aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/a-ngcoty.adb
blob: 7cf48713a6b03cee1103bddffaa40d9a79a2f478 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--   A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S    --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2010, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Ada.Numerics.Aux; use Ada.Numerics.Aux;

package body Ada.Numerics.Generic_Complex_Types is

   subtype R is Real'Base;

   Two_Pi  : constant R := R (2.0) * Pi;
   Half_Pi : constant R := Pi / R (2.0);

   ---------
   -- "*" --
   ---------

   function "*" (Left, Right : Complex) return Complex is

      Scale : constant R := R (R'Machine_Radix) ** ((R'Machine_Emax - 1) / 2);
      --  In case of overflow, scale the operands by the largest power of the
      --  radix (to avoid rounding error), so that the square of the scale does
      --  not overflow itself.

      X : R;
      Y : R;

   begin
      X := Left.Re * Right.Re - Left.Im * Right.Im;
      Y := Left.Re * Right.Im + Left.Im * Right.Re;

      --  If either component overflows, try to scale (skip in fast math mode)

      if not Standard'Fast_Math then

         --  Note that the test below is written as a negation. This is to
         --  account for the fact that X and Y may be NaNs, because both of
         --  their operands could overflow. Given that all operations on NaNs
         --  return false, the test can only be written thus.

         if not (abs (X) <= R'Last) then
            X := Scale**2 * ((Left.Re / Scale) * (Right.Re / Scale) -
                             (Left.Im / Scale) * (Right.Im / Scale));
         end if;

         if not (abs (Y) <= R'Last) then
            Y := Scale**2 * ((Left.Re / Scale) * (Right.Im / Scale)
                           + (Left.Im / Scale) * (Right.Re / Scale));
         end if;
      end if;

      return (X, Y);
   end "*";

   function "*" (Left, Right : Imaginary) return Real'Base is
   begin
      return -(R (Left) * R (Right));
   end "*";

   function "*" (Left : Complex; Right : Real'Base) return Complex is
   begin
      return Complex'(Left.Re * Right, Left.Im * Right);
   end "*";

   function "*" (Left : Real'Base; Right : Complex) return Complex is
   begin
      return (Left * Right.Re, Left * Right.Im);
   end "*";

   function "*" (Left : Complex; Right : Imaginary) return Complex is
   begin
      return Complex'(-(Left.Im * R (Right)), Left.Re * R (Right));
   end "*";

   function "*" (Left : Imaginary; Right : Complex) return Complex is
   begin
      return Complex'(-(R (Left) * Right.Im), R (Left) * Right.Re);
   end "*";

   function "*" (Left : Imaginary; Right : Real'Base) return Imaginary is
   begin
      return Left * Imaginary (Right);
   end "*";

   function "*" (Left : Real'Base; Right : Imaginary) return Imaginary is
   begin
      return Imaginary (Left * R (Right));
   end "*";

   ----------
   -- "**" --
   ----------

   function "**" (Left : Complex; Right : Integer) return Complex is
      Result : Complex := (1.0, 0.0);
      Factor : Complex := Left;
      Exp    : Integer := Right;

   begin
      --  We use the standard logarithmic approach, Exp gets shifted right
      --  testing successive low order bits and Factor is the value of the
      --  base raised to the next power of 2. For positive exponents we
      --  multiply the result by this factor, for negative exponents, we
      --  divide by this factor.

      if Exp >= 0 then

         --  For a positive exponent, if we get a constraint error during
         --  this loop, it is an overflow, and the constraint error will
         --  simply be passed on to the caller.

         while Exp /= 0 loop
            if Exp rem 2 /= 0 then
               Result := Result * Factor;
            end if;

            Factor := Factor * Factor;
            Exp := Exp / 2;
         end loop;

         return Result;

      else -- Exp < 0 then

         --  For the negative exponent case, a constraint error during this
         --  calculation happens if Factor gets too large, and the proper
         --  response is to return 0.0, since what we essentially have is
         --  1.0 / infinity, and the closest model number will be zero.

         begin
            while Exp /= 0 loop
               if Exp rem 2 /= 0 then
                  Result := Result * Factor;
               end if;

               Factor := Factor * Factor;
               Exp := Exp / 2;
            end loop;

            return R'(1.0) / Result;

         exception
            when Constraint_Error =>
               return (0.0, 0.0);
         end;
      end if;
   end "**";

   function "**" (Left : Imaginary; Right : Integer) return Complex is
      M : constant R := R (Left) ** Right;
   begin
      case Right mod 4 is
         when 0 => return (M,   0.0);
         when 1 => return (0.0, M);
         when 2 => return (-M,  0.0);
         when 3 => return (0.0, -M);
         when others => raise Program_Error;
      end case;
   end "**";

   ---------
   -- "+" --
   ---------

   function "+" (Right : Complex) return Complex is
   begin
      return Right;
   end "+";

   function "+" (Left, Right : Complex) return Complex is
   begin
      return Complex'(Left.Re + Right.Re, Left.Im + Right.Im);
   end "+";

   function "+" (Right : Imaginary) return Imaginary is
   begin
      return Right;
   end "+";

   function "+" (Left, Right : Imaginary) return Imaginary is
   begin
      return Imaginary (R (Left) + R (Right));
   end "+";

   function "+" (Left : Complex; Right : Real'Base) return Complex is
   begin
      return Complex'(Left.Re + Right, Left.Im);
   end "+";

   function "+" (Left : Real'Base; Right : Complex) return Complex is
   begin
      return Complex'(Left + Right.Re, Right.Im);
   end "+";

   function "+" (Left : Complex; Right : Imaginary) return Complex is
   begin
      return Complex'(Left.Re, Left.Im + R (Right));
   end "+";

   function "+" (Left : Imaginary; Right : Complex) return Complex is
   begin
      return Complex'(Right.Re, R (Left) + Right.Im);
   end "+";

   function "+" (Left : Imaginary; Right : Real'Base) return Complex is
   begin
      return Complex'(Right, R (Left));
   end "+";

   function "+" (Left : Real'Base; Right : Imaginary) return Complex is
   begin
      return Complex'(Left, R (Right));
   end "+";

   ---------
   -- "-" --
   ---------

   function "-" (Right : Complex) return Complex is
   begin
      return (-Right.Re, -Right.Im);
   end "-";

   function "-" (Left, Right : Complex) return Complex is
   begin
      return (Left.Re - Right.Re, Left.Im - Right.Im);
   end "-";

   function "-" (Right : Imaginary) return Imaginary is
   begin
      return Imaginary (-R (Right));
   end "-";

   function "-" (Left, Right : Imaginary) return Imaginary is
   begin
      return Imaginary (R (Left) - R (Right));
   end "-";

   function "-" (Left : Complex; Right : Real'Base) return Complex is
   begin
      return Complex'(Left.Re - Right, Left.Im);
   end "-";

   function "-" (Left : Real'Base; Right : Complex) return Complex is
   begin
      return Complex'(Left - Right.Re, -Right.Im);
   end "-";

   function "-" (Left : Complex; Right : Imaginary) return Complex is
   begin
      return Complex'(Left.Re, Left.Im - R (Right));
   end "-";

   function "-" (Left : Imaginary; Right : Complex) return Complex is
   begin
      return Complex'(-Right.Re, R (Left) - Right.Im);
   end "-";

   function "-" (Left : Imaginary; Right : Real'Base) return Complex is
   begin
      return Complex'(-Right, R (Left));
   end "-";

   function "-" (Left : Real'Base; Right : Imaginary) return Complex is
   begin
      return Complex'(Left, -R (Right));
   end "-";

   ---------
   -- "/" --
   ---------

   function "/" (Left, Right : Complex) return Complex is
      a : constant R := Left.Re;
      b : constant R := Left.Im;
      c : constant R := Right.Re;
      d : constant R := Right.Im;

   begin
      if c = 0.0 and then d = 0.0 then
         raise Constraint_Error;
      else
         return Complex'(Re => ((a * c) + (b * d)) / (c ** 2 + d ** 2),
                         Im => ((b * c) - (a * d)) / (c ** 2 + d ** 2));
      end if;
   end "/";

   function "/" (Left, Right : Imaginary) return Real'Base is
   begin
      return R (Left) / R (Right);
   end "/";

   function "/" (Left : Complex; Right : Real'Base) return Complex is
   begin
      return Complex'(Left.Re / Right, Left.Im / Right);
   end "/";

   function "/" (Left : Real'Base; Right : Complex) return Complex is
      a : constant R := Left;
      c : constant R := Right.Re;
      d : constant R := Right.Im;
   begin
      return Complex'(Re =>   (a * c) / (c ** 2 + d ** 2),
                      Im => -((a * d) / (c ** 2 + d ** 2)));
   end "/";

   function "/" (Left : Complex; Right : Imaginary) return Complex is
      a : constant R := Left.Re;
      b : constant R := Left.Im;
      d : constant R := R (Right);

   begin
      return (b / d,  -(a / d));
   end "/";

   function "/" (Left : Imaginary; Right : Complex) return Complex is
      b : constant R := R (Left);
      c : constant R := Right.Re;
      d : constant R := Right.Im;

   begin
      return (Re => b * d / (c ** 2 + d ** 2),
              Im => b * c / (c ** 2 + d ** 2));
   end "/";

   function "/" (Left : Imaginary; Right : Real'Base) return Imaginary is
   begin
      return Imaginary (R (Left) / Right);
   end "/";

   function "/" (Left : Real'Base; Right : Imaginary) return Imaginary is
   begin
      return Imaginary (-(Left / R (Right)));
   end "/";

   ---------
   -- "<" --
   ---------

   function "<" (Left, Right : Imaginary) return Boolean is
   begin
      return R (Left) < R (Right);
   end "<";

   ----------
   -- "<=" --
   ----------

   function "<=" (Left, Right : Imaginary) return Boolean is
   begin
      return R (Left) <= R (Right);
   end "<=";

   ---------
   -- ">" --
   ---------

   function ">" (Left, Right : Imaginary) return Boolean is
   begin
      return R (Left) > R (Right);
   end ">";

   ----------
   -- ">=" --
   ----------

   function ">=" (Left, Right : Imaginary) return Boolean is
   begin
      return R (Left) >= R (Right);
   end ">=";

   -----------
   -- "abs" --
   -----------

   function "abs" (Right : Imaginary) return Real'Base is
   begin
      return abs R (Right);
   end "abs";

   --------------
   -- Argument --
   --------------

   function Argument (X : Complex) return Real'Base is
      a   : constant R := X.Re;
      b   : constant R := X.Im;
      arg : R;

   begin
      if b = 0.0 then

         if a >= 0.0 then
            return 0.0;
         else
            return R'Copy_Sign (Pi, b);
         end if;

      elsif a = 0.0 then

         if b >= 0.0 then
            return Half_Pi;
         else
            return -Half_Pi;
         end if;

      else
         arg := R (Atan (Double (abs (b / a))));

         if a > 0.0 then
            if b > 0.0 then
               return arg;
            else                  --  b < 0.0
               return -arg;
            end if;

         else                     --  a < 0.0
            if b >= 0.0 then
               return Pi - arg;
            else                  --  b < 0.0
               return -(Pi - arg);
            end if;
         end if;
      end if;

   exception
      when Constraint_Error =>
         if b > 0.0 then
            return Half_Pi;
         else
            return -Half_Pi;
         end if;
   end Argument;

   function Argument (X : Complex; Cycle : Real'Base) return Real'Base is
   begin
      if Cycle > 0.0 then
         return Argument (X) * Cycle / Two_Pi;
      else
         raise Argument_Error;
      end if;
   end Argument;

   ----------------------------
   -- Compose_From_Cartesian --
   ----------------------------

   function Compose_From_Cartesian (Re, Im : Real'Base) return Complex is
   begin
      return (Re, Im);
   end Compose_From_Cartesian;

   function Compose_From_Cartesian (Re : Real'Base) return Complex is
   begin
      return (Re, 0.0);
   end Compose_From_Cartesian;

   function Compose_From_Cartesian (Im : Imaginary) return Complex is
   begin
      return (0.0, R (Im));
   end Compose_From_Cartesian;

   ------------------------
   -- Compose_From_Polar --
   ------------------------

   function Compose_From_Polar (
     Modulus, Argument : Real'Base)
     return Complex
   is
   begin
      if Modulus = 0.0 then
         return (0.0, 0.0);
      else
         return (Modulus * R (Cos (Double (Argument))),
                 Modulus * R (Sin (Double (Argument))));
      end if;
   end Compose_From_Polar;

   function Compose_From_Polar (
     Modulus, Argument, Cycle : Real'Base)
     return Complex
   is
      Arg : Real'Base;

   begin
      if Modulus = 0.0 then
         return (0.0, 0.0);

      elsif Cycle > 0.0 then
         if Argument = 0.0 then
            return (Modulus, 0.0);

         elsif Argument = Cycle / 4.0 then
            return (0.0, Modulus);

         elsif Argument = Cycle / 2.0 then
            return (-Modulus, 0.0);

         elsif Argument = 3.0 * Cycle / R (4.0) then
            return (0.0, -Modulus);
         else
            Arg := Two_Pi * Argument / Cycle;
            return (Modulus * R (Cos (Double (Arg))),
                    Modulus * R (Sin (Double (Arg))));
         end if;
      else
         raise Argument_Error;
      end if;
   end Compose_From_Polar;

   ---------------
   -- Conjugate --
   ---------------

   function Conjugate (X : Complex) return Complex is
   begin
      return Complex'(X.Re, -X.Im);
   end Conjugate;

   --------
   -- Im --
   --------

   function Im (X : Complex) return Real'Base is
   begin
      return X.Im;
   end Im;

   function Im (X : Imaginary) return Real'Base is
   begin
      return R (X);
   end Im;

   -------------
   -- Modulus --
   -------------

   function Modulus (X : Complex) return Real'Base is
      Re2, Im2 : R;

   begin

      begin
         Re2 := X.Re ** 2;

         --  To compute (a**2 + b**2) ** (0.5) when a**2 may be out of bounds,
         --  compute a * (1 + (b/a) **2) ** (0.5). On a machine where the
         --  squaring does not raise constraint_error but generates infinity,
         --  we can use an explicit comparison to determine whether to use
         --  the scaling expression.

         --  The scaling expression is computed in double format throughout
         --  in order to prevent inaccuracies on machines where not all
         --  immediate expressions are rounded, such as PowerPC.

         --  ??? same weird test, why not Re2 > R'Last ???
         if not (Re2 <= R'Last) then
            raise Constraint_Error;
         end if;

      exception
         when Constraint_Error =>
            return R (Double (abs (X.Re))
              * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
      end;

      begin
         Im2 := X.Im ** 2;

         --  ??? same weird test
         if not (Im2 <= R'Last) then
            raise Constraint_Error;
         end if;

      exception
         when Constraint_Error =>
            return R (Double (abs (X.Im))
              * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
      end;

      --  Now deal with cases of underflow. If only one of the squares
      --  underflows, return the modulus of the other component. If both
      --  squares underflow, use scaling as above.

      if Re2 = 0.0 then

         if X.Re = 0.0 then
            return abs (X.Im);

         elsif Im2 = 0.0 then

            if X.Im = 0.0 then
               return abs (X.Re);

            else
               if abs (X.Re) > abs (X.Im) then
                  return
                    R (Double (abs (X.Re))
                      * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
               else
                  return
                    R (Double (abs (X.Im))
                      * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
               end if;
            end if;

         else
            return abs (X.Im);
         end if;

      elsif Im2 = 0.0 then
         return abs (X.Re);

      --  In all other cases, the naive computation will do

      else
         return R (Sqrt (Double (Re2 + Im2)));
      end if;
   end Modulus;

   --------
   -- Re --
   --------

   function Re (X : Complex) return Real'Base is
   begin
      return X.Re;
   end Re;

   ------------
   -- Set_Im --
   ------------

   procedure Set_Im (X : in out Complex; Im : Real'Base) is
   begin
      X.Im := Im;
   end Set_Im;

   procedure Set_Im (X : out Imaginary; Im : Real'Base) is
   begin
      X := Imaginary (Im);
   end Set_Im;

   ------------
   -- Set_Re --
   ------------

   procedure Set_Re (X : in out Complex; Re : Real'Base) is
   begin
      X.Re := Re;
   end Set_Re;

end Ada.Numerics.Generic_Complex_Types;