                    insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
                    XVECEXP (insn, 0, 0) = ret_rtx;
                    XVECEXP (insn, 0, 1) = gen_rtx_SET (SImode,
                                                        gen_rtx_REG (SImode, i),
                                                        addr);
                    RTX_FRAME_RELATED_P (XVECEXP (insn, 0, 1)) = 1;
                    insn = emit_jump_insn (insn);
                  }
                else
                  {
                    insn = emit_insn (gen_movsi (gen_rtx_REG (SImode, i),
                                                 addr));
                    REG_NOTES (insn) = alloc_reg_note (REG_CFA_RESTORE,
                                                       gen_rtx_REG (SImode, i),
                                                       NULL_RTX);
		    arm_add_cfa_adjust_cfa_note (insn, UNITS_PER_WORD,
						 stack_pointer_rtx,
						 stack_pointer_rtx);
                  }
              }
        }
      else
        {
          if (TARGET_LDRD
	      && current_tune->prefer_ldrd_strd
              && !optimize_function_for_size_p (cfun))
            {
              if (TARGET_THUMB2)
                thumb2_emit_ldrd_pop (saved_regs_mask);
              else if (TARGET_ARM && !IS_INTERRUPT (func_type))
                arm_emit_ldrd_pop (saved_regs_mask);
              else
                arm_emit_multi_reg_pop (saved_regs_mask);
            }
          else
            arm_emit_multi_reg_pop (saved_regs_mask);
        }

      if (return_in_pc == true)
        return;
    }

  if (crtl->args.pretend_args_size)
    {
      int i, j;
      rtx dwarf = NULL_RTX;
      rtx tmp = emit_insn (gen_addsi3 (stack_pointer_rtx,
			   stack_pointer_rtx,
			   GEN_INT (crtl->args.pretend_args_size)));

      RTX_FRAME_RELATED_P (tmp) = 1;

      if (cfun->machine->uses_anonymous_args)
	{
	  /* Restore pretend args.  Refer arm_expand_prologue on how to save
	     pretend_args in stack.  */
	  int num_regs = crtl->args.pretend_args_size / 4;
	  saved_regs_mask = (0xf0 >> num_regs) & 0xf;
	  for (j = 0, i = 0; j < num_regs; i++)
	    if (saved_regs_mask & (1 << i))
	      {
		rtx reg = gen_rtx_REG (SImode, i);
		dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
		j++;
	      }
	  REG_NOTES (tmp) = dwarf;
	}
      arm_add_cfa_adjust_cfa_note (tmp, crtl->args.pretend_args_size,
				   stack_pointer_rtx, stack_pointer_rtx);
    }

  if (!really_return)
    return;

  if (crtl->calls_eh_return)
    emit_insn (gen_addsi3 (stack_pointer_rtx,
                           stack_pointer_rtx,
                           gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)));

  if (IS_STACKALIGN (func_type))
    /* Restore the original stack pointer.  Before prologue, the stack was
       realigned and the original stack pointer saved in r0.  For details,
       see comment in arm_expand_prologue.  */
    emit_insn (gen_movsi (stack_pointer_rtx, gen_rtx_REG (SImode, 0)));

  emit_jump_insn (simple_return_rtx);
}

/* Implementation of insn prologue_thumb1_interwork.  This is the first
   "instruction" of a function called in ARM mode.  Swap to thumb mode.  */

const char *
thumb1_output_interwork (void)
{
  const char * name;
  FILE *f = asm_out_file;

  gcc_assert (MEM_P (DECL_RTL (current_function_decl)));
  gcc_assert (GET_CODE (XEXP (DECL_RTL (current_function_decl), 0))
	      == SYMBOL_REF);
  name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);

  /* Generate code sequence to switch us into Thumb mode.  */
  /* The .code 32 directive has already been emitted by
     ASM_DECLARE_FUNCTION_NAME.  */
  asm_fprintf (f, "\torr\t%r, %r, #1\n", IP_REGNUM, PC_REGNUM);
  asm_fprintf (f, "\tbx\t%r\n", IP_REGNUM);

  /* Generate a label, so that the debugger will notice the
     change in instruction sets.  This label is also used by
     the assembler to bypass the ARM code when this function
     is called from a Thumb encoded function elsewhere in the
     same file.  Hence the definition of STUB_NAME here must
     agree with the definition in gas/config/tc-arm.c.  */

#define STUB_NAME ".real_start_of"

  fprintf (f, "\t.code\t16\n");
#ifdef ARM_PE
  if (arm_dllexport_name_p (name))
    name = arm_strip_name_encoding (name);
#endif
  asm_fprintf (f, "\t.globl %s%U%s\n", STUB_NAME, name);
  fprintf (f, "\t.thumb_func\n");
  asm_fprintf (f, "%s%U%s:\n", STUB_NAME, name);

  return "";
}

/* Handle the case of a double word load into a low register from
   a computed memory address.  The computed address may involve a
   register which is overwritten by the load.  */
const char *
thumb_load_double_from_address (rtx *operands)
{
  rtx addr;
  rtx base;
  rtx offset;
  rtx arg1;
  rtx arg2;

  gcc_assert (REG_P (operands[0]));
  gcc_assert (MEM_P (operands[1]));

  /* Get the memory address.  */
  addr = XEXP (operands[1], 0);

  /* Work out how the memory address is computed.  */
  switch (GET_CODE (addr))
    {
    case REG:
      operands[2] = adjust_address (operands[1], SImode, 4);

      if (REGNO (operands[0]) == REGNO (addr))
	{
	  output_asm_insn ("ldr\t%H0, %2", operands);
	  output_asm_insn ("ldr\t%0, %1", operands);
	}
      else
	{
	  output_asm_insn ("ldr\t%0, %1", operands);
	  output_asm_insn ("ldr\t%H0, %2", operands);
	}
      break;

    case CONST:
      /* Compute <address> + 4 for the high order load.  */
      operands[2] = adjust_address (operands[1], SImode, 4);

      output_asm_insn ("ldr\t%0, %1", operands);
      output_asm_insn ("ldr\t%H0, %2", operands);
      break;

    case PLUS:
      arg1   = XEXP (addr, 0);
      arg2   = XEXP (addr, 1);

      if (CONSTANT_P (arg1))
	base = arg2, offset = arg1;
      else
	base = arg1, offset = arg2;

      gcc_assert (REG_P (base));

      /* Catch the case of <address> = <reg> + <reg> */
      if (REG_P (offset))
	{
	  int reg_offset = REGNO (offset);
	  int reg_base   = REGNO (base);
	  int reg_dest   = REGNO (operands[0]);

	  /* Add the base and offset registers together into the
             higher destination register.  */
	  asm_fprintf (asm_out_file, "\tadd\t%r, %r, %r",
		       reg_dest + 1, reg_base, reg_offset);

	  /* Load the lower destination register from the address in
             the higher destination register.  */
	  asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #0]",
		       reg_dest, reg_dest + 1);

	  /* Load the higher destination register from its own address
             plus 4.  */
	  asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #4]",
		       reg_dest + 1, reg_dest + 1);
	}
      else
	{
	  /* Compute <address> + 4 for the high order load.  */
	  operands[2] = adjust_address (operands[1], SImode, 4);

	  /* If the computed address is held in the low order register
	     then load the high order register first, otherwise always
	     load the low order register first.  */
	  if (REGNO (operands[0]) == REGNO (base))
	    {
	      output_asm_insn ("ldr\t%H0, %2", operands);
	      output_asm_insn ("ldr\t%0, %1", operands);
	    }
	  else
	    {
	      output_asm_insn ("ldr\t%0, %1", operands);
	      output_asm_insn ("ldr\t%H0, %2", operands);
	    }
	}
      break;

    case LABEL_REF:
      /* With no registers to worry about we can just load the value
         directly.  */
      operands[2] = adjust_address (operands[1], SImode, 4);

      output_asm_insn ("ldr\t%H0, %2", operands);
      output_asm_insn ("ldr\t%0, %1", operands);
      break;

    default:
      gcc_unreachable ();
    }

  return "";
}

const char *
thumb_output_move_mem_multiple (int n, rtx *operands)
{
  rtx tmp;

  switch (n)
    {
    case 2:
      if (REGNO (operands[4]) > REGNO (operands[5]))
	{
	  tmp = operands[4];
	  operands[4] = operands[5];
	  operands[5] = tmp;
	}
      output_asm_insn ("ldmia\t%1!, {%4, %5}", operands);
      output_asm_insn ("stmia\t%0!, {%4, %5}", operands);
      break;

    case 3:
      if (REGNO (operands[4]) > REGNO (operands[5]))
	{
	  tmp = operands[4];
	  operands[4] = operands[5];
	  operands[5] = tmp;
	}
      if (REGNO (operands[5]) > REGNO (operands[6]))
	{
	  tmp = operands[5];
	  operands[5] = operands[6];
	  operands[6] = tmp;
	}
      if (REGNO (operands[4]) > REGNO (operands[5]))
	{
	  tmp = operands[4];
	  operands[4] = operands[5];
	  operands[5] = tmp;
	}

      output_asm_insn ("ldmia\t%1!, {%4, %5, %6}", operands);
      output_asm_insn ("stmia\t%0!, {%4, %5, %6}", operands);
      break;

    default:
      gcc_unreachable ();
    }

  return "";
}

/* Output a call-via instruction for thumb state.  */
const char *
thumb_call_via_reg (rtx reg)
{
  int regno = REGNO (reg);
  rtx *labelp;

  gcc_assert (regno < LR_REGNUM);

  /* If we are in the normal text section we can use a single instance
     per compilation unit.  If we are doing function sections, then we need
     an entry per section, since we can't rely on reachability.  */
  if (in_section == text_section)
    {
      thumb_call_reg_needed = 1;

      if (thumb_call_via_label[regno] == NULL)
	thumb_call_via_label[regno] = gen_label_rtx ();
      labelp = thumb_call_via_label + regno;
    }
  else
    {
      if (cfun->machine->call_via[regno] == NULL)
	cfun->machine->call_via[regno] = gen_label_rtx ();
      labelp = cfun->machine->call_via + regno;
    }

  output_asm_insn ("bl\t%a0", labelp);
  return "";
}

/* Routines for generating rtl.  */
void
thumb_expand_movmemqi (rtx *operands)
{
  rtx out = copy_to_mode_reg (SImode, XEXP (operands[0], 0));
  rtx in  = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
  HOST_WIDE_INT len = INTVAL (operands[2]);
  HOST_WIDE_INT offset = 0;

  while (len >= 12)
    {
      emit_insn (gen_movmem12b (out, in, out, in));
      len -= 12;
    }

  if (len >= 8)
    {
      emit_insn (gen_movmem8b (out, in, out, in));
      len -= 8;
    }

  if (len >= 4)
    {
      rtx reg = gen_reg_rtx (SImode);
      emit_insn (gen_movsi (reg, gen_rtx_MEM (SImode, in)));
      emit_insn (gen_movsi (gen_rtx_MEM (SImode, out), reg));
      len -= 4;
      offset += 4;
    }

  if (len >= 2)
    {
      rtx reg = gen_reg_rtx (HImode);
      emit_insn (gen_movhi (reg, gen_rtx_MEM (HImode,
					      plus_constant (Pmode, in,
							     offset))));
      emit_insn (gen_movhi (gen_rtx_MEM (HImode, plus_constant (Pmode, out,
								offset)),
			    reg));
      len -= 2;
      offset += 2;
    }

  if (len)
    {
      rtx reg = gen_reg_rtx (QImode);
      emit_insn (gen_movqi (reg, gen_rtx_MEM (QImode,
					      plus_constant (Pmode, in,
							     offset))));
      emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (Pmode, out,
								offset)),
			    reg));
    }
}

void
thumb_reload_out_hi (rtx *operands)
{
  emit_insn (gen_thumb_movhi_clobber (operands[0], operands[1], operands[2]));
}

/* Handle reading a half-word from memory during reload.  */
void
thumb_reload_in_hi (rtx *operands ATTRIBUTE_UNUSED)
{
  gcc_unreachable ();
}

/* Return the length of a function name prefix
    that starts with the character 'c'.  */
static int
arm_get_strip_length (int c)
{
  switch (c)
    {
    ARM_NAME_ENCODING_LENGTHS
      default: return 0;
    }
}

/* Return a pointer to a function's name with any
   and all prefix encodings stripped from it.  */
const char *
arm_strip_name_encoding (const char *name)
{
  int skip;

  while ((skip = arm_get_strip_length (* name)))
    name += skip;

  return name;
}

/* If there is a '*' anywhere in the name's prefix, then
   emit the stripped name verbatim, otherwise prepend an
   underscore if leading underscores are being used.  */
void
arm_asm_output_labelref (FILE *stream, const char *name)
{
  int skip;
  int verbatim = 0;

  while ((skip = arm_get_strip_length (* name)))
    {
      verbatim |= (*name == '*');
      name += skip;
    }

  if (verbatim)
    fputs (name, stream);
  else
    asm_fprintf (stream, "%U%s", name);
}

/* This function is used to emit an EABI tag and its associated value.
   We emit the numerical value of the tag in case the assembler does not
   support textual tags.  (Eg gas prior to 2.20).  If requested we include
   the tag name in a comment so that anyone reading the assembler output
   will know which tag is being set.

   This function is not static because arm-c.c needs it too.  */

void
arm_emit_eabi_attribute (const char *name, int num, int val)
{
  asm_fprintf (asm_out_file, "\t.eabi_attribute %d, %d", num, val);
  if (flag_verbose_asm || flag_debug_asm)
    asm_fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, name);
  asm_fprintf (asm_out_file, "\n");
}

static void
arm_file_start (void)
{
  int val;

  if (TARGET_UNIFIED_ASM)
    asm_fprintf (asm_out_file, "\t.syntax unified\n");

  if (TARGET_BPABI)
    {
      const char *fpu_name;
      if (arm_selected_arch)
        {
	  /* armv7ve doesn't support any extensions.  */
	  if (strcmp (arm_selected_arch->name, "armv7ve") == 0)
	    {
	      /* Keep backward compatability for assemblers
		 which don't support armv7ve.  */
	      asm_fprintf (asm_out_file, "\t.arch armv7-a\n");
	      asm_fprintf (asm_out_file, "\t.arch_extension virt\n");
	      asm_fprintf (asm_out_file, "\t.arch_extension idiv\n");
	      asm_fprintf (asm_out_file, "\t.arch_extension sec\n");
	      asm_fprintf (asm_out_file, "\t.arch_extension mp\n");
	    }
	  else
	    {
	      const char* pos = strchr (arm_selected_arch->name, '+');
	      if (pos)
		{
		  char buf[15];
		  gcc_assert (strlen (arm_selected_arch->name)
			      <= sizeof (buf) / sizeof (*pos));
		  strncpy (buf, arm_selected_arch->name,
				(pos - arm_selected_arch->name) * sizeof (*pos));
		  buf[pos - arm_selected_arch->name] = '\0';
		  asm_fprintf (asm_out_file, "\t.arch %s\n", buf);
		  asm_fprintf (asm_out_file, "\t.arch_extension %s\n", pos + 1);
		}
	      else
		asm_fprintf (asm_out_file, "\t.arch %s\n", arm_selected_arch->name);
	    }
        }
      else if (strncmp (arm_selected_cpu->name, "generic", 7) == 0)
	asm_fprintf (asm_out_file, "\t.arch %s\n", arm_selected_cpu->name + 8);
      else
	{
	  const char* truncated_name
	    = arm_rewrite_selected_cpu (arm_selected_cpu->name);
	  asm_fprintf (asm_out_file, "\t.cpu %s\n", truncated_name);
	}

      if (TARGET_SOFT_FLOAT)
	{
	  fpu_name = "softvfp";
	}
      else
	{
	  fpu_name = arm_fpu_desc->name;
	  if (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
	    {
	      if (TARGET_HARD_FLOAT)
		arm_emit_eabi_attribute ("Tag_ABI_HardFP_use", 27, 3);
	      if (TARGET_HARD_FLOAT_ABI)
		arm_emit_eabi_attribute ("Tag_ABI_VFP_args", 28, 1);
	    }
	}
      asm_fprintf (asm_out_file, "\t.fpu %s\n", fpu_name);

      /* Some of these attributes only apply when the corresponding features
         are used.  However we don't have any easy way of figuring this out.
	 Conservatively record the setting that would have been used.  */

      if (flag_rounding_math)
	arm_emit_eabi_attribute ("Tag_ABI_FP_rounding", 19, 1);

      if (!flag_unsafe_math_optimizations)
	{
	  arm_emit_eabi_attribute ("Tag_ABI_FP_denormal", 20, 1);
	  arm_emit_eabi_attribute ("Tag_ABI_FP_exceptions", 21, 1);
	}
      if (flag_signaling_nans)
	arm_emit_eabi_attribute ("Tag_ABI_FP_user_exceptions", 22, 1);

      arm_emit_eabi_attribute ("Tag_ABI_FP_number_model", 23,
			   flag_finite_math_only ? 1 : 3);

      arm_emit_eabi_attribute ("Tag_ABI_align8_needed", 24, 1);
      arm_emit_eabi_attribute ("Tag_ABI_align8_preserved", 25, 1);
      arm_emit_eabi_attribute ("Tag_ABI_enum_size", 26,
			       flag_short_enums ? 1 : 2);

      /* Tag_ABI_optimization_goals.  */
      if (optimize_size)
	val = 4;
      else if (optimize >= 2)
	val = 2;
      else if (optimize)
	val = 1;
      else
	val = 6;
      arm_emit_eabi_attribute ("Tag_ABI_optimization_goals", 30, val);

      arm_emit_eabi_attribute ("Tag_CPU_unaligned_access", 34,
			       unaligned_access);

      if (arm_fp16_format)
	arm_emit_eabi_attribute ("Tag_ABI_FP_16bit_format", 38,
			     (int) arm_fp16_format);

      if (arm_lang_output_object_attributes_hook)
	arm_lang_output_object_attributes_hook();
    }

  default_file_start ();
}

static void
arm_file_end (void)
{
  int regno;

  if (NEED_INDICATE_EXEC_STACK)
    /* Add .note.GNU-stack.  */
    file_end_indicate_exec_stack ();

  if (! thumb_call_reg_needed)
    return;

  switch_to_section (text_section);
  asm_fprintf (asm_out_file, "\t.code 16\n");
  ASM_OUTPUT_ALIGN (asm_out_file, 1);

  for (regno = 0; regno < LR_REGNUM; regno++)
    {
      rtx label = thumb_call_via_label[regno];

      if (label != 0)
	{
	  targetm.asm_out.internal_label (asm_out_file, "L",
					  CODE_LABEL_NUMBER (label));
	  asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
	}
    }
}

#ifndef ARM_PE
/* Symbols in the text segment can be accessed without indirecting via the
   constant pool; it may take an extra binary operation, but this is still
   faster than indirecting via memory.  Don't do this when not optimizing,
   since we won't be calculating al of the offsets necessary to do this
   simplification.  */

static void
arm_encode_section_info (tree decl, rtx rtl, int first)
{
  if (optimize > 0 && TREE_CONSTANT (decl))
    SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;

  default_encode_section_info (decl, rtl, first);
}
#endif /* !ARM_PE */

static void
arm_internal_label (FILE *stream, const char *prefix, unsigned long labelno)
{
  if (arm_ccfsm_state == 3 && (unsigned) arm_target_label == labelno
      && !strcmp (prefix, "L"))
    {
      arm_ccfsm_state = 0;
      arm_target_insn = NULL;
    }
  default_internal_label (stream, prefix, labelno);
}

/* Output code to add DELTA to the first argument, and then jump
   to FUNCTION.  Used for C++ multiple inheritance.  */
static void
arm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
		     HOST_WIDE_INT delta,
		     HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
		     tree function)
{
  static int thunk_label = 0;
  char label[256];
  char labelpc[256];
  int mi_delta = delta;
  const char *const mi_op = mi_delta < 0 ? "sub" : "add";
  int shift = 0;
  int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)
                    ? 1 : 0);
  if (mi_delta < 0)
    mi_delta = - mi_delta;

  final_start_function (emit_barrier (), file, 1);

  if (TARGET_THUMB1)
    {
      int labelno = thunk_label++;
      ASM_GENERATE_INTERNAL_LABEL (label, "LTHUMBFUNC", labelno);
      /* Thunks are entered in arm mode when avaiable.  */
      if (TARGET_THUMB1_ONLY)
	{
	  /* push r3 so we can use it as a temporary.  */
	  /* TODO: Omit this save if r3 is not used.  */
	  fputs ("\tpush {r3}\n", file);
	  fputs ("\tldr\tr3, ", file);
	}
      else
	{
	  fputs ("\tldr\tr12, ", file);
	}
      assemble_name (file, label);
      fputc ('\n', file);
      if (flag_pic)
	{
	  /* If we are generating PIC, the ldr instruction below loads
	     "(target - 7) - .LTHUNKPCn" into r12.  The pc reads as
	     the address of the add + 8, so we have:

	     r12 = (target - 7) - .LTHUNKPCn + (.LTHUNKPCn + 8)
	         = target + 1.

	     Note that we have "+ 1" because some versions of GNU ld
	     don't set the low bit of the result for R_ARM_REL32
	     relocations against thumb function symbols.
	     On ARMv6M this is +4, not +8.  */
	  ASM_GENERATE_INTERNAL_LABEL (labelpc, "LTHUNKPC", labelno);
	  assemble_name (file, labelpc);
	  fputs (":\n", file);
	  if (TARGET_THUMB1_ONLY)
	    {
	      /* This is 2 insns after the start of the thunk, so we know it
	         is 4-byte aligned.  */
	      fputs ("\tadd\tr3, pc, r3\n", file);
	      fputs ("\tmov r12, r3\n", file);
	    }
	  else
	    fputs ("\tadd\tr12, pc, r12\n", file);
	}
      else if (TARGET_THUMB1_ONLY)
	fputs ("\tmov r12, r3\n", file);
    }
  if (TARGET_THUMB1_ONLY)
    {
      if (mi_delta > 255)
	{
	  fputs ("\tldr\tr3, ", file);
	  assemble_name (file, label);
	  fputs ("+4\n", file);
	  asm_fprintf (file, "\t%s\t%r, %r, r3\n",
		       mi_op, this_regno, this_regno);
	}
      else if (mi_delta != 0)
	{
	  asm_fprintf (file, "\t%s\t%r, %r, #%d\n",
		       mi_op, this_regno, this_regno,
		       mi_delta);
	}
    }
  else
    {
      /* TODO: Use movw/movt for large constants when available.  */
      while (mi_delta != 0)
	{
	  if ((mi_delta & (3 << shift)) == 0)
	    shift += 2;
	  else
	    {
	      asm_fprintf (file, "\t%s\t%r, %r, #%d\n",
			   mi_op, this_regno, this_regno,
			   mi_delta & (0xff << shift));
	      mi_delta &= ~(0xff << shift);
	      shift += 8;
	    }
	}
    }
  if (TARGET_THUMB1)
    {
      if (TARGET_THUMB1_ONLY)
	fputs ("\tpop\t{r3}\n", file);

      fprintf (file, "\tbx\tr12\n");
      ASM_OUTPUT_ALIGN (file, 2);
      assemble_name (file, label);
      fputs (":\n", file);
      if (flag_pic)
	{
	  /* Output ".word .LTHUNKn-7-.LTHUNKPCn".  */
	  rtx tem = XEXP (DECL_RTL (function), 0);
	  tem = plus_constant (GET_MODE (tem), tem, -7);
	  tem = gen_rtx_MINUS (GET_MODE (tem),
			       tem,
			       gen_rtx_SYMBOL_REF (Pmode,
						   ggc_strdup (labelpc)));
	  assemble_integer (tem, 4, BITS_PER_WORD, 1);
	}
      else
	/* Output ".word .LTHUNKn".  */
	assemble_integer (XEXP (DECL_RTL (function), 0), 4, BITS_PER_WORD, 1);

      if (TARGET_THUMB1_ONLY && mi_delta > 255)
	assemble_integer (GEN_INT(mi_delta), 4, BITS_PER_WORD, 1);
    }
  else
    {
      fputs ("\tb\t", file);
      assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
      if (NEED_PLT_RELOC)
        fputs ("(PLT)", file);
      fputc ('\n', file);
    }

  final_end_function ();
}

int
arm_emit_vector_const (FILE *file, rtx x)
{
  int i;
  const char * pattern;

  gcc_assert (GET_CODE (x) == CONST_VECTOR);

  switch (GET_MODE (x))
    {
    case V2SImode: pattern = "%08x"; break;
    case V4HImode: pattern = "%04x"; break;
    case V8QImode: pattern = "%02x"; break;
    default:       gcc_unreachable ();
    }

  fprintf (file, "0x");
  for (i = CONST_VECTOR_NUNITS (x); i--;)
    {
      rtx element;

      element = CONST_VECTOR_ELT (x, i);
      fprintf (file, pattern, INTVAL (element));
    }

  return 1;
}

/* Emit a fp16 constant appropriately padded to occupy a 4-byte word.
   HFmode constant pool entries are actually loaded with ldr.  */
void
arm_emit_fp16_const (rtx c)
{
  REAL_VALUE_TYPE r;
  long bits;

  REAL_VALUE_FROM_CONST_DOUBLE (r, c);
  bits = real_to_target (NULL, &r, HFmode);
  if (WORDS_BIG_ENDIAN)
    assemble_zeros (2);
  assemble_integer (GEN_INT (bits), 2, BITS_PER_WORD, 1);
  if (!WORDS_BIG_ENDIAN)
    assemble_zeros (2);
}

const char *
arm_output_load_gr (rtx *operands)
{
  rtx reg;
  rtx offset;
  rtx wcgr;
  rtx sum;

  if (!MEM_P (operands [1])
      || GET_CODE (sum = XEXP (operands [1], 0)) != PLUS
      || !REG_P (reg = XEXP (sum, 0))
      || !CONST_INT_P (offset = XEXP (sum, 1))
      || ((INTVAL (offset) < 1024) && (INTVAL (offset) > -1024)))
    return "wldrw%?\t%0, %1";

  /* Fix up an out-of-range load of a GR register.  */
  output_asm_insn ("str%?\t%0, [sp, #-4]!\t@ Start of GR load expansion", & reg);
  wcgr = operands[0];
  operands[0] = reg;
  output_asm_insn ("ldr%?\t%0, %1", operands);

  operands[0] = wcgr;
  operands[1] = reg;
  output_asm_insn ("tmcr%?\t%0, %1", operands);
  output_asm_insn ("ldr%?\t%0, [sp], #4\t@ End of GR load expansion", & reg);

  return "";
}

/* Worker function for TARGET_SETUP_INCOMING_VARARGS.

   On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
   named arg and all anonymous args onto the stack.
   XXX I know the prologue shouldn't be pushing registers, but it is faster
   that way.  */

static void
arm_setup_incoming_varargs (cumulative_args_t pcum_v,
			    enum machine_mode mode,
			    tree type,
			    int *pretend_size,
			    int second_time ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  int nregs;

  cfun->machine->uses_anonymous_args = 1;
  if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
    {
      nregs = pcum->aapcs_ncrn;
      if ((nregs & 1) && arm_needs_doubleword_align (mode, type))
	nregs++;
    }
  else
    nregs = pcum->nregs;

  if (nregs < NUM_ARG_REGS)
    *pretend_size = (NUM_ARG_REGS - nregs) * UNITS_PER_WORD;
}

/* We can't rely on the caller doing the proper promotion when
   using APCS or ATPCS.  */

static bool
arm_promote_prototypes (const_tree t ATTRIBUTE_UNUSED)
{
    return !TARGET_AAPCS_BASED;
}

static enum machine_mode
arm_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
                           enum machine_mode mode,
                           int *punsignedp ATTRIBUTE_UNUSED,
                           const_tree fntype ATTRIBUTE_UNUSED,
                           int for_return ATTRIBUTE_UNUSED)
{
  if (GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_SIZE (mode) < 4)
    return SImode;

  return mode;
}

/* AAPCS based ABIs use short enums by default.  */

static bool
arm_default_short_enums (void)
{
  return TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX;
}


/* AAPCS requires that anonymous bitfields affect structure alignment.  */

static bool
arm_align_anon_bitfield (void)
{
  return TARGET_AAPCS_BASED;
}


/* The generic C++ ABI says 64-bit (long long).  The EABI says 32-bit.  */

static tree
arm_cxx_guard_type (void)
{
  return TARGET_AAPCS_BASED ? integer_type_node : long_long_integer_type_node;
}


/* The EABI says test the least significant bit of a guard variable.  */

static bool
arm_cxx_guard_mask_bit (void)
{
  return TARGET_AAPCS_BASED;
}


/* The EABI specifies that all array cookies are 8 bytes long.  */

static tree
arm_get_cookie_size (tree type)
{
  tree size;

  if (!TARGET_AAPCS_BASED)
    return default_cxx_get_cookie_size (type);

  size = build_int_cst (sizetype, 8);
  return size;
}


/* The EABI says that array cookies should also contain the element size.  */

static bool
arm_cookie_has_size (void)
{
  return TARGET_AAPCS_BASED;
}


/* The EABI says constructors and destructors should return a pointer to
   the object constructed/destroyed.  */

static bool
arm_cxx_cdtor_returns_this (void)
{
  return TARGET_AAPCS_BASED;
}

/* The EABI says that an inline function may never be the key
   method.  */

static bool
arm_cxx_key_method_may_be_inline (void)
{
  return !TARGET_AAPCS_BASED;
}

static void
arm_cxx_determine_class_data_visibility (tree decl)
{
  if (!TARGET_AAPCS_BASED
      || !TARGET_DLLIMPORT_DECL_ATTRIBUTES)
    return;

  /* In general, \S 3.2.5.5 of the ARM EABI requires that class data
     is exported.  However, on systems without dynamic vague linkage,
     \S 3.2.5.6 says that COMDAT class data has hidden linkage.  */
  if (!TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P && DECL_COMDAT (decl))
    DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
  else
    DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
}

static bool
arm_cxx_class_data_always_comdat (void)
{
  /* \S 3.2.5.4 of the ARM C++ ABI says that class data only have
     vague linkage if the class has no key function.  */
  return !TARGET_AAPCS_BASED;
}


/* The EABI says __aeabi_atexit should be used to register static
   destructors.  */

static bool
arm_cxx_use_aeabi_atexit (void)
{
  return TARGET_AAPCS_BASED;
}


void
arm_set_return_address (rtx source, rtx scratch)
{
  arm_stack_offsets *offsets;
  HOST_WIDE_INT delta;
  rtx addr;
  unsigned long saved_regs;

  offsets = arm_get_frame_offsets ();
  saved_regs = offsets->saved_regs_mask;

  if ((saved_regs & (1 << LR_REGNUM)) == 0)
    emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
  else
    {
      if (frame_pointer_needed)
	addr = plus_constant (Pmode, hard_frame_pointer_rtx, -4);
      else
	{
	  /* LR will be the first saved register.  */
	  delta = offsets->outgoing_args - (offsets->frame + 4);


	  if (delta >= 4096)
	    {
	      emit_insn (gen_addsi3 (scratch, stack_pointer_rtx,
				     GEN_INT (delta & ~4095)));
	      addr = scratch;
	      delta &= 4095;
	    }
	  else
	    addr = stack_pointer_rtx;

	  addr = plus_constant (Pmode, addr, delta);
	}
      emit_move_insn (gen_frame_mem (Pmode, addr), source);
    }
}


void
thumb_set_return_address (rtx source, rtx scratch)
{
  arm_stack_offsets *offsets;
  HOST_WIDE_INT delta;
  HOST_WIDE_INT limit;
  int reg;
  rtx addr;
  unsigned long mask;

  emit_use (source);

  offsets = arm_get_frame_offsets ();
  mask = offsets->saved_regs_mask;
  if (mask & (1 << LR_REGNUM))
    {
      limit = 1024;
      /* Find the saved regs.  */
      if (frame_pointer_needed)
	{
	  delta = offsets->soft_frame - offsets->saved_args;
	  reg = THUMB_HARD_FRAME_POINTER_REGNUM;
	  if (TARGET_THUMB1)
	    limit = 128;
	}
      else
	{
	  delta = offsets->outgoing_args - offsets->saved_args;
	  reg = SP_REGNUM;
	}
      /* Allow for the stack frame.  */
      if (TARGET_THUMB1 && TARGET_BACKTRACE)
	delta -= 16;
      /* The link register is always the first saved register.  */
      delta -= 4;

      /* Construct the address.  */
      addr = gen_rtx_REG (SImode, reg);
      if (delta > limit)
	{
	  emit_insn (gen_movsi (scratch, GEN_INT (delta)));
	  emit_insn (gen_addsi3 (scratch, scratch, stack_pointer_rtx));
	  addr = scratch;
	}
      else
	addr = plus_constant (Pmode, addr, delta);

      emit_move_insn (gen_frame_mem (Pmode, addr), source);
    }
  else
    emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
}

/* Implements target hook vector_mode_supported_p.  */
bool
arm_vector_mode_supported_p (enum machine_mode mode)
{
  /* Neon also supports V2SImode, etc. listed in the clause below.  */
  if (TARGET_NEON && (mode == V2SFmode || mode == V4SImode || mode == V8HImode
      || mode == V4HFmode || mode == V16QImode || mode == V4SFmode || mode == V2DImode))
    return true;

  if ((TARGET_NEON || TARGET_IWMMXT)
      && ((mode == V2SImode)
	  || (mode == V4HImode)
	  || (mode == V8QImode)))
    return true;

  if (TARGET_INT_SIMD && (mode == V4UQQmode || mode == V4QQmode
      || mode == V2UHQmode || mode == V2HQmode || mode == V2UHAmode
      || mode == V2HAmode))
    return true;

  return false;
}

/* Implements target hook array_mode_supported_p.  */

static bool
arm_array_mode_supported_p (enum machine_mode mode,
			    unsigned HOST_WIDE_INT nelems)
{
  if (TARGET_NEON
      && (VALID_NEON_DREG_MODE (mode) || VALID_NEON_QREG_MODE (mode))
      && (nelems >= 2 && nelems <= 4))
    return true;

  return false;
}

/* Use the option -mvectorize-with-neon-double to override the use of quardword
   registers when autovectorizing for Neon, at least until multiple vector
   widths are supported properly by the middle-end.  */

static enum machine_mode
arm_preferred_simd_mode (enum machine_mode mode)
{
  if (TARGET_NEON)
    switch (mode)
      {
      case SFmode:
	return TARGET_NEON_VECTORIZE_DOUBLE ? V2SFmode : V4SFmode;
      case SImode:
	return TARGET_NEON_VECTORIZE_DOUBLE ? V2SImode : V4SImode;
      case HImode:
	return TARGET_NEON_VECTORIZE_DOUBLE ? V4HImode : V8HImode;
      case QImode:
	return TARGET_NEON_VECTORIZE_DOUBLE ? V8QImode : V16QImode;
      case DImode:
	if (!TARGET_NEON_VECTORIZE_DOUBLE)
	  return V2DImode;
	break;

      default:;
      }

  if (TARGET_REALLY_IWMMXT)
    switch (mode)
      {
      case SImode:
	return V2SImode;
      case HImode:
	return V4HImode;
      case QImode:
	return V8QImode;

      default:;
      }

  return word_mode;
}

/* Implement TARGET_CLASS_LIKELY_SPILLED_P.

   We need to define this for LO_REGS on Thumb-1.  Otherwise we can end up
   using r0-r4 for function arguments, r7 for the stack frame and don't have
   enough left over to do doubleword arithmetic.  For Thumb-2 all the
   potentially problematic instructions accept high registers so this is not
   necessary.  Care needs to be taken to avoid adding new Thumb-2 patterns
   that require many low registers.  */
static bool
arm_class_likely_spilled_p (reg_class_t rclass)
{
  if ((TARGET_THUMB1 && rclass == LO_REGS)
      || rclass  == CC_REG)
    return true;

  return false;
}

/* Implements target hook small_register_classes_for_mode_p.  */
bool
arm_small_register_classes_for_mode_p (enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return TARGET_THUMB1;
}

/* Implement TARGET_SHIFT_TRUNCATION_MASK.  SImode shifts use normal
   ARM insns and therefore guarantee that the shift count is modulo 256.
   DImode shifts (those implemented by lib1funcs.S or by optabs.c)
   guarantee no particular behavior for out-of-range counts.  */

static unsigned HOST_WIDE_INT
arm_shift_truncation_mask (enum machine_mode mode)
{
  return mode == SImode ? 255 : 0;
}


/* Map internal gcc register numbers to DWARF2 register numbers.  */

unsigned int
arm_dbx_register_number (unsigned int regno)
{
  if (regno < 16)
    return regno;

  if (IS_VFP_REGNUM (regno))
    {
      /* See comment in arm_dwarf_register_span.  */
      if (VFP_REGNO_OK_FOR_SINGLE (regno))
	return 64 + regno - FIRST_VFP_REGNUM;
      else
	return 256 + (regno - FIRST_VFP_REGNUM) / 2;
    }

  if (IS_IWMMXT_GR_REGNUM (regno))
    return 104 + regno - FIRST_IWMMXT_GR_REGNUM;

  if (IS_IWMMXT_REGNUM (regno))
    return 112 + regno - FIRST_IWMMXT_REGNUM;

  gcc_unreachable ();
}

/* Dwarf models VFPv3 registers as 32 64-bit registers.
   GCC models tham as 64 32-bit registers, so we need to describe this to
   the DWARF generation code.  Other registers can use the default.  */
static rtx
arm_dwarf_register_span (rtx rtl)
{
  enum machine_mode mode;
  unsigned regno;
  rtx parts[16];
  int nregs;
  int i;

  regno = REGNO (rtl);
  if (!IS_VFP_REGNUM (regno))
    return NULL_RTX;

  /* XXX FIXME: The EABI defines two VFP register ranges:
	64-95: Legacy VFPv2 numbering for S0-S31 (obsolescent)
	256-287: D0-D31
     The recommended encoding for S0-S31 is a DW_OP_bit_piece of the
     corresponding D register.  Until GDB supports this, we shall use the
     legacy encodings.  We also use these encodings for D0-D15 for
     compatibility with older debuggers.  */
  mode = GET_MODE (rtl);
  if (GET_MODE_SIZE (mode) < 8)
    return NULL_RTX;

  if (VFP_REGNO_OK_FOR_SINGLE (regno))
    {
      nregs = GET_MODE_SIZE (mode) / 4;
      for (i = 0; i < nregs; i += 2)
	if (TARGET_BIG_END)
	  {
	    parts[i] = gen_rtx_REG (SImode, regno + i + 1);
	    parts[i + 1] = gen_rtx_REG (SImode, regno + i);
	  }
	else
	  {
	    parts[i] = gen_rtx_REG (SImode, regno + i);
	    parts[i + 1] = gen_rtx_REG (SImode, regno + i + 1);
	  }
    }
  else
    {
      nregs = GET_MODE_SIZE (mode) / 8;
      for (i = 0; i < nregs; i++)
	parts[i] = gen_rtx_REG (DImode, regno + i);
    }

  return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nregs , parts));
}

#if ARM_UNWIND_INFO
/* Emit unwind directives for a store-multiple instruction or stack pointer
   push during alignment.
   These should only ever be generated by the function prologue code, so
   expect them to have a particular form.
   The store-multiple instruction sometimes pushes pc as the last register,
   although it should not be tracked into unwind information, or for -Os
   sometimes pushes some dummy registers before first register that needs
   to be tracked in unwind information; such dummy registers are there just
   to avoid separate stack adjustment, and will not be restored in the
   epilogue.  */

static void
arm_unwind_emit_sequence (FILE * asm_out_file, rtx p)
{
  int i;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT nregs;
  int reg_size;
  unsigned reg;
  unsigned lastreg;
  unsigned padfirst = 0, padlast = 0;
  rtx e;

  e = XVECEXP (p, 0, 0);
  gcc_assert (GET_CODE (e) == SET);

  /* First insn will adjust the stack pointer.  */
  gcc_assert (GET_CODE (e) == SET
	      && REG_P (SET_DEST (e))
	      && REGNO (SET_DEST (e)) == SP_REGNUM
	      && GET_CODE (SET_SRC (e)) == PLUS);

  offset = -INTVAL (XEXP (SET_SRC (e), 1));
  nregs = XVECLEN (p, 0) - 1;
  gcc_assert (nregs);

  reg = REGNO (SET_SRC (XVECEXP (p, 0, 1)));
  if (reg < 16)
    {
      /* For -Os dummy registers can be pushed at the beginning to
	 avoid separate stack pointer adjustment.  */
      e = XVECEXP (p, 0, 1);
      e = XEXP (SET_DEST (e), 0);
      if (GET_CODE (e) == PLUS)
	padfirst = INTVAL (XEXP (e, 1));
      gcc_assert (padfirst == 0 || optimize_size);
      /* The function prologue may also push pc, but not annotate it as it is
	 never restored.  We turn this into a stack pointer adjustment.  */
      e = XVECEXP (p, 0, nregs);
      e = XEXP (SET_DEST (e), 0);
      if (GET_CODE (e) == PLUS)
	padlast = offset - INTVAL (XEXP (e, 1)) - 4;
      else
	padlast = offset - 4;
      gcc_assert (padlast == 0 || padlast == 4);
      if (padlast == 4)
	fprintf (asm_out_file, "\t.pad #4\n");
      reg_size = 4;
      fprintf (asm_out_file, "\t.save {");
    }
  else if (IS_VFP_REGNUM (reg))
    {
      reg_size = 8;
      fprintf (asm_out_file, "\t.vsave {");
    }
  else
    /* Unknown register type.  */
    gcc_unreachable ();

  /* If the stack increment doesn't match the size of the saved registers,
     something has gone horribly wrong.  */
  gcc_assert (offset == padfirst + nregs * reg_size + padlast);

  offset = padfirst;
  lastreg = 0;
  /* The remaining insns will describe the stores.  */
  for (i = 1; i <= nregs; i++)
    {
      /* Expect (set (mem <addr>) (reg)).
         Where <addr> is (reg:SP) or (plus (reg:SP) (const_int)).  */
      e = XVECEXP (p, 0, i);
      gcc_assert (GET_CODE (e) == SET
		  && MEM_P (SET_DEST (e))
		  && REG_P (SET_SRC (e)));

      reg = REGNO (SET_SRC (e));
      gcc_assert (reg >= lastreg);

      if (i != 1)
	fprintf (asm_out_file, ", ");
      /* We can't use %r for vfp because we need to use the
	 double precision register names.  */
      if (IS_VFP_REGNUM (reg))
	asm_fprintf (asm_out_file, "d%d", (reg - FIRST_VFP_REGNUM) / 2);
      else
	asm_fprintf (asm_out_file, "%r", reg);

#ifdef ENABLE_CHECKING
      /* Check that the addresses are consecutive.  */
      e = XEXP (SET_DEST (e), 0);
      if (GET_CODE (e) == PLUS)
	gcc_assert (REG_P (XEXP (e, 0))
		    && REGNO (XEXP (e, 0)) == SP_REGNUM
		    && CONST_INT_P (XEXP (e, 1))
		    && offset == INTVAL (XEXP (e, 1)));
      else
	gcc_assert (i == 1
		    && REG_P (e)
		    && REGNO (e) == SP_REGNUM);
      offset += reg_size;
#endif
    }
  fprintf (asm_out_file, "}\n");
  if (padfirst)
    fprintf (asm_out_file, "\t.pad #%d\n", padfirst);
}

/*  Emit unwind directives for a SET.  */

static void
arm_unwind_emit_set (FILE * asm_out_file, rtx p)
{
  rtx e0;
  rtx e1;
  unsigned reg;

  e0 = XEXP (p, 0);
  e1 = XEXP (p, 1);
  switch (GET_CODE (e0))
    {
    case MEM:
      /* Pushing a single register.  */
      if (GET_CODE (XEXP (e0, 0)) != PRE_DEC
	  || !REG_P (XEXP (XEXP (e0, 0), 0))
	  || REGNO (XEXP (XEXP (e0, 0), 0)) != SP_REGNUM)
	abort ();

      asm_fprintf (asm_out_file, "\t.save ");
      if (IS_VFP_REGNUM (REGNO (e1)))
	asm_fprintf(asm_out_file, "{d%d}\n",
		    (REGNO (e1) - FIRST_VFP_REGNUM) / 2);
      else
	asm_fprintf(asm_out_file, "{%r}\n", REGNO (e1));
      break;

    case REG:
      if (REGNO (e0) == SP_REGNUM)
	{
	  /* A stack increment.  */
	  if (GET_CODE (e1) != PLUS
	      || !REG_P (XEXP (e1, 0))
	      || REGNO (XEXP (e1, 0)) != SP_REGNUM
	      || !CONST_INT_P (XEXP (e1, 1)))
	    abort ();

	  asm_fprintf (asm_out_file, "\t.pad #%wd\n",
		       -INTVAL (XEXP (e1, 1)));
	}
      else if (REGNO (e0) == HARD_FRAME_POINTER_REGNUM)
	{
	  HOST_WIDE_INT offset;

	  if (GET_CODE (e1) == PLUS)
	    {
	      if (!REG_P (XEXP (e1, 0))
		  || !CONST_INT_P (XEXP (e1, 1)))
		abort ();
	      reg = REGNO (XEXP (e1, 0));
	      offset = INTVAL (XEXP (e1, 1));
	      asm_fprintf (asm_out_file, "\t.setfp %r, %r, #%wd\n",
			   HARD_FRAME_POINTER_REGNUM, reg,
			   offset);
	    }
	  else if (REG_P (e1))
	    {
	      reg = REGNO (e1);
	      asm_fprintf (asm_out_file, "\t.setfp %r, %r\n",
			   HARD_FRAME_POINTER_REGNUM, reg);
	    }
	  else
	    abort ();
	}
      else if (REG_P (e1) && REGNO (e1) == SP_REGNUM)
	{
	  /* Move from sp to reg.  */
	  asm_fprintf (asm_out_file, "\t.movsp %r\n", REGNO (e0));
	}
     else if (GET_CODE (e1) == PLUS
	      && REG_P (XEXP (e1, 0))
	      && REGNO (XEXP (e1, 0)) == SP_REGNUM
	      && CONST_INT_P (XEXP (e1, 1)))
	{
	  /* Set reg to offset from sp.  */
	  asm_fprintf (asm_out_file, "\t.movsp %r, #%d\n",
		       REGNO (e0), (int)INTVAL(XEXP (e1, 1)));
	}
      else
	abort ();
      break;

    default:
      abort ();
    }
}


/* Emit unwind directives for the given insn.  */

static void
arm_unwind_emit (FILE * asm_out_file, rtx insn)
{
  rtx note, pat;
  bool handled_one = false;

  if (arm_except_unwind_info (&global_options) != UI_TARGET)
    return;

  if (!(flag_unwind_tables || crtl->uses_eh_lsda)
      && (TREE_NOTHROW (current_function_decl)
	  || crtl->all_throwers_are_sibcalls))
    return;

  if (NOTE_P (insn) || !RTX_FRAME_RELATED_P (insn))
    return;

  for (note = REG_NOTES (insn); note ; note = XEXP (note, 1))
    {
      switch (REG_NOTE_KIND (note))
	{
	case REG_FRAME_RELATED_EXPR:
	  pat = XEXP (note, 0);
	  goto found;

	case REG_CFA_REGISTER:
	  pat = XEXP (note, 0);
	  if (pat == NULL)
	    {
	      pat = PATTERN (insn);
	      if (GET_CODE (pat) == PARALLEL)
		pat = XVECEXP (pat, 0, 0);
	    }

	  /* Only emitted for IS_STACKALIGN re-alignment.  */
	  {
	    rtx dest, src;
	    unsigned reg;

	    src = SET_SRC (pat);
	    dest = SET_DEST (pat);

	    gcc_assert (src == stack_pointer_rtx);
	    reg = REGNO (dest);
	    asm_fprintf (asm_out_file, "\t.unwind_raw 0, 0x%x @ vsp = r%d\n",
			 reg + 0x90, reg);
	  }
	  handled_one = true;
	  break;

	/* The INSN is generated in epilogue.  It is set as RTX_FRAME_RELATED_P
	   to get correct dwarf information for shrink-wrap.  We should not
	   emit unwind information for it because these are used either for
	   pretend arguments or notes to adjust sp and restore registers from
	   stack.  */
	case REG_CFA_DEF_CFA:
	case REG_CFA_ADJUST_CFA:
	case REG_CFA_RESTORE:
	  return;

	case REG_CFA_EXPRESSION:
	case REG_CFA_OFFSET:
	  /* ??? Only handling here what we actually emit.  */
	  gcc_unreachable ();

	default:
	  break;
	}
    }
  if (handled_one)
    return;
  pat = PATTERN (insn);
 found:

  switch (GET_CODE (pat))
    {
    case SET:
      arm_unwind_emit_set (asm_out_file, pat);
      break;

    case SEQUENCE:
      /* Store multiple.  */
      arm_unwind_emit_sequence (asm_out_file, pat);
      break;

    default:
      abort();
    }
}


/* Output a reference from a function exception table to the type_info
   object X.  The EABI specifies that the symbol should be relocated by
   an R_ARM_TARGET2 relocation.  */

static bool
arm_output_ttype (rtx x)
{
  fputs ("\t.word\t", asm_out_file);
  output_addr_const (asm_out_file, x);
  /* Use special relocations for symbol references.  */
  if (!CONST_INT_P (x))
    fputs ("(TARGET2)", asm_out_file);
  fputc ('\n', asm_out_file);

  return TRUE;
}

/* Implement TARGET_ASM_EMIT_EXCEPT_PERSONALITY.  */

static void
arm_asm_emit_except_personality (rtx personality)
{
  fputs ("\t.personality\t", asm_out_file);
  output_addr_const (asm_out_file, personality);
  fputc ('\n', asm_out_file);
}

/* Implement TARGET_ASM_INITIALIZE_SECTIONS.  */

static void
arm_asm_init_sections (void)
{
  exception_section = get_unnamed_section (0, output_section_asm_op,
					   "\t.handlerdata");
}
#endif /* ARM_UNWIND_INFO */

/* Output unwind directives for the start/end of a function.  */

void
arm_output_fn_unwind (FILE * f, bool prologue)
{
  if (arm_except_unwind_info (&global_options) != UI_TARGET)
    return;

  if (prologue)
    fputs ("\t.fnstart\n", f);
  else
    {
      /* If this function will never be unwound, then mark it as such.
         The came condition is used in arm_unwind_emit to suppress
	 the frame annotations.  */
      if (!(flag_unwind_tables || crtl->uses_eh_lsda)
	  && (TREE_NOTHROW (current_function_decl)
	      || crtl->all_throwers_are_sibcalls))
	fputs("\t.cantunwind\n", f);

      fputs ("\t.fnend\n", f);
    }
}

static bool
arm_emit_tls_decoration (FILE *fp, rtx x)
{
  enum tls_reloc reloc;
  rtx val;

  val = XVECEXP (x, 0, 0);
  reloc = (enum tls_reloc) INTVAL (XVECEXP (x, 0, 1));

  output_addr_const (fp, val);

  switch (reloc)
    {
    case TLS_GD32:
      fputs ("(tlsgd)", fp);
      break;
    case TLS_LDM32:
      fputs ("(tlsldm)", fp);
      break;
    case TLS_LDO32:
      fputs ("(tlsldo)", fp);
      break;
    case TLS_IE32:
      fputs ("(gottpoff)", fp);
      break;
    case TLS_LE32:
      fputs ("(tpoff)", fp);
      break;
    case TLS_DESCSEQ:
      fputs ("(tlsdesc)", fp);
      break;
    default:
      gcc_unreachable ();
    }

  switch (reloc)
    {
    case TLS_GD32:
    case TLS_LDM32:
    case TLS_IE32:
    case TLS_DESCSEQ:
      fputs (" + (. - ", fp);
      output_addr_const (fp, XVECEXP (x, 0, 2));
      /* For DESCSEQ the 3rd operand encodes thumbness, and is added */
      fputs (reloc == TLS_DESCSEQ ? " + " : " - ", fp);
      output_addr_const (fp, XVECEXP (x, 0, 3));
      fputc (')', fp);
      break;
    default:
      break;
    }

  return TRUE;
}

/* ARM implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL.  */

static void
arm_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
  gcc_assert (size == 4);
  fputs ("\t.word\t", file);
  output_addr_const (file, x);
  fputs ("(tlsldo)", file);
}

/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA.  */

static bool
arm_output_addr_const_extra (FILE *fp, rtx x)
{
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
    return arm_emit_tls_decoration (fp, x);
  else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_PIC_LABEL)
    {
      char label[256];
      int labelno = INTVAL (XVECEXP (x, 0, 0));

      ASM_GENERATE_INTERNAL_LABEL (label, "LPIC", labelno);
      assemble_name_raw (fp, label);

      return TRUE;
    }
  else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_GOTSYM_OFF)
    {
      assemble_name (fp, "_GLOBAL_OFFSET_TABLE_");
      if (GOT_PCREL)
	fputs ("+.", fp);
      fputs ("-(", fp);
      output_addr_const (fp, XVECEXP (x, 0, 0));
      fputc (')', fp);
      return TRUE;
    }
  else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SYMBOL_OFFSET)
    {
      output_addr_const (fp, XVECEXP (x, 0, 0));
      if (GOT_PCREL)
        fputs ("+.", fp);
      fputs ("-(", fp);
      output_addr_const (fp, XVECEXP (x, 0, 1));
      fputc (')', fp);
      return TRUE;
    }
  else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_GOT_PREL_SYM)
    {
      output_addr_const (fp, XVECEXP (x, 0, 0));
      fputs ("(GOT_PREL)+(", fp);
      output_addr_const (fp, XVECEXP (x, 0, 1));
      fputc (')', fp);
      return TRUE;
    }
  else if (GET_CODE (x) == CONST_VECTOR)
    return arm_emit_vector_const (fp, x);

  return FALSE;
}

/* Output assembly for a shift instruction.
   SET_FLAGS determines how the instruction modifies the condition codes.
   0 - Do not set condition codes.
   1 - Set condition codes.
   2 - Use smallest instruction.  */
const char *
arm_output_shift(rtx * operands, int set_flags)
{
  char pattern[100];
  static const char flag_chars[3] = {'?', '.', '!'};
  const char *shift;
  HOST_WIDE_INT val;
  char c;

  c = flag_chars[set_flags];
  if (TARGET_UNIFIED_ASM)
    {
      shift = shift_op(operands[3], &val);
      if (shift)
	{
	  if (val != -1)
	    operands[2] = GEN_INT(val);
	  sprintf (pattern, "%s%%%c\t%%0, %%1, %%2", shift, c);
	}
      else
	sprintf (pattern, "mov%%%c\t%%0, %%1", c);
    }
  else
    sprintf (pattern, "mov%%%c\t%%0, %%1%%S3", c);
  output_asm_insn (pattern, operands);
  return "";
}

/* Output assembly for a WMMX immediate shift instruction.  */
const char *
arm_output_iwmmxt_shift_immediate (const char *insn_name, rtx *operands, bool wror_or_wsra)
{
  int shift = INTVAL (operands[2]);
  char templ[50];
  enum machine_mode opmode = GET_MODE (operands[0]);

  gcc_assert (shift >= 0);

  /* If the shift value in the register versions is > 63 (for D qualifier),
     31 (for W qualifier) or 15 (for H qualifier).  */
  if (((opmode == V4HImode) && (shift > 15))
	|| ((opmode == V2SImode) && (shift > 31))
	|| ((opmode == DImode) && (shift > 63)))
  {
    if (wror_or_wsra)
      {
        sprintf (templ, "%s\t%%0, %%1, #%d", insn_name, 32);
        output_asm_insn (templ, operands);
        if (opmode == DImode)
          {
	    sprintf (templ, "%s\t%%0, %%0, #%d", insn_name, 32);
	    output_asm_insn (templ, operands);
          }
      }
    else
      {
        /* The destination register will contain all zeros.  */
        sprintf (templ, "wzero\t%%0");
        output_asm_insn (templ, operands);
      }
    return "";
  }

  if ((opmode == DImode) && (shift > 32))
    {
      sprintf (templ, "%s\t%%0, %%1, #%d", insn_name, 32);
      output_asm_insn (templ, operands);
      sprintf (templ, "%s\t%%0, %%0, #%d", insn_name, shift - 32);
      output_asm_insn (templ, operands);
    }
  else
    {
      sprintf (templ, "%s\t%%0, %%1, #%d", insn_name, shift);
      output_asm_insn (templ, operands);
    }
  return "";
}

/* Output assembly for a WMMX tinsr instruction.  */
const char *
arm_output_iwmmxt_tinsr (rtx *operands)
{
  int mask = INTVAL (operands[3]);
  int i;
  char templ[50];
  int units = mode_nunits[GET_MODE (operands[0])];
  gcc_assert ((mask & (mask - 1)) == 0);
  for (i = 0; i < units; ++i)
    {
      if ((mask & 0x01) == 1)
        {
          break;
        }
      mask >>= 1;
    }
  gcc_assert (i < units);
  {
    switch (GET_MODE (operands[0]))
      {
      case V8QImode:
	sprintf (templ, "tinsrb%%?\t%%0, %%2, #%d", i);
	break;
      case V4HImode:
	sprintf (templ, "tinsrh%%?\t%%0, %%2, #%d", i);
	break;
      case V2SImode:
	sprintf (templ, "tinsrw%%?\t%%0, %%2, #%d", i);
	break;
      default:
	gcc_unreachable ();
	break;
      }
    output_asm_insn (templ, operands);
  }
  return "";
}

/* Output a Thumb-1 casesi dispatch sequence.  */
const char *
thumb1_output_casesi (rtx *operands)
{
  rtx diff_vec = PATTERN (NEXT_INSN (operands[0]));

  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);

  switch (GET_MODE(diff_vec))
    {
    case QImode:
      return (ADDR_DIFF_VEC_FLAGS (diff_vec).offset_unsigned ?
	      "bl\t%___gnu_thumb1_case_uqi" : "bl\t%___gnu_thumb1_case_sqi");
    case HImode:
      return (ADDR_DIFF_VEC_FLAGS (diff_vec).offset_unsigned ?
	      "bl\t%___gnu_thumb1_case_uhi" : "bl\t%___gnu_thumb1_case_shi");
    case SImode:
      return "bl\t%___gnu_thumb1_case_si";
    default:
      gcc_unreachable ();
    }
}

/* Output a Thumb-2 casesi instruction.  */
const char *
thumb2_output_casesi (rtx *operands)
{
  rtx diff_vec = PATTERN (NEXT_INSN (operands[2]));

  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);

  output_asm_insn ("cmp\t%0, %1", operands);
  output_asm_insn ("bhi\t%l3", operands);
  switch (GET_MODE(diff_vec))
    {
    case QImode:
      return "tbb\t[%|pc, %0]";
    case HImode:
      return "tbh\t[%|pc, %0, lsl #1]";
    case SImode:
      if (flag_pic)
	{
	  output_asm_insn ("adr\t%4, %l2", operands);
	  output_asm_insn ("ldr\t%5, [%4, %0, lsl #2]", operands);
	  output_asm_insn ("add\t%4, %4, %5", operands);
	  return "bx\t%4";
	}
      else
	{
	  output_asm_insn ("adr\t%4, %l2", operands);
	  return "ldr\t%|pc, [%4, %0, lsl #2]";
	}
    default:
      gcc_unreachable ();
    }
}

/* Most ARM cores are single issue, but some newer ones can dual issue.
   The scheduler descriptions rely on this being correct.  */
static int
arm_issue_rate (void)
{
  switch (arm_tune)
    {
    case cortexa15:
    case cortexa57:
      return 3;

    case cortexr4:
    case cortexr4f:
    case cortexr5:
    case genericv7a:
    case cortexa5:
    case cortexa7:
    case cortexa8:
    case cortexa9:
    case cortexa12:
    case cortexa53:
    case fa726te:
    case marvell_pj4:
      return 2;

    default:
      return 1;
    }
}

/* A table and a function to perform ARM-specific name mangling for
   NEON vector types in order to conform to the AAPCS (see "Procedure
   Call Standard for the ARM Architecture", Appendix A).  To qualify
   for emission with the mangled names defined in that document, a
   vector type must not only be of the correct mode but also be
   composed of NEON vector element types (e.g. __builtin_neon_qi).  */
typedef struct
{
  enum machine_mode mode;
  const char *element_type_name;
  const char *aapcs_name;
} arm_mangle_map_entry;

static arm_mangle_map_entry arm_mangle_map[] = {
  /* 64-bit containerized types.  */
  { V8QImode,  "__builtin_neon_qi",     "15__simd64_int8_t" },
  { V8QImode,  "__builtin_neon_uqi",    "16__simd64_uint8_t" },
  { V4HImode,  "__builtin_neon_hi",     "16__simd64_int16_t" },
  { V4HImode,  "__builtin_neon_uhi",    "17__simd64_uint16_t" },
  { V4HFmode,  "__builtin_neon_hf",     "18__simd64_float16_t" },
  { V2SImode,  "__builtin_neon_si",     "16__simd64_int32_t" },
  { V2SImode,  "__builtin_neon_usi",    "17__simd64_uint32_t" },
  { V2SFmode,  "__builtin_neon_sf",     "18__simd64_float32_t" },
  { V8QImode,  "__builtin_neon_poly8",  "16__simd64_poly8_t" },
  { V4HImode,  "__builtin_neon_poly16", "17__simd64_poly16_t" },

  /* 128-bit containerized types.  */
  { V16QImode, "__builtin_neon_qi",     "16__simd128_int8_t" },
  { V16QImode, "__builtin_neon_uqi",    "17__simd128_uint8_t" },
  { V8HImode,  "__builtin_neon_hi",     "17__simd128_int16_t" },
  { V8HImode,  "__builtin_neon_uhi",    "18__simd128_uint16_t" },
  { V4SImode,  "__builtin_neon_si",     "17__simd128_int32_t" },
  { V4SImode,  "__builtin_neon_usi",    "18__simd128_uint32_t" },
  { V4SFmode,  "__builtin_neon_sf",     "19__simd128_float32_t" },
  { V16QImode, "__builtin_neon_poly8",  "17__simd128_poly8_t" },
  { V8HImode,  "__builtin_neon_poly16", "18__simd128_poly16_t" },
  { VOIDmode, NULL, NULL }
};

const char *
arm_mangle_type (const_tree type)
{
  arm_mangle_map_entry *pos = arm_mangle_map;

  /* The ARM ABI documents (10th October 2008) say that "__va_list"
     has to be managled as if it is in the "std" namespace.  */
  if (TARGET_AAPCS_BASED
      && lang_hooks.types_compatible_p (CONST_CAST_TREE (type), va_list_type))
    return "St9__va_list";

  /* Half-precision float.  */
  if (TREE_CODE (type) == REAL_TYPE && TYPE_PRECISION (type) == 16)
    return "Dh";

  if (TREE_CODE (type) != VECTOR_TYPE)
    return NULL;

  /* Check the mode of the vector type, and the name of the vector
     element type, against the table.  */
  while (pos->mode != VOIDmode)
    {
      tree elt_type = TREE_TYPE (type);

      if (pos->mode == TYPE_MODE (type)
	  && TREE_CODE (TYPE_NAME (elt_type)) == TYPE_DECL
	  && !strcmp (IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (elt_type))),
		      pos->element_type_name))
        return pos->aapcs_name;

      pos++;
    }

  /* Use the default mangling for unrecognized (possibly user-defined)
     vector types.  */
  return NULL;
}

/* Order of allocation of core registers for Thumb: this allocation is
   written over the corresponding initial entries of the array
   initialized with REG_ALLOC_ORDER.  We allocate all low registers
   first.  Saving and restoring a low register is usually cheaper than
   using a call-clobbered high register.  */

static const int thumb_core_reg_alloc_order[] =
{
   3,  2,  1,  0,  4,  5,  6,  7,
  14, 12,  8,  9, 10, 11
};

/* Adjust register allocation order when compiling for Thumb.  */

void
arm_order_regs_for_local_alloc (void)
{
  const int arm_reg_alloc_order[] = REG_ALLOC_ORDER;
  memcpy(reg_alloc_order, arm_reg_alloc_order, sizeof (reg_alloc_order));
  if (TARGET_THUMB)
    memcpy (reg_alloc_order, thumb_core_reg_alloc_order,
            sizeof (thumb_core_reg_alloc_order));
}

/* Implement TARGET_FRAME_POINTER_REQUIRED.  */

bool
arm_frame_pointer_required (void)
{
  return (cfun->has_nonlocal_label
          || SUBTARGET_FRAME_POINTER_REQUIRED
          || (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ()));
}

/* Only thumb1 can't support conditional execution, so return true if
   the target is not thumb1.  */
static bool
arm_have_conditional_execution (void)
{
  return !TARGET_THUMB1;
}

tree
arm_builtin_vectorized_function (tree fndecl, tree type_out, tree type_in)
{
  enum machine_mode in_mode, out_mode;
  int in_n, out_n;

  if (TREE_CODE (type_out) != VECTOR_TYPE
      || TREE_CODE (type_in) != VECTOR_TYPE
      || !(TARGET_NEON && TARGET_FPU_ARMV8 && flag_unsafe_math_optimizations))
    return NULL_TREE;

  out_mode = TYPE_MODE (TREE_TYPE (type_out));
  out_n = TYPE_VECTOR_SUBPARTS (type_out);
  in_mode = TYPE_MODE (TREE_TYPE (type_in));
  in_n = TYPE_VECTOR_SUBPARTS (type_in);

/* ARM_CHECK_BUILTIN_MODE and ARM_FIND_VRINT_VARIANT are used to find the
   decl of the vectorized builtin for the appropriate vector mode.
   NULL_TREE is returned if no such builtin is available.  */
#undef ARM_CHECK_BUILTIN_MODE
#define ARM_CHECK_BUILTIN_MODE(C) \
  (out_mode == SFmode && out_n == C \
   && in_mode == SFmode && in_n == C)

#undef ARM_FIND_VRINT_VARIANT
#define ARM_FIND_VRINT_VARIANT(N) \
  (ARM_CHECK_BUILTIN_MODE (2) \
    ? arm_builtin_decl(ARM_BUILTIN_NEON_##N##v2sf, false) \
    : (ARM_CHECK_BUILTIN_MODE (4) \
      ? arm_builtin_decl(ARM_BUILTIN_NEON_##N##v4sf, false) \
      : NULL_TREE))

  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
    {
      enum built_in_function fn = DECL_FUNCTION_CODE (fndecl);
      switch (fn)
        {
          case BUILT_IN_FLOORF:
            return ARM_FIND_VRINT_VARIANT (vrintm);
          case BUILT_IN_CEILF:
            return ARM_FIND_VRINT_VARIANT (vrintp);
          case BUILT_IN_TRUNCF:
            return ARM_FIND_VRINT_VARIANT (vrintz);
          case BUILT_IN_ROUNDF:
            return ARM_FIND_VRINT_VARIANT (vrinta);
          default:
            return NULL_TREE;
        }
    }
  return NULL_TREE;
}
#undef ARM_CHECK_BUILTIN_MODE
#undef ARM_FIND_VRINT_VARIANT

/* The AAPCS sets the maximum alignment of a vector to 64 bits.  */
static HOST_WIDE_INT
arm_vector_alignment (const_tree type)
{
  HOST_WIDE_INT align = tree_to_shwi (TYPE_SIZE (type));

  if (TARGET_AAPCS_BASED)
    align = MIN (align, 64);

  return align;
}

static unsigned int
arm_autovectorize_vector_sizes (void)
{
  return TARGET_NEON_VECTORIZE_DOUBLE ? 0 : (16 | 8);
}

static bool
arm_vector_alignment_reachable (const_tree type, bool is_packed)
{
  /* Vectors which aren't in packed structures will not be less aligned than
     the natural alignment of their element type, so this is safe.  */
  if (TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access)
    return !is_packed;

  return default_builtin_vector_alignment_reachable (type, is_packed);
}

static bool
arm_builtin_support_vector_misalignment (enum machine_mode mode,
					 const_tree type, int misalignment,
					 bool is_packed)
{
  if (TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access)
    {
      HOST_WIDE_INT align = TYPE_ALIGN_UNIT (type);

      if (is_packed)
        return align == 1;

      /* If the misalignment is unknown, we should be able to handle the access
	 so long as it is not to a member of a packed data structure.  */
      if (misalignment == -1)
        return true;

      /* Return true if the misalignment is a multiple of the natural alignment
         of the vector's element type.  This is probably always going to be
	 true in practice, since we've already established that this isn't a
	 packed access.  */
      return ((misalignment % align) == 0);
    }

  return default_builtin_support_vector_misalignment (mode, type, misalignment,
						      is_packed);
}

static void
arm_conditional_register_usage (void)
{
  int regno;

  if (TARGET_THUMB1 && optimize_size)
    {
      /* When optimizing for size on Thumb-1, it's better not
        to use the HI regs, because of the overhead of
        stacking them.  */
      for (regno = FIRST_HI_REGNUM;
	   regno <= LAST_HI_REGNUM; ++regno)
	fixed_regs[regno] = call_used_regs[regno] = 1;
    }

  /* The link register can be clobbered by any branch insn,
     but we have no way to track that at present, so mark
     it as unavailable.  */
  if (TARGET_THUMB1)
    fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1;

  if (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP)
    {
      /* VFPv3 registers are disabled when earlier VFP
	 versions are selected due to the definition of
	 LAST_VFP_REGNUM.  */
      for (regno = FIRST_VFP_REGNUM;
	   regno <= LAST_VFP_REGNUM; ++ regno)
	{
	  fixed_regs[regno] = 0;
	  call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16
	    || regno >= FIRST_VFP_REGNUM + 32;
	}
    }

  if (TARGET_REALLY_IWMMXT)
    {
      regno = FIRST_IWMMXT_GR_REGNUM;
      /* The 2002/10/09 revision of the XScale ABI has wCG0
         and wCG1 as call-preserved registers.  The 2002/11/21
         revision changed this so that all wCG registers are
         scratch registers.  */
      for (regno = FIRST_IWMMXT_GR_REGNUM;
	   regno <= LAST_IWMMXT_GR_REGNUM; ++ regno)
	fixed_regs[regno] = 0;
      /* The XScale ABI has wR0 - wR9 as scratch registers,
	 the rest as call-preserved registers.  */
      for (regno = FIRST_IWMMXT_REGNUM;
	   regno <= LAST_IWMMXT_REGNUM; ++ regno)
	{
	  fixed_regs[regno] = 0;
	  call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10;
	}
    }

  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
    {
      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
    }
  else if (TARGET_APCS_STACK)
    {
      fixed_regs[10]     = 1;
      call_used_regs[10] = 1;
    }
  /* -mcaller-super-interworking reserves r11 for calls to
     _interwork_r11_call_via_rN().  Making the register global
     is an easy way of ensuring that it remains valid for all
     calls.  */
  if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING
      || TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME)
    {
      fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;
      call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;
      if (TARGET_CALLER_INTERWORKING)
	global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;
    }
  SUBTARGET_CONDITIONAL_REGISTER_USAGE
}

static reg_class_t
arm_preferred_rename_class (reg_class_t rclass)
{
  /* Thumb-2 instructions using LO_REGS may be smaller than instructions
     using GENERIC_REGS.  During register rename pass, we prefer LO_REGS,
     and code size can be reduced.  */
  if (TARGET_THUMB2 && rclass == GENERAL_REGS)
    return LO_REGS;
  else
    return NO_REGS;
}

/* Compute the atrribute "length" of insn "*push_multi".
   So this function MUST be kept in sync with that insn pattern.  */
int
arm_attr_length_push_multi(rtx parallel_op, rtx first_op)
{
  int i, regno, hi_reg;
  int num_saves = XVECLEN (parallel_op, 0);

  /* ARM mode.  */
  if (TARGET_ARM)
    return 4;
  /* Thumb1 mode.  */
  if (TARGET_THUMB1)
    return 2;

  /* Thumb2 mode.  */
  regno = REGNO (first_op);
  hi_reg = (REGNO_REG_CLASS (regno) == HI_REGS) && (regno != LR_REGNUM);
  for (i = 1; i < num_saves && !hi_reg; i++)
    {
      regno = REGNO (XEXP (XVECEXP (parallel_op, 0, i), 0));
      hi_reg |= (REGNO_REG_CLASS (regno) == HI_REGS) && (regno != LR_REGNUM);
    }

  if (!hi_reg)
    return 2;
  return 4;
}

/* Compute the number of instructions emitted by output_move_double.  */
int
arm_count_output_move_double_insns (rtx *operands)
{
  int count;
  rtx ops[2];
  /* output_move_double may modify the operands array, so call it
     here on a copy of the array.  */
  ops[0] = operands[0];
  ops[1] = operands[1];
  output_move_double (ops, false, &count);
  return count;
}

int
vfp3_const_double_for_fract_bits (rtx operand)
{
  REAL_VALUE_TYPE r0;
  
  if (!CONST_DOUBLE_P (operand))
    return 0;
  
  REAL_VALUE_FROM_CONST_DOUBLE (r0, operand);
  if (exact_real_inverse (DFmode, &r0))
    {
      if (exact_real_truncate (DFmode, &r0))
	{
	  HOST_WIDE_INT value = real_to_integer (&r0);
	  value = value & 0xffffffff;
	  if ((value != 0) && ( (value & (value - 1)) == 0))
	    return int_log2 (value);
	}
    }
  return 0;
}

int
vfp3_const_double_for_bits (rtx operand)
{
  REAL_VALUE_TYPE r0;

  if (!CONST_DOUBLE_P (operand))
    return 0;

  REAL_VALUE_FROM_CONST_DOUBLE (r0, operand);
  if (exact_real_truncate (DFmode, &r0))
    {
      HOST_WIDE_INT value = real_to_integer (&r0);
      value = value & 0xffffffff;
      if ((value != 0) && ( (value & (value - 1)) == 0))
	return int_log2 (value);
    }

  return 0;
}

/* Emit a memory barrier around an atomic sequence according to MODEL.  */

static void
arm_pre_atomic_barrier (enum memmodel model)
{
  if (need_atomic_barrier_p (model, true))
    emit_insn (gen_memory_barrier ());
}

static void
arm_post_atomic_barrier (enum memmodel model)
{
  if (need_atomic_barrier_p (model, false))
    emit_insn (gen_memory_barrier ());
}

/* Emit the load-exclusive and store-exclusive instructions.
   Use acquire and release versions if necessary.  */

static void
arm_emit_load_exclusive (enum machine_mode mode, rtx rval, rtx mem, bool acq)
{
  rtx (*gen) (rtx, rtx);

  if (acq)
    {
      switch (mode)
        {
        case QImode: gen = gen_arm_load_acquire_exclusiveqi; break;
        case HImode: gen = gen_arm_load_acquire_exclusivehi; break;
        case SImode: gen = gen_arm_load_acquire_exclusivesi; break;
        case DImode: gen = gen_arm_load_acquire_exclusivedi; break;
        default:
          gcc_unreachable ();
        }
    }
  else
    {
      switch (mode)
        {
        case QImode: gen = gen_arm_load_exclusiveqi; break;
        case HImode: gen = gen_arm_load_exclusivehi; break;
        case SImode: gen = gen_arm_load_exclusivesi; break;
        case DImode: gen = gen_arm_load_exclusivedi; break;
        default:
          gcc_unreachable ();
        }
    }

  emit_insn (gen (rval, mem));
}

static void
arm_emit_store_exclusive (enum machine_mode mode, rtx bval, rtx rval,
                          rtx mem, bool rel)
{
  rtx (*gen) (rtx, rtx, rtx);

  if (rel)
    {
      switch (mode)
        {
        case QImode: gen = gen_arm_store_release_exclusiveqi; break;
        case HImode: gen = gen_arm_store_release_exclusivehi; break;
        case SImode: gen = gen_arm_store_release_exclusivesi; break;
        case DImode: gen = gen_arm_store_release_exclusivedi; break;
        default:
          gcc_unreachable ();
        }
    }
  else
    {
      switch (mode)
        {
        case QImode: gen = gen_arm_store_exclusiveqi; break;
        case HImode: gen = gen_arm_store_exclusivehi; break;
        case SImode: gen = gen_arm_store_exclusivesi; break;
        case DImode: gen = gen_arm_store_exclusivedi; break;
        default:
          gcc_unreachable ();
        }
    }

  emit_insn (gen (bval, rval, mem));
}

/* Mark the previous jump instruction as unlikely.  */

static void
emit_unlikely_jump (rtx insn)
{
  int very_unlikely = REG_BR_PROB_BASE / 100 - 1;

  insn = emit_jump_insn (insn);
  add_int_reg_note (insn, REG_BR_PROB, very_unlikely);
}

/* Expand a compare and swap pattern.  */

void
arm_expand_compare_and_swap (rtx operands[])
{
  rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x;
  enum machine_mode mode;
  rtx (*gen) (rtx, rtx, rtx, rtx, rtx, rtx, rtx);

  bval = operands[0];
  rval = operands[1];
  mem = operands[2];
  oldval = operands[3];
  newval = operands[4];
  is_weak = operands[5];
  mod_s = operands[6];
  mod_f = operands[7];
  mode = GET_MODE (mem);

  /* Normally the succ memory model must be stronger than fail, but in the
     unlikely event of fail being ACQUIRE and succ being RELEASE we need to
     promote succ to ACQ_REL so that we don't lose the acquire semantics.  */

  if (TARGET_HAVE_LDACQ
      && INTVAL (mod_f) == MEMMODEL_ACQUIRE
      && INTVAL (mod_s) == MEMMODEL_RELEASE)
    mod_s = GEN_INT (MEMMODEL_ACQ_REL);

  switch (mode)
    {
    case QImode:
    case HImode:
      /* For narrow modes, we're going to perform the comparison in SImode,
	 so do the zero-extension now.  */
      rval = gen_reg_rtx (SImode);
      oldval = convert_modes (SImode, mode, oldval, true);
      /* FALLTHRU */

    case SImode:
      /* Force the value into a register if needed.  We waited until after
	 the zero-extension above to do this properly.  */
      if (!arm_add_operand (oldval, SImode))
	oldval = force_reg (SImode, oldval);
      break;

    case DImode:
      if (!cmpdi_operand (oldval, mode))
	oldval = force_reg (mode, oldval);
      break;

    default:
      gcc_unreachable ();
    }

  switch (mode)
    {
    case QImode: gen = gen_atomic_compare_and_swapqi_1; break;
    case HImode: gen = gen_atomic_compare_and_swaphi_1; break;
    case SImode: gen = gen_atomic_compare_and_swapsi_1; break;
    case DImode: gen = gen_atomic_compare_and_swapdi_1; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (rval, mem, oldval, newval, is_weak, mod_s, mod_f));

  if (mode == QImode || mode == HImode)
    emit_move_insn (operands[1], gen_lowpart (mode, rval));

  /* In all cases, we arrange for success to be signaled by Z set.
     This arrangement allows for the boolean result to be used directly
     in a subsequent branch, post optimization.  */
  x = gen_rtx_REG (CCmode, CC_REGNUM);
  x = gen_rtx_EQ (SImode, x, const0_rtx);
  emit_insn (gen_rtx_SET (VOIDmode, bval, x));
}

/* Split a compare and swap pattern.  It is IMPLEMENTATION DEFINED whether
   another memory store between the load-exclusive and store-exclusive can
   reset the monitor from Exclusive to Open state.  This means we must wait
   until after reload to split the pattern, lest we get a register spill in
   the middle of the atomic sequence.  */

void
arm_split_compare_and_swap (rtx operands[])
{
  rtx rval, mem, oldval, newval, scratch;
  enum machine_mode mode;
  enum memmodel mod_s, mod_f;
  bool is_weak;
  rtx label1, label2, x, cond;

  rval = operands[0];
  mem = operands[1];
  oldval = operands[2];
  newval = operands[3];
  is_weak = (operands[4] != const0_rtx);
  mod_s = (enum memmodel) INTVAL (operands[5]);
  mod_f = (enum memmodel) INTVAL (operands[6]);
  scratch = operands[7];
  mode = GET_MODE (mem);

  bool use_acquire = TARGET_HAVE_LDACQ
                     && !(mod_s == MEMMODEL_RELAXED
                          || mod_s == MEMMODEL_CONSUME
                          || mod_s == MEMMODEL_RELEASE);

  bool use_release = TARGET_HAVE_LDACQ
                     && !(mod_s == MEMMODEL_RELAXED
                          || mod_s == MEMMODEL_CONSUME
                          || mod_s == MEMMODEL_ACQUIRE);

  /* Checks whether a barrier is needed and emits one accordingly.  */
  if (!(use_acquire || use_release))
    arm_pre_atomic_barrier (mod_s);

  label1 = NULL_RTX;
  if (!is_weak)
    {
      label1 = gen_label_rtx ();
      emit_label (label1);
    }
  label2 = gen_label_rtx ();

  arm_emit_load_exclusive (mode, rval, mem, use_acquire);

  cond = arm_gen_compare_reg (NE, rval, oldval, scratch);
  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
			    gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
  emit_unlikely_jump (gen_rtx_SET (VOIDmode, pc_rtx, x));

  arm_emit_store_exclusive (mode, scratch, mem, newval, use_release);

  /* Weak or strong, we want EQ to be true for success, so that we
     match the flags that we got from the compare above.  */
  cond = gen_rtx_REG (CCmode, CC_REGNUM);
  x = gen_rtx_COMPARE (CCmode, scratch, const0_rtx);
  emit_insn (gen_rtx_SET (VOIDmode, cond, x));

  if (!is_weak)
    {
      x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				gen_rtx_LABEL_REF (Pmode, label1), pc_rtx);
      emit_unlikely_jump (gen_rtx_SET (VOIDmode, pc_rtx, x));
    }

  if (mod_f != MEMMODEL_RELAXED)
    emit_label (label2);

  /* Checks whether a barrier is needed and emits one accordingly.  */
  if (!(use_acquire || use_release))
    arm_post_atomic_barrier (mod_s);

  if (mod_f == MEMMODEL_RELAXED)
    emit_label (label2);
}

void
arm_split_atomic_op (enum rtx_code code, rtx old_out, rtx new_out, rtx mem,
		     rtx value, rtx model_rtx, rtx cond)
{
  enum memmodel model = (enum memmodel) INTVAL (model_rtx);
  enum machine_mode mode = GET_MODE (mem);
  enum machine_mode wmode = (mode == DImode ? DImode : SImode);
  rtx label, x;

  bool use_acquire = TARGET_HAVE_LDACQ
                     && !(model == MEMMODEL_RELAXED
                          || model == MEMMODEL_CONSUME
                          || model == MEMMODEL_RELEASE);

  bool use_release = TARGET_HAVE_LDACQ
                     && !(model == MEMMODEL_RELAXED
                          || model == MEMMODEL_CONSUME
                          || model == MEMMODEL_ACQUIRE);

  /* Checks whether a barrier is needed and emits one accordingly.  */
  if (!(use_acquire || use_release))
    arm_pre_atomic_barrier (model);

  label = gen_label_rtx ();
  emit_label (label);

  if (new_out)
    new_out = gen_lowpart (wmode, new_out);
  if (old_out)
    old_out = gen_lowpart (wmode, old_out);
  else
    old_out = new_out;
  value = simplify_gen_subreg (wmode, value, mode, 0);

  arm_emit_load_exclusive (mode, old_out, mem, use_acquire);

  switch (code)
    {
    case SET:
      new_out = value;
      break;

    case NOT:
      x = gen_rtx_AND (wmode, old_out, value);
      emit_insn (gen_rtx_SET (VOIDmode, new_out, x));
      x = gen_rtx_NOT (wmode, new_out);
      emit_insn (gen_rtx_SET (VOIDmode, new_out, x));
      break;

    case MINUS:
      if (CONST_INT_P (value))
	{
	  value = GEN_INT (-INTVAL (value));
	  code = PLUS;
	}
      /* FALLTHRU */

    case PLUS:
      if (mode == DImode)
	{
	  /* DImode plus/minus need to clobber flags.  */
	  /* The adddi3 and subdi3 patterns are incorrectly written so that
	     they require matching operands, even when we could easily support
	     three operands.  Thankfully, this can be fixed up post-splitting,
	     as the individual add+adc patterns do accept three operands and
	     post-reload cprop can make these moves go away.  */
	  emit_move_insn (new_out, old_out);
	  if (code == PLUS)
	    x = gen_adddi3 (new_out, new_out, value);
	  else
	    x = gen_subdi3 (new_out, new_out, value);
	  emit_insn (x);
	  break;
	}
      /* FALLTHRU */

    default:
      x = gen_rtx_fmt_ee (code, wmode, old_out, value);
      emit_insn (gen_rtx_SET (VOIDmode, new_out, x));
      break;
    }

  arm_emit_store_exclusive (mode, cond, mem, gen_lowpart (mode, new_out),
                            use_release);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (gen_cbranchsi4 (x, cond, const0_rtx, label));

  /* Checks whether a barrier is needed and emits one accordingly.  */
  if (!(use_acquire || use_release))
    arm_post_atomic_barrier (model);
}

#define MAX_VECT_LEN 16

struct expand_vec_perm_d
{
  rtx target, op0, op1;
  unsigned char perm[MAX_VECT_LEN];
  enum machine_mode vmode;
  unsigned char nelt;
  bool one_vector_p;
  bool testing_p;
};

/* Generate a variable permutation.  */

static void
arm_expand_vec_perm_1 (rtx target, rtx op0, rtx op1, rtx sel)
{
  enum machine_mode vmode = GET_MODE (target);
  bool one_vector_p = rtx_equal_p (op0, op1);

  gcc_checking_assert (vmode == V8QImode || vmode == V16QImode);
  gcc_checking_assert (GET_MODE (op0) == vmode);
  gcc_checking_assert (GET_MODE (op1) == vmode);
  gcc_checking_assert (GET_MODE (sel) == vmode);
  gcc_checking_assert (TARGET_NEON);

  if (one_vector_p)
    {
      if (vmode == V8QImode)
	emit_insn (gen_neon_vtbl1v8qi (target, op0, sel));
      else
	emit_insn (gen_neon_vtbl1v16qi (target, op0, sel));
    }
  else
    {
      rtx pair;

      if (vmode == V8QImode)
	{
	  pair = gen_reg_rtx (V16QImode);
	  emit_insn (gen_neon_vcombinev8qi (pair, op0, op1));
	  pair = gen_lowpart (TImode, pair);
	  emit_insn (gen_neon_vtbl2v8qi (target, pair, sel));
	}
      else
	{
	  pair = gen_reg_rtx (OImode);
	  emit_insn (gen_neon_vcombinev16qi (pair, op0, op1));
	  emit_insn (gen_neon_vtbl2v16qi (target, pair, sel));
	}
    }
}

void
arm_expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel)
{
  enum machine_mode vmode = GET_MODE (target);
  unsigned int i, nelt = GET_MODE_NUNITS (vmode);
  bool one_vector_p = rtx_equal_p (op0, op1);
  rtx rmask[MAX_VECT_LEN], mask;

  /* TODO: ARM's VTBL indexing is little-endian.  In order to handle GCC's
     numbering of elements for big-endian, we must reverse the order.  */
  gcc_checking_assert (!BYTES_BIG_ENDIAN);

  /* The VTBL instruction does not use a modulo index, so we must take care
     of that ourselves.  */
  mask = GEN_INT (one_vector_p ? nelt - 1 : 2 * nelt - 1);
  for (i = 0; i < nelt; ++i)
    rmask[i] = mask;
  mask = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rmask));
  sel = expand_simple_binop (vmode, AND, sel, mask, NULL, 0, OPTAB_LIB_WIDEN);

  arm_expand_vec_perm_1 (target, op0, op1, sel);
}

/* Generate or test for an insn that supports a constant permutation.  */

/* Recognize patterns for the VUZP insns.  */

static bool
arm_evpc_neon_vuzp (struct expand_vec_perm_d *d)
{
  unsigned int i, odd, mask, nelt = d->nelt;
  rtx out0, out1, in0, in1, x;
  rtx (*gen)(rtx, rtx, rtx, rtx);

  if (GET_MODE_UNIT_SIZE (d->vmode) >= 8)
    return false;

  /* Note that these are little-endian tests.  Adjust for big-endian later.  */
  if (d->perm[0] == 0)
    odd = 0;
  else if (d->perm[0] == 1)
    odd = 1;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt; i++)
    {
      unsigned elt = (i * 2 + odd) & mask;
      if (d->perm[i] != elt)
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  switch (d->vmode)
    {
    case V16QImode: gen = gen_neon_vuzpv16qi_internal; break;
    case V8QImode:  gen = gen_neon_vuzpv8qi_internal;  break;
    case V8HImode:  gen = gen_neon_vuzpv8hi_internal;  break;
    case V4HImode:  gen = gen_neon_vuzpv4hi_internal;  break;
    case V4SImode:  gen = gen_neon_vuzpv4si_internal;  break;
    case V2SImode:  gen = gen_neon_vuzpv2si_internal;  break;
    case V2SFmode:  gen = gen_neon_vuzpv2sf_internal;  break;
    case V4SFmode:  gen = gen_neon_vuzpv4sf_internal;  break;
    default:
      gcc_unreachable ();
    }

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      odd = !odd;
    }

  out0 = d->target;
  out1 = gen_reg_rtx (d->vmode);
  if (odd)
    x = out0, out0 = out1, out1 = x;

  emit_insn (gen (out0, in0, in1, out1));
  return true;
}

/* Recognize patterns for the VZIP insns.  */

static bool
arm_evpc_neon_vzip (struct expand_vec_perm_d *d)
{
  unsigned int i, high, mask, nelt = d->nelt;
  rtx out0, out1, in0, in1, x;
  rtx (*gen)(rtx, rtx, rtx, rtx);

  if (GET_MODE_UNIT_SIZE (d->vmode) >= 8)
    return false;

  /* Note that these are little-endian tests.  Adjust for big-endian later.  */
  high = nelt / 2;
  if (d->perm[0] == high)
    ;
  else if (d->perm[0] == 0)
    high = 0;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt / 2; i++)
    {
      unsigned elt = (i + high) & mask;
      if (d->perm[i * 2] != elt)
	return false;
      elt = (elt + nelt) & mask;
      if (d->perm[i * 2 + 1] != elt)
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  switch (d->vmode)
    {
    case V16QImode: gen = gen_neon_vzipv16qi_internal; break;
    case V8QImode:  gen = gen_neon_vzipv8qi_internal;  break;
    case V8HImode:  gen = gen_neon_vzipv8hi_internal;  break;
    case V4HImode:  gen = gen_neon_vzipv4hi_internal;  break;
    case V4SImode:  gen = gen_neon_vzipv4si_internal;  break;
    case V2SImode:  gen = gen_neon_vzipv2si_internal;  break;
    case V2SFmode:  gen = gen_neon_vzipv2sf_internal;  break;
    case V4SFmode:  gen = gen_neon_vzipv4sf_internal;  break;
    default:
      gcc_unreachable ();
    }

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      high = !high;
    }

  out0 = d->target;
  out1 = gen_reg_rtx (d->vmode);
  if (high)
    x = out0, out0 = out1, out1 = x;

  emit_insn (gen (out0, in0, in1, out1));
  return true;
}

/* Recognize patterns for the VREV insns.  */

static bool
arm_evpc_neon_vrev (struct expand_vec_perm_d *d)
{
  unsigned int i, j, diff, nelt = d->nelt;
  rtx (*gen)(rtx, rtx, rtx);

  if (!d->one_vector_p)
    return false;

  diff = d->perm[0];
  switch (diff)
    {
    case 7:
      switch (d->vmode)
	{
	case V16QImode: gen = gen_neon_vrev64v16qi; break;
	case V8QImode:  gen = gen_neon_vrev64v8qi;  break;
	default:
	  return false;
	}
      break;
    case 3:
      switch (d->vmode)
	{
	case V16QImode: gen = gen_neon_vrev32v16qi; break;
	case V8QImode:  gen = gen_neon_vrev32v8qi;  break;
	case V8HImode:  gen = gen_neon_vrev64v8hi;  break;
	case V4HImode:  gen = gen_neon_vrev64v4hi;  break;
	default:
	  return false;
	}
      break;
    case 1:
      switch (d->vmode)
	{
	case V16QImode: gen = gen_neon_vrev16v16qi; break;
	case V8QImode:  gen = gen_neon_vrev16v8qi;  break;
	case V8HImode:  gen = gen_neon_vrev32v8hi;  break;
	case V4HImode:  gen = gen_neon_vrev32v4hi;  break;
	case V4SImode:  gen = gen_neon_vrev64v4si;  break;
	case V2SImode:  gen = gen_neon_vrev64v2si;  break;
	case V4SFmode:  gen = gen_neon_vrev64v4sf;  break;
	case V2SFmode:  gen = gen_neon_vrev64v2sf;  break;
	default:
	  return false;
	}
      break;
    default:
      return false;
    }

  for (i = 0; i < nelt ; i += diff + 1)
    for (j = 0; j <= diff; j += 1)
      {
	/* This is guaranteed to be true as the value of diff
	   is 7, 3, 1 and we should have enough elements in the
	   queue to generate this. Getting a vector mask with a
	   value of diff other than these values implies that
	   something is wrong by the time we get here.  */
	gcc_assert (i + j < nelt);
	if (d->perm[i + j] != i + diff - j)
	  return false;
      }

  /* Success! */
  if (d->testing_p)
    return true;

  /* ??? The third operand is an artifact of the builtin infrastructure
     and is ignored by the actual instruction.  */
  emit_insn (gen (d->target, d->op0, const0_rtx));
  return true;
}

/* Recognize patterns for the VTRN insns.  */

static bool
arm_evpc_neon_vtrn (struct expand_vec_perm_d *d)
{
  unsigned int i, odd, mask, nelt = d->nelt;
  rtx out0, out1, in0, in1, x;
  rtx (*gen)(rtx, rtx, rtx, rtx);

  if (GET_MODE_UNIT_SIZE (d->vmode) >= 8)
    return false;

  /* Note that these are little-endian tests.  Adjust for big-endian later.  */
  if (d->perm[0] == 0)
    odd = 0;
  else if (d->perm[0] == 1)
    odd = 1;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt; i += 2)
    {
      if (d->perm[i] != i + odd)
	return false;
      if (d->perm[i + 1] != ((i + nelt + odd) & mask))
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  switch (d->vmode)
    {
    case V16QImode: gen = gen_neon_vtrnv16qi_internal; break;
    case V8QImode:  gen = gen_neon_vtrnv8qi_internal;  break;
    case V8HImode:  gen = gen_neon_vtrnv8hi_internal;  break;
    case V4HImode:  gen = gen_neon_vtrnv4hi_internal;  break;
    case V4SImode:  gen = gen_neon_vtrnv4si_internal;  break;
    case V2SImode:  gen = gen_neon_vtrnv2si_internal;  break;
    case V2SFmode:  gen = gen_neon_vtrnv2sf_internal;  break;
    case V4SFmode:  gen = gen_neon_vtrnv4sf_internal;  break;
    default:
      gcc_unreachable ();
    }

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      odd = !odd;
    }

  out0 = d->target;
  out1 = gen_reg_rtx (d->vmode);
  if (odd)
    x = out0, out0 = out1, out1 = x;

  emit_insn (gen (out0, in0, in1, out1));
  return true;
}

/* Recognize patterns for the VEXT insns.  */

static bool
arm_evpc_neon_vext (struct expand_vec_perm_d *d)
{
  unsigned int i, nelt = d->nelt;
  rtx (*gen) (rtx, rtx, rtx, rtx);
  rtx offset;

  unsigned int location;

  unsigned int next  = d->perm[0] + 1;

  /* TODO: Handle GCC's numbering of elements for big-endian.  */
  if (BYTES_BIG_ENDIAN)
    return false;

  /* Check if the extracted indexes are increasing by one.  */
  for (i = 1; i < nelt; next++, i++)
    {
      /* If we hit the most significant element of the 2nd vector in
	 the previous iteration, no need to test further.  */
      if (next == 2 * nelt)
	return false;

      /* If we are operating on only one vector: it could be a
	 rotation.  If there are only two elements of size < 64, let
	 arm_evpc_neon_vrev catch it.  */
      if (d->one_vector_p && (next == nelt))
	{
	  if ((nelt == 2) && (d->vmode != V2DImode))
	    return false;
	  else
	    next = 0;
	}

      if (d->perm[i] != next)
	return false;
    }

  location = d->perm[0];

  switch (d->vmode)
    {
    case V16QImode: gen = gen_neon_vextv16qi; break;
    case V8QImode: gen = gen_neon_vextv8qi; break;
    case V4HImode: gen = gen_neon_vextv4hi; break;
    case V8HImode: gen = gen_neon_vextv8hi; break;
    case V2SImode: gen = gen_neon_vextv2si; break;
    case V4SImode: gen = gen_neon_vextv4si; break;
    case V2SFmode: gen = gen_neon_vextv2sf; break;
    case V4SFmode: gen = gen_neon_vextv4sf; break;
    case V2DImode: gen = gen_neon_vextv2di; break;
    default:
      return false;
    }

  /* Success! */
  if (d->testing_p)
    return true;

  offset = GEN_INT (location);
  emit_insn (gen (d->target, d->op0, d->op1, offset));
  return true;
}

/* The NEON VTBL instruction is a fully variable permuation that's even
   stronger than what we expose via VEC_PERM_EXPR.  What it doesn't do
   is mask the index operand as VEC_PERM_EXPR requires.  Therefore we
   can do slightly better by expanding this as a constant where we don't
   have to apply a mask.  */

static bool
arm_evpc_neon_vtbl (struct expand_vec_perm_d *d)
{
  rtx rperm[MAX_VECT_LEN], sel;
  enum machine_mode vmode = d->vmode;
  unsigned int i, nelt = d->nelt;

  /* TODO: ARM's VTBL indexing is little-endian.  In order to handle GCC's
     numbering of elements for big-endian, we must reverse the order.  */
  if (BYTES_BIG_ENDIAN)
    return false;

  if (d->testing_p)
    return true;

  /* Generic code will try constant permutation twice.  Once with the
     original mode and again with the elements lowered to QImode.
     So wait and don't do the selector expansion ourselves.  */
  if (vmode != V8QImode && vmode != V16QImode)
    return false;

  for (i = 0; i < nelt; ++i)
    rperm[i] = GEN_INT (d->perm[i]);
  sel = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm));
  sel = force_reg (vmode, sel);

  arm_expand_vec_perm_1 (d->target, d->op0, d->op1, sel);
  return true;
}

static bool
arm_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
{
  /* Check if the input mask matches vext before reordering the
     operands.  */
  if (TARGET_NEON)
    if (arm_evpc_neon_vext (d))
      return true;

  /* The pattern matching functions above are written to look for a small
     number to begin the sequence (0, 1, N/2).  If we begin with an index
     from the second operand, we can swap the operands.  */
  if (d->perm[0] >= d->nelt)
    {
      unsigned i, nelt = d->nelt;
      rtx x;

      for (i = 0; i < nelt; ++i)
	d->perm[i] = (d->perm[i] + nelt) & (2 * nelt - 1);

      x = d->op0;
      d->op0 = d->op1;
      d->op1 = x;
    }

  if (TARGET_NEON)
    {
      if (arm_evpc_neon_vuzp (d))
	return true;
      if (arm_evpc_neon_vzip (d))
	return true;
      if (arm_evpc_neon_vrev (d))
	return true;
      if (arm_evpc_neon_vtrn (d))
	return true;
      return arm_evpc_neon_vtbl (d);
    }
  return false;
}

/* Expand a vec_perm_const pattern.  */

bool
arm_expand_vec_perm_const (rtx target, rtx op0, rtx op1, rtx sel)
{
  struct expand_vec_perm_d d;
  int i, nelt, which;

  d.target = target;
  d.op0 = op0;
  d.op1 = op1;

  d.vmode = GET_MODE (target);
  gcc_assert (VECTOR_MODE_P (d.vmode));
  d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
  d.testing_p = false;

  for (i = which = 0; i < nelt; ++i)
    {
      rtx e = XVECEXP (sel, 0, i);
      int ei = INTVAL (e) & (2 * nelt - 1);
      which |= (ei < nelt ? 1 : 2);
      d.perm[i] = ei;
    }

  switch (which)
    {
    default:
      gcc_unreachable();

    case 3:
      d.one_vector_p = false;
      if (!rtx_equal_p (op0, op1))
	break;

      /* The elements of PERM do not suggest that only the first operand
	 is used, but both operands are identical.  Allow easier matching
	 of the permutation by folding the permutation into the single
	 input vector.  */
      /* FALLTHRU */
    case 2:
      for (i = 0; i < nelt; ++i)
        d.perm[i] &= nelt - 1;
      d.op0 = op1;
      d.one_vector_p = true;
      break;

    case 1:
      d.op1 = op0;
      d.one_vector_p = true;
      break;
    }

  return arm_expand_vec_perm_const_1 (&d);
}

/* Implement TARGET_VECTORIZE_VEC_PERM_CONST_OK.  */

static bool
arm_vectorize_vec_perm_const_ok (enum machine_mode vmode,
				 const unsigned char *sel)
{
  struct expand_vec_perm_d d;
  unsigned int i, nelt, which;
  bool ret;

  d.vmode = vmode;
  d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
  d.testing_p = true;
  memcpy (d.perm, sel, nelt);

  /* Categorize the set of elements in the selector.  */
  for (i = which = 0; i < nelt; ++i)
    {
      unsigned char e = d.perm[i];
      gcc_assert (e < 2 * nelt);
      which |= (e < nelt ? 1 : 2);
    }

  /* For all elements from second vector, fold the elements to first.  */
  if (which == 2)
    for (i = 0; i < nelt; ++i)
      d.perm[i] -= nelt;

  /* Check whether the mask can be applied to the vector type.  */
  d.one_vector_p = (which != 3);

  d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
  d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
  if (!d.one_vector_p)
    d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);

  start_sequence ();
  ret = arm_expand_vec_perm_const_1 (&d);
  end_sequence ();

  return ret;
}

bool
arm_autoinc_modes_ok_p (enum machine_mode mode, enum arm_auto_incmodes code)
{
  /* If we are soft float and we do not have ldrd
     then all auto increment forms are ok.  */
  if (TARGET_SOFT_FLOAT && (TARGET_LDRD || GET_MODE_SIZE (mode) <= 4))
    return true;

  switch (code)
    {
      /* Post increment and Pre Decrement are supported for all
	 instruction forms except for vector forms.  */
    case ARM_POST_INC:
    case ARM_PRE_DEC:
      if (VECTOR_MODE_P (mode))
	{
	  if (code != ARM_PRE_DEC)
	    return true;
	  else
	    return false;
	}
      
      return true;

    case ARM_POST_DEC:
    case ARM_PRE_INC:
      /* Without LDRD and mode size greater than
	 word size, there is no point in auto-incrementing
         because ldm and stm will not have these forms.  */
      if (!TARGET_LDRD && GET_MODE_SIZE (mode) > 4)
	return false;

      /* Vector and floating point modes do not support
	 these auto increment forms.  */
      if (FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode))
	return false;

      return true;
     
    default:
      return false;
      
    }

  return false;
}

/* The default expansion of general 64-bit shifts in core-regs is suboptimal,
   on ARM, since we know that shifts by negative amounts are no-ops.
   Additionally, the default expansion code is not available or suitable
   for post-reload insn splits (this can occur when the register allocator
   chooses not to do a shift in NEON).
   
   This function is used in both initial expand and post-reload splits, and
   handles all kinds of 64-bit shifts.

   Input requirements:
    - It is safe for the input and output to be the same register, but
      early-clobber rules apply for the shift amount and scratch registers.
    - Shift by register requires both scratch registers.  In all other cases
      the scratch registers may be NULL.
    - Ashiftrt by a register also clobbers the CC register.  */
void
arm_emit_coreregs_64bit_shift (enum rtx_code code, rtx out, rtx in,
			       rtx amount, rtx scratch1, rtx scratch2)
{
  rtx out_high = gen_highpart (SImode, out);
  rtx out_low = gen_lowpart (SImode, out);
  rtx in_high = gen_highpart (SImode, in);
  rtx in_low = gen_lowpart (SImode, in);

  /* Terminology:
	in = the register pair containing the input value.
	out = the destination register pair.
	up = the high- or low-part of each pair.
	down = the opposite part to "up".
     In a shift, we can consider bits to shift from "up"-stream to
     "down"-stream, so in a left-shift "up" is the low-part and "down"
     is the high-part of each register pair.  */

  rtx out_up   = code == ASHIFT ? out_low : out_high;
  rtx out_down = code == ASHIFT ? out_high : out_low;
  rtx in_up   = code == ASHIFT ? in_low : in_high;
  rtx in_down = code == ASHIFT ? in_high : in_low;

  gcc_assert (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
  gcc_assert (out
	      && (REG_P (out) || GET_CODE (out) == SUBREG)
	      && GET_MODE (out) == DImode);
  gcc_assert (in
	      && (REG_P (in) || GET_CODE (in) == SUBREG)
	      && GET_MODE (in) == DImode);
  gcc_assert (amount
	      && (((REG_P (amount) || GET_CODE (amount) == SUBREG)
		   && GET_MODE (amount) == SImode)
		  || CONST_INT_P (amount)));
  gcc_assert (scratch1 == NULL
	      || (GET_CODE (scratch1) == SCRATCH)
	      || (GET_MODE (scratch1) == SImode
		  && REG_P (scratch1)));
  gcc_assert (scratch2 == NULL
	      || (GET_CODE (scratch2) == SCRATCH)
	      || (GET_MODE (scratch2) == SImode
		  && REG_P (scratch2)));
  gcc_assert (!REG_P (out) || !REG_P (amount)
	      || !HARD_REGISTER_P (out)
	      || (REGNO (out) != REGNO (amount)
		  && REGNO (out) + 1 != REGNO (amount)));

  /* Macros to make following code more readable.  */
  #define SUB_32(DEST,SRC) \
	    gen_addsi3 ((DEST), (SRC), GEN_INT (-32))
  #define RSB_32(DEST,SRC) \
	    gen_subsi3 ((DEST), GEN_INT (32), (SRC))
  #define SUB_S_32(DEST,SRC) \
	    gen_addsi3_compare0 ((DEST), (SRC), \
				 GEN_INT (-32))
  #define SET(DEST,SRC) \
	    gen_rtx_SET (SImode, (DEST), (SRC))
  #define SHIFT(CODE,SRC,AMOUNT) \
	    gen_rtx_fmt_ee ((CODE), SImode, (SRC), (AMOUNT))
  #define LSHIFT(CODE,SRC,AMOUNT) \
	    gen_rtx_fmt_ee ((CODE) == ASHIFT ? ASHIFT : LSHIFTRT, \
			    SImode, (SRC), (AMOUNT))
  #define REV_LSHIFT(CODE,SRC,AMOUNT) \
	    gen_rtx_fmt_ee ((CODE) == ASHIFT ? LSHIFTRT : ASHIFT, \
			    SImode, (SRC), (AMOUNT))
  #define ORR(A,B) \
	    gen_rtx_IOR (SImode, (A), (B))
  #define BRANCH(COND,LABEL) \
	    gen_arm_cond_branch ((LABEL), \
				 gen_rtx_ ## COND (CCmode, cc_reg, \
						   const0_rtx), \
				 cc_reg)

  /* Shifts by register and shifts by constant are handled separately.  */
  if (CONST_INT_P (amount))
    {
      /* We have a shift-by-constant.  */

      /* First, handle out-of-range shift amounts.
	 In both cases we try to match the result an ARM instruction in a
	 shift-by-register would give.  This helps reduce execution
	 differences between optimization levels, but it won't stop other
         parts of the compiler doing different things.  This is "undefined
         behaviour, in any case.  */
      if (INTVAL (amount) <= 0)
	emit_insn (gen_movdi (out, in));
      else if (INTVAL (amount) >= 64)
	{
	  if (code == ASHIFTRT)
	    {
	      rtx const31_rtx = GEN_INT (31);
	      emit_insn (SET (out_down, SHIFT (code, in_up, const31_rtx)));
	      emit_insn (SET (out_up, SHIFT (code, in_up, const31_rtx)));
	    }
	  else
	    emit_insn (gen_movdi (out, const0_rtx));
	}

      /* Now handle valid shifts. */
      else if (INTVAL (amount) < 32)
	{
	  /* Shifts by a constant less than 32.  */
	  rtx reverse_amount = GEN_INT (32 - INTVAL (amount));

	  emit_insn (SET (out_down, LSHIFT (code, in_down, amount)));
	  emit_insn (SET (out_down,
			  ORR (REV_LSHIFT (code, in_up, reverse_amount),
			       out_down)));
	  emit_insn (SET (out_up, SHIFT (code, in_up, amount)));
	}
      else
	{
	  /* Shifts by a constant greater than 31.  */
	  rtx adj_amount = GEN_INT (INTVAL (amount) - 32);

	  emit_insn (SET (out_down, SHIFT (code, in_up, adj_amount)));
	  if (code == ASHIFTRT)
	    emit_insn (gen_ashrsi3 (out_up, in_up,
				    GEN_INT (31)));
	  else
	    emit_insn (SET (out_up, const0_rtx));
	}
    }
  else
    {
      /* We have a shift-by-register.  */
      rtx cc_reg = gen_rtx_REG (CC_NOOVmode, CC_REGNUM);

      /* This alternative requires the scratch registers.  */
      gcc_assert (scratch1 && REG_P (scratch1));
      gcc_assert (scratch2 && REG_P (scratch2));

      /* We will need the values "amount-32" and "32-amount" later.
         Swapping them around now allows the later code to be more general. */
      switch (code)
	{
	case ASHIFT:
	  emit_insn (SUB_32 (scratch1, amount));
	  emit_insn (RSB_32 (scratch2, amount));
	  break;
	case ASHIFTRT:
	  emit_insn (RSB_32 (scratch1, amount));
	  /* Also set CC = amount > 32.  */
	  emit_insn (SUB_S_32 (scratch2, amount));
	  break;
	case LSHIFTRT:
	  emit_insn (RSB_32 (scratch1, amount));
	  emit_insn (SUB_32 (scratch2, amount));
	  break;
	default:
	  gcc_unreachable ();
	}

      /* Emit code like this:

	 arithmetic-left:
	    out_down = in_down << amount;
	    out_down = (in_up << (amount - 32)) | out_down;
	    out_down = ((unsigned)in_up >> (32 - amount)) | out_down;
	    out_up = in_up << amount;

	 arithmetic-right:
	    out_down = in_down >> amount;
	    out_down = (in_up << (32 - amount)) | out_down;
	    if (amount < 32)
	      out_down = ((signed)in_up >> (amount - 32)) | out_down;
	    out_up = in_up << amount;

	 logical-right:
	    out_down = in_down >> amount;
	    out_down = (in_up << (32 - amount)) | out_down;
	    if (amount < 32)
	      out_down = ((unsigned)in_up >> (amount - 32)) | out_down;
	    out_up = in_up << amount;

	  The ARM and Thumb2 variants are the same but implemented slightly
	  differently.  If this were only called during expand we could just
	  use the Thumb2 case and let combine do the right thing, but this
	  can also be called from post-reload splitters.  */

      emit_insn (SET (out_down, LSHIFT (code, in_down, amount)));

      if (!TARGET_THUMB2)
	{
	  /* Emit code for ARM mode.  */
	  emit_insn (SET (out_down,
			  ORR (SHIFT (ASHIFT, in_up, scratch1), out_down)));
	  if (code == ASHIFTRT)
	    {
	      rtx done_label = gen_label_rtx ();
	      emit_jump_insn (BRANCH (LT, done_label));
	      emit_insn (SET (out_down, ORR (SHIFT (ASHIFTRT, in_up, scratch2),
					     out_down)));
	      emit_label (done_label);
	    }
	  else
	    emit_insn (SET (out_down, ORR (SHIFT (LSHIFTRT, in_up, scratch2),
					   out_down)));
	}
      else
	{
	  /* Emit code for Thumb2 mode.
	     Thumb2 can't do shift and or in one insn.  */
	  emit_insn (SET (scratch1, SHIFT (ASHIFT, in_up, scratch1)));
	  emit_insn (gen_iorsi3 (out_down, out_down, scratch1));

	  if (code == ASHIFTRT)
	    {
	      rtx done_label = gen_label_rtx ();
	      emit_jump_insn (BRANCH (LT, done_label));
	      emit_insn (SET (scratch2, SHIFT (ASHIFTRT, in_up, scratch2)));
	      emit_insn (SET (out_down, ORR (out_down, scratch2)));
	      emit_label (done_label);
	    }
	  else
	    {
	      emit_insn (SET (scratch2, SHIFT (LSHIFTRT, in_up, scratch2)));
	      emit_insn (gen_iorsi3 (out_down, out_down, scratch2));
	    }
	}

      emit_insn (SET (out_up, SHIFT (code, in_up, amount)));
    }

  #undef SUB_32
  #undef RSB_32
  #undef SUB_S_32
  #undef SET
  #undef SHIFT
  #undef LSHIFT
  #undef REV_LSHIFT
  #undef ORR
  #undef BRANCH
}


/* Returns true if a valid comparison operation and makes
   the operands in a form that is valid.  */
bool
arm_validize_comparison (rtx *comparison, rtx * op1, rtx * op2)
{
  enum rtx_code code = GET_CODE (*comparison);
  int code_int;
  enum machine_mode mode = (GET_MODE (*op1) == VOIDmode) 
    ? GET_MODE (*op2) : GET_MODE (*op1);

  gcc_assert (GET_MODE (*op1) != VOIDmode || GET_MODE (*op2) != VOIDmode);

  if (code == UNEQ || code == LTGT)
    return false;

  code_int = (int)code;
  arm_canonicalize_comparison (&code_int, op1, op2, 0);
  PUT_CODE (*comparison, (enum rtx_code)code_int);

  switch (mode)
    {
    case SImode:
      if (!arm_add_operand (*op1, mode))
	*op1 = force_reg (mode, *op1);
      if (!arm_add_operand (*op2, mode))
	*op2 = force_reg (mode, *op2);
      return true;

    case DImode:
      if (!cmpdi_operand (*op1, mode))
	*op1 = force_reg (mode, *op1);
      if (!cmpdi_operand (*op2, mode))
	*op2 = force_reg (mode, *op2);
      return true;

    case SFmode:
    case DFmode:
      if (!arm_float_compare_operand (*op1, mode))
	*op1 = force_reg (mode, *op1);
      if (!arm_float_compare_operand (*op2, mode))
	*op2 = force_reg (mode, *op2);
      return true;
    default:
      break;
    }

  return false;

}

/* Implement the TARGET_ASAN_SHADOW_OFFSET hook.  */

static unsigned HOST_WIDE_INT
arm_asan_shadow_offset (void)
{
  return (unsigned HOST_WIDE_INT) 1 << 29;
}


/* This is a temporary fix for PR60655.  Ideally we need
   to handle most of these cases in the generic part but
   currently we reject minus (..) (sym_ref).  We try to 
   ameliorate the case with minus (sym_ref1) (sym_ref2)
   where they are in the same section.  */

static bool
arm_const_not_ok_for_debug_p (rtx p)
{
  tree decl_op0 = NULL;
  tree decl_op1 = NULL;

  if (GET_CODE (p) == MINUS)
    {
      if (GET_CODE (XEXP (p, 1)) == SYMBOL_REF)
	{
	  decl_op1 = SYMBOL_REF_DECL (XEXP (p, 1));
	  if (decl_op1
	      && GET_CODE (XEXP (p, 0)) == SYMBOL_REF
	      && (decl_op0 = SYMBOL_REF_DECL (XEXP (p, 0))))
	    {
	      if ((TREE_CODE (decl_op1) == VAR_DECL
		   || TREE_CODE (decl_op1) == CONST_DECL)
		  && (TREE_CODE (decl_op0) == VAR_DECL
		      || TREE_CODE (decl_op0) == CONST_DECL))
		return (get_variable_section (decl_op1, false)
			!= get_variable_section (decl_op0, false));

	      if (TREE_CODE (decl_op1) == LABEL_DECL
		  && TREE_CODE (decl_op0) == LABEL_DECL)
		return (DECL_CONTEXT (decl_op1)
			!= DECL_CONTEXT (decl_op0));
	    }

	  return true;
	}
    }

  return false;
}

rtx
arm_get_pic_reg (void)
{
  return cfun->machine->pic_reg;
}

/* Clear the pic_reg to NULL.  */
void
arm_clear_pic_reg (void)
{
  cfun->machine->pic_reg = NULL_RTX;
}

/* Determine if it is profitable to simplify GOT accesses.

   The default global address loading instructions are:

   ldr   r3, .L2                              # A
   ldr   r2, .L2+4                            # B
.LPIC0:
   add   r3, pc                               # A
   ldr   r4, [r3, r2]                         # B
   ...
.L2:
   .word   _GLOBAL_OFFSET_TABLE_-(.LPIC0+4)   # A
   .word   i(GOT)                             # S

   The new instruction sequence is:

   ldr   r3, .L2                      # C
.LPIC0:
   add   r3, pc                       # C
   ldr   r3, [r3]                     # C
   ...
.L2:
   i(GOT_PREL)+(.-(.LPIC0+4))         # C

   Suppose the number of global address loading is n, the number of
   accessed global symbol is s, this function should return

        cost(A) + cost(B) * n + cost(S) * s >= cost(C) * n

   From the above code snippets, we can see that

        cost(A) = INSN_LENGTH * 2 + WORD_LENGTH
        cost(B) = INSN_LENGTH * 2
        cost(S) = WORD_LENGTH
        cost(C) = INSN_LENGTH * 3 + WORD_LENGTH

   The length of instruction depends on the target instruction set.  */

#define N_INSNS_A 2
#define N_INSNS_B 2
#define N_INSNS_C 3

bool
arm_can_simplify_got_access (int n_symbol, int n_access)
{
  int insn_len = TARGET_THUMB ? 2 : 4;
  int cost_A = insn_len * N_INSNS_A + UNITS_PER_WORD;
  int cost_B = insn_len * N_INSNS_B;
  int cost_S = UNITS_PER_WORD;
  int cost_C = insn_len * N_INSNS_C + UNITS_PER_WORD;

  return cost_A + cost_B * n_access + cost_S * n_symbol >= cost_C * n_access;
}

/* Detect if INSN loads a global address. If so returns the symbol.
   If the GOT offset is loaded in a separate instruction, sets the
   corresponding OFFSET_REG and OFFSET_INSN. Otherwise fills with NULL.  */
rtx
arm_loaded_global_var (rtx insn, rtx *offset_reg, rtx *offset_insn)
{
  rtx set = single_set (insn);
  rtx pic_reg = cfun->machine->pic_reg;
  gcc_assert (pic_reg);

  /* Global address loading instruction has the pattern:
        (SET address_reg (MEM (PLUS pic_reg offset_reg)))  */
  if (set && MEM_P (SET_SRC (set))
      && (GET_CODE (XEXP (SET_SRC (set),0)) == PLUS))
    {
      unsigned int regno;
      df_ref def;
      rtx def_insn;
      rtx src;
      rtx plus = XEXP (SET_SRC (set),0);
      rtx op0 = XEXP (plus, 0);
      rtx op1 = XEXP (plus, 1);
      if (op1 == pic_reg)
	{
	  rtx tmp = op0;
	  op0 = op1;
	  op1 = tmp;
	}

      if (op0 != pic_reg)
	return NULL_RTX;

      if (REG_P (op1))
	{
	  regno = REGNO (op1);
	  if ((DF_REG_USE_COUNT (regno) != 1)
	      || (DF_REG_DEF_COUNT (regno) != 1))
	    return NULL_RTX;

	  /* The offset loading insn has the pattern:
	     (SET offset_reg (UNSPEC [symbol] UNSPEC_PIC_SYM))  */
	  def = DF_REG_DEF_CHAIN (regno);
	  def_insn = DF_REF_INSN (def);
	  set = single_set (def_insn);
	  if (SET_DEST (set) != op1)
	    return NULL_RTX;

	  src = SET_SRC (set);
	  *offset_reg = op1;
	  *offset_insn = def_insn;
	}
      else
	{
	  src = op1;
	  *offset_reg = NULL;
	  *offset_insn = NULL;
	}

      if ((GET_CODE (src) != UNSPEC) || (XINT (src, 1) != UNSPEC_PIC_SYM))
	return NULL_RTX;

      return RTVEC_ELT (XVEC (src, 0), 0);
    }

  return NULL_RTX;
}

/* Rewrite the global address loading instructions.
   SYMBOL is the global variable. OFFSET_REG contains the offset of the
   GOT entry. ADDRESS_REG will receive the final global address.
   LOAD_INSN is the original insn which loads the address from GOT.
   OFFSET_INSN is the original insn which sets OFFSET_REG.
   If the GOT offset is not loaded in a separate instruction, OFFSET_REG
   and OFFSET_INSN should be NULL.  */
void
arm_load_global_address (rtx symbol, rtx offset_reg,
			 rtx address_reg, rtx load_insn, rtx offset_insn)
{
  rtx offset, got_prel, new_insn;
  rtx labelno = GEN_INT (pic_labelno++);
  rtx l1 = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
  rtx set = single_set (load_insn);

  rtx tmp_reg = offset_reg;
  rtx insert_pos = offset_insn;
  if (offset_reg == NULL)
    {
      tmp_reg = address_reg;
      insert_pos = PREV_INSN (load_insn);
    }

  /* The first insn:
         (SET tmp_reg (address_of_GOT_entry(symbol) - pc))
     The expression (address_of_GOT_entry(symbol) - pc) is expressed by
     got_prel, which is actually represented by R_ARM_GOT_PREL relocation.  */
  l1 = gen_rtx_CONST (VOIDmode, l1);
  l1 = plus_constant (Pmode, l1, TARGET_ARM ? 8 : 4);
  offset = gen_rtx_MINUS (VOIDmode, pc_rtx, l1);
  got_prel = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, symbol, offset),
			     UNSPEC_GOT_PREL_SYM);
  got_prel = gen_rtx_CONST (Pmode, got_prel);
  if (TARGET_32BIT)
    new_insn = emit_insn_after (gen_pic_load_addr_32bit (tmp_reg, got_prel),
				insert_pos);
  else
    new_insn = emit_insn_after (gen_pic_load_addr_thumb1 (tmp_reg, got_prel),
				insert_pos);

  /* The second insn:
         (SET tmp_reg (PLUS tmp_reg  pc_rtx))  */
  if (TARGET_ARM)
    emit_insn_after (gen_pic_add_dot_plus_eight (tmp_reg, tmp_reg, labelno),
		     new_insn);
  else
    emit_insn_after (gen_pic_add_dot_plus_four (tmp_reg, tmp_reg, labelno),
		     new_insn);

  /* The last insn to access the GOT entry:
         (SET address_reg (MEM tmp_reg))
     We reuse the existed load instruction.  */
  XEXP (SET_SRC (set), 0) = tmp_reg;
  df_insn_rescan (load_insn);
}

#include "gt-arm.h"