aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/s-osprim-mingw.adb
blob: a2c466406c4fef9585f9a38833cc5ec1d2fed88c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
------------------------------------------------------------------------------
--                                                                          --
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
--                                                                          --
--                  S Y S T E M . O S _ P R I M I T I V E S                 --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1998-2013, Free Software Foundation, Inc.         --
--                                                                          --
-- GNARL is free software; you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNARL was developed by the GNARL team at Florida State University.       --
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
--                                                                          --
------------------------------------------------------------------------------

--  This is the NT version of this package

with System.Task_Lock;
with System.Win32.Ext;

package body System.OS_Primitives is

   use System.Task_Lock;
   use System.Win32;
   use System.Win32.Ext;

   ----------------------------------------
   -- Data for the high resolution clock --
   ----------------------------------------

   Tick_Frequency : aliased LARGE_INTEGER;
   --  Holds frequency of high-performance counter used by Clock
   --  Windows NT uses a 1_193_182 Hz counter on PCs.

   Base_Monotonic_Ticks : LARGE_INTEGER;
   --  Holds the Tick count for the base monotonic time

   Base_Monotonic_Clock : Duration;
   --  Holds the current clock for monotonic clock's base time

   type Clock_Data is record
      Base_Ticks : LARGE_INTEGER;
      --  Holds the Tick count for the base time

      Base_Time : Long_Long_Integer;
      --  Holds the base time used to check for system time change, used with
      --  the standard clock.

      Base_Clock : Duration;
      --  Holds the current clock for the standard clock's base time
   end record;

   type Clock_Data_Access is access all Clock_Data;

   --  Two base clock buffers. This is used to be able to update a buffer while
   --  the other buffer is read. The point is that we do not want to use a lock
   --  inside the Clock routine for performance reasons. We still use a lock
   --  in the Get_Base_Time which is called very rarely. Current is a pointer,
   --  the pragma Atomic is there to ensure that the value can be set or read
   --  atomically. That's it, when Get_Base_Time has updated a buffer the
   --  switch to the new value is done by changing Current pointer.

   First, Second : aliased Clock_Data;

   Current : Clock_Data_Access := First'Access;
   pragma Atomic (Current);

   --  The following signature is to detect change on the base clock data
   --  above. The signature is a modular type, it will wrap around without
   --  raising an exception. We would need to have exactly 2**32 updates of
   --  the base data for the changes to get undetected.

   type Signature_Type is mod 2**32;
   Signature     : Signature_Type := 0;
   pragma Atomic (Signature);

   procedure Get_Base_Time (Data : out Clock_Data);
   --  Retrieve the base time and base ticks. These values will be used by
   --  clock to compute the current time by adding to it a fraction of the
   --  performance counter. This is for the implementation of a
   --  high-resolution clock. Note that this routine does not change the base
   --  monotonic values used by the monotonic clock.

   -----------
   -- Clock --
   -----------

   --  This implementation of clock provides high resolution timer values
   --  using QueryPerformanceCounter. This call return a 64 bits values (based
   --  on the 8253 16 bits counter). This counter is updated every 1/1_193_182
   --  times per seconds. The call to QueryPerformanceCounter takes 6
   --  microsecs to complete.

   function Clock return Duration is
      Max_Shift            : constant Duration        := 2.0;
      Hundreds_Nano_In_Sec : constant Long_Long_Float := 1.0E7;
      Data                 : Clock_Data;
      Current_Ticks        : aliased LARGE_INTEGER;
      Elap_Secs_Tick       : Duration;
      Elap_Secs_Sys        : Duration;
      Now                  : aliased Long_Long_Integer;
      Sig1, Sig2           : Signature_Type;

   begin
      --  Try ten times to get a coherent set of base data. For this we just
      --  check that the signature hasn't changed during the copy of the
      --  current data.
      --
      --  This loop will always be done once if there is no interleaved call
      --  to Get_Base_Time.

      for K in 1 .. 10 loop
         Sig1 := Signature;
         Data := Current.all;
         Sig2 := Signature;
         exit when Sig1 = Sig2;
      end loop;

      if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
         return 0.0;
      end if;

      GetSystemTimeAsFileTime (Now'Access);

      Elap_Secs_Sys :=
        Duration (Long_Long_Float (abs (Now - Data.Base_Time)) /
                    Hundreds_Nano_In_Sec);

      Elap_Secs_Tick :=
        Duration (Long_Long_Float (Current_Ticks - Data.Base_Ticks) /
                  Long_Long_Float (Tick_Frequency));

      --  If we have a shift of more than Max_Shift seconds we resynchronize
      --  the Clock. This is probably due to a manual Clock adjustment, a DST
      --  adjustment or an NTP synchronisation. And we want to adjust the time
      --  for this system (non-monotonic) clock.

      if abs (Elap_Secs_Sys - Elap_Secs_Tick) > Max_Shift then
         Get_Base_Time (Data);

         Elap_Secs_Tick :=
           Duration (Long_Long_Float (Current_Ticks - Data.Base_Ticks) /
                     Long_Long_Float (Tick_Frequency));
      end if;

      return Data.Base_Clock + Elap_Secs_Tick;
   end Clock;

   -------------------
   -- Get_Base_Time --
   -------------------

   procedure Get_Base_Time (Data : out Clock_Data) is

      --  The resolution for GetSystemTime is 1 millisecond

      --  The time to get both base times should take less than 1 millisecond.
      --  Therefore, the elapsed time reported by GetSystemTime between both
      --  actions should be null.

      epoch_1970     : constant := 16#19D_B1DE_D53E_8000#; -- win32 UTC epoch
      system_time_ns : constant := 100;                    -- 100 ns per tick
      Sec_Unit       : constant := 10#1#E9;

      Max_Elapsed : constant LARGE_INTEGER :=
                         LARGE_INTEGER (Tick_Frequency / 100_000);
      --  Look for a precision of 0.01 ms

      Sig            : constant Signature_Type := Signature;

      Loc_Ticks, Ctrl_Ticks : aliased LARGE_INTEGER;
      Loc_Time, Ctrl_Time   : aliased Long_Long_Integer;
      Elapsed               : LARGE_INTEGER;
      Current_Max           : LARGE_INTEGER := LARGE_INTEGER'Last;
      New_Data              : Clock_Data_Access;

   begin
      --  Here we must be sure that both of these calls are done in a short
      --  amount of time. Both are base time and should in theory be taken
      --  at the very same time.

      --  The goal of the following loop is to synchronize the system time
      --  with the Win32 performance counter by getting a base offset for both.
      --  Using these offsets it is then possible to compute actual time using
      --  a performance counter which has a better precision than the Win32
      --  time API.

      --  Try at most 10 times to reach the best synchronisation (below 1
      --  millisecond) otherwise the runtime will use the best value reached
      --  during the runs.

      Lock;

      --  First check that the current value has not been updated. This
      --  could happen if another task has called Clock at the same time
      --  and that Max_Shift has been reached too.
      --
      --  But if the current value has been changed just before we entered
      --  into the critical section, we can safely return as the current
      --  base data (time, clock, ticks) have already been updated.

      if Sig /= Signature then
         return;
      end if;

      --  Check for the unused data buffer and set New_Data to point to it

      if Current = First'Access then
         New_Data := Second'Access;
      else
         New_Data := First'Access;
      end if;

      for K in 1 .. 10 loop
         if QueryPerformanceCounter (Loc_Ticks'Access) = Win32.FALSE then
            pragma Assert
              (Standard.False,
               "Could not query high performance counter in Clock");
            null;
         end if;

         GetSystemTimeAsFileTime (Ctrl_Time'Access);

         --  Scan for clock tick, will take up to 16ms/1ms depending on PC.
         --  This cannot be an infinite loop or the system hardware is badly
         --  damaged.

         loop
            GetSystemTimeAsFileTime (Loc_Time'Access);

            if QueryPerformanceCounter (Ctrl_Ticks'Access) = Win32.FALSE then
               pragma Assert
                 (Standard.False,
                  "Could not query high performance counter in Clock");
               null;
            end if;

            exit when Loc_Time /= Ctrl_Time;
            Loc_Ticks := Ctrl_Ticks;
         end loop;

         --  Check elapsed Performance Counter between samples
         --  to choose the best one.

         Elapsed := Ctrl_Ticks - Loc_Ticks;

         if Elapsed < Current_Max then
            New_Data.Base_Time   := Loc_Time;
            New_Data.Base_Ticks  := Loc_Ticks;
            Current_Max := Elapsed;

            --  Exit the loop when we have reached the expected precision

            exit when Elapsed <= Max_Elapsed;
         end if;
      end loop;

      New_Data.Base_Clock :=
        Duration
          (Long_Long_Float
            ((New_Data.Base_Time - epoch_1970) * system_time_ns) /
                                               Long_Long_Float (Sec_Unit));

      --  At this point all the base values have been set into the new data
      --  record. Change the pointer (atomic operation) to these new values.

      Current := New_Data;
      Data    := New_Data.all;

      --  Set new signature for this data set

      Signature := Signature + 1;

      Unlock;

   exception
      when others =>
         Unlock;
         raise;
   end Get_Base_Time;

   ---------------------
   -- Monotonic_Clock --
   ---------------------

   function Monotonic_Clock return Duration is
      Current_Ticks  : aliased LARGE_INTEGER;
      Elap_Secs_Tick : Duration;

   begin
      if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
         return 0.0;

      else
         Elap_Secs_Tick :=
           Duration (Long_Long_Float (Current_Ticks - Base_Monotonic_Ticks) /
                       Long_Long_Float (Tick_Frequency));
         return Base_Monotonic_Clock + Elap_Secs_Tick;
      end if;
   end Monotonic_Clock;

   -----------------
   -- Timed_Delay --
   -----------------

   procedure Timed_Delay (Time : Duration; Mode : Integer) is

      function Mode_Clock return Duration;
      pragma Inline (Mode_Clock);
      --  Return the current clock value using either the monotonic clock or
      --  standard clock depending on the Mode value.

      ----------------
      -- Mode_Clock --
      ----------------

      function Mode_Clock return Duration is
      begin
         case Mode is
            when Absolute_RT =>
               return Monotonic_Clock;
            when others =>
               return Clock;
         end case;
      end Mode_Clock;

      --  Local Variables

      Base_Time : constant Duration := Mode_Clock;
      --  Base_Time is used to detect clock set backward, in this case we
      --  cannot ensure the delay accuracy.

      Rel_Time   : Duration;
      Abs_Time   : Duration;
      Check_Time : Duration := Base_Time;

   --  Start of processing for Timed Delay

   begin
      if Mode = Relative then
         Rel_Time := Time;
         Abs_Time := Time + Check_Time;
      else
         Rel_Time := Time - Check_Time;
         Abs_Time := Time;
      end if;

      if Rel_Time > 0.0 then
         loop
            Sleep (DWORD (Rel_Time * 1000.0));
            Check_Time := Mode_Clock;

            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;

            Rel_Time := Abs_Time - Check_Time;
         end loop;
      end if;
   end Timed_Delay;

   ----------------
   -- Initialize --
   ----------------

   Initialized : Boolean := False;

   procedure Initialize is
   begin
      if Initialized then
         return;
      end if;

      Initialized := True;

      --  Get starting time as base

      if QueryPerformanceFrequency (Tick_Frequency'Access) = Win32.FALSE then
         raise Program_Error with
           "cannot get high performance counter frequency";
      end if;

      Get_Base_Time (Current.all);

      --  Keep base clock and ticks for the monotonic clock. These values
      --  should never be changed to ensure proper behavior of the monotonic
      --  clock.

      Base_Monotonic_Clock := Current.Base_Clock;
      Base_Monotonic_Ticks := Current.Base_Ticks;
   end Initialize;

end System.OS_Primitives;