aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/tree-flow-inline.h
blob: e3a70bf203ef46351bef483ff22836f1180d32f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
/* Inline functions for tree-flow.h
   Copyright (C) 2001-2013 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef _TREE_FLOW_INLINE_H
#define _TREE_FLOW_INLINE_H 1

/* Inline functions for manipulating various data structures defined in
   tree-flow.h.  See tree-flow.h for documentation.  */

/* Return true when gimple SSA form was built.
   gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
   infrastructure is initialized.  Check for presence of the datastructures
   at first place.  */
static inline bool
gimple_in_ssa_p (const struct function *fun)
{
  return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
}

/* Artificial variable used for the virtual operand FUD chain.  */
static inline tree
gimple_vop (const struct function *fun)
{
  gcc_checking_assert (fun && fun->gimple_df);
  return fun->gimple_df->vop;
}

/* Initialize the hashtable iterator HTI to point to hashtable TABLE */

static inline void *
first_htab_element (htab_iterator *hti, htab_t table)
{
  hti->htab = table;
  hti->slot = table->entries;
  hti->limit = hti->slot + htab_size (table);
  do
    {
      PTR x = *(hti->slot);
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
	break;
    } while (++(hti->slot) < hti->limit);

  if (hti->slot < hti->limit)
    return *(hti->slot);
  return NULL;
}

/* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
   or NULL if we have  reached the end.  */

static inline bool
end_htab_p (const htab_iterator *hti)
{
  if (hti->slot >= hti->limit)
    return true;
  return false;
}

/* Advance the hashtable iterator pointed to by HTI to the next element of the
   hashtable.  */

static inline void *
next_htab_element (htab_iterator *hti)
{
  while (++(hti->slot) < hti->limit)
    {
      PTR x = *(hti->slot);
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
	return x;
    };
  return NULL;
}

/* Get the number of the next statement uid to be allocated.  */
static inline unsigned int
gimple_stmt_max_uid (struct function *fn)
{
  return fn->last_stmt_uid;
}

/* Set the number of the next statement uid to be allocated.  */
static inline void
set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
{
  fn->last_stmt_uid = maxid;
}

/* Set the number of the next statement uid to be allocated.  */
static inline unsigned int
inc_gimple_stmt_max_uid (struct function *fn)
{
  return fn->last_stmt_uid++;
}

/* Return the line number for EXPR, or return -1 if we have no line
   number information for it.  */
static inline int
get_lineno (const_gimple stmt)
{
  location_t loc;

  if (!stmt)
    return -1;

  loc = gimple_location (stmt);
  if (loc == UNKNOWN_LOCATION)
    return -1;

  return LOCATION_LINE (loc);
}

/* Delink an immediate_uses node from its chain.  */
static inline void
delink_imm_use (ssa_use_operand_t *linknode)
{
  /* Return if this node is not in a list.  */
  if (linknode->prev == NULL)
    return;

  linknode->prev->next = linknode->next;
  linknode->next->prev = linknode->prev;
  linknode->prev = NULL;
  linknode->next = NULL;
}

/* Link ssa_imm_use node LINKNODE into the chain for LIST.  */
static inline void
link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
{
  /* Link the new node at the head of the list.  If we are in the process of
     traversing the list, we won't visit any new nodes added to it.  */
  linknode->prev = list;
  linknode->next = list->next;
  list->next->prev = linknode;
  list->next = linknode;
}

/* Link ssa_imm_use node LINKNODE into the chain for DEF.  */
static inline void
link_imm_use (ssa_use_operand_t *linknode, tree def)
{
  ssa_use_operand_t *root;

  if (!def || TREE_CODE (def) != SSA_NAME)
    linknode->prev = NULL;
  else
    {
      root = &(SSA_NAME_IMM_USE_NODE (def));
      if (linknode->use)
        gcc_checking_assert (*(linknode->use) == def);
      link_imm_use_to_list (linknode, root);
    }
}

/* Set the value of a use pointed to by USE to VAL.  */
static inline void
set_ssa_use_from_ptr (use_operand_p use, tree val)
{
  delink_imm_use (use);
  *(use->use) = val;
  link_imm_use (use, val);
}

/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
   in STMT.  */
static inline void
link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
{
  if (stmt)
    link_imm_use (linknode, def);
  else
    link_imm_use (linknode, NULL);
  linknode->loc.stmt = stmt;
}

/* Relink a new node in place of an old node in the list.  */
static inline void
relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
{
  /* The node one had better be in the same list.  */
  gcc_checking_assert (*(old->use) == *(node->use));
  node->prev = old->prev;
  node->next = old->next;
  if (old->prev)
    {
      old->prev->next = node;
      old->next->prev = node;
      /* Remove the old node from the list.  */
      old->prev = NULL;
    }
}

/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
   in STMT.  */
static inline void
relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
		     gimple stmt)
{
  if (stmt)
    relink_imm_use (linknode, old);
  else
    link_imm_use (linknode, NULL);
  linknode->loc.stmt = stmt;
}


/* Return true is IMM has reached the end of the immediate use list.  */
static inline bool
end_readonly_imm_use_p (const imm_use_iterator *imm)
{
  return (imm->imm_use == imm->end_p);
}

/* Initialize iterator IMM to process the list for VAR.  */
static inline use_operand_p
first_readonly_imm_use (imm_use_iterator *imm, tree var)
{
  imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
  imm->imm_use = imm->end_p->next;
#ifdef ENABLE_CHECKING
  imm->iter_node.next = imm->imm_use->next;
#endif
  if (end_readonly_imm_use_p (imm))
    return NULL_USE_OPERAND_P;
  return imm->imm_use;
}

/* Bump IMM to the next use in the list.  */
static inline use_operand_p
next_readonly_imm_use (imm_use_iterator *imm)
{
  use_operand_p old = imm->imm_use;

#ifdef ENABLE_CHECKING
  /* If this assertion fails, it indicates the 'next' pointer has changed
     since the last bump.  This indicates that the list is being modified
     via stmt changes, or SET_USE, or somesuch thing, and you need to be
     using the SAFE version of the iterator.  */
  gcc_assert (imm->iter_node.next == old->next);
  imm->iter_node.next = old->next->next;
#endif

  imm->imm_use = old->next;
  if (end_readonly_imm_use_p (imm))
    return NULL_USE_OPERAND_P;
  return imm->imm_use;
}

/* tree-cfg.c */
extern bool has_zero_uses_1 (const ssa_use_operand_t *head);
extern bool single_imm_use_1 (const ssa_use_operand_t *head,
			      use_operand_p *use_p, gimple *stmt);

/* Return true if VAR has no nondebug uses.  */
static inline bool
has_zero_uses (const_tree var)
{
  const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));

  /* A single use_operand means there is no items in the list.  */
  if (ptr == ptr->next)
    return true;

  /* If there are debug stmts, we have to look at each use and see
     whether there are any nondebug uses.  */
  if (!MAY_HAVE_DEBUG_STMTS)
    return false;

  return has_zero_uses_1 (ptr);
}

/* Return true if VAR has a single nondebug use.  */
static inline bool
has_single_use (const_tree var)
{
  const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));

  /* If there aren't any uses whatsoever, we're done.  */
  if (ptr == ptr->next)
    return false;

  /* If there's a single use, check that it's not a debug stmt.  */
  if (ptr == ptr->next->next)
    return !is_gimple_debug (USE_STMT (ptr->next));

  /* If there are debug stmts, we have to look at each of them.  */
  if (!MAY_HAVE_DEBUG_STMTS)
    return false;

  return single_imm_use_1 (ptr, NULL, NULL);
}


/* If VAR has only a single immediate nondebug use, return true, and
   set USE_P and STMT to the use pointer and stmt of occurrence.  */
static inline bool
single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
{
  const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));

  /* If there aren't any uses whatsoever, we're done.  */
  if (ptr == ptr->next)
    {
    return_false:
      *use_p = NULL_USE_OPERAND_P;
      *stmt = NULL;
      return false;
    }

  /* If there's a single use, check that it's not a debug stmt.  */
  if (ptr == ptr->next->next)
    {
      if (!is_gimple_debug (USE_STMT (ptr->next)))
	{
	  *use_p = ptr->next;
	  *stmt = ptr->next->loc.stmt;
	  return true;
	}
      else
	goto return_false;
    }

  /* If there are debug stmts, we have to look at each of them.  */
  if (!MAY_HAVE_DEBUG_STMTS)
    goto return_false;

  return single_imm_use_1 (ptr, use_p, stmt);
}

/* Return the number of nondebug immediate uses of VAR.  */
static inline unsigned int
num_imm_uses (const_tree var)
{
  const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
  const ssa_use_operand_t *ptr;
  unsigned int num = 0;

  if (!MAY_HAVE_DEBUG_STMTS)
    for (ptr = start->next; ptr != start; ptr = ptr->next)
      num++;
  else
    for (ptr = start->next; ptr != start; ptr = ptr->next)
      if (!is_gimple_debug (USE_STMT (ptr)))
	num++;

  return num;
}

/* Return the tree pointed-to by USE.  */
static inline tree
get_use_from_ptr (use_operand_p use)
{
  return *(use->use);
}

/* Return the tree pointed-to by DEF.  */
static inline tree
get_def_from_ptr (def_operand_p def)
{
  return *def;
}

/* Return a use_operand_p pointer for argument I of PHI node GS.  */

static inline use_operand_p
gimple_phi_arg_imm_use_ptr (gimple gs, int i)
{
  return &gimple_phi_arg (gs, i)->imm_use;
}

/* Return the tree operand for argument I of PHI node GS.  */

static inline tree
gimple_phi_arg_def (gimple gs, size_t index)
{
  struct phi_arg_d *pd = gimple_phi_arg (gs, index);
  return get_use_from_ptr (&pd->imm_use);
}

/* Return a pointer to the tree operand for argument I of PHI node GS.  */

static inline tree *
gimple_phi_arg_def_ptr (gimple gs, size_t index)
{
  return &gimple_phi_arg (gs, index)->def;
}

/* Return the edge associated with argument I of phi node GS.  */

static inline edge
gimple_phi_arg_edge (gimple gs, size_t i)
{
  return EDGE_PRED (gimple_bb (gs), i);
}

/* Return the source location of gimple argument I of phi node GS.  */

static inline source_location
gimple_phi_arg_location (gimple gs, size_t i)
{
  return gimple_phi_arg (gs, i)->locus;
}

/* Return the source location of the argument on edge E of phi node GS.  */

static inline source_location
gimple_phi_arg_location_from_edge (gimple gs, edge e)
{
  return gimple_phi_arg (gs, e->dest_idx)->locus;
}

/* Set the source location of gimple argument I of phi node GS to LOC.  */

static inline void
gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc)
{
  gimple_phi_arg (gs, i)->locus = loc;
}

/* Return TRUE if argument I of phi node GS has a location record.  */

static inline bool
gimple_phi_arg_has_location (gimple gs, size_t i)
{
  return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION;
}


/* Return the PHI nodes for basic block BB, or NULL if there are no
   PHI nodes.  */
static inline gimple_seq
phi_nodes (const_basic_block bb)
{
  gcc_checking_assert (!(bb->flags & BB_RTL));
  return bb->il.gimple.phi_nodes;
}

static inline gimple_seq *
phi_nodes_ptr (basic_block bb)
{
  gcc_checking_assert (!(bb->flags & BB_RTL));
  return &bb->il.gimple.phi_nodes;
}

/* Set PHI nodes of a basic block BB to SEQ.  */

static inline void
set_phi_nodes (basic_block bb, gimple_seq seq)
{
  gimple_stmt_iterator i;

  gcc_checking_assert (!(bb->flags & BB_RTL));
  bb->il.gimple.phi_nodes = seq;
  if (seq)
    for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
      gimple_set_bb (gsi_stmt (i), bb);
}

/* Return the phi argument which contains the specified use.  */

static inline int
phi_arg_index_from_use (use_operand_p use)
{
  struct phi_arg_d *element, *root;
  size_t index;
  gimple phi;

  /* Since the use is the first thing in a PHI argument element, we can
     calculate its index based on casting it to an argument, and performing
     pointer arithmetic.  */

  phi = USE_STMT (use);

  element = (struct phi_arg_d *)use;
  root = gimple_phi_arg (phi, 0);
  index = element - root;

  /* Make sure the calculation doesn't have any leftover bytes.  If it does,
     then imm_use is likely not the first element in phi_arg_d.  */
  gcc_checking_assert ((((char *)element - (char *)root)
			% sizeof (struct phi_arg_d)) == 0
		       && index < gimple_phi_capacity (phi));

 return index;
}

/* Return true if T (assumed to be a DECL) is a global variable.
   A variable is considered global if its storage is not automatic.  */

static inline bool
is_global_var (const_tree t)
{
  return (TREE_STATIC (t) || DECL_EXTERNAL (t));
}


/* Return true if VAR may be aliased.  A variable is considered as
   maybe aliased if it has its address taken by the local TU
   or possibly by another TU and might be modified through a pointer.  */

static inline bool
may_be_aliased (const_tree var)
{
  return (TREE_CODE (var) != CONST_DECL
	  && !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var))
	       && TREE_READONLY (var)
	       && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var)))
	  && (TREE_PUBLIC (var)
	      || DECL_EXTERNAL (var)
	      || TREE_ADDRESSABLE (var)));
}


/* PHI nodes should contain only ssa_names and invariants.  A test
   for ssa_name is definitely simpler; don't let invalid contents
   slip in in the meantime.  */

static inline bool
phi_ssa_name_p (const_tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    return true;
  gcc_checking_assert (is_gimple_min_invariant (t));
  return false;
}


/* Returns the loop of the statement STMT.  */

static inline struct loop *
loop_containing_stmt (gimple stmt)
{
  basic_block bb = gimple_bb (stmt);
  if (!bb)
    return NULL;

  return bb->loop_father;
}


/*  -----------------------------------------------------------------------  */

/* The following set of routines are used to iterator over various type of
   SSA operands.  */

/* Return true if PTR is finished iterating.  */
static inline bool
op_iter_done (const ssa_op_iter *ptr)
{
  return ptr->done;
}

/* Get the next iterator use value for PTR.  */
static inline use_operand_p
op_iter_next_use (ssa_op_iter *ptr)
{
  use_operand_p use_p;
  gcc_checking_assert (ptr->iter_type == ssa_op_iter_use);
  if (ptr->uses)
    {
      use_p = USE_OP_PTR (ptr->uses);
      ptr->uses = ptr->uses->next;
      return use_p;
    }
  if (ptr->i < ptr->numops)
    {
      return PHI_ARG_DEF_PTR (ptr->stmt, (ptr->i)++);
    }
  ptr->done = true;
  return NULL_USE_OPERAND_P;
}

/* Get the next iterator def value for PTR.  */
static inline def_operand_p
op_iter_next_def (ssa_op_iter *ptr)
{
  gcc_checking_assert (ptr->iter_type == ssa_op_iter_def);
  if (ptr->flags & SSA_OP_VDEF)
    {
      tree *p;
      ptr->flags &= ~SSA_OP_VDEF;
      p = gimple_vdef_ptr (ptr->stmt);
      if (p && *p)
	return p;
    }
  if (ptr->flags & SSA_OP_DEF)
    {
      while (ptr->i < ptr->numops)
	{
	  tree *val = gimple_op_ptr (ptr->stmt, ptr->i);
	  ptr->i++;
	  if (*val)
	    {
	      if (TREE_CODE (*val) == TREE_LIST)
		val = &TREE_VALUE (*val);
	      if (TREE_CODE (*val) == SSA_NAME
		  || is_gimple_reg (*val))
		return val;
	    }
	}
      ptr->flags &= ~SSA_OP_DEF;
    }

  ptr->done = true;
  return NULL_DEF_OPERAND_P;
}

/* Get the next iterator tree value for PTR.  */
static inline tree
op_iter_next_tree (ssa_op_iter *ptr)
{
  tree val;
  gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree);
  if (ptr->uses)
    {
      val = USE_OP (ptr->uses);
      ptr->uses = ptr->uses->next;
      return val;
    }
  if (ptr->flags & SSA_OP_VDEF)
    {
      ptr->flags &= ~SSA_OP_VDEF;
      if ((val = gimple_vdef (ptr->stmt)))
	return val;
    }
  if (ptr->flags & SSA_OP_DEF)
    {
      while (ptr->i < ptr->numops)
	{
	  val = gimple_op (ptr->stmt, ptr->i);
	  ptr->i++;
	  if (val)
	    {
	      if (TREE_CODE (val) == TREE_LIST)
		val = TREE_VALUE (val);
	      if (TREE_CODE (val) == SSA_NAME
		  || is_gimple_reg (val))
		return val;
	    }
	}
      ptr->flags &= ~SSA_OP_DEF;
    }

  ptr->done = true;
  return NULL_TREE;
}


/* This functions clears the iterator PTR, and marks it done.  This is normally
   used to prevent warnings in the compile about might be uninitialized
   components.  */

static inline void
clear_and_done_ssa_iter (ssa_op_iter *ptr)
{
  ptr->i = 0;
  ptr->numops = 0;
  ptr->uses = NULL;
  ptr->iter_type = ssa_op_iter_none;
  ptr->stmt = NULL;
  ptr->done = true;
  ptr->flags = 0;
}

/* Initialize the iterator PTR to the virtual defs in STMT.  */
static inline void
op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
{
  /* PHI nodes require a different iterator initialization path.  We
     do not support iterating over virtual defs or uses without
     iterating over defs or uses at the same time.  */
  gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI
		       && (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
		       && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
  ptr->numops = 0;
  if (flags & (SSA_OP_DEF | SSA_OP_VDEF))
    {
      switch (gimple_code (stmt))
	{
	  case GIMPLE_ASSIGN:
	  case GIMPLE_CALL:
	    ptr->numops = 1;
	    break;
	  case GIMPLE_ASM:
	    ptr->numops = gimple_asm_noutputs (stmt);
	    break;
	  default:
	    ptr->numops = 0;
	    flags &= ~(SSA_OP_DEF | SSA_OP_VDEF);
	    break;
	}
    }
  ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
  if (!(flags & SSA_OP_VUSE)
      && ptr->uses
      && gimple_vuse (stmt) != NULL_TREE)
    ptr->uses = ptr->uses->next;
  ptr->done = false;
  ptr->i = 0;

  ptr->stmt = stmt;
  ptr->flags = flags;
}

/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
   the first use.  */
static inline use_operand_p
op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
{
  gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0
		       && (flags & SSA_OP_USE));
  op_iter_init (ptr, stmt, flags);
  ptr->iter_type = ssa_op_iter_use;
  return op_iter_next_use (ptr);
}

/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
   the first def.  */
static inline def_operand_p
op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
{
  gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0
		       && (flags & SSA_OP_DEF));
  op_iter_init (ptr, stmt, flags);
  ptr->iter_type = ssa_op_iter_def;
  return op_iter_next_def (ptr);
}

/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
   the first operand as a tree.  */
static inline tree
op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
{
  op_iter_init (ptr, stmt, flags);
  ptr->iter_type = ssa_op_iter_tree;
  return op_iter_next_tree (ptr);
}


/* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
   return NULL.  */
static inline tree
single_ssa_tree_operand (gimple stmt, int flags)
{
  tree var;
  ssa_op_iter iter;

  var = op_iter_init_tree (&iter, stmt, flags);
  if (op_iter_done (&iter))
    return NULL_TREE;
  op_iter_next_tree (&iter);
  if (op_iter_done (&iter))
    return var;
  return NULL_TREE;
}


/* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
   return NULL.  */
static inline use_operand_p
single_ssa_use_operand (gimple stmt, int flags)
{
  use_operand_p var;
  ssa_op_iter iter;

  var = op_iter_init_use (&iter, stmt, flags);
  if (op_iter_done (&iter))
    return NULL_USE_OPERAND_P;
  op_iter_next_use (&iter);
  if (op_iter_done (&iter))
    return var;
  return NULL_USE_OPERAND_P;
}



/* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
   return NULL.  */
static inline def_operand_p
single_ssa_def_operand (gimple stmt, int flags)
{
  def_operand_p var;
  ssa_op_iter iter;

  var = op_iter_init_def (&iter, stmt, flags);
  if (op_iter_done (&iter))
    return NULL_DEF_OPERAND_P;
  op_iter_next_def (&iter);
  if (op_iter_done (&iter))
    return var;
  return NULL_DEF_OPERAND_P;
}


/* Return true if there are zero operands in STMT matching the type
   given in FLAGS.  */
static inline bool
zero_ssa_operands (gimple stmt, int flags)
{
  ssa_op_iter iter;

  op_iter_init_tree (&iter, stmt, flags);
  return op_iter_done (&iter);
}


/* Return the number of operands matching FLAGS in STMT.  */
static inline int
num_ssa_operands (gimple stmt, int flags)
{
  ssa_op_iter iter;
  tree t;
  int num = 0;

  gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI);
  FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
    num++;
  return num;
}

static inline use_operand_p
op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags);

/* Delink all immediate_use information for STMT.  */
static inline void
delink_stmt_imm_use (gimple stmt)
{
   ssa_op_iter iter;
   use_operand_p use_p;

   if (ssa_operands_active (cfun))
     FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES)
       delink_imm_use (use_p);
}


/* If there is a single DEF in the PHI node which matches FLAG, return it.
   Otherwise return NULL_DEF_OPERAND_P.  */
static inline tree
single_phi_def (gimple stmt, int flags)
{
  tree def = PHI_RESULT (stmt);
  if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
    return def;
  if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
    return def;
  return NULL_TREE;
}

/* Initialize the iterator PTR for uses matching FLAGS in PHI.  FLAGS should
   be either SSA_OP_USES or SSA_OP_VIRTUAL_USES.  */
static inline use_operand_p
op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
{
  tree phi_def = gimple_phi_result (phi);
  int comp;

  clear_and_done_ssa_iter (ptr);
  ptr->done = false;

  gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);

  comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);

  /* If the PHI node doesn't the operand type we care about, we're done.  */
  if ((flags & comp) == 0)
    {
      ptr->done = true;
      return NULL_USE_OPERAND_P;
    }

  ptr->stmt = phi;
  ptr->numops = gimple_phi_num_args (phi);
  ptr->iter_type = ssa_op_iter_use;
  ptr->flags = flags;
  return op_iter_next_use (ptr);
}


/* Start an iterator for a PHI definition.  */

static inline def_operand_p
op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
{
  tree phi_def = PHI_RESULT (phi);
  int comp;

  clear_and_done_ssa_iter (ptr);
  ptr->done = false;

  gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);

  comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);

  /* If the PHI node doesn't have the operand type we care about,
     we're done.  */
  if ((flags & comp) == 0)
    {
      ptr->done = true;
      return NULL_DEF_OPERAND_P;
    }

  ptr->iter_type = ssa_op_iter_def;
  /* The first call to op_iter_next_def will terminate the iterator since
     all the fields are NULL.  Simply return the result here as the first and
     therefore only result.  */
  return PHI_RESULT_PTR (phi);
}

/* Return true is IMM has reached the end of the immediate use stmt list.  */

static inline bool
end_imm_use_stmt_p (const imm_use_iterator *imm)
{
  return (imm->imm_use == imm->end_p);
}

/* Finished the traverse of an immediate use stmt list IMM by removing the
   placeholder node from the list.  */

static inline void
end_imm_use_stmt_traverse (imm_use_iterator *imm)
{
  delink_imm_use (&(imm->iter_node));
}

/* Immediate use traversal of uses within a stmt require that all the
   uses on a stmt be sequentially listed.  This routine is used to build up
   this sequential list by adding USE_P to the end of the current list
   currently delimited by HEAD and LAST_P.  The new LAST_P value is
   returned.  */

static inline use_operand_p
move_use_after_head (use_operand_p use_p, use_operand_p head,
		      use_operand_p last_p)
{
  gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
  /* Skip head when we find it.  */
  if (use_p != head)
    {
      /* If use_p is already linked in after last_p, continue.  */
      if (last_p->next == use_p)
	last_p = use_p;
      else
	{
	  /* Delink from current location, and link in at last_p.  */
	  delink_imm_use (use_p);
	  link_imm_use_to_list (use_p, last_p);
	  last_p = use_p;
	}
    }
  return last_p;
}


/* This routine will relink all uses with the same stmt as HEAD into the list
   immediately following HEAD for iterator IMM.  */

static inline void
link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
{
  use_operand_p use_p;
  use_operand_p last_p = head;
  gimple head_stmt = USE_STMT (head);
  tree use = USE_FROM_PTR (head);
  ssa_op_iter op_iter;
  int flag;

  /* Only look at virtual or real uses, depending on the type of HEAD.  */
  flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);

  if (gimple_code (head_stmt) == GIMPLE_PHI)
    {
      FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
	if (USE_FROM_PTR (use_p) == use)
	  last_p = move_use_after_head (use_p, head, last_p);
    }
  else
    {
      if (flag == SSA_OP_USE)
	{
	  FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
	    if (USE_FROM_PTR (use_p) == use)
	      last_p = move_use_after_head (use_p, head, last_p);
	}
      else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
	{
	  if (USE_FROM_PTR (use_p) == use)
	    last_p = move_use_after_head (use_p, head, last_p);
	}
    }
  /* Link iter node in after last_p.  */
  if (imm->iter_node.prev != NULL)
    delink_imm_use (&imm->iter_node);
  link_imm_use_to_list (&(imm->iter_node), last_p);
}

/* Initialize IMM to traverse over uses of VAR.  Return the first statement.  */
static inline gimple
first_imm_use_stmt (imm_use_iterator *imm, tree var)
{
  imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
  imm->imm_use = imm->end_p->next;
  imm->next_imm_name = NULL_USE_OPERAND_P;

  /* iter_node is used as a marker within the immediate use list to indicate
     where the end of the current stmt's uses are.  Initialize it to NULL
     stmt and use, which indicates a marker node.  */
  imm->iter_node.prev = NULL_USE_OPERAND_P;
  imm->iter_node.next = NULL_USE_OPERAND_P;
  imm->iter_node.loc.stmt = NULL;
  imm->iter_node.use = NULL;

  if (end_imm_use_stmt_p (imm))
    return NULL;

  link_use_stmts_after (imm->imm_use, imm);

  return USE_STMT (imm->imm_use);
}

/* Bump IMM to the next stmt which has a use of var.  */

static inline gimple
next_imm_use_stmt (imm_use_iterator *imm)
{
  imm->imm_use = imm->iter_node.next;
  if (end_imm_use_stmt_p (imm))
    {
      if (imm->iter_node.prev != NULL)
	delink_imm_use (&imm->iter_node);
      return NULL;
    }

  link_use_stmts_after (imm->imm_use, imm);
  return USE_STMT (imm->imm_use);
}

/* This routine will return the first use on the stmt IMM currently refers
   to.  */

static inline use_operand_p
first_imm_use_on_stmt (imm_use_iterator *imm)
{
  imm->next_imm_name = imm->imm_use->next;
  return imm->imm_use;
}

/*  Return TRUE if the last use on the stmt IMM refers to has been visited.  */

static inline bool
end_imm_use_on_stmt_p (const imm_use_iterator *imm)
{
  return (imm->imm_use == &(imm->iter_node));
}

/* Bump to the next use on the stmt IMM refers to, return NULL if done.  */

static inline use_operand_p
next_imm_use_on_stmt (imm_use_iterator *imm)
{
  imm->imm_use = imm->next_imm_name;
  if (end_imm_use_on_stmt_p (imm))
    return NULL_USE_OPERAND_P;
  else
    {
      imm->next_imm_name = imm->imm_use->next;
      return imm->imm_use;
    }
}

/* Return true if VAR cannot be modified by the program.  */

static inline bool
unmodifiable_var_p (const_tree var)
{
  if (TREE_CODE (var) == SSA_NAME)
    var = SSA_NAME_VAR (var);

  return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
}

/* Return true if REF, a handled component reference, has an ARRAY_REF
   somewhere in it.  */

static inline bool
ref_contains_array_ref (const_tree ref)
{
  gcc_checking_assert (handled_component_p (ref));

  do {
    if (TREE_CODE (ref) == ARRAY_REF)
      return true;
    ref = TREE_OPERAND (ref, 0);
  } while (handled_component_p (ref));

  return false;
}

/* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it.  */

static inline bool
contains_view_convert_expr_p (const_tree ref)
{
  while (handled_component_p (ref))
    {
      if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
	return true;
      ref = TREE_OPERAND (ref, 0);
    }

  return false;
}

/* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
   overlap.  SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
   range is open-ended.  Otherwise return false.  */

static inline bool
ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
		  unsigned HOST_WIDE_INT size1,
		  unsigned HOST_WIDE_INT pos2,
		  unsigned HOST_WIDE_INT size2)
{
  if (pos1 >= pos2
      && (size2 == (unsigned HOST_WIDE_INT)-1
	  || pos1 < (pos2 + size2)))
    return true;
  if (pos2 >= pos1
      && (size1 == (unsigned HOST_WIDE_INT)-1
	  || pos2 < (pos1 + size1)))
    return true;

  return false;
}

/* Accessor to tree-ssa-operands.c caches.  */
static inline struct ssa_operands *
gimple_ssa_operands (const struct function *fun)
{
  return &fun->gimple_df->ssa_operands;
}

/* Given an edge_var_map V, return the PHI arg definition.  */

static inline tree
redirect_edge_var_map_def (edge_var_map *v)
{
  return v->def;
}

/* Given an edge_var_map V, return the PHI result.  */

static inline tree
redirect_edge_var_map_result (edge_var_map *v)
{
  return v->result;
}

/* Given an edge_var_map V, return the PHI arg location.  */

static inline source_location
redirect_edge_var_map_location (edge_var_map *v)
{
  return v->locus;
}


/* Return an SSA_NAME node for variable VAR defined in statement STMT
   in function cfun.  */

static inline tree
make_ssa_name (tree var, gimple stmt)
{
  return make_ssa_name_fn (cfun, var, stmt);
}

/* Return an SSA_NAME node using the template SSA name NAME defined in
   statement STMT in function cfun.  */

static inline tree
copy_ssa_name (tree var, gimple stmt)
{
  return copy_ssa_name_fn (cfun, var, stmt);
}

/*  Creates a duplicate of a SSA name NAME tobe defined by statement STMT
    in function cfun.  */

static inline tree
duplicate_ssa_name (tree var, gimple stmt)
{
  return duplicate_ssa_name_fn (cfun, var, stmt);
}

/* Return an anonymous SSA_NAME node for type TYPE defined in statement STMT
   in function cfun.  Arrange so that it uses NAME in dumps.  */

static inline tree
make_temp_ssa_name (tree type, gimple stmt, const char *name)
{
  tree ssa_name;
  gcc_checking_assert (TYPE_P (type));
  ssa_name = make_ssa_name_fn (cfun, type, stmt);
  SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, get_identifier (name));
  return ssa_name;
}

/* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
   denotes the starting address of the memory access EXP.
   Returns NULL_TREE if the offset is not constant or any component
   is not BITS_PER_UNIT-aligned.
   VALUEIZE if non-NULL is used to valueize SSA names.  It should return
   its argument or a constant if the argument is known to be constant.  */
/* ??? This is a static inline here to avoid the overhead of the indirect calls
   to VALUEIZE.  But is this overhead really that significant?  And should we
   perhaps just rely on WHOPR to specialize the function?  */

static inline tree
get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
				 tree (*valueize) (tree))
{
  HOST_WIDE_INT byte_offset = 0;

  /* Compute cumulative byte-offset for nested component-refs and array-refs,
     and find the ultimate containing object.  */
  while (1)
    {
      switch (TREE_CODE (exp))
	{
	case BIT_FIELD_REF:
	  return NULL_TREE;

	case COMPONENT_REF:
	  {
	    tree field = TREE_OPERAND (exp, 1);
	    tree this_offset = component_ref_field_offset (exp);
	    HOST_WIDE_INT hthis_offset;

	    if (!this_offset
		|| TREE_CODE (this_offset) != INTEGER_CST
		|| (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
		    % BITS_PER_UNIT))
	      return NULL_TREE;

	    hthis_offset = TREE_INT_CST_LOW (this_offset);
	    hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
			     / BITS_PER_UNIT);
	    byte_offset += hthis_offset;
	  }
	  break;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  {
	    tree index = TREE_OPERAND (exp, 1);
	    tree low_bound, unit_size;

	    if (valueize
		&& TREE_CODE (index) == SSA_NAME)
	      index = (*valueize) (index);

	    /* If the resulting bit-offset is constant, track it.  */
	    if (TREE_CODE (index) == INTEGER_CST
		&& (low_bound = array_ref_low_bound (exp),
		    TREE_CODE (low_bound) == INTEGER_CST)
		&& (unit_size = array_ref_element_size (exp),
		    TREE_CODE (unit_size) == INTEGER_CST))
	      {
		HOST_WIDE_INT hindex = TREE_INT_CST_LOW (index);

		hindex -= TREE_INT_CST_LOW (low_bound);
		hindex *= TREE_INT_CST_LOW (unit_size);
		byte_offset += hindex;
	      }
	    else
	      return NULL_TREE;
	  }
	  break;

	case REALPART_EXPR:
	  break;

	case IMAGPART_EXPR:
	  byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
	  break;

	case VIEW_CONVERT_EXPR:
	  break;

	case MEM_REF:
	  {
	    tree base = TREE_OPERAND (exp, 0);
	    if (valueize
		&& TREE_CODE (base) == SSA_NAME)
	      base = (*valueize) (base);

	    /* Hand back the decl for MEM[&decl, off].  */
	    if (TREE_CODE (base) == ADDR_EXPR)
	      {
		if (!integer_zerop (TREE_OPERAND (exp, 1)))
		  {
		    double_int off = mem_ref_offset (exp);
		    gcc_assert (off.high == -1 || off.high == 0);
		    byte_offset += off.to_shwi ();
		  }
		exp = TREE_OPERAND (base, 0);
	      }
	    goto done;
	  }

	case TARGET_MEM_REF:
	  {
	    tree base = TREE_OPERAND (exp, 0);
	    if (valueize
		&& TREE_CODE (base) == SSA_NAME)
	      base = (*valueize) (base);

	    /* Hand back the decl for MEM[&decl, off].  */
	    if (TREE_CODE (base) == ADDR_EXPR)
	      {
		if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
		  return NULL_TREE;
		if (!integer_zerop (TMR_OFFSET (exp)))
		  {
		    double_int off = mem_ref_offset (exp);
		    gcc_assert (off.high == -1 || off.high == 0);
		    byte_offset += off.to_shwi ();
		  }
		exp = TREE_OPERAND (base, 0);
	      }
	    goto done;
	  }

	default:
	  goto done;
	}

      exp = TREE_OPERAND (exp, 0);
    }
done:

  *poffset = byte_offset;
  return exp;
}

#endif /* _TREE_FLOW_INLINE_H  */