aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/libstdc++-v3/include/bits/stl_function.h
blob: 33d5e709628efe557e0c1b2ebff081e70423e8cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// Functor implementations -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010,
// 2011, 2012
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996-1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file bits/stl_function.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{functional}
 */

#ifndef _STL_FUNCTION_H
#define _STL_FUNCTION_H 1

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // 20.3.1 base classes
  /** @defgroup functors Function Objects
   * @ingroup utilities
   *
   *  Function objects, or @e functors, are objects with an @c operator()
   *  defined and accessible.  They can be passed as arguments to algorithm
   *  templates and used in place of a function pointer.  Not only is the
   *  resulting expressiveness of the library increased, but the generated
   *  code can be more efficient than what you might write by hand.  When we
   *  refer to @a functors, then, generally we include function pointers in
   *  the description as well.
   *
   *  Often, functors are only created as temporaries passed to algorithm
   *  calls, rather than being created as named variables.
   *
   *  Two examples taken from the standard itself follow.  To perform a
   *  by-element addition of two vectors @c a and @c b containing @c double,
   *  and put the result in @c a, use
   *  \code
   *  transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
   *  \endcode
   *  To negate every element in @c a, use
   *  \code
   *  transform(a.begin(), a.end(), a.begin(), negate<double>());
   *  \endcode
   *  The addition and negation functions will be inlined directly.
   *
   *  The standard functors are derived from structs named @c unary_function
   *  and @c binary_function.  These two classes contain nothing but typedefs,
   *  to aid in generic (template) programming.  If you write your own
   *  functors, you might consider doing the same.
   *
   *  @{
   */
  /**
   *  This is one of the @link functors functor base classes@endlink.
   */
  template<typename _Arg, typename _Result>
    struct unary_function
    {
      /// @c argument_type is the type of the argument
      typedef _Arg 	argument_type;   

      /// @c result_type is the return type
      typedef _Result 	result_type;  
    };

  /**
   *  This is one of the @link functors functor base classes@endlink.
   */
  template<typename _Arg1, typename _Arg2, typename _Result>
    struct binary_function
    {
      /// @c first_argument_type is the type of the first argument
      typedef _Arg1 	first_argument_type; 

      /// @c second_argument_type is the type of the second argument
      typedef _Arg2 	second_argument_type;

      /// @c result_type is the return type
      typedef _Result 	result_type;
    };
  /** @}  */

  // 20.3.2 arithmetic
  /** @defgroup arithmetic_functors Arithmetic Classes
   * @ingroup functors
   *
   *  Because basic math often needs to be done during an algorithm,
   *  the library provides functors for those operations.  See the
   *  documentation for @link functors the base classes@endlink
   *  for examples of their use.
   *
   *  @{
   */
  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct plus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x + __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct minus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x - __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct multiplies : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x * __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct divides : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x / __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct modulus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x % __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct negate : public unary_function<_Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x) const
      { return -__x; }
    };
  /** @}  */

  // 20.3.3 comparisons
  /** @defgroup comparison_functors Comparison Classes
   * @ingroup functors
   *
   *  The library provides six wrapper functors for all the basic comparisons
   *  in C++, like @c <.
   *
   *  @{
   */
  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct equal_to : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x == __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct not_equal_to : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x != __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct greater : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x > __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct less : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x < __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct greater_equal : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x >= __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct less_equal : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x <= __y; }
    };
  /** @}  */

  // 20.3.4 logical operations
  /** @defgroup logical_functors Boolean Operations Classes
   * @ingroup functors
   *
   *  Here are wrapper functors for Boolean operations: @c &&, @c ||,
   *  and @c !.
   *
   *  @{
   */
  /// One of the @link logical_functors Boolean operations functors@endlink.
  template<typename _Tp>
    struct logical_and : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x && __y; }
    };

  /// One of the @link logical_functors Boolean operations functors@endlink.
  template<typename _Tp>
    struct logical_or : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x || __y; }
    };

  /// One of the @link logical_functors Boolean operations functors@endlink.
  template<typename _Tp>
    struct logical_not : public unary_function<_Tp, bool>
    {
      bool
      operator()(const _Tp& __x) const
      { return !__x; }
    };
  /** @}  */

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // DR 660. Missing Bitwise Operations.
  template<typename _Tp>
    struct bit_and : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x & __y; }
    };

  template<typename _Tp>
    struct bit_or : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x | __y; }
    };

  template<typename _Tp>
    struct bit_xor : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x ^ __y; }
    };

  // 20.3.5 negators
  /** @defgroup negators Negators
   * @ingroup functors
   *
   *  The functions @c not1 and @c not2 each take a predicate functor
   *  and return an instance of @c unary_negate or
   *  @c binary_negate, respectively.  These classes are functors whose
   *  @c operator() performs the stored predicate function and then returns
   *  the negation of the result.
   *
   *  For example, given a vector of integers and a trivial predicate,
   *  \code
   *  struct IntGreaterThanThree
   *    : public std::unary_function<int, bool>
   *  {
   *      bool operator() (int x) { return x > 3; }
   *  };
   *
   *  std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
   *  \endcode
   *  The call to @c find_if will locate the first index (i) of @c v for which
   *  <code>!(v[i] > 3)</code> is true.
   *
   *  The not1/unary_negate combination works on predicates taking a single
   *  argument.  The not2/binary_negate combination works on predicates which
   *  take two arguments.
   *
   *  @{
   */
  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    class unary_negate
    : public unary_function<typename _Predicate::argument_type, bool>
    {
    protected:
      _Predicate _M_pred;

    public:
      explicit
      unary_negate(const _Predicate& __x) : _M_pred(__x) { }

      bool
      operator()(const typename _Predicate::argument_type& __x) const
      { return !_M_pred(__x); }
    };

  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    inline unary_negate<_Predicate>
    not1(const _Predicate& __pred)
    { return unary_negate<_Predicate>(__pred); }

  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    class binary_negate
    : public binary_function<typename _Predicate::first_argument_type,
			     typename _Predicate::second_argument_type, bool>
    {
    protected:
      _Predicate _M_pred;

    public:
      explicit
      binary_negate(const _Predicate& __x) : _M_pred(__x) { }

      bool
      operator()(const typename _Predicate::first_argument_type& __x,
		 const typename _Predicate::second_argument_type& __y) const
      { return !_M_pred(__x, __y); }
    };

  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    inline binary_negate<_Predicate>
    not2(const _Predicate& __pred)
    { return binary_negate<_Predicate>(__pred); }
  /** @}  */

  // 20.3.7 adaptors pointers functions
  /** @defgroup pointer_adaptors Adaptors for pointers to functions
   * @ingroup functors
   *
   *  The advantage of function objects over pointers to functions is that
   *  the objects in the standard library declare nested typedefs describing
   *  their argument and result types with uniform names (e.g., @c result_type
   *  from the base classes @c unary_function and @c binary_function).
   *  Sometimes those typedefs are required, not just optional.
   *
   *  Adaptors are provided to turn pointers to unary (single-argument) and
   *  binary (double-argument) functions into function objects.  The
   *  long-winded functor @c pointer_to_unary_function is constructed with a
   *  function pointer @c f, and its @c operator() called with argument @c x
   *  returns @c f(x).  The functor @c pointer_to_binary_function does the same
   *  thing, but with a double-argument @c f and @c operator().
   *
   *  The function @c ptr_fun takes a pointer-to-function @c f and constructs
   *  an instance of the appropriate functor.
   *
   *  @{
   */
  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg, typename _Result>
    class pointer_to_unary_function : public unary_function<_Arg, _Result>
    {
    protected:
      _Result (*_M_ptr)(_Arg);

    public:
      pointer_to_unary_function() { }

      explicit
      pointer_to_unary_function(_Result (*__x)(_Arg))
      : _M_ptr(__x) { }

      _Result
      operator()(_Arg __x) const
      { return _M_ptr(__x); }
    };

  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg, typename _Result>
    inline pointer_to_unary_function<_Arg, _Result>
    ptr_fun(_Result (*__x)(_Arg))
    { return pointer_to_unary_function<_Arg, _Result>(__x); }

  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg1, typename _Arg2, typename _Result>
    class pointer_to_binary_function
    : public binary_function<_Arg1, _Arg2, _Result>
    {
    protected:
      _Result (*_M_ptr)(_Arg1, _Arg2);

    public:
      pointer_to_binary_function() { }

      explicit
      pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
      : _M_ptr(__x) { }

      _Result
      operator()(_Arg1 __x, _Arg2 __y) const
      { return _M_ptr(__x, __y); }
    };

  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg1, typename _Arg2, typename _Result>
    inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
    ptr_fun(_Result (*__x)(_Arg1, _Arg2))
    { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
  /** @}  */

  template<typename _Tp>
    struct _Identity
#ifndef __GXX_EXPERIMENTAL_CXX0X__
    // unary_function itself is deprecated in C++11 and deriving from
    // it can even be a nuisance (see PR 52942).
    : public unary_function<_Tp,_Tp>
#endif
    {
      _Tp&
      operator()(_Tp& __x) const
      { return __x; }

      const _Tp&
      operator()(const _Tp& __x) const
      { return __x; }
    };

  template<typename _Pair>
    struct _Select1st
#ifndef __GXX_EXPERIMENTAL_CXX0X__
    : public unary_function<_Pair, typename _Pair::first_type>
#endif
    {
      typename _Pair::first_type&
      operator()(_Pair& __x) const
      { return __x.first; }

      const typename _Pair::first_type&
      operator()(const _Pair& __x) const
      { return __x.first; }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      template<typename _Pair2>
        typename _Pair2::first_type&
        operator()(_Pair2& __x) const
        { return __x.first; }

      template<typename _Pair2>
        const typename _Pair2::first_type&
        operator()(const _Pair2& __x) const
        { return __x.first; }
#endif
    };

  template<typename _Pair>
    struct _Select2nd
#ifndef __GXX_EXPERIMENTAL_CXX0X__
    : public unary_function<_Pair, typename _Pair::second_type>
#endif
    {
      typename _Pair::second_type&
      operator()(_Pair& __x) const
      { return __x.second; }

      const typename _Pair::second_type&
      operator()(const _Pair& __x) const
      { return __x.second; }
    };

  // 20.3.8 adaptors pointers members
  /** @defgroup memory_adaptors Adaptors for pointers to members
   * @ingroup functors
   *
   *  There are a total of 8 = 2^3 function objects in this family.
   *   (1) Member functions taking no arguments vs member functions taking
   *        one argument.
   *   (2) Call through pointer vs call through reference.
   *   (3) Const vs non-const member function.
   *
   *  All of this complexity is in the function objects themselves.  You can
   *   ignore it by using the helper function mem_fun and mem_fun_ref,
   *   which create whichever type of adaptor is appropriate.
   *
   *  @{
   */
  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class mem_fun_t : public unary_function<_Tp*, _Ret>
    {
    public:
      explicit
      mem_fun_t(_Ret (_Tp::*__pf)())
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp* __p) const
      { return (__p->*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)();
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
    {
    public:
      explicit
      const_mem_fun_t(_Ret (_Tp::*__pf)() const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp* __p) const
      { return (__p->*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)() const;
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class mem_fun_ref_t : public unary_function<_Tp, _Ret>
    {
    public:
      explicit
      mem_fun_ref_t(_Ret (_Tp::*__pf)())
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp& __r) const
      { return (__r.*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)();
  };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
    {
    public:
      explicit
      const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp& __r) const
      { return (__r.*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)() const;
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
    {
    public:
      explicit
      mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp* __p, _Arg __x) const
      { return (__p->*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
    {
    public:
      explicit
      const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp* __p, _Arg __x) const
      { return (__p->*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg) const;
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
    {
    public:
      explicit
      mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp& __r, _Arg __x) const
      { return (__r.*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
    {
    public:
      explicit
      const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp& __r, _Arg __x) const
      { return (__r.*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg) const;
    };

  // Mem_fun adaptor helper functions.  There are only two:
  // mem_fun and mem_fun_ref.
  template<typename _Ret, typename _Tp>
    inline mem_fun_t<_Ret, _Tp>
    mem_fun(_Ret (_Tp::*__f)())
    { return mem_fun_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp>
    inline const_mem_fun_t<_Ret, _Tp>
    mem_fun(_Ret (_Tp::*__f)() const)
    { return const_mem_fun_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp>
    inline mem_fun_ref_t<_Ret, _Tp>
    mem_fun_ref(_Ret (_Tp::*__f)())
    { return mem_fun_ref_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp>
    inline const_mem_fun_ref_t<_Ret, _Tp>
    mem_fun_ref(_Ret (_Tp::*__f)() const)
    { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline const_mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

  /** @}  */

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_USE_DEPRECATED
# include <backward/binders.h>
#endif

#endif /* _STL_FUNCTION_H */