aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/sem_ch5.adb
blob: 409ea7bf43271b4ff41b6ece0b1e9fc29dd82aad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ C H 5                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Aspects;  use Aspects;
with Atree;    use Atree;
with Checks;   use Checks;
with Einfo;    use Einfo;
with Errout;   use Errout;
with Expander; use Expander;
with Exp_Ch6;  use Exp_Ch6;
with Exp_Util; use Exp_Util;
with Freeze;   use Freeze;
with Lib;      use Lib;
with Lib.Xref; use Lib.Xref;
with Namet;    use Namet;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Case; use Sem_Case;
with Sem_Ch3;  use Sem_Ch3;
with Sem_Ch6;  use Sem_Ch6;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Dim;  use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Res;  use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Snames;   use Snames;
with Stand;    use Stand;
with Sinfo;    use Sinfo;
with Targparm; use Targparm;
with Tbuild;   use Tbuild;
with Uintp;    use Uintp;

package body Sem_Ch5 is

   Unblocked_Exit_Count : Nat := 0;
   --  This variable is used when processing if statements, case statements,
   --  and block statements. It counts the number of exit points that are not
   --  blocked by unconditional transfer instructions: for IF and CASE, these
   --  are the branches of the conditional; for a block, they are the statement
   --  sequence of the block, and the statement sequences of any exception
   --  handlers that are part of the block. When processing is complete, if
   --  this count is zero, it means that control cannot fall through the IF,
   --  CASE or block statement. This is used for the generation of warning
   --  messages. This variable is recursively saved on entry to processing the
   --  construct, and restored on exit.

   procedure Preanalyze_Range (R_Copy : Node_Id);
   --  Determine expected type of range or domain of iteration of Ada 2012
   --  loop by analyzing separate copy. Do the analysis and resolution of the
   --  copy of the bound(s) with expansion disabled, to prevent the generation
   --  of finalization actions. This prevents memory leaks when the bounds
   --  contain calls to functions returning controlled arrays or when the
   --  domain of iteration is a container.

   ------------------------
   -- Analyze_Assignment --
   ------------------------

   procedure Analyze_Assignment (N : Node_Id) is
      Lhs  : constant Node_Id := Name (N);
      Rhs  : constant Node_Id := Expression (N);
      T1   : Entity_Id;
      T2   : Entity_Id;
      Decl : Node_Id;

      procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
      --  N is the node for the left hand side of an assignment, and it is not
      --  a variable. This routine issues an appropriate diagnostic.

      procedure Kill_Lhs;
      --  This is called to kill current value settings of a simple variable
      --  on the left hand side. We call it if we find any error in analyzing
      --  the assignment, and at the end of processing before setting any new
      --  current values in place.

      procedure Set_Assignment_Type
        (Opnd      : Node_Id;
         Opnd_Type : in out Entity_Id);
      --  Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
      --  nominal subtype. This procedure is used to deal with cases where the
      --  nominal subtype must be replaced by the actual subtype.

      -------------------------------
      -- Diagnose_Non_Variable_Lhs --
      -------------------------------

      procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
      begin
         --  Not worth posting another error if left hand side already flagged
         --  as being illegal in some respect.

         if Error_Posted (N) then
            return;

         --  Some special bad cases of entity names

         elsif Is_Entity_Name (N) then
            declare
               Ent : constant Entity_Id := Entity (N);

            begin
               if Ekind (Ent) = E_In_Parameter then
                  Error_Msg_N
                    ("assignment to IN mode parameter not allowed", N);
                  return;

               --  Renamings of protected private components are turned into
               --  constants when compiling a protected function. In the case
               --  of single protected types, the private component appears
               --  directly.

               elsif (Is_Prival (Ent)
                       and then
                         (Ekind (Current_Scope) = E_Function
                           or else Ekind (Enclosing_Dynamic_Scope
                                            (Current_Scope)) = E_Function))
                   or else
                     (Ekind (Ent) = E_Component
                       and then Is_Protected_Type (Scope (Ent)))
               then
                  Error_Msg_N
                    ("protected function cannot modify protected object", N);
                  return;

               elsif Ekind (Ent) = E_Loop_Parameter then
                  Error_Msg_N ("assignment to loop parameter not allowed", N);
                  return;
               end if;
            end;

         --  For indexed components, test prefix if it is in array. We do not
         --  want to recurse for cases where the prefix is a pointer, since we
         --  may get a message confusing the pointer and what it references.

         elsif Nkind (N) = N_Indexed_Component
           and then Is_Array_Type (Etype (Prefix (N)))
         then
            Diagnose_Non_Variable_Lhs (Prefix (N));
            return;

         --  Another special case for assignment to discriminant

         elsif Nkind (N) = N_Selected_Component then
            if Present (Entity (Selector_Name (N)))
              and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
            then
               Error_Msg_N ("assignment to discriminant not allowed", N);
               return;

            --  For selection from record, diagnose prefix, but note that again
            --  we only do this for a record, not e.g. for a pointer.

            elsif Is_Record_Type (Etype (Prefix (N))) then
               Diagnose_Non_Variable_Lhs (Prefix (N));
               return;
            end if;
         end if;

         --  If we fall through, we have no special message to issue

         Error_Msg_N ("left hand side of assignment must be a variable", N);
      end Diagnose_Non_Variable_Lhs;

      --------------
      -- Kill_Lhs --
      --------------

      procedure Kill_Lhs is
      begin
         if Is_Entity_Name (Lhs) then
            declare
               Ent : constant Entity_Id := Entity (Lhs);
            begin
               if Present (Ent) then
                  Kill_Current_Values (Ent);
               end if;
            end;
         end if;
      end Kill_Lhs;

      -------------------------
      -- Set_Assignment_Type --
      -------------------------

      procedure Set_Assignment_Type
        (Opnd      : Node_Id;
         Opnd_Type : in out Entity_Id)
      is
      begin
         Require_Entity (Opnd);

         --  If the assignment operand is an in-out or out parameter, then we
         --  get the actual subtype (needed for the unconstrained case). If the
         --  operand is the actual in an entry declaration, then within the
         --  accept statement it is replaced with a local renaming, which may
         --  also have an actual subtype.

         if Is_Entity_Name (Opnd)
           and then (Ekind (Entity (Opnd)) = E_Out_Parameter
                      or else Ekind_In (Entity (Opnd),
                                        E_In_Out_Parameter,
                                        E_Generic_In_Out_Parameter)
                      or else
                        (Ekind (Entity (Opnd)) = E_Variable
                          and then Nkind (Parent (Entity (Opnd))) =
                                            N_Object_Renaming_Declaration
                          and then Nkind (Parent (Parent (Entity (Opnd)))) =
                                            N_Accept_Statement))
         then
            Opnd_Type := Get_Actual_Subtype (Opnd);

         --  If assignment operand is a component reference, then we get the
         --  actual subtype of the component for the unconstrained case.

         elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
           and then not Is_Unchecked_Union (Opnd_Type)
         then
            Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);

            if Present (Decl) then
               Insert_Action (N, Decl);
               Mark_Rewrite_Insertion (Decl);
               Analyze (Decl);
               Opnd_Type := Defining_Identifier (Decl);
               Set_Etype (Opnd, Opnd_Type);
               Freeze_Itype (Opnd_Type, N);

            elsif Is_Constrained (Etype (Opnd)) then
               Opnd_Type := Etype (Opnd);
            end if;

         --  For slice, use the constrained subtype created for the slice

         elsif Nkind (Opnd) = N_Slice then
            Opnd_Type := Etype (Opnd);
         end if;
      end Set_Assignment_Type;

   --  Start of processing for Analyze_Assignment

   begin
      Mark_Coextensions (N, Rhs);

      Analyze (Rhs);
      Analyze (Lhs);

      --  Ensure that we never do an assignment on a variable marked as
      --  as Safe_To_Reevaluate.

      pragma Assert (not Is_Entity_Name (Lhs)
        or else Ekind (Entity (Lhs)) /= E_Variable
        or else not Is_Safe_To_Reevaluate (Entity (Lhs)));

      --  Start type analysis for assignment

      T1 := Etype (Lhs);

      --  In the most general case, both Lhs and Rhs can be overloaded, and we
      --  must compute the intersection of the possible types on each side.

      if Is_Overloaded (Lhs) then
         declare
            I  : Interp_Index;
            It : Interp;

         begin
            T1 := Any_Type;
            Get_First_Interp (Lhs, I, It);

            while Present (It.Typ) loop
               if Has_Compatible_Type (Rhs, It.Typ) then
                  if T1 /= Any_Type then

                     --  An explicit dereference is overloaded if the prefix
                     --  is. Try to remove the ambiguity on the prefix, the
                     --  error will be posted there if the ambiguity is real.

                     if Nkind (Lhs) = N_Explicit_Dereference then
                        declare
                           PI    : Interp_Index;
                           PI1   : Interp_Index := 0;
                           PIt   : Interp;
                           Found : Boolean;

                        begin
                           Found := False;
                           Get_First_Interp (Prefix (Lhs), PI, PIt);

                           while Present (PIt.Typ) loop
                              if Is_Access_Type (PIt.Typ)
                                and then Has_Compatible_Type
                                           (Rhs, Designated_Type (PIt.Typ))
                              then
                                 if Found then
                                    PIt :=
                                      Disambiguate (Prefix (Lhs),
                                        PI1, PI, Any_Type);

                                    if PIt = No_Interp then
                                       Error_Msg_N
                                         ("ambiguous left-hand side"
                                            & " in assignment", Lhs);
                                       exit;
                                    else
                                       Resolve (Prefix (Lhs), PIt.Typ);
                                    end if;

                                    exit;
                                 else
                                    Found := True;
                                    PI1 := PI;
                                 end if;
                              end if;

                              Get_Next_Interp (PI, PIt);
                           end loop;
                        end;

                     else
                        Error_Msg_N
                          ("ambiguous left-hand side in assignment", Lhs);
                        exit;
                     end if;
                  else
                     T1 := It.Typ;
                  end if;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;

         if T1 = Any_Type then
            Error_Msg_N
              ("no valid types for left-hand side for assignment", Lhs);
            Kill_Lhs;
            return;
         end if;
      end if;

      --  The resulting assignment type is T1, so now we will resolve the left
      --  hand side of the assignment using this determined type.

      Resolve (Lhs, T1);

      --  Cases where Lhs is not a variable

      if not Is_Variable (Lhs) then

         --  Ada 2005 (AI-327): Check assignment to the attribute Priority of a
         --  protected object.

         declare
            Ent : Entity_Id;
            S   : Entity_Id;

         begin
            if Ada_Version >= Ada_2005 then

               --  Handle chains of renamings

               Ent := Lhs;
               while Nkind (Ent) in N_Has_Entity
                 and then Present (Entity (Ent))
                 and then Present (Renamed_Object (Entity (Ent)))
               loop
                  Ent := Renamed_Object (Entity (Ent));
               end loop;

               if (Nkind (Ent) = N_Attribute_Reference
                    and then Attribute_Name (Ent) = Name_Priority)

                  --  Renamings of the attribute Priority applied to protected
                  --  objects have been previously expanded into calls to the
                  --  Get_Ceiling run-time subprogram.

                 or else
                  (Nkind (Ent) = N_Function_Call
                    and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
                               or else
                              Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
               then
                  --  The enclosing subprogram cannot be a protected function

                  S := Current_Scope;
                  while not (Is_Subprogram (S)
                              and then Convention (S) = Convention_Protected)
                     and then S /= Standard_Standard
                  loop
                     S := Scope (S);
                  end loop;

                  if Ekind (S) = E_Function
                    and then Convention (S) = Convention_Protected
                  then
                     Error_Msg_N
                       ("protected function cannot modify protected object",
                        Lhs);
                  end if;

                  --  Changes of the ceiling priority of the protected object
                  --  are only effective if the Ceiling_Locking policy is in
                  --  effect (AARM D.5.2 (5/2)).

                  if Locking_Policy /= 'C' then
                     Error_Msg_N ("assignment to the attribute PRIORITY has " &
                                  "no effect??", Lhs);
                     Error_Msg_N ("\since no Locking_Policy has been " &
                                  "specified??", Lhs);
                  end if;

                  return;
               end if;
            end if;
         end;

         Diagnose_Non_Variable_Lhs (Lhs);
         return;

      --  Error of assigning to limited type. We do however allow this in
      --  certain cases where the front end generates the assignments.

      elsif Is_Limited_Type (T1)
        and then not Assignment_OK (Lhs)
        and then not Assignment_OK (Original_Node (Lhs))
        and then not Is_Value_Type (T1)
      then
         --  CPP constructors can only be called in declarations

         if Is_CPP_Constructor_Call (Rhs) then
            Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
         else
            Error_Msg_N
              ("left hand of assignment must not be limited type", Lhs);
            Explain_Limited_Type (T1, Lhs);
         end if;
         return;

      --  Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
      --  abstract. This is only checked when the assignment Comes_From_Source,
      --  because in some cases the expander generates such assignments (such
      --  in the _assign operation for an abstract type).

      elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
         Error_Msg_N
           ("target of assignment operation must not be abstract", Lhs);
      end if;

      --  Resolution may have updated the subtype, in case the left-hand side
      --  is a private protected component. Use the correct subtype to avoid
      --  scoping issues in the back-end.

      T1 := Etype (Lhs);

      --  Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
      --  type. For example:

      --    limited with P;
      --    package Pkg is
      --      type Acc is access P.T;
      --    end Pkg;

      --    with Pkg; use Acc;
      --    procedure Example is
      --       A, B : Acc;
      --    begin
      --       A.all := B.all;  -- ERROR
      --    end Example;

      if Nkind (Lhs) = N_Explicit_Dereference
        and then Ekind (T1) = E_Incomplete_Type
      then
         Error_Msg_N ("invalid use of incomplete type", Lhs);
         Kill_Lhs;
         return;
      end if;

      --  Now we can complete the resolution of the right hand side

      Set_Assignment_Type (Lhs, T1);
      Resolve (Rhs, T1);

      --  This is the point at which we check for an unset reference

      Check_Unset_Reference (Rhs);
      Check_Unprotected_Access (Lhs, Rhs);

      --  Remaining steps are skipped if Rhs was syntactically in error

      if Rhs = Error then
         Kill_Lhs;
         return;
      end if;

      T2 := Etype (Rhs);

      if not Covers (T1, T2) then
         Wrong_Type (Rhs, Etype (Lhs));
         Kill_Lhs;
         return;
      end if;

      --  Ada 2005 (AI-326): In case of explicit dereference of incomplete
      --  types, use the non-limited view if available

      if Nkind (Rhs) = N_Explicit_Dereference
        and then Ekind (T2) = E_Incomplete_Type
        and then Is_Tagged_Type (T2)
        and then Present (Non_Limited_View (T2))
      then
         T2 := Non_Limited_View (T2);
      end if;

      Set_Assignment_Type (Rhs, T2);

      if Total_Errors_Detected /= 0 then
         if No (T1) then
            T1 := Any_Type;
         end if;

         if No (T2) then
            T2 := Any_Type;
         end if;
      end if;

      if T1 = Any_Type or else T2 = Any_Type then
         Kill_Lhs;
         return;
      end if;

      --  If the rhs is class-wide or dynamically tagged, then require the lhs
      --  to be class-wide. The case where the rhs is a dynamically tagged call
      --  to a dispatching operation with a controlling access result is
      --  excluded from this check, since the target has an access type (and
      --  no tag propagation occurs in that case).

      if (Is_Class_Wide_Type (T2)
           or else (Is_Dynamically_Tagged (Rhs)
                     and then not Is_Access_Type (T1)))
        and then not Is_Class_Wide_Type (T1)
      then
         Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);

      elsif Is_Class_Wide_Type (T1)
        and then not Is_Class_Wide_Type (T2)
        and then not Is_Tag_Indeterminate (Rhs)
        and then not Is_Dynamically_Tagged (Rhs)
      then
         Error_Msg_N ("dynamically tagged expression required!", Rhs);
      end if;

      --  Propagate the tag from a class-wide target to the rhs when the rhs
      --  is a tag-indeterminate call.

      if Is_Tag_Indeterminate (Rhs) then
         if Is_Class_Wide_Type (T1) then
            Propagate_Tag (Lhs, Rhs);

         elsif Nkind (Rhs) = N_Function_Call
           and then Is_Entity_Name (Name (Rhs))
           and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
         then
            Error_Msg_N
              ("call to abstract function must be dispatching", Name (Rhs));

         elsif Nkind (Rhs) = N_Qualified_Expression
           and then Nkind (Expression (Rhs)) = N_Function_Call
              and then Is_Entity_Name (Name (Expression (Rhs)))
              and then
                Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
         then
            Error_Msg_N
              ("call to abstract function must be dispatching",
                Name (Expression (Rhs)));
         end if;
      end if;

      --  Ada 2005 (AI-385): When the lhs type is an anonymous access type,
      --  apply an implicit conversion of the rhs to that type to force
      --  appropriate static and run-time accessibility checks. This applies
      --  as well to anonymous access-to-subprogram types that are component
      --  subtypes or formal parameters.

      if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
         if Is_Local_Anonymous_Access (T1)
           or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type

           --  Handle assignment to an Ada 2012 stand-alone object
           --  of an anonymous access type.

           or else (Ekind (T1) = E_Anonymous_Access_Type
                     and then Nkind (Associated_Node_For_Itype (T1)) =
                                                       N_Object_Declaration)

         then
            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
            Analyze_And_Resolve (Rhs, T1);
         end if;
      end if;

      --  Ada 2005 (AI-231): Assignment to not null variable

      if Ada_Version >= Ada_2005
        and then Can_Never_Be_Null (T1)
        and then not Assignment_OK (Lhs)
      then
         --  Case where we know the right hand side is null

         if Known_Null (Rhs) then
            Apply_Compile_Time_Constraint_Error
              (N      => Rhs,
               Msg    =>
                 "(Ada 2005) null not allowed in null-excluding objects??",
               Reason => CE_Null_Not_Allowed);

            --  We still mark this as a possible modification, that's necessary
            --  to reset Is_True_Constant, and desirable for xref purposes.

            Note_Possible_Modification (Lhs, Sure => True);
            return;

         --  If we know the right hand side is non-null, then we convert to the
         --  target type, since we don't need a run time check in that case.

         elsif not Can_Never_Be_Null (T2) then
            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
            Analyze_And_Resolve (Rhs, T1);
         end if;
      end if;

      if Is_Scalar_Type (T1) then
         Apply_Scalar_Range_Check (Rhs, Etype (Lhs));

      --  For array types, verify that lengths match. If the right hand side
      --  is a function call that has been inlined, the assignment has been
      --  rewritten as a block, and the constraint check will be applied to the
      --  assignment within the block.

      elsif Is_Array_Type (T1)
        and then (Nkind (Rhs) /= N_Type_Conversion
                   or else Is_Constrained (Etype (Rhs)))
        and then (Nkind (Rhs) /= N_Function_Call
                   or else Nkind (N) /= N_Block_Statement)
      then
         --  Assignment verifies that the length of the Lsh and Rhs are equal,
         --  but of course the indexes do not have to match. If the right-hand
         --  side is a type conversion to an unconstrained type, a length check
         --  is performed on the expression itself during expansion. In rare
         --  cases, the redundant length check is computed on an index type
         --  with a different representation, triggering incorrect code in the
         --  back end.

         Apply_Length_Check (Rhs, Etype (Lhs));

      else
         --  Discriminant checks are applied in the course of expansion

         null;
      end if;

      --  Note: modifications of the Lhs may only be recorded after
      --  checks have been applied.

      Note_Possible_Modification (Lhs, Sure => True);

      --  ??? a real accessibility check is needed when ???

      --  Post warning for redundant assignment or variable to itself

      if Warn_On_Redundant_Constructs

         --  We only warn for source constructs

         and then Comes_From_Source (N)

         --  Where the object is the same on both sides

         and then Same_Object (Lhs, Original_Node (Rhs))

         --  But exclude the case where the right side was an operation that
         --  got rewritten (e.g. JUNK + K, where K was known to be zero). We
         --  don't want to warn in such a case, since it is reasonable to write
         --  such expressions especially when K is defined symbolically in some
         --  other package.

        and then Nkind (Original_Node (Rhs)) not in N_Op
      then
         if Nkind (Lhs) in N_Has_Entity then
            Error_Msg_NE -- CODEFIX
              ("?r?useless assignment of & to itself!", N, Entity (Lhs));
         else
            Error_Msg_N -- CODEFIX
              ("?r?useless assignment of object to itself!", N);
         end if;
      end if;

      --  Check for non-allowed composite assignment

      if not Support_Composite_Assign_On_Target
        and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
        and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
      then
         Error_Msg_CRT ("composite assignment", N);
      end if;

      --  Check elaboration warning for left side if not in elab code

      if not In_Subprogram_Or_Concurrent_Unit then
         Check_Elab_Assign (Lhs);
      end if;

      --  Set Referenced_As_LHS if appropriate. We only set this flag if the
      --  assignment is a source assignment in the extended main source unit.
      --  We are not interested in any reference information outside this
      --  context, or in compiler generated assignment statements.

      if Comes_From_Source (N)
        and then In_Extended_Main_Source_Unit (Lhs)
      then
         Set_Referenced_Modified (Lhs, Out_Param => False);
      end if;

      --  Final step. If left side is an entity, then we may be able to reset
      --  the current tracked values to new safe values. We only have something
      --  to do if the left side is an entity name, and expansion has not
      --  modified the node into something other than an assignment, and of
      --  course we only capture values if it is safe to do so.

      if Is_Entity_Name (Lhs)
        and then Nkind (N) = N_Assignment_Statement
      then
         declare
            Ent : constant Entity_Id := Entity (Lhs);

         begin
            if Safe_To_Capture_Value (N, Ent) then

               --  If simple variable on left side, warn if this assignment
               --  blots out another one (rendering it useless). We only do
               --  this for source assignments, otherwise we can generate bogus
               --  warnings when an assignment is rewritten as another
               --  assignment, and gets tied up with itself.

               if Warn_On_Modified_Unread
                 and then Is_Assignable (Ent)
                 and then Comes_From_Source (N)
                 and then In_Extended_Main_Source_Unit (Ent)
               then
                  Warn_On_Useless_Assignment (Ent, N);
               end if;

               --  If we are assigning an access type and the left side is an
               --  entity, then make sure that the Is_Known_[Non_]Null flags
               --  properly reflect the state of the entity after assignment.

               if Is_Access_Type (T1) then
                  if Known_Non_Null (Rhs) then
                     Set_Is_Known_Non_Null (Ent, True);

                  elsif Known_Null (Rhs)
                    and then not Can_Never_Be_Null (Ent)
                  then
                     Set_Is_Known_Null (Ent, True);

                  else
                     Set_Is_Known_Null (Ent, False);

                     if not Can_Never_Be_Null (Ent) then
                        Set_Is_Known_Non_Null (Ent, False);
                     end if;
                  end if;

               --  For discrete types, we may be able to set the current value
               --  if the value is known at compile time.

               elsif Is_Discrete_Type (T1)
                 and then Compile_Time_Known_Value (Rhs)
               then
                  Set_Current_Value (Ent, Rhs);
               else
                  Set_Current_Value (Ent, Empty);
               end if;

            --  If not safe to capture values, kill them

            else
               Kill_Lhs;
            end if;
         end;
      end if;

      --  If assigning to an object in whole or in part, note location of
      --  assignment in case no one references value. We only do this for
      --  source assignments, otherwise we can generate bogus warnings when an
      --  assignment is rewritten as another assignment, and gets tied up with
      --  itself.

      declare
         Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
      begin
         if Present (Ent)
           and then Safe_To_Capture_Value (N, Ent)
           and then Nkind (N) = N_Assignment_Statement
           and then Warn_On_Modified_Unread
           and then Is_Assignable (Ent)
           and then Comes_From_Source (N)
           and then In_Extended_Main_Source_Unit (Ent)
         then
            Set_Last_Assignment (Ent, Lhs);
         end if;
      end;

      Analyze_Dimension (N);
   end Analyze_Assignment;

   -----------------------------
   -- Analyze_Block_Statement --
   -----------------------------

   procedure Analyze_Block_Statement (N : Node_Id) is
      procedure Install_Return_Entities (Scop : Entity_Id);
      --  Install all entities of return statement scope Scop in the visibility
      --  chain except for the return object since its entity is reused in a
      --  renaming.

      -----------------------------
      -- Install_Return_Entities --
      -----------------------------

      procedure Install_Return_Entities (Scop : Entity_Id) is
         Id : Entity_Id;

      begin
         Id := First_Entity (Scop);
         while Present (Id) loop

            --  Do not install the return object

            if not Ekind_In (Id, E_Constant, E_Variable)
              or else not Is_Return_Object (Id)
            then
               Install_Entity (Id);
            end if;

            Next_Entity (Id);
         end loop;
      end Install_Return_Entities;

      --  Local constants and variables

      Decls : constant List_Id := Declarations (N);
      Id    : constant Node_Id := Identifier (N);
      HSS   : constant Node_Id := Handled_Statement_Sequence (N);

      Is_BIP_Return_Statement : Boolean;

   --  Start of processing for Analyze_Block_Statement

   begin
      --  In SPARK mode, we reject block statements. Note that the case of
      --  block statements generated by the expander is fine.

      if Nkind (Original_Node (N)) = N_Block_Statement then
         Check_SPARK_Restriction ("block statement is not allowed", N);
      end if;

      --  If no handled statement sequence is present, things are really messed
      --  up, and we just return immediately (defence against previous errors).

      if No (HSS) then
         Check_Error_Detected;
         return;
      end if;

      --  Detect whether the block is actually a rewritten return statement of
      --  a build-in-place function.

      Is_BIP_Return_Statement :=
        Present (Id)
          and then Present (Entity (Id))
          and then Ekind (Entity (Id)) = E_Return_Statement
          and then Is_Build_In_Place_Function
                     (Return_Applies_To (Entity (Id)));

      --  Normal processing with HSS present

      declare
         EH  : constant List_Id := Exception_Handlers (HSS);
         Ent : Entity_Id        := Empty;
         S   : Entity_Id;

         Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
         --  Recursively save value of this global, will be restored on exit

      begin
         --  Initialize unblocked exit count for statements of begin block
         --  plus one for each exception handler that is present.

         Unblocked_Exit_Count := 1;

         if Present (EH) then
            Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
         end if;

         --  If a label is present analyze it and mark it as referenced

         if Present (Id) then
            Analyze (Id);
            Ent := Entity (Id);

            --  An error defense. If we have an identifier, but no entity, then
            --  something is wrong. If previous errors, then just remove the
            --  identifier and continue, otherwise raise an exception.

            if No (Ent) then
               Check_Error_Detected;
               Set_Identifier (N, Empty);

            else
               Set_Ekind (Ent, E_Block);
               Generate_Reference (Ent, N, ' ');
               Generate_Definition (Ent);

               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Ent), N);
               end if;
            end if;
         end if;

         --  If no entity set, create a label entity

         if No (Ent) then
            Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
            Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
            Set_Parent (Ent, N);
         end if;

         Set_Etype (Ent, Standard_Void_Type);
         Set_Block_Node (Ent, Identifier (N));
         Push_Scope (Ent);

         --  The block served as an extended return statement. Ensure that any
         --  entities created during the analysis and expansion of the return
         --  object declaration are once again visible.

         if Is_BIP_Return_Statement then
            Install_Return_Entities (Ent);
         end if;

         if Present (Decls) then
            Analyze_Declarations (Decls);
            Check_Completion;
            Inspect_Deferred_Constant_Completion (Decls);
         end if;

         Analyze (HSS);
         Process_End_Label (HSS, 'e', Ent);

         --  If exception handlers are present, then we indicate that enclosing
         --  scopes contain a block with handlers. We only need to mark non-
         --  generic scopes.

         if Present (EH) then
            S := Scope (Ent);
            loop
               Set_Has_Nested_Block_With_Handler (S);
               exit when Is_Overloadable (S)
                 or else Ekind (S) = E_Package
                 or else Is_Generic_Unit (S);
               S := Scope (S);
            end loop;
         end if;

         Check_References (Ent);
         Warn_On_Useless_Assignments (Ent);
         End_Scope;

         if Unblocked_Exit_Count = 0 then
            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
            Check_Unreachable_Code (N);
         else
            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         end if;
      end;
   end Analyze_Block_Statement;

   ----------------------------
   -- Analyze_Case_Statement --
   ----------------------------

   procedure Analyze_Case_Statement (N : Node_Id) is
      Exp            : Node_Id;
      Exp_Type       : Entity_Id;
      Exp_Btype      : Entity_Id;
      Last_Choice    : Nat;

      Others_Present : Boolean;
      --  Indicates if Others was present

      pragma Warnings (Off, Last_Choice);
      --  Don't care about assigned value

      Statements_Analyzed : Boolean := False;
      --  Set True if at least some statement sequences get analyzed. If False
      --  on exit, means we had a serious error that prevented full analysis of
      --  the case statement, and as a result it is not a good idea to output
      --  warning messages about unreachable code.

      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
      --  Recursively save value of this global, will be restored on exit

      procedure Non_Static_Choice_Error (Choice : Node_Id);
      --  Error routine invoked by the generic instantiation below when the
      --  case statement has a non static choice.

      procedure Process_Statements (Alternative : Node_Id);
      --  Analyzes the statements associated with a case alternative. Needed
      --  by instantiation below.

      package Analyze_Case_Choices is new
        Generic_Analyze_Choices
          (Process_Associated_Node   => Process_Statements);
      use Analyze_Case_Choices;
      --  Instantiation of the generic choice analysis package

      package Check_Case_Choices is new
        Generic_Check_Choices
          (Process_Empty_Choice      => No_OP,
           Process_Non_Static_Choice => Non_Static_Choice_Error,
           Process_Associated_Node   => No_OP);
      use Check_Case_Choices;
      --  Instantiation of the generic choice processing package

      -----------------------------
      -- Non_Static_Choice_Error --
      -----------------------------

      procedure Non_Static_Choice_Error (Choice : Node_Id) is
      begin
         Flag_Non_Static_Expr
           ("choice given in case statement is not static!", Choice);
      end Non_Static_Choice_Error;

      ------------------------
      -- Process_Statements --
      ------------------------

      procedure Process_Statements (Alternative : Node_Id) is
         Choices : constant List_Id := Discrete_Choices (Alternative);
         Ent     : Entity_Id;

      begin
         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
         Statements_Analyzed := True;

         --  An interesting optimization. If the case statement expression
         --  is a simple entity, then we can set the current value within an
         --  alternative if the alternative has one possible value.

         --    case N is
         --      when 1      => alpha
         --      when 2 | 3  => beta
         --      when others => gamma

         --  Here we know that N is initially 1 within alpha, but for beta and
         --  gamma, we do not know anything more about the initial value.

         if Is_Entity_Name (Exp) then
            Ent := Entity (Exp);

            if Ekind_In (Ent, E_Variable,
                              E_In_Out_Parameter,
                              E_Out_Parameter)
            then
               if List_Length (Choices) = 1
                 and then Nkind (First (Choices)) in N_Subexpr
                 and then Compile_Time_Known_Value (First (Choices))
               then
                  Set_Current_Value (Entity (Exp), First (Choices));
               end if;

               Analyze_Statements (Statements (Alternative));

               --  After analyzing the case, set the current value to empty
               --  since we won't know what it is for the next alternative
               --  (unless reset by this same circuit), or after the case.

               Set_Current_Value (Entity (Exp), Empty);
               return;
            end if;
         end if;

         --  Case where expression is not an entity name of a variable

         Analyze_Statements (Statements (Alternative));
      end Process_Statements;

   --  Start of processing for Analyze_Case_Statement

   begin
      Unblocked_Exit_Count := 0;
      Exp := Expression (N);
      Analyze (Exp);

      --  The expression must be of any discrete type. In rare cases, the
      --  expander constructs a case statement whose expression has a private
      --  type whose full view is discrete. This can happen when generating
      --  a stream operation for a variant type after the type is frozen,
      --  when the partial of view of the type of the discriminant is private.
      --  In that case, use the full view to analyze case alternatives.

      if not Is_Overloaded (Exp)
        and then not Comes_From_Source (N)
        and then Is_Private_Type (Etype (Exp))
        and then Present (Full_View (Etype (Exp)))
        and then Is_Discrete_Type (Full_View (Etype (Exp)))
      then
         Resolve (Exp, Etype (Exp));
         Exp_Type := Full_View (Etype (Exp));

      else
         Analyze_And_Resolve (Exp, Any_Discrete);
         Exp_Type := Etype (Exp);
      end if;

      Check_Unset_Reference (Exp);
      Exp_Btype := Base_Type (Exp_Type);

      --  The expression must be of a discrete type which must be determinable
      --  independently of the context in which the expression occurs, but
      --  using the fact that the expression must be of a discrete type.
      --  Moreover, the type this expression must not be a character literal
      --  (which is always ambiguous) or, for Ada-83, a generic formal type.

      --  If error already reported by Resolve, nothing more to do

      if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
         return;

      elsif Exp_Btype = Any_Character then
         Error_Msg_N
           ("character literal as case expression is ambiguous", Exp);
         return;

      elsif Ada_Version = Ada_83
        and then (Is_Generic_Type (Exp_Btype)
                   or else Is_Generic_Type (Root_Type (Exp_Btype)))
      then
         Error_Msg_N
           ("(Ada 83) case expression cannot be of a generic type", Exp);
         return;
      end if;

      --  If the case expression is a formal object of mode in out, then treat
      --  it as having a nonstatic subtype by forcing use of the base type
      --  (which has to get passed to Check_Case_Choices below). Also use base
      --  type when the case expression is parenthesized.

      if Paren_Count (Exp) > 0
        or else (Is_Entity_Name (Exp)
                  and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
      then
         Exp_Type := Exp_Btype;
      end if;

      --  Call instantiated procedures to analyzwe and check discrete choices

      Analyze_Choices (Alternatives (N), Exp_Type);
      Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);

      --  Case statement with single OTHERS alternative not allowed in SPARK

      if Others_Present and then List_Length (Alternatives (N)) = 1 then
         Check_SPARK_Restriction
           ("OTHERS as unique case alternative is not allowed", N);
      end if;

      if Exp_Type = Universal_Integer and then not Others_Present then
         Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
      end if;

      --  If all our exits were blocked by unconditional transfers of control,
      --  then the entire CASE statement acts as an unconditional transfer of
      --  control, so treat it like one, and check unreachable code. Skip this
      --  test if we had serious errors preventing any statement analysis.

      if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         Check_Unreachable_Code (N);
      else
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
      end if;

      --  If the expander is active it will detect the case of a statically
      --  determined single alternative and remove warnings for the case, but
      --  if we are not doing expansion, that circuit won't be active. Here we
      --  duplicate the effect of removing warnings in the same way, so that
      --  we will get the same set of warnings in -gnatc mode.

      if not Expander_Active
        and then Compile_Time_Known_Value (Expression (N))
        and then Serious_Errors_Detected = 0
      then
         declare
            Chosen : constant Node_Id := Find_Static_Alternative (N);
            Alt    : Node_Id;

         begin
            Alt := First (Alternatives (N));
            while Present (Alt) loop
               if Alt /= Chosen then
                  Remove_Warning_Messages (Statements (Alt));
               end if;

               Next (Alt);
            end loop;
         end;
      end if;
   end Analyze_Case_Statement;

   ----------------------------
   -- Analyze_Exit_Statement --
   ----------------------------

   --  If the exit includes a name, it must be the name of a currently open
   --  loop. Otherwise there must be an innermost open loop on the stack, to
   --  which the statement implicitly refers.

   --  Additionally, in SPARK mode:

   --    The exit can only name the closest enclosing loop;

   --    An exit with a when clause must be directly contained in a loop;

   --    An exit without a when clause must be directly contained in an
   --    if-statement with no elsif or else, which is itself directly contained
   --    in a loop. The exit must be the last statement in the if-statement.

   procedure Analyze_Exit_Statement (N : Node_Id) is
      Target   : constant Node_Id := Name (N);
      Cond     : constant Node_Id := Condition (N);
      Scope_Id : Entity_Id;
      U_Name   : Entity_Id;
      Kind     : Entity_Kind;

   begin
      if No (Cond) then
         Check_Unreachable_Code (N);
      end if;

      if Present (Target) then
         Analyze (Target);
         U_Name := Entity (Target);

         if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
            Error_Msg_N ("invalid loop name in exit statement", N);
            return;

         else
            if Has_Loop_In_Inner_Open_Scopes (U_Name) then
               Check_SPARK_Restriction
                 ("exit label must name the closest enclosing loop", N);
            end if;

            Set_Has_Exit (U_Name);
         end if;

      else
         U_Name := Empty;
      end if;

      for J in reverse 0 .. Scope_Stack.Last loop
         Scope_Id := Scope_Stack.Table (J).Entity;
         Kind := Ekind (Scope_Id);

         if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
            Set_Has_Exit (Scope_Id);
            exit;

         elsif Kind = E_Block
           or else Kind = E_Loop
           or else Kind = E_Return_Statement
         then
            null;

         else
            Error_Msg_N
              ("cannot exit from program unit or accept statement", N);
            return;
         end if;
      end loop;

      --  Verify that if present the condition is a Boolean expression

      if Present (Cond) then
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
      end if;

      --  In SPARK mode, verify that the exit statement respects the SPARK
      --  restrictions.

      if Present (Cond) then
         if Nkind (Parent (N)) /= N_Loop_Statement then
            Check_SPARK_Restriction
              ("exit with when clause must be directly in loop", N);
         end if;

      else
         if Nkind (Parent (N)) /= N_If_Statement then
            if Nkind (Parent (N)) = N_Elsif_Part then
               Check_SPARK_Restriction
                 ("exit must be in IF without ELSIF", N);
            else
               Check_SPARK_Restriction ("exit must be directly in IF", N);
            end if;

         elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
            Check_SPARK_Restriction
              ("exit must be in IF directly in loop", N);

         --  First test the presence of ELSE, so that an exit in an ELSE leads
         --  to an error mentioning the ELSE.

         elsif Present (Else_Statements (Parent (N))) then
            Check_SPARK_Restriction ("exit must be in IF without ELSE", N);

         --  An exit in an ELSIF does not reach here, as it would have been
         --  detected in the case (Nkind (Parent (N)) /= N_If_Statement).

         elsif Present (Elsif_Parts (Parent (N))) then
            Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
         end if;
      end if;

      --  Chain exit statement to associated loop entity

      Set_Next_Exit_Statement  (N, First_Exit_Statement (Scope_Id));
      Set_First_Exit_Statement (Scope_Id, N);

      --  Since the exit may take us out of a loop, any previous assignment
      --  statement is not useless, so clear last assignment indications. It
      --  is OK to keep other current values, since if the exit statement
      --  does not exit, then the current values are still valid.

      Kill_Current_Values (Last_Assignment_Only => True);
   end Analyze_Exit_Statement;

   ----------------------------
   -- Analyze_Goto_Statement --
   ----------------------------

   procedure Analyze_Goto_Statement (N : Node_Id) is
      Label       : constant Node_Id := Name (N);
      Scope_Id    : Entity_Id;
      Label_Scope : Entity_Id;
      Label_Ent   : Entity_Id;

   begin
      Check_SPARK_Restriction ("goto statement is not allowed", N);

      --  Actual semantic checks

      Check_Unreachable_Code (N);
      Kill_Current_Values (Last_Assignment_Only => True);

      Analyze (Label);
      Label_Ent := Entity (Label);

      --  Ignore previous error

      if Label_Ent = Any_Id then
         Check_Error_Detected;
         return;

      --  We just have a label as the target of a goto

      elsif Ekind (Label_Ent) /= E_Label then
         Error_Msg_N ("target of goto statement must be a label", Label);
         return;

      --  Check that the target of the goto is reachable according to Ada
      --  scoping rules. Note: the special gotos we generate for optimizing
      --  local handling of exceptions would violate these rules, but we mark
      --  such gotos as analyzed when built, so this code is never entered.

      elsif not Reachable (Label_Ent) then
         Error_Msg_N ("target of goto statement is not reachable", Label);
         return;
      end if;

      --  Here if goto passes initial validity checks

      Label_Scope := Enclosing_Scope (Label_Ent);

      for J in reverse 0 .. Scope_Stack.Last loop
         Scope_Id := Scope_Stack.Table (J).Entity;

         if Label_Scope = Scope_Id
           or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
         then
            if Scope_Id /= Label_Scope then
               Error_Msg_N
                 ("cannot exit from program unit or accept statement", N);
            end if;

            return;
         end if;
      end loop;

      raise Program_Error;
   end Analyze_Goto_Statement;

   --------------------------
   -- Analyze_If_Statement --
   --------------------------

   --  A special complication arises in the analysis of if statements

   --  The expander has circuitry to completely delete code that it can tell
   --  will not be executed (as a result of compile time known conditions). In
   --  the analyzer, we ensure that code that will be deleted in this manner
   --  is analyzed but not expanded. This is obviously more efficient, but
   --  more significantly, difficulties arise if code is expanded and then
   --  eliminated (e.g. exception table entries disappear). Similarly, itypes
   --  generated in deleted code must be frozen from start, because the nodes
   --  on which they depend will not be available at the freeze point.

   procedure Analyze_If_Statement (N : Node_Id) is
      E : Node_Id;

      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
      --  Recursively save value of this global, will be restored on exit

      Save_In_Deleted_Code : Boolean;

      Del : Boolean := False;
      --  This flag gets set True if a True condition has been found, which
      --  means that remaining ELSE/ELSIF parts are deleted.

      procedure Analyze_Cond_Then (Cnode : Node_Id);
      --  This is applied to either the N_If_Statement node itself or to an
      --  N_Elsif_Part node. It deals with analyzing the condition and the THEN
      --  statements associated with it.

      -----------------------
      -- Analyze_Cond_Then --
      -----------------------

      procedure Analyze_Cond_Then (Cnode : Node_Id) is
         Cond : constant Node_Id := Condition (Cnode);
         Tstm : constant List_Id := Then_Statements (Cnode);

      begin
         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
         Set_Current_Value_Condition (Cnode);

         --  If already deleting, then just analyze then statements

         if Del then
            Analyze_Statements (Tstm);

         --  Compile time known value, not deleting yet

         elsif Compile_Time_Known_Value (Cond) then
            Save_In_Deleted_Code := In_Deleted_Code;

            --  If condition is True, then analyze the THEN statements and set
            --  no expansion for ELSE and ELSIF parts.

            if Is_True (Expr_Value (Cond)) then
               Analyze_Statements (Tstm);
               Del := True;
               Expander_Mode_Save_And_Set (False);
               In_Deleted_Code := True;

            --  If condition is False, analyze THEN with expansion off

            else -- Is_False (Expr_Value (Cond))
               Expander_Mode_Save_And_Set (False);
               In_Deleted_Code := True;
               Analyze_Statements (Tstm);
               Expander_Mode_Restore;
               In_Deleted_Code := Save_In_Deleted_Code;
            end if;

         --  Not known at compile time, not deleting, normal analysis

         else
            Analyze_Statements (Tstm);
         end if;
      end Analyze_Cond_Then;

   --  Start of Analyze_If_Statement

   begin
      --  Initialize exit count for else statements. If there is no else part,
      --  this count will stay non-zero reflecting the fact that the uncovered
      --  else case is an unblocked exit.

      Unblocked_Exit_Count := 1;
      Analyze_Cond_Then (N);

      --  Now to analyze the elsif parts if any are present

      if Present (Elsif_Parts (N)) then
         E := First (Elsif_Parts (N));
         while Present (E) loop
            Analyze_Cond_Then (E);
            Next (E);
         end loop;
      end if;

      if Present (Else_Statements (N)) then
         Analyze_Statements (Else_Statements (N));
      end if;

      --  If all our exits were blocked by unconditional transfers of control,
      --  then the entire IF statement acts as an unconditional transfer of
      --  control, so treat it like one, and check unreachable code.

      if Unblocked_Exit_Count = 0 then
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         Check_Unreachable_Code (N);
      else
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
      end if;

      if Del then
         Expander_Mode_Restore;
         In_Deleted_Code := Save_In_Deleted_Code;
      end if;

      if not Expander_Active
        and then Compile_Time_Known_Value (Condition (N))
        and then Serious_Errors_Detected = 0
      then
         if Is_True (Expr_Value (Condition (N))) then
            Remove_Warning_Messages (Else_Statements (N));

            if Present (Elsif_Parts (N)) then
               E := First (Elsif_Parts (N));
               while Present (E) loop
                  Remove_Warning_Messages (Then_Statements (E));
                  Next (E);
               end loop;
            end if;

         else
            Remove_Warning_Messages (Then_Statements (N));
         end if;
      end if;

      --  Warn on redundant if statement that has no effect

      --  Note, we could also check empty ELSIF parts ???

      if Warn_On_Redundant_Constructs

        --  If statement must be from source

        and then Comes_From_Source (N)

        --  Condition must not have obvious side effect

        and then Has_No_Obvious_Side_Effects (Condition (N))

        --  No elsif parts of else part

        and then No (Elsif_Parts (N))
        and then No (Else_Statements (N))

        --  Then must be a single null statement

        and then List_Length (Then_Statements (N)) = 1
      then
         --  Go to original node, since we may have rewritten something as
         --  a null statement (e.g. a case we could figure the outcome of).

         declare
            T : constant Node_Id := First (Then_Statements (N));
            S : constant Node_Id := Original_Node (T);

         begin
            if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
               Error_Msg_N ("if statement has no effect?r?", N);
            end if;
         end;
      end if;
   end Analyze_If_Statement;

   ----------------------------------------
   -- Analyze_Implicit_Label_Declaration --
   ----------------------------------------

   --  An implicit label declaration is generated in the innermost enclosing
   --  declarative part. This is done for labels, and block and loop names.

   --  Note: any changes in this routine may need to be reflected in
   --  Analyze_Label_Entity.

   procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
      Id : constant Node_Id := Defining_Identifier (N);
   begin
      Enter_Name          (Id);
      Set_Ekind           (Id, E_Label);
      Set_Etype           (Id, Standard_Void_Type);
      Set_Enclosing_Scope (Id, Current_Scope);
   end Analyze_Implicit_Label_Declaration;

   ------------------------------
   -- Analyze_Iteration_Scheme --
   ------------------------------

   procedure Analyze_Iteration_Scheme (N : Node_Id) is
      Cond      : Node_Id;
      Iter_Spec : Node_Id;
      Loop_Spec : Node_Id;

   begin
      --  For an infinite loop, there is no iteration scheme

      if No (N) then
         return;
      end if;

      Cond      := Condition (N);
      Iter_Spec := Iterator_Specification (N);
      Loop_Spec := Loop_Parameter_Specification (N);

      if Present (Cond) then
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
         Set_Current_Value_Condition (N);

      elsif Present (Iter_Spec) then
         Analyze_Iterator_Specification (Iter_Spec);

      else
         Analyze_Loop_Parameter_Specification (Loop_Spec);
      end if;
   end Analyze_Iteration_Scheme;

   ------------------------------------
   -- Analyze_Iterator_Specification --
   ------------------------------------

   procedure Analyze_Iterator_Specification (N : Node_Id) is
      Loc       : constant Source_Ptr := Sloc (N);
      Def_Id    : constant Node_Id    := Defining_Identifier (N);
      Subt      : constant Node_Id    := Subtype_Indication (N);
      Iter_Name : constant Node_Id    := Name (N);

      Ent : Entity_Id;
      Typ : Entity_Id;
      Bas : Entity_Id;

   begin
      Enter_Name (Def_Id);

      if Present (Subt) then
         Analyze (Subt);

         --  Save type of subtype indication for subsequent check

         if Nkind (Subt) = N_Subtype_Indication then
            Bas := Entity (Subtype_Mark (Subt));
         else
            Bas := Entity (Subt);
         end if;
      end if;

      Preanalyze_Range (Iter_Name);

      --  Set the kind of the loop variable, which is not visible within
      --  the iterator name.

      Set_Ekind (Def_Id, E_Variable);

      --  Provide a link between the iterator variable and the container, for
      --  subsequent use in cross-reference and modification information.

      if Of_Present (N) then
         Set_Related_Expression (Def_Id, Iter_Name);
      end if;

      --  If the domain of iteration is an expression, create a declaration for
      --  it, so that finalization actions are introduced outside of the loop.
      --  The declaration must be a renaming because the body of the loop may
      --  assign to elements.

      if not Is_Entity_Name (Iter_Name)

        --  When the context is a quantified expression, the renaming
        --  declaration is delayed until the expansion phase if we are
        --  doing expansion.

        and then (Nkind (Parent (N)) /= N_Quantified_Expression
                   or else Operating_Mode = Check_Semantics)

        --  Do not perform this expansion in SPARK mode, since the formal
        --  verification directly deals with the source form of the iterator.
        --  Ditto for ASIS, where the temporary may hide the transformation
        --  of a selected component into a prefixed function call.

        and then not GNATprove_Mode
        and then not ASIS_Mode
      then
         declare
            Id   : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
            Decl : Node_Id;

         begin
            Typ := Etype (Iter_Name);

            --  Protect against malformed iterator

            if Typ = Any_Type then
               Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
               return;
            end if;

            --  The name in the renaming declaration may be a function call.
            --  Indicate that it does not come from source, to suppress
            --  spurious warnings on renamings of parameterless functions,
            --  a common enough idiom in user-defined iterators.

            Decl :=
              Make_Object_Renaming_Declaration (Loc,
                Defining_Identifier => Id,
                Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
                Name                =>
                  New_Copy_Tree (Iter_Name, New_Sloc => Loc));

            Insert_Actions (Parent (Parent (N)), New_List (Decl));
            Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
            Set_Etype (Id, Typ);
            Set_Etype (Name (N), Typ);
         end;

      --  Container is an entity or an array with uncontrolled components, or
      --  else it is a container iterator given by a function call, typically
      --  called Iterate in the case of predefined containers, even though
      --  Iterate is not a reserved name. What matters is that the return type
      --  of the function is an iterator type.

      elsif Is_Entity_Name (Iter_Name) then
         Analyze (Iter_Name);

         if Nkind (Iter_Name) = N_Function_Call then
            declare
               C  : constant Node_Id := Name (Iter_Name);
               I  : Interp_Index;
               It : Interp;

            begin
               if not Is_Overloaded (Iter_Name) then
                  Resolve (Iter_Name, Etype (C));

               else
                  Get_First_Interp (C, I, It);
                  while It.Typ /= Empty loop
                     if Reverse_Present (N) then
                        if Is_Reversible_Iterator (It.Typ) then
                           Resolve (Iter_Name, It.Typ);
                           exit;
                        end if;

                     elsif Is_Iterator (It.Typ) then
                        Resolve (Iter_Name, It.Typ);
                        exit;
                     end if;

                     Get_Next_Interp (I, It);
                  end loop;
               end if;
            end;

         --  Domain of iteration is not overloaded

         else
            Resolve (Iter_Name, Etype (Iter_Name));
         end if;
      end if;

      --  Get base type of container, for proper retrieval of Cursor type
      --  and primitive operations.

      Typ := Base_Type (Etype (Iter_Name));

      if Is_Array_Type (Typ) then
         if Of_Present (N) then
            Set_Etype (Def_Id, Component_Type (Typ));

            if Present (Subt)
              and then Base_Type (Bas) /= Base_Type (Component_Type (Typ))
            then
               Error_Msg_N
                 ("subtype indication does not match component type", Subt);
            end if;

         --  Here we have a missing Range attribute

         else
            Error_Msg_N
              ("missing Range attribute in iteration over an array", N);

            --  In Ada 2012 mode, this may be an attempt at an iterator

            if Ada_Version >= Ada_2012 then
               Error_Msg_NE
                 ("\if& is meant to designate an element of the array, use OF",
                    N, Def_Id);
            end if;

            --  Prevent cascaded errors

            Set_Ekind (Def_Id, E_Loop_Parameter);
            Set_Etype (Def_Id, Etype (First_Index (Typ)));
         end if;

         --  Check for type error in iterator

      elsif Typ = Any_Type then
         return;

      --  Iteration over a container

      else
         Set_Ekind (Def_Id, E_Loop_Parameter);
         Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));

         --  OF present

         if Of_Present (N) then
            if Has_Aspect (Typ, Aspect_Iterable) then
               if No (Get_Iterable_Type_Primitive (Typ, Name_Element)) then
                  Error_Msg_N ("missing Element primitive for iteration", N);
               end if;

            --  For a predefined container, The type of the loop variable is
            --  the Iterator_Element aspect of the container type.

            else
               declare
                  Element : constant Entity_Id :=
                    Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);

               begin
                  if No (Element) then
                     Error_Msg_NE ("cannot iterate over&", N, Typ);
                     return;

                  else
                     Set_Etype (Def_Id, Entity (Element));

                     --  If subtype indication was given, verify that it
                     --  matches element type of container.

                     if Present (Subt)
                       and then Bas /= Base_Type (Etype (Def_Id))
                     then
                        Error_Msg_N
                          ("subtype indication does not match element type",
                           Subt);
                     end if;

                     --  If the container has a variable indexing aspect, the
                     --  element is a variable and is modifiable in the loop.

                     if Has_Aspect (Typ, Aspect_Variable_Indexing) then
                        Set_Ekind (Def_Id, E_Variable);
                     end if;
                  end if;
               end;
            end if;

         --  OF not present

         else
            --  For an iteration of the form IN, the name must denote an
            --  iterator, typically the result of a call to Iterate. Give a
            --  useful error message when the name is a container by itself.

            --  The type may be a formal container type, which has to have
            --  an Iterable aspect detailing the required primitives.

            if Is_Entity_Name (Original_Node (Name (N)))
              and then not Is_Iterator (Typ)
            then
               if Has_Aspect (Typ, Aspect_Iterable) then
                  null;

               elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
                  Error_Msg_NE
                    ("cannot iterate over&", Name (N), Typ);
               else
                  Error_Msg_N
                    ("name must be an iterator, not a container", Name (N));
               end if;

               if Has_Aspect (Typ, Aspect_Iterable) then
                  null;
               else
                  Error_Msg_NE
                    ("\to iterate directly over the elements of a container, "
                     & "write `of &`", Name (N), Original_Node (Name (N)));
               end if;
            end if;

            --  The result type of Iterate function is the classwide type of
            --  the interface parent. We need the specific Cursor type defined
            --  in the container package. We obtain it by name for a predefined
            --  container, or through the Iterable aspect for a formal one.

            if Has_Aspect (Typ, Aspect_Iterable) then
               Set_Etype (Def_Id,
                 Get_Cursor_Type
                   (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
                    Typ));
               Ent := Etype (Def_Id);

            else
               Ent := First_Entity (Scope (Typ));
               while Present (Ent) loop
                  if Chars (Ent) = Name_Cursor then
                     Set_Etype (Def_Id, Etype (Ent));
                     exit;
                  end if;

                  Next_Entity (Ent);
               end loop;
            end if;
         end if;
      end if;

      --  A loop parameter cannot be volatile. This check is peformed only
      --  when SPARK_Mode is on as it is not a standard Ada legality check
      --  (SPARK RM 7.1.3(6)).

      --  Not clear whether this applies to element iterators, where the
      --  cursor is not an explicit entity ???

      if SPARK_Mode = On
        and then not Of_Present (N)
        and then Is_SPARK_Volatile_Object (Ent)
      then
         Error_Msg_N ("loop parameter cannot be volatile", Ent);
      end if;
   end Analyze_Iterator_Specification;

   -------------------
   -- Analyze_Label --
   -------------------

   --  Note: the semantic work required for analyzing labels (setting them as
   --  reachable) was done in a prepass through the statements in the block,
   --  so that forward gotos would be properly handled. See Analyze_Statements
   --  for further details. The only processing required here is to deal with
   --  optimizations that depend on an assumption of sequential control flow,
   --  since of course the occurrence of a label breaks this assumption.

   procedure Analyze_Label (N : Node_Id) is
      pragma Warnings (Off, N);
   begin
      Kill_Current_Values;
   end Analyze_Label;

   --------------------------
   -- Analyze_Label_Entity --
   --------------------------

   procedure Analyze_Label_Entity (E : Entity_Id) is
   begin
      Set_Ekind           (E, E_Label);
      Set_Etype           (E, Standard_Void_Type);
      Set_Enclosing_Scope (E, Current_Scope);
      Set_Reachable       (E, True);
   end Analyze_Label_Entity;

   ------------------------------------------
   -- Analyze_Loop_Parameter_Specification --
   ------------------------------------------

   procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
      Loop_Nod : constant Node_Id := Parent (Parent (N));

      procedure Check_Controlled_Array_Attribute (DS : Node_Id);
      --  If the bounds are given by a 'Range reference on a function call
      --  that returns a controlled array, introduce an explicit declaration
      --  to capture the bounds, so that the function result can be finalized
      --  in timely fashion.

      function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
      --  N is the node for an arbitrary construct. This function searches the
      --  construct N to see if any expressions within it contain function
      --  calls that use the secondary stack, returning True if any such call
      --  is found, and False otherwise.

      procedure Process_Bounds (R : Node_Id);
      --  If the iteration is given by a range, create temporaries and
      --  assignment statements block to capture the bounds and perform
      --  required finalization actions in case a bound includes a function
      --  call that uses the temporary stack. We first pre-analyze a copy of
      --  the range in order to determine the expected type, and analyze and
      --  resolve the original bounds.

      --------------------------------------
      -- Check_Controlled_Array_Attribute --
      --------------------------------------

      procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
      begin
         if Nkind (DS) = N_Attribute_Reference
           and then Is_Entity_Name (Prefix (DS))
           and then Ekind (Entity (Prefix (DS))) = E_Function
           and then Is_Array_Type (Etype (Entity (Prefix (DS))))
           and then
             Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
           and then Expander_Active
         then
            declare
               Loc  : constant Source_Ptr := Sloc (N);
               Arr  : constant Entity_Id := Etype (Entity (Prefix (DS)));
               Indx : constant Entity_Id :=
                        Base_Type (Etype (First_Index (Arr)));
               Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
               Decl : Node_Id;

            begin
               Decl :=
                 Make_Subtype_Declaration (Loc,
                   Defining_Identifier => Subt,
                   Subtype_Indication  =>
                      Make_Subtype_Indication (Loc,
                        Subtype_Mark => New_Occurrence_Of (Indx, Loc),
                        Constraint   =>
                          Make_Range_Constraint (Loc, Relocate_Node (DS))));
               Insert_Before (Loop_Nod, Decl);
               Analyze (Decl);

               Rewrite (DS,
                 Make_Attribute_Reference (Loc,
                   Prefix         => New_Occurrence_Of (Subt, Loc),
                   Attribute_Name => Attribute_Name (DS)));

               Analyze (DS);
            end;
         end if;
      end Check_Controlled_Array_Attribute;

      ------------------------------------
      -- Has_Call_Using_Secondary_Stack --
      ------------------------------------

      function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is

         function Check_Call (N : Node_Id) return Traverse_Result;
         --  Check if N is a function call which uses the secondary stack

         ----------------
         -- Check_Call --
         ----------------

         function Check_Call (N : Node_Id) return Traverse_Result is
            Nam        : Node_Id;
            Subp       : Entity_Id;
            Return_Typ : Entity_Id;

         begin
            if Nkind (N) = N_Function_Call then
               Nam := Name (N);

               --  Call using access to subprogram with explicit dereference

               if Nkind (Nam) = N_Explicit_Dereference then
                  Subp := Etype (Nam);

               --  Call using a selected component notation or Ada 2005 object
               --  operation notation

               elsif Nkind (Nam) = N_Selected_Component then
                  Subp := Entity (Selector_Name (Nam));

               --  Common case

               else
                  Subp := Entity (Nam);
               end if;

               Return_Typ := Etype (Subp);

               if Is_Composite_Type (Return_Typ)
                 and then not Is_Constrained (Return_Typ)
               then
                  return Abandon;

               elsif Sec_Stack_Needed_For_Return (Subp) then
                  return Abandon;
               end if;
            end if;

            --  Continue traversing the tree

            return OK;
         end Check_Call;

         function Check_Calls is new Traverse_Func (Check_Call);

      --  Start of processing for Has_Call_Using_Secondary_Stack

      begin
         return Check_Calls (N) = Abandon;
      end Has_Call_Using_Secondary_Stack;

      --------------------
      -- Process_Bounds --
      --------------------

      procedure Process_Bounds (R : Node_Id) is
         Loc : constant Source_Ptr := Sloc (N);

         function One_Bound
           (Original_Bound : Node_Id;
            Analyzed_Bound : Node_Id;
            Typ            : Entity_Id) return Node_Id;
         --  Capture value of bound and return captured value

         ---------------
         -- One_Bound --
         ---------------

         function One_Bound
           (Original_Bound : Node_Id;
            Analyzed_Bound : Node_Id;
            Typ            : Entity_Id) return Node_Id
         is
            Assign : Node_Id;
            Decl   : Node_Id;
            Id     : Entity_Id;

         begin
            --  If the bound is a constant or an object, no need for a separate
            --  declaration. If the bound is the result of previous expansion
            --  it is already analyzed and should not be modified. Note that
            --  the Bound will be resolved later, if needed, as part of the
            --  call to Make_Index (literal bounds may need to be resolved to
            --  type Integer).

            if Analyzed (Original_Bound) then
               return Original_Bound;

            elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
                                            N_Character_Literal)
              or else Is_Entity_Name (Analyzed_Bound)
            then
               Analyze_And_Resolve (Original_Bound, Typ);
               return Original_Bound;
            end if;

            --  Normally, the best approach is simply to generate a constant
            --  declaration that captures the bound. However, there is a nasty
            --  case where this is wrong. If the bound is complex, and has a
            --  possible use of the secondary stack, we need to generate a
            --  separate assignment statement to ensure the creation of a block
            --  which will release the secondary stack.

            --  We prefer the constant declaration, since it leaves us with a
            --  proper trace of the value, useful in optimizations that get rid
            --  of junk range checks.

            if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
               Analyze_And_Resolve (Original_Bound, Typ);

               --  Ensure that the bound is valid. This check should not be
               --  generated when the range belongs to a quantified expression
               --  as the construct is still not expanded into its final form.

               if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
                 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
               then
                  Ensure_Valid (Original_Bound);
               end if;

               Force_Evaluation (Original_Bound);
               return Original_Bound;
            end if;

            Id := Make_Temporary (Loc, 'R', Original_Bound);

            --  Here we make a declaration with a separate assignment
            --  statement, and insert before loop header.

            Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier => Id,
                Object_Definition   => New_Occurrence_Of (Typ, Loc));

            Assign :=
              Make_Assignment_Statement (Loc,
                Name        => New_Occurrence_Of (Id, Loc),
                Expression  => Relocate_Node (Original_Bound));

            Insert_Actions (Loop_Nod, New_List (Decl, Assign));

            --  Now that this temporary variable is initialized we decorate it
            --  as safe-to-reevaluate to inform to the backend that no further
            --  asignment will be issued and hence it can be handled as side
            --  effect free. Note that this decoration must be done when the
            --  assignment has been analyzed because otherwise it will be
            --  rejected (see Analyze_Assignment).

            Set_Is_Safe_To_Reevaluate (Id);

            Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));

            if Nkind (Assign) = N_Assignment_Statement then
               return Expression (Assign);
            else
               return Original_Bound;
            end if;
         end One_Bound;

         Hi     : constant Node_Id := High_Bound (R);
         Lo     : constant Node_Id := Low_Bound  (R);
         R_Copy : constant Node_Id := New_Copy_Tree (R);
         New_Hi : Node_Id;
         New_Lo : Node_Id;
         Typ    : Entity_Id;

      --  Start of processing for Process_Bounds

      begin
         Set_Parent (R_Copy, Parent (R));
         Preanalyze_Range (R_Copy);
         Typ := Etype (R_Copy);

         --  If the type of the discrete range is Universal_Integer, then the
         --  bound's type must be resolved to Integer, and any object used to
         --  hold the bound must also have type Integer, unless the literal
         --  bounds are constant-folded expressions with a user-defined type.

         if Typ = Universal_Integer then
            if Nkind (Lo) = N_Integer_Literal
              and then Present (Etype (Lo))
              and then Scope (Etype (Lo)) /= Standard_Standard
            then
               Typ := Etype (Lo);

            elsif Nkind (Hi) = N_Integer_Literal
              and then Present (Etype (Hi))
              and then Scope (Etype (Hi)) /= Standard_Standard
            then
               Typ := Etype (Hi);

            else
               Typ := Standard_Integer;
            end if;
         end if;

         Set_Etype (R, Typ);

         New_Lo := One_Bound (Lo, Low_Bound  (R_Copy), Typ);
         New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);

         --  Propagate staticness to loop range itself, in case the
         --  corresponding subtype is static.

         if New_Lo /= Lo and then Is_Static_Expression (New_Lo) then
            Rewrite (Low_Bound (R), New_Copy (New_Lo));
         end if;

         if New_Hi /= Hi and then Is_Static_Expression (New_Hi) then
            Rewrite (High_Bound (R), New_Copy (New_Hi));
         end if;
      end Process_Bounds;

      --  Local variables

      DS : constant Node_Id   := Discrete_Subtype_Definition (N);
      Id : constant Entity_Id := Defining_Identifier (N);

      DS_Copy : Node_Id;

   --  Start of processing for Analyze_Loop_Parameter_Specification

   begin
      Enter_Name (Id);

      --  We always consider the loop variable to be referenced, since the loop
      --  may be used just for counting purposes.

      Generate_Reference (Id, N, ' ');

      --  Check for the case of loop variable hiding a local variable (used
      --  later on to give a nice warning if the hidden variable is never
      --  assigned).

      declare
         H : constant Entity_Id := Homonym (Id);
      begin
         if Present (H)
           and then Ekind (H) = E_Variable
           and then Is_Discrete_Type (Etype (H))
           and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
         then
            Set_Hiding_Loop_Variable (H, Id);
         end if;
      end;

      --  Loop parameter specification must include subtype mark in SPARK

      if Nkind (DS) = N_Range then
         Check_SPARK_Restriction
           ("loop parameter specification must include subtype mark", N);
      end if;

      --  Analyze the subtype definition and create temporaries for the bounds.
      --  Do not evaluate the range when preanalyzing a quantified expression
      --  because bounds expressed as function calls with side effects will be
      --  erroneously replicated.

      if Nkind (DS) = N_Range
        and then Expander_Active
        and then Nkind (Parent (N)) /= N_Quantified_Expression
      then
         Process_Bounds (DS);

      --  Either the expander not active or the range of iteration is a subtype
      --  indication, an entity, or a function call that yields an aggregate or
      --  a container.

      else
         DS_Copy := New_Copy_Tree (DS);
         Set_Parent (DS_Copy, Parent (DS));
         Preanalyze_Range (DS_Copy);

         --  Ada 2012: If the domain of iteration is:

         --  a)  a function call,
         --  b)  an identifier that is not a type,
         --  c)  an attribute reference 'Old (within a postcondition)

         --  then it is an iteration over a container. It was classified as
         --  a loop specification by the parser, and must be rewritten now
         --  to activate container iteration.

         if Nkind (DS_Copy) = N_Function_Call
           or else (Is_Entity_Name (DS_Copy)
                     and then not Is_Type (Entity (DS_Copy)))
           or else (Nkind (DS_Copy) = N_Attribute_Reference
                     and then Attribute_Name (DS_Copy) = Name_Old)
         then
            --  This is an iterator specification. Rewrite it as such and
            --  analyze it to capture function calls that may require
            --  finalization actions.

            declare
               I_Spec : constant Node_Id :=
                          Make_Iterator_Specification (Sloc (N),
                            Defining_Identifier => Relocate_Node (Id),
                            Name                => DS_Copy,
                            Subtype_Indication  => Empty,
                            Reverse_Present     => Reverse_Present (N));
               Scheme : constant Node_Id := Parent (N);

            begin
               Set_Iterator_Specification (Scheme, I_Spec);
               Set_Loop_Parameter_Specification (Scheme, Empty);
               Analyze_Iterator_Specification (I_Spec);

               --  In a generic context, analyze the original domain of
               --  iteration, for name capture.

               if not Expander_Active then
                  Analyze (DS);
               end if;

               --  Set kind of loop parameter, which may be used in the
               --  subsequent analysis of the condition in a quantified
               --  expression.

               Set_Ekind (Id, E_Loop_Parameter);
               return;
            end;

         --  Domain of iteration is not a function call, and is side-effect
         --  free.

         else
            --  A quantified expression that appears in a pre/post condition
            --  is pre-analyzed several times.  If the range is given by an
            --  attribute reference it is rewritten as a range, and this is
            --  done even with expansion disabled. If the type is already set
            --  do not reanalyze, because a range with static bounds may be
            --  typed Integer by default.

            if Nkind (Parent (N)) = N_Quantified_Expression
              and then Present (Etype (DS))
            then
               null;
            else
               Analyze (DS);
            end if;
         end if;
      end if;

      if DS = Error then
         return;
      end if;

      --  Some additional checks if we are iterating through a type

      if Is_Entity_Name (DS)
        and then Present (Entity (DS))
        and then Is_Type (Entity (DS))
      then
         --  The subtype indication may denote the completion of an incomplete
         --  type declaration.

         if Ekind (Entity (DS)) = E_Incomplete_Type then
            Set_Entity (DS, Get_Full_View (Entity (DS)));
            Set_Etype  (DS, Entity (DS));
         end if;

         --  Attempt to iterate through non-static predicate. Note that a type
         --  with inherited predicates may have both static and dynamic forms.
         --  In this case it is not sufficent to check the static predicate
         --  function only, look for a dynamic predicate aspect as well.

         if Is_Discrete_Type (Entity (DS))
           and then Present (Predicate_Function (Entity (DS)))
           and then (No (Static_Predicate (Entity (DS)))
                      or else Has_Dynamic_Predicate_Aspect (Entity (DS)))
         then
            Bad_Predicated_Subtype_Use
              ("cannot use subtype& with non-static predicate for loop " &
               "iteration", DS, Entity (DS), Suggest_Static => True);
         end if;
      end if;

      --  Error if not discrete type

      if not Is_Discrete_Type (Etype (DS)) then
         Wrong_Type (DS, Any_Discrete);
         Set_Etype (DS, Any_Type);
      end if;

      Check_Controlled_Array_Attribute (DS);

      Make_Index (DS, N, In_Iter_Schm => True);
      Set_Ekind (Id, E_Loop_Parameter);

      --  A quantified expression which appears in a pre- or post-condition may
      --  be analyzed multiple times. The analysis of the range creates several
      --  itypes which reside in different scopes depending on whether the pre-
      --  or post-condition has been expanded. Update the type of the loop
      --  variable to reflect the proper itype at each stage of analysis.

      if No (Etype (Id))
        or else Etype (Id) = Any_Type
        or else
          (Present (Etype (Id))
            and then Is_Itype (Etype (Id))
            and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
            and then Nkind (Original_Node (Parent (Loop_Nod))) =
                                                   N_Quantified_Expression)
      then
         Set_Etype (Id, Etype (DS));
      end if;

      --  Treat a range as an implicit reference to the type, to inhibit
      --  spurious warnings.

      Generate_Reference (Base_Type (Etype (DS)), N, ' ');
      Set_Is_Known_Valid (Id, True);

      --  The loop is not a declarative part, so the loop variable must be
      --  frozen explicitly. Do not freeze while preanalyzing a quantified
      --  expression because the freeze node will not be inserted into the
      --  tree due to flag Is_Spec_Expression being set.

      if Nkind (Parent (N)) /= N_Quantified_Expression then
         declare
            Flist : constant List_Id := Freeze_Entity (Id, N);
         begin
            if Is_Non_Empty_List (Flist) then
               Insert_Actions (N, Flist);
            end if;
         end;
      end if;

      --  Case where we have a range or a subtype, get type bounds

      if Nkind_In (DS, N_Range, N_Subtype_Indication)
        and then not Error_Posted (DS)
        and then Etype (DS) /= Any_Type
        and then Is_Discrete_Type (Etype (DS))
      then
         declare
            L : Node_Id;
            H : Node_Id;

         begin
            if Nkind (DS) = N_Range then
               L := Low_Bound  (DS);
               H := High_Bound (DS);
            else
               L :=
                 Type_Low_Bound  (Underlying_Type (Etype (Subtype_Mark (DS))));
               H :=
                 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
            end if;

            --  Check for null or possibly null range and issue warning. We
            --  suppress such messages in generic templates and instances,
            --  because in practice they tend to be dubious in these cases. The
            --  check applies as well to rewritten array element loops where a
            --  null range may be detected statically.

            if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then

               --  Suppress the warning if inside a generic template or
               --  instance, since in practice they tend to be dubious in these
               --  cases since they can result from intended parameterization.

               if not Inside_A_Generic and then not In_Instance then

                  --  Specialize msg if invalid values could make the loop
                  --  non-null after all.

                  if Compile_Time_Compare
                       (L, H, Assume_Valid => False) = GT
                  then
                     --  Since we know the range of the loop is null, set the
                     --  appropriate flag to remove the loop entirely during
                     --  expansion.

                     Set_Is_Null_Loop (Loop_Nod);

                     if Comes_From_Source (N) then
                        Error_Msg_N
                          ("??loop range is null, loop will not execute", DS);
                     end if;

                     --  Here is where the loop could execute because of
                     --  invalid values, so issue appropriate message and in
                     --  this case we do not set the Is_Null_Loop flag since
                     --  the loop may execute.

                  elsif Comes_From_Source (N) then
                     Error_Msg_N
                       ("??loop range may be null, loop may not execute",
                        DS);
                     Error_Msg_N
                       ("??can only execute if invalid values are present",
                        DS);
                  end if;
               end if;

               --  In either case, suppress warnings in the body of the loop,
               --  since it is likely that these warnings will be inappropriate
               --  if the loop never actually executes, which is likely.

               Set_Suppress_Loop_Warnings (Loop_Nod);

               --  The other case for a warning is a reverse loop where the
               --  upper bound is the integer literal zero or one, and the
               --  lower bound may exceed this value.

               --  For example, we have

               --     for J in reverse N .. 1 loop

               --  In practice, this is very likely to be a case of reversing
               --  the bounds incorrectly in the range.

            elsif Reverse_Present (N)
              and then Nkind (Original_Node (H)) = N_Integer_Literal
              and then
                (Intval (Original_Node (H)) = Uint_0
                  or else
                 Intval (Original_Node (H)) = Uint_1)
            then
               --  Lower bound may in fact be known and known not to exceed
               --  upper bound (e.g. reverse 0 .. 1) and that's OK.

               if Compile_Time_Known_Value (L)
                 and then Expr_Value (L) <= Expr_Value (H)
               then
                  null;

               --  Otherwise warning is warranted

               else
                  Error_Msg_N ("??loop range may be null", DS);
                  Error_Msg_N ("\??bounds may be wrong way round", DS);
               end if;
            end if;

            --  Check if either bound is known to be outside the range of the
            --  loop parameter type, this is e.g. the case of a loop from
            --  20..X where the type is 1..19.

            --  Such a loop is dubious since either it raises CE or it executes
            --  zero times, and that cannot be useful!

            if Etype (DS) /= Any_Type
              and then not Error_Posted (DS)
              and then Nkind (DS) = N_Subtype_Indication
              and then Nkind (Constraint (DS)) = N_Range_Constraint
            then
               declare
                  LLo : constant Node_Id :=
                          Low_Bound  (Range_Expression (Constraint (DS)));
                  LHi : constant Node_Id :=
                          High_Bound (Range_Expression (Constraint (DS)));

                  Bad_Bound : Node_Id := Empty;
                  --  Suspicious loop bound

               begin
                  --  At this stage L, H are the bounds of the type, and LLo
                  --  Lhi are the low bound and high bound of the loop.

                  if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
                       or else
                     Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
                  then
                     Bad_Bound := LLo;
                  end if;

                  if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
                       or else
                     Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
                  then
                     Bad_Bound := LHi;
                  end if;

                  if Present (Bad_Bound) then
                     Error_Msg_N
                       ("suspicious loop bound out of range of "
                        & "loop subtype??", Bad_Bound);
                     Error_Msg_N
                       ("\loop executes zero times or raises "
                        & "Constraint_Error??", Bad_Bound);
                  end if;
               end;
            end if;

         --  This declare block is about warnings, if we get an exception while
         --  testing for warnings, we simply abandon the attempt silently. This
         --  most likely occurs as the result of a previous error, but might
         --  just be an obscure case we have missed. In either case, not giving
         --  the warning is perfectly acceptable.

         exception
            when others => null;
         end;
      end if;

      --  A loop parameter cannot be volatile. This check is peformed only
      --  when SPARK_Mode is on as it is not a standard Ada legality check
      --  (SPARK RM 7.1.3(6)).

      if SPARK_Mode = On and then Is_SPARK_Volatile_Object (Id) then
         Error_Msg_N ("loop parameter cannot be volatile", Id);
      end if;
   end Analyze_Loop_Parameter_Specification;

   ----------------------------
   -- Analyze_Loop_Statement --
   ----------------------------

   procedure Analyze_Loop_Statement (N : Node_Id) is

      function Is_Container_Iterator (Iter : Node_Id) return Boolean;
      --  Given a loop iteration scheme, determine whether it is an Ada 2012
      --  container iteration.

      function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
      --  Determine whether node N is the sole statement of a block

      ---------------------------
      -- Is_Container_Iterator --
      ---------------------------

      function Is_Container_Iterator (Iter : Node_Id) return Boolean is
      begin
         --  Infinite loop

         if No (Iter) then
            return False;

         --  While loop

         elsif Present (Condition (Iter)) then
            return False;

         --  for Def_Id in [reverse] Name loop
         --  for Def_Id [: Subtype_Indication] of [reverse] Name loop

         elsif Present (Iterator_Specification (Iter)) then
            declare
               Nam : constant Node_Id := Name (Iterator_Specification (Iter));
               Nam_Copy : Node_Id;

            begin
               Nam_Copy := New_Copy_Tree (Nam);
               Set_Parent (Nam_Copy, Parent (Nam));
               Preanalyze_Range (Nam_Copy);

               --  The only two options here are iteration over a container or
               --  an array.

               return not Is_Array_Type (Etype (Nam_Copy));
            end;

         --  for Def_Id in [reverse] Discrete_Subtype_Definition loop

         else
            declare
               LP : constant Node_Id := Loop_Parameter_Specification (Iter);
               DS : constant Node_Id := Discrete_Subtype_Definition (LP);
               DS_Copy : Node_Id;

            begin
               DS_Copy := New_Copy_Tree (DS);
               Set_Parent (DS_Copy, Parent (DS));
               Preanalyze_Range (DS_Copy);

               --  Check for a call to Iterate ()

               return
                 Nkind (DS_Copy) = N_Function_Call
                   and then Needs_Finalization (Etype (DS_Copy));
            end;
         end if;
      end Is_Container_Iterator;

      -------------------------
      -- Is_Wrapped_In_Block --
      -------------------------

      function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
         HSS : constant Node_Id := Parent (N);

      begin
         return
           Nkind (HSS) = N_Handled_Sequence_Of_Statements
             and then Nkind (Parent (HSS)) = N_Block_Statement
             and then First (Statements (HSS)) = N
             and then No (Next (First (Statements (HSS))));
      end Is_Wrapped_In_Block;

      --  Local declarations

      Id   : constant Node_Id := Identifier (N);
      Iter : constant Node_Id := Iteration_Scheme (N);
      Loc  : constant Source_Ptr := Sloc (N);
      Ent  : Entity_Id;
      Stmt : Node_Id;

   --  Start of processing for Analyze_Loop_Statement

   begin
      if Present (Id) then

         --  Make name visible, e.g. for use in exit statements. Loop labels
         --  are always considered to be referenced.

         Analyze (Id);
         Ent := Entity (Id);

         --  Guard against serious error (typically, a scope mismatch when
         --  semantic analysis is requested) by creating loop entity to
         --  continue analysis.

         if No (Ent) then
            if Total_Errors_Detected /= 0 then
               Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
            else
               raise Program_Error;
            end if;

         else
            Generate_Reference (Ent, N, ' ');
            Generate_Definition (Ent);

            --  If we found a label, mark its type. If not, ignore it, since it
            --  means we have a conflicting declaration, which would already
            --  have been diagnosed at declaration time. Set Label_Construct
            --  of the implicit label declaration, which is not created by the
            --  parser for generic units.

            if Ekind (Ent) = E_Label then
               Set_Ekind (Ent, E_Loop);

               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Ent), N);
               end if;
            end if;
         end if;

      --  Case of no identifier present

      else
         Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
         Set_Etype  (Ent, Standard_Void_Type);
         Set_Parent (Ent, N);
      end if;

      --  Iteration over a container in Ada 2012 involves the creation of a
      --  controlled iterator object. Wrap the loop in a block to ensure the
      --  timely finalization of the iterator and release of container locks.
      --  The same applies to the use of secondary stack when obtaining an
      --  iterator.

      if Ada_Version >= Ada_2012
        and then Is_Container_Iterator (Iter)
        and then not Is_Wrapped_In_Block (N)
      then
         declare
            Block_Nod : Node_Id;
            Block_Id  : Entity_Id;

         begin
            Block_Nod :=
              Make_Block_Statement (Loc,
                Declarations               => New_List,
                Handled_Statement_Sequence =>
                  Make_Handled_Sequence_Of_Statements (Loc,
                    Statements => New_List (Relocate_Node (N))));

            Add_Block_Identifier (Block_Nod, Block_Id);

            --  The expansion of iterator loops generates an iterator in order
            --  to traverse the elements of a container:

            --    Iter : <iterator type> := Iterate (Container)'reference;

            --  The iterator is controlled and returned on the secondary stack.
            --  The analysis of the call to Iterate establishes a transient
            --  scope to deal with the secondary stack management, but never
            --  really creates a physical block as this would kill the iterator
            --  too early (see Wrap_Transient_Declaration). To address this
            --  case, mark the generated block as needing secondary stack
            --  management.

            Set_Uses_Sec_Stack (Block_Id);

            Rewrite (N, Block_Nod);
            Analyze (N);
            return;
         end;
      end if;

      --  Kill current values on entry to loop, since statements in the body of
      --  the loop may have been executed before the loop is entered. Similarly
      --  we kill values after the loop, since we do not know that the body of
      --  the loop was executed.

      Kill_Current_Values;
      Push_Scope (Ent);
      Analyze_Iteration_Scheme (Iter);

      --  Check for following case which merits a warning if the type E of is
      --  a multi-dimensional array (and no explicit subscript ranges present).

      --      for J in E'Range
      --         for K in E'Range

      if Present (Iter)
        and then Present (Loop_Parameter_Specification (Iter))
      then
         declare
            LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
            DSD : constant Node_Id :=
                    Original_Node (Discrete_Subtype_Definition (LPS));
         begin
            if Nkind (DSD) = N_Attribute_Reference
              and then Attribute_Name (DSD) = Name_Range
              and then No (Expressions (DSD))
            then
               declare
                  Typ : constant Entity_Id := Etype (Prefix (DSD));
               begin
                  if Is_Array_Type (Typ)
                    and then Number_Dimensions (Typ) > 1
                    and then Nkind (Parent (N)) = N_Loop_Statement
                    and then Present (Iteration_Scheme (Parent (N)))
                  then
                     declare
                        OIter : constant Node_Id :=
                          Iteration_Scheme (Parent (N));
                        OLPS  : constant Node_Id :=
                          Loop_Parameter_Specification (OIter);
                        ODSD  : constant Node_Id :=
                          Original_Node (Discrete_Subtype_Definition (OLPS));
                     begin
                        if Nkind (ODSD) = N_Attribute_Reference
                          and then Attribute_Name (ODSD) = Name_Range
                          and then No (Expressions (ODSD))
                          and then Etype (Prefix (ODSD)) = Typ
                        then
                           Error_Msg_Sloc := Sloc (ODSD);
                           Error_Msg_N
                             ("inner range same as outer range#??", DSD);
                        end if;
                     end;
                  end if;
               end;
            end if;
         end;
      end if;

      --  Analyze the statements of the body except in the case of an Ada 2012
      --  iterator with the expander active. In this case the expander will do
      --  a rewrite of the loop into a while loop. We will then analyze the
      --  loop body when we analyze this while loop.

      --  We need to do this delay because if the container is for indefinite
      --  types the actual subtype of the components will only be determined
      --  when the cursor declaration is analyzed.

      --  If the expander is not active, or in SPARK mode, then we want to
      --  analyze the loop body now even in the Ada 2012 iterator case, since
      --  the rewriting will not be done. Insert the loop variable in the
      --  current scope, if not done when analysing the iteration scheme.

      if No (Iter)
        or else No (Iterator_Specification (Iter))
        or else not Expander_Active
      then
         if Present (Iter)
           and then Present (Iterator_Specification (Iter))
         then
            declare
               Id : constant Entity_Id :=
                      Defining_Identifier (Iterator_Specification (Iter));
            begin
               if Scope (Id) /= Current_Scope then
                  Enter_Name (Id);
               end if;
            end;
         end if;

         Analyze_Statements (Statements (N));
      end if;

      --  When the iteration scheme of a loop contains attribute 'Loop_Entry,
      --  the loop is transformed into a conditional block. Retrieve the loop.

      Stmt := N;

      if Subject_To_Loop_Entry_Attributes (Stmt) then
         Stmt := Find_Loop_In_Conditional_Block (Stmt);
      end if;

      --  Finish up processing for the loop. We kill all current values, since
      --  in general we don't know if the statements in the loop have been
      --  executed. We could do a bit better than this with a loop that we
      --  know will execute at least once, but it's not worth the trouble and
      --  the front end is not in the business of flow tracing.

      Process_End_Label (Stmt, 'e', Ent);
      End_Scope;
      Kill_Current_Values;

      --  Check for infinite loop. Skip check for generated code, since it
      --  justs waste time and makes debugging the routine called harder.

      --  Note that we have to wait till the body of the loop is fully analyzed
      --  before making this call, since Check_Infinite_Loop_Warning relies on
      --  being able to use semantic visibility information to find references.

      if Comes_From_Source (Stmt) then
         Check_Infinite_Loop_Warning (Stmt);
      end if;

      --  Code after loop is unreachable if the loop has no WHILE or FOR and
      --  contains no EXIT statements within the body of the loop.

      if No (Iter) and then not Has_Exit (Ent) then
         Check_Unreachable_Code (Stmt);
      end if;
   end Analyze_Loop_Statement;

   ----------------------------
   -- Analyze_Null_Statement --
   ----------------------------

   --  Note: the semantics of the null statement is implemented by a single
   --  null statement, too bad everything isn't as simple as this.

   procedure Analyze_Null_Statement (N : Node_Id) is
      pragma Warnings (Off, N);
   begin
      null;
   end Analyze_Null_Statement;

   ------------------------
   -- Analyze_Statements --
   ------------------------

   procedure Analyze_Statements (L : List_Id) is
      S   : Node_Id;
      Lab : Entity_Id;

   begin
      --  The labels declared in the statement list are reachable from
      --  statements in the list. We do this as a prepass so that any goto
      --  statement will be properly flagged if its target is not reachable.
      --  This is not required, but is nice behavior.

      S := First (L);
      while Present (S) loop
         if Nkind (S) = N_Label then
            Analyze (Identifier (S));
            Lab := Entity (Identifier (S));

            --  If we found a label mark it as reachable

            if Ekind (Lab) = E_Label then
               Generate_Definition (Lab);
               Set_Reachable (Lab);

               if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Lab), S);
               end if;

            --  If we failed to find a label, it means the implicit declaration
            --  of the label was hidden.  A for-loop parameter can do this to
            --  a label with the same name inside the loop, since the implicit
            --  label declaration is in the innermost enclosing body or block
            --  statement.

            else
               Error_Msg_Sloc := Sloc (Lab);
               Error_Msg_N
                 ("implicit label declaration for & is hidden#",
                  Identifier (S));
            end if;
         end if;

         Next (S);
      end loop;

      --  Perform semantic analysis on all statements

      Conditional_Statements_Begin;

      S := First (L);
      while Present (S) loop
         Analyze (S);

         --  Remove dimension in all statements

         Remove_Dimension_In_Statement (S);
         Next (S);
      end loop;

      Conditional_Statements_End;

      --  Make labels unreachable. Visibility is not sufficient, because labels
      --  in one if-branch for example are not reachable from the other branch,
      --  even though their declarations are in the enclosing declarative part.

      S := First (L);
      while Present (S) loop
         if Nkind (S) = N_Label then
            Set_Reachable (Entity (Identifier (S)), False);
         end if;

         Next (S);
      end loop;
   end Analyze_Statements;

   ----------------------------
   -- Check_Unreachable_Code --
   ----------------------------

   procedure Check_Unreachable_Code (N : Node_Id) is
      Error_Node : Node_Id;
      P          : Node_Id;

   begin
      if Is_List_Member (N) and then Comes_From_Source (N) then
         declare
            Nxt : Node_Id;

         begin
            Nxt := Original_Node (Next (N));

            --  Skip past pragmas

            while Nkind (Nxt) = N_Pragma loop
               Nxt := Original_Node (Next (Nxt));
            end loop;

            --  If a label follows us, then we never have dead code, since
            --  someone could branch to the label, so we just ignore it, unless
            --  we are in formal mode where goto statements are not allowed.

            if Nkind (Nxt) = N_Label
              and then not Restriction_Check_Required (SPARK_05)
            then
               return;

            --  Otherwise see if we have a real statement following us

            elsif Present (Nxt)
              and then Comes_From_Source (Nxt)
              and then Is_Statement (Nxt)
            then
               --  Special very annoying exception. If we have a return that
               --  follows a raise, then we allow it without a warning, since
               --  the Ada RM annoyingly requires a useless return here.

               if Nkind (Original_Node (N)) /= N_Raise_Statement
                 or else Nkind (Nxt) /= N_Simple_Return_Statement
               then
                  --  The rather strange shenanigans with the warning message
                  --  here reflects the fact that Kill_Dead_Code is very good
                  --  at removing warnings in deleted code, and this is one
                  --  warning we would prefer NOT to have removed.

                  Error_Node := Nxt;

                  --  If we have unreachable code, analyze and remove the
                  --  unreachable code, since it is useless and we don't
                  --  want to generate junk warnings.

                  --  We skip this step if we are not in code generation mode.
                  --  This is the one case where we remove dead code in the
                  --  semantics as opposed to the expander, and we do not want
                  --  to remove code if we are not in code generation mode,
                  --  since this messes up the ASIS trees.

                  --  Note that one might react by moving the whole circuit to
                  --  exp_ch5, but then we lose the warning in -gnatc mode.

                  if Operating_Mode = Generate_Code then
                     loop
                        Nxt := Next (N);

                        --  Quit deleting when we have nothing more to delete
                        --  or if we hit a label (since someone could transfer
                        --  control to a label, so we should not delete it).

                        exit when No (Nxt) or else Nkind (Nxt) = N_Label;

                        --  Statement/declaration is to be deleted

                        Analyze (Nxt);
                        Remove (Nxt);
                        Kill_Dead_Code (Nxt);
                     end loop;
                  end if;

                  --  Now issue the warning (or error in formal mode)

                  if Restriction_Check_Required (SPARK_05) then
                     Check_SPARK_Restriction
                       ("unreachable code is not allowed", Error_Node);
                  else
                     Error_Msg ("??unreachable code!", Sloc (Error_Node));
                  end if;
               end if;

            --  If the unconditional transfer of control instruction is the
            --  last statement of a sequence, then see if our parent is one of
            --  the constructs for which we count unblocked exits, and if so,
            --  adjust the count.

            else
               P := Parent (N);

               --  Statements in THEN part or ELSE part of IF statement

               if Nkind (P) = N_If_Statement then
                  null;

               --  Statements in ELSIF part of an IF statement

               elsif Nkind (P) = N_Elsif_Part then
                  P := Parent (P);
                  pragma Assert (Nkind (P) = N_If_Statement);

               --  Statements in CASE statement alternative

               elsif Nkind (P) = N_Case_Statement_Alternative then
                  P := Parent (P);
                  pragma Assert (Nkind (P) = N_Case_Statement);

               --  Statements in body of block

               elsif Nkind (P) = N_Handled_Sequence_Of_Statements
                 and then Nkind (Parent (P)) = N_Block_Statement
               then
                  --  The original loop is now placed inside a block statement
                  --  due to the expansion of attribute 'Loop_Entry. Return as
                  --  this is not a "real" block for the purposes of exit
                  --  counting.

                  if Nkind (N) = N_Loop_Statement
                    and then Subject_To_Loop_Entry_Attributes (N)
                  then
                     return;
                  end if;

               --  Statements in exception handler in a block

               elsif Nkind (P) = N_Exception_Handler
                 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
                 and then Nkind (Parent (Parent (P))) = N_Block_Statement
               then
                  null;

               --  None of these cases, so return

               else
                  return;
               end if;

               --  This was one of the cases we are looking for (i.e. the
               --  parent construct was IF, CASE or block) so decrement count.

               Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
            end if;
         end;
      end if;
   end Check_Unreachable_Code;

   ----------------------
   -- Preanalyze_Range --
   ----------------------

   procedure Preanalyze_Range (R_Copy : Node_Id) is
      Save_Analysis : constant Boolean := Full_Analysis;
      Typ           : Entity_Id;

   begin
      Full_Analysis := False;
      Expander_Mode_Save_And_Set (False);

      Analyze (R_Copy);

      if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then

         --  Apply preference rules for range of predefined integer types, or
         --  diagnose true ambiguity.

         declare
            I     : Interp_Index;
            It    : Interp;
            Found : Entity_Id := Empty;

         begin
            Get_First_Interp (R_Copy, I, It);
            while Present (It.Typ) loop
               if Is_Discrete_Type (It.Typ) then
                  if No (Found) then
                     Found := It.Typ;
                  else
                     if Scope (Found) = Standard_Standard then
                        null;

                     elsif Scope (It.Typ) = Standard_Standard then
                        Found := It.Typ;

                     else
                        --  Both of them are user-defined

                        Error_Msg_N
                          ("ambiguous bounds in range of iteration", R_Copy);
                        Error_Msg_N ("\possible interpretations:", R_Copy);
                        Error_Msg_NE ("\\} ", R_Copy, Found);
                        Error_Msg_NE ("\\} ", R_Copy, It.Typ);
                        exit;
                     end if;
                  end if;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;
      end if;

      --  Subtype mark in iteration scheme

      if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
         null;

      --  Expression in range, or Ada 2012 iterator

      elsif Nkind (R_Copy) in N_Subexpr then
         Resolve (R_Copy);
         Typ := Etype (R_Copy);

         if Is_Discrete_Type (Typ) then
            null;

         --  Check that the resulting object is an iterable container

         elsif Has_Aspect (Typ, Aspect_Iterator_Element)
           or else Has_Aspect (Typ, Aspect_Constant_Indexing)
           or else Has_Aspect (Typ, Aspect_Variable_Indexing)
         then
            null;

         --  The expression may yield an implicit reference to an iterable
         --  container. Insert explicit dereference so that proper type is
         --  visible in the loop.

         elsif Has_Implicit_Dereference (Etype (R_Copy)) then
            declare
               Disc : Entity_Id;

            begin
               Disc := First_Discriminant (Typ);
               while Present (Disc) loop
                  if Has_Implicit_Dereference (Disc) then
                     Build_Explicit_Dereference (R_Copy, Disc);
                     exit;
                  end if;

                  Next_Discriminant (Disc);
               end loop;
            end;

         end if;
      end if;

      Expander_Mode_Restore;
      Full_Analysis := Save_Analysis;
   end Preanalyze_Range;

end Sem_Ch5;