aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/ada/g-spipat.adb
blob: b1dacd98dc1f0b60b8ac44ecd0bd863bf919d110 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--                G N A T . S P I T B O L . P A T T E R N S                 --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--                     Copyright (C) 1998-2011, AdaCore                     --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  Note: the data structures and general approach used in this implementation
--  are derived from the original MINIMAL sources for SPITBOL. The code is not
--  a direct translation, but the approach is followed closely. In particular,
--  we use the one stack approach developed in the SPITBOL implementation.

with Ada.Strings.Unbounded.Aux; use Ada.Strings.Unbounded.Aux;

with GNAT.Debug_Utilities;      use GNAT.Debug_Utilities;

with System;                    use System;

with Ada.Unchecked_Conversion;
with Ada.Unchecked_Deallocation;

package body GNAT.Spitbol.Patterns is

   ------------------------
   -- Internal Debugging --
   ------------------------

   Internal_Debug : constant Boolean := False;
   --  Set this flag to True to activate some built-in debugging traceback
   --  These are all lines output with PutD and Put_LineD.

   procedure New_LineD;
   pragma Inline (New_LineD);
   --  Output new blank line with New_Line if Internal_Debug is True

   procedure PutD (Str : String);
   pragma Inline (PutD);
   --  Output string with Put if Internal_Debug is True

   procedure Put_LineD (Str : String);
   pragma Inline (Put_LineD);
   --  Output string with Put_Line if Internal_Debug is True

   -----------------------------
   -- Local Type Declarations --
   -----------------------------

   subtype String_Ptr is Ada.Strings.Unbounded.String_Access;
   subtype File_Ptr   is Ada.Text_IO.File_Access;

   function To_Address is new Ada.Unchecked_Conversion (PE_Ptr, Address);
   --  Used only for debugging output purposes

   subtype AFC is Ada.Finalization.Controlled;

   N : constant PE_Ptr := null;
   --  Shorthand used to initialize Copy fields to null

   type Natural_Ptr   is access all Natural;
   type Pattern_Ptr   is access all Pattern;

   --------------------------------------------------
   -- Description of Algorithm and Data Structures --
   --------------------------------------------------

   --  A pattern structure is represented as a linked graph of nodes
   --  with the following structure:

   --      +------------------------------------+
   --      I                Pcode               I
   --      +------------------------------------+
   --      I                Index               I
   --      +------------------------------------+
   --      I                Pthen               I
   --      +------------------------------------+
   --      I             parameter(s)           I
   --      +------------------------------------+

   --     Pcode is a code value indicating the type of the pattern node. This
   --     code is used both as the discriminant value for the record, and as
   --     the case index in the main match routine that branches to the proper
   --     match code for the given element.

   --     Index is a serial index number. The use of these serial index
   --     numbers is described in a separate section.

   --     Pthen is a pointer to the successor node, i.e the node to be matched
   --     if the attempt to match the node succeeds. If this is the last node
   --     of the pattern to be matched, then Pthen points to a dummy node
   --     of kind PC_EOP (end of pattern), which initializes pattern exit.

   --     The parameter or parameters are present for certain node types,
   --     and the type varies with the pattern code.

   type Pattern_Code is (
      PC_Arb_Y,
      PC_Assign,
      PC_Bal,
      PC_BreakX_X,
      PC_Cancel,
      PC_EOP,
      PC_Fail,
      PC_Fence,
      PC_Fence_X,
      PC_Fence_Y,
      PC_R_Enter,
      PC_R_Remove,
      PC_R_Restore,
      PC_Rest,
      PC_Succeed,
      PC_Unanchored,

      PC_Alt,
      PC_Arb_X,
      PC_Arbno_S,
      PC_Arbno_X,

      PC_Rpat,

      PC_Pred_Func,

      PC_Assign_Imm,
      PC_Assign_OnM,
      PC_Any_VP,
      PC_Break_VP,
      PC_BreakX_VP,
      PC_NotAny_VP,
      PC_NSpan_VP,
      PC_Span_VP,
      PC_String_VP,

      PC_Write_Imm,
      PC_Write_OnM,

      PC_Null,
      PC_String,

      PC_String_2,
      PC_String_3,
      PC_String_4,
      PC_String_5,
      PC_String_6,

      PC_Setcur,

      PC_Any_CH,
      PC_Break_CH,
      PC_BreakX_CH,
      PC_Char,
      PC_NotAny_CH,
      PC_NSpan_CH,
      PC_Span_CH,

      PC_Any_CS,
      PC_Break_CS,
      PC_BreakX_CS,
      PC_NotAny_CS,
      PC_NSpan_CS,
      PC_Span_CS,

      PC_Arbno_Y,
      PC_Len_Nat,
      PC_Pos_Nat,
      PC_RPos_Nat,
      PC_RTab_Nat,
      PC_Tab_Nat,

      PC_Pos_NF,
      PC_Len_NF,
      PC_RPos_NF,
      PC_RTab_NF,
      PC_Tab_NF,

      PC_Pos_NP,
      PC_Len_NP,
      PC_RPos_NP,
      PC_RTab_NP,
      PC_Tab_NP,

      PC_Any_VF,
      PC_Break_VF,
      PC_BreakX_VF,
      PC_NotAny_VF,
      PC_NSpan_VF,
      PC_Span_VF,
      PC_String_VF);

   type IndexT is range 0 .. +(2 **15 - 1);

   type PE (Pcode : Pattern_Code) is record

      Index : IndexT;
      --  Serial index number of pattern element within pattern

      Pthen : PE_Ptr;
      --  Successor element, to be matched after this one

      case Pcode is

         when PC_Arb_Y      |
              PC_Assign     |
              PC_Bal        |
              PC_BreakX_X   |
              PC_Cancel     |
              PC_EOP        |
              PC_Fail       |
              PC_Fence      |
              PC_Fence_X    |
              PC_Fence_Y    |
              PC_Null       |
              PC_R_Enter    |
              PC_R_Remove   |
              PC_R_Restore  |
              PC_Rest       |
              PC_Succeed    |
              PC_Unanchored => null;

         when PC_Alt        |
              PC_Arb_X      |
              PC_Arbno_S    |
              PC_Arbno_X    => Alt  : PE_Ptr;

         when PC_Rpat       => PP   : Pattern_Ptr;

         when PC_Pred_Func  => BF   : Boolean_Func;

         when PC_Assign_Imm |
              PC_Assign_OnM |
              PC_Any_VP     |
              PC_Break_VP   |
              PC_BreakX_VP  |
              PC_NotAny_VP  |
              PC_NSpan_VP   |
              PC_Span_VP    |
              PC_String_VP  => VP   : VString_Ptr;

         when PC_Write_Imm  |
              PC_Write_OnM  => FP   : File_Ptr;

         when PC_String     => Str  : String_Ptr;

         when PC_String_2   => Str2 : String (1 .. 2);

         when PC_String_3   => Str3 : String (1 .. 3);

         when PC_String_4   => Str4 : String (1 .. 4);

         when PC_String_5   => Str5 : String (1 .. 5);

         when PC_String_6   => Str6 : String (1 .. 6);

         when PC_Setcur     => Var  : Natural_Ptr;

         when PC_Any_CH     |
              PC_Break_CH   |
              PC_BreakX_CH  |
              PC_Char       |
              PC_NotAny_CH  |
              PC_NSpan_CH   |
              PC_Span_CH    => Char : Character;

         when PC_Any_CS     |
              PC_Break_CS   |
              PC_BreakX_CS  |
              PC_NotAny_CS  |
              PC_NSpan_CS   |
              PC_Span_CS    => CS   : Character_Set;

         when PC_Arbno_Y    |
              PC_Len_Nat    |
              PC_Pos_Nat    |
              PC_RPos_Nat   |
              PC_RTab_Nat   |
              PC_Tab_Nat    => Nat  : Natural;

         when PC_Pos_NF     |
              PC_Len_NF     |
              PC_RPos_NF    |
              PC_RTab_NF    |
              PC_Tab_NF     => NF   : Natural_Func;

         when PC_Pos_NP     |
              PC_Len_NP     |
              PC_RPos_NP    |
              PC_RTab_NP    |
              PC_Tab_NP     => NP   : Natural_Ptr;

         when PC_Any_VF     |
              PC_Break_VF   |
              PC_BreakX_VF  |
              PC_NotAny_VF  |
              PC_NSpan_VF   |
              PC_Span_VF    |
              PC_String_VF  => VF   : VString_Func;

      end case;
   end record;

   subtype PC_Has_Alt is Pattern_Code range PC_Alt .. PC_Arbno_X;
   --  Range of pattern codes that has an Alt field. This is used in the
   --  recursive traversals, since these links must be followed.

   EOP_Element : aliased constant PE := (PC_EOP, 0, N);
   --  This is the end of pattern element, and is thus the representation of
   --  a null pattern. It has a zero index element since it is never placed
   --  inside a pattern. Furthermore it does not need a successor, since it
   --  marks the end of the pattern, so that no more successors are needed.

   EOP : constant PE_Ptr := EOP_Element'Unrestricted_Access;
   --  This is the end of pattern pointer, that is used in the Pthen pointer
   --  of other nodes to signal end of pattern.

   --  The following array is used to determine if a pattern used as an
   --  argument for Arbno is eligible for treatment using the simple Arbno
   --  structure (i.e. it is a pattern that is guaranteed to match at least
   --  one character on success, and not to make any entries on the stack.

   OK_For_Simple_Arbno : constant array (Pattern_Code) of Boolean :=
     (PC_Any_CS    |
      PC_Any_CH    |
      PC_Any_VF    |
      PC_Any_VP    |
      PC_Char      |
      PC_Len_Nat   |
      PC_NotAny_CS |
      PC_NotAny_CH |
      PC_NotAny_VF |
      PC_NotAny_VP |
      PC_Span_CS   |
      PC_Span_CH   |
      PC_Span_VF   |
      PC_Span_VP   |
      PC_String    |
      PC_String_2  |
      PC_String_3  |
      PC_String_4  |
      PC_String_5  |
      PC_String_6   => True,
      others        => False);

   -------------------------------
   -- The Pattern History Stack --
   -------------------------------

   --  The pattern history stack is used for controlling backtracking when
   --  a match fails. The idea is to stack entries that give a cursor value
   --  to be restored, and a node to be reestablished as the current node to
   --  attempt an appropriate rematch operation. The processing for a pattern
   --  element that has rematch alternatives pushes an appropriate entry or
   --  entry on to the stack, and the proceeds. If a match fails at any point,
   --  the top element of the stack is popped off, resetting the cursor and
   --  the match continues by accessing the node stored with this entry.

   type Stack_Entry is record

      Cursor : Integer;
      --  Saved cursor value that is restored when this entry is popped
      --  from the stack if a match attempt fails. Occasionally, this
      --  field is used to store a history stack pointer instead of a
      --  cursor. Such cases are noted in the documentation and the value
      --  stored is negative since stack pointer values are always negative.

      Node : PE_Ptr;
      --  This pattern element reference is reestablished as the current
      --  Node to be matched (which will attempt an appropriate rematch).

   end record;

   subtype Stack_Range is Integer range -Stack_Size .. -1;

   type Stack_Type is array (Stack_Range) of Stack_Entry;
   --  The type used for a history stack. The actual instance of the stack
   --  is declared as a local variable in the Match routine, to properly
   --  handle recursive calls to Match. All stack pointer values are negative
   --  to distinguish them from normal cursor values.

   --  Note: the pattern matching stack is used only to handle backtracking.
   --  If no backtracking occurs, its entries are never accessed, and never
   --  popped off, and in particular it is normal for a successful match
   --  to terminate with entries on the stack that are simply discarded.

   --  Note: in subsequent diagrams of the stack, we always place element
   --  zero (the deepest element) at the top of the page, then build the
   --  stack down on the page with the most recent (top of stack) element
   --  being the bottom-most entry on the page.

   --  Stack checking is handled by labeling every pattern with the maximum
   --  number of stack entries that are required, so a single check at the
   --  start of matching the pattern suffices. There are two exceptions.

   --  First, the count does not include entries for recursive pattern
   --  references. Such recursions must therefore perform a specific
   --  stack check with respect to the number of stack entries required
   --  by the recursive pattern that is accessed and the amount of stack
   --  that remains unused.

   --  Second, the count includes only one iteration of an Arbno pattern,
   --  so a specific check must be made on subsequent iterations that there
   --  is still enough stack space left. The Arbno node has a field that
   --  records the number of stack entries required by its argument for
   --  this purpose.

   ---------------------------------------------------
   -- Use of Serial Index Field in Pattern Elements --
   ---------------------------------------------------

   --  The serial index numbers for the pattern elements are assigned as
   --  a pattern is constructed from its constituent elements. Note that there
   --  is never any sharing of pattern elements between patterns (copies are
   --  always made), so the serial index numbers are unique to a particular
   --  pattern as referenced from the P field of a value of type Pattern.

   --  The index numbers meet three separate invariants, which are used for
   --  various purposes as described in this section.

   --  First, the numbers uniquely identify the pattern elements within a
   --  pattern. If Num is the number of elements in a given pattern, then
   --  the serial index numbers for the elements of this pattern will range
   --  from 1 .. Num, so that each element has a separate value.

   --  The purpose of this assignment is to provide a convenient auxiliary
   --  data structure mechanism during operations which must traverse a
   --  pattern (e.g. copy and finalization processing). Once constructed
   --  patterns are strictly read only. This is necessary to allow sharing
   --  of patterns between tasks. This means that we cannot go marking the
   --  pattern (e.g. with a visited bit). Instead we construct a separate
   --  vector that contains the necessary information indexed by the Index
   --  values in the pattern elements. For this purpose the only requirement
   --  is that they be uniquely assigned.

   --  Second, the pattern element referenced directly, i.e. the leading
   --  pattern element, is always the maximum numbered element and therefore
   --  indicates the total number of elements in the pattern. More precisely,
   --  the element referenced by the P field of a pattern value, or the
   --  element returned by any of the internal pattern construction routines
   --  in the body (that return a value of type PE_Ptr) always is this
   --  maximum element,

   --  The purpose of this requirement is to allow an immediate determination
   --  of the number of pattern elements within a pattern. This is used to
   --  properly size the vectors used to contain auxiliary information for
   --  traversal as described above.

   --  Third, as compound pattern structures are constructed, the way in which
   --  constituent parts of the pattern are constructed is stylized. This is
   --  an automatic consequence of the way that these compound structures
   --  are constructed, and basically what we are doing is simply documenting
   --  and specifying the natural result of the pattern construction. The
   --  section describing compound pattern structures gives details of the
   --  numbering of each compound pattern structure.

   --  The purpose of specifying the stylized numbering structures for the
   --  compound patterns is to help simplify the processing in the Image
   --  function, since it eases the task of retrieving the original recursive
   --  structure of the pattern from the flat graph structure of elements.
   --  This use in the Image function is the only point at which the code
   --  makes use of the stylized structures.

   type Ref_Array is array (IndexT range <>) of PE_Ptr;
   --  This type is used to build an array whose N'th entry references the
   --  element in a pattern whose Index value is N. See Build_Ref_Array.

   procedure Build_Ref_Array (E : PE_Ptr; RA : out Ref_Array);
   --  Given a pattern element which is the leading element of a pattern
   --  structure, and a Ref_Array with bounds 1 .. E.Index, fills in the
   --  Ref_Array so that its N'th entry references the element of the
   --  referenced pattern whose Index value is N.

   -------------------------------
   -- Recursive Pattern Matches --
   -------------------------------

   --  The pattern primitive (+P) where P is a Pattern_Ptr or Pattern_Func
   --  causes a recursive pattern match. This cannot be handled by an actual
   --  recursive call to the outer level Match routine, since this would not
   --  allow for possible backtracking into the region matched by the inner
   --  pattern. Indeed this is the classical clash between recursion and
   --  backtracking, and a simple recursive stack structure does not suffice.

   --  This section describes how this recursion and the possible associated
   --  backtracking is handled. We still use a single stack, but we establish
   --  the concept of nested regions on this stack, each of which has a stack
   --  base value pointing to the deepest stack entry of the region. The base
   --  value for the outer level is zero.

   --  When a recursive match is established, two special stack entries are
   --  made. The first entry is used to save the original node that starts
   --  the recursive match. This is saved so that the successor field of
   --  this node is accessible at the end of the match, but it is never
   --  popped and executed.

   --  The second entry corresponds to a standard new region action. A
   --  PC_R_Remove node is stacked, whose cursor field is used to store
   --  the outer stack base, and the stack base is reset to point to
   --  this PC_R_Remove node. Then the recursive pattern is matched and
   --  it can make history stack entries in the normal matter, so now
   --  the stack looks like:

   --     (stack entries made by outer level)

   --     (Special entry, node is (+P) successor
   --      cursor entry is not used)

   --     (PC_R_Remove entry, "cursor" value is (negative)     <-- Stack base
   --      saved base value for the enclosing region)

   --     (stack entries made by inner level)

   --  If a subsequent failure occurs and pops the PC_R_Remove node, it
   --  removes itself and the special entry immediately underneath it,
   --  restores the stack base value for the enclosing region, and then
   --  again signals failure to look for alternatives that were stacked
   --  before the recursion was initiated.

   --  Now we need to consider what happens if the inner pattern succeeds, as
   --  signalled by accessing the special PC_EOP pattern primitive. First we
   --  recognize the nested case by looking at the Base value. If this Base
   --  value is Stack'First, then the entire match has succeeded, but if the
   --  base value is greater than Stack'First, then we have successfully
   --  matched an inner pattern, and processing continues at the outer level.

   --  There are two cases. The simple case is when the inner pattern has made
   --  no stack entries, as recognized by the fact that the current stack
   --  pointer is equal to the current base value. In this case it is fine to
   --  remove all trace of the recursion by restoring the outer base value and
   --  using the special entry to find the appropriate successor node.

   --  The more complex case arises when the inner match does make stack
   --  entries. In this case, the PC_EOP processing stacks a special entry
   --  whose cursor value saves the saved inner base value (the one that
   --  references the corresponding PC_R_Remove value), and whose node
   --  pointer references a PC_R_Restore node, so the stack looks like:

   --     (stack entries made by outer level)

   --     (Special entry, node is (+P) successor,
   --      cursor entry is not used)

   --     (PC_R_Remove entry, "cursor" value is (negative)
   --      saved base value for the enclosing region)

   --     (stack entries made by inner level)

   --     (PC_Region_Replace entry, "cursor" value is (negative)
   --      stack pointer value referencing the PC_R_Remove entry).

   --  If the entire match succeeds, then these stack entries are, as usual,
   --  ignored and abandoned. If on the other hand a subsequent failure
   --  causes the PC_Region_Replace entry to be popped, it restores the
   --  inner base value from its saved "cursor" value and then fails again.
   --  Note that it is OK that the cursor is temporarily clobbered by this
   --  pop, since the second failure will reestablish a proper cursor value.

   ---------------------------------
   -- Compound Pattern Structures --
   ---------------------------------

   --  This section discusses the compound structures used to represent
   --  constructed patterns. It shows the graph structures of pattern
   --  elements that are constructed, and in the case of patterns that
   --  provide backtracking possibilities, describes how the history
   --  stack is used to control the backtracking. Finally, it notes the
   --  way in which the Index numbers are assigned to the structure.

   --  In all diagrams, solid lines (built with minus signs or vertical
   --  bars, represent successor pointers (Pthen fields) with > or V used
   --  to indicate the direction of the pointer. The initial node of the
   --  structure is in the upper left of the diagram. A dotted line is an
   --  alternative pointer from the element above it to the element below
   --  it. See individual sections for details on how alternatives are used.

      -------------------
      -- Concatenation --
      -------------------

      --  In the pattern structures listed in this section, a line that looks
      --  like ----> with nothing to the right indicates an end of pattern
      --  (EOP) pointer that represents the end of the match.

      --  When a pattern concatenation (L & R) occurs, the resulting structure
      --  is obtained by finding all such EOP pointers in L, and replacing
      --  them to point to R. This is the most important flattening that
      --  occurs in constructing a pattern, and it means that the pattern
      --  matching circuitry does not have to keep track of the structure
      --  of a pattern with respect to concatenation, since the appropriate
      --  successor is always at hand.

      --  Concatenation itself generates no additional possibilities for
      --  backtracking, but the constituent patterns of the concatenated
      --  structure will make stack entries as usual. The maximum amount
      --  of stack required by the structure is thus simply the sum of the
      --  maximums required by L and R.

      --  The index numbering of a concatenation structure works by leaving
      --  the numbering of the right hand pattern, R, unchanged and adjusting
      --  the numbers in the left hand pattern, L up by the count of elements
      --  in R. This ensures that the maximum numbered element is the leading
      --  element as required (given that it was the leading element in L).

      -----------------
      -- Alternation --
      -----------------

      --  A pattern (L or R) constructs the structure:

      --    +---+     +---+
      --    | A |---->| L |---->
      --    +---+     +---+
      --      .
      --      .
      --    +---+
      --    | R |---->
      --    +---+

      --  The A element here is a PC_Alt node, and the dotted line represents
      --  the contents of the Alt field. When the PC_Alt element is matched,
      --  it stacks a pointer to the leading element of R on the history stack
      --  so that on subsequent failure, a match of R is attempted.

      --  The A node is the highest numbered element in the pattern. The
      --  original index numbers of R are unchanged, but the index numbers
      --  of the L pattern are adjusted up by the count of elements in R.

      --  Note that the difference between the index of the L leading element
      --  the index of the R leading element (after building the alt structure)
      --  indicates the number of nodes in L, and this is true even after the
      --  structure is incorporated into some larger structure. For example,
      --  if the A node has index 16, and L has index 15 and R has index
      --  5, then we know that L has 10 (15-5) elements in it.

      --  Suppose that we now concatenate this structure to another pattern
      --  with 9 elements in it. We will now have the A node with an index
      --  of 25, L with an index of 24 and R with an index of 14. We still
      --  know that L has 10 (24-14) elements in it, numbered 15-24, and
      --  consequently the successor of the alternation structure has an
      --  index with a value less than 15. This is used in Image to figure
      --  out the original recursive structure of a pattern.

      --  To clarify the interaction of the alternation and concatenation
      --  structures, here is a more complex example of the structure built
      --  for the pattern:

      --      (V or W or X) (Y or Z)

      --  where A,B,C,D,E are all single element patterns:

      --    +---+     +---+       +---+     +---+
      --    I A I---->I V I---+-->I A I---->I Y I---->
      --    +---+     +---+   I   +---+     +---+
      --      .               I     .
      --      .               I     .
      --    +---+     +---+   I   +---+
      --    I A I---->I W I-->I   I Z I---->
      --    +---+     +---+   I   +---+
      --      .               I
      --      .               I
      --    +---+             I
      --    I X I------------>+
      --    +---+

      --  The numbering of the nodes would be as follows:

      --    +---+     +---+       +---+     +---+
      --    I 8 I---->I 7 I---+-->I 3 I---->I 2 I---->
      --    +---+     +---+   I   +---+     +---+
      --      .               I     .
      --      .               I     .
      --    +---+     +---+   I   +---+
      --    I 6 I---->I 5 I-->I   I 1 I---->
      --    +---+     +---+   I   +---+
      --      .               I
      --      .               I
      --    +---+             I
      --    I 4 I------------>+
      --    +---+

      --  Note: The above structure actually corresponds to

      --    (A or (B or C)) (D or E)

      --  rather than

      --    ((A or B) or C) (D or E)

      --  which is the more natural interpretation, but in fact alternation
      --  is associative, and the construction of an alternative changes the
      --  left grouped pattern to the right grouped pattern in any case, so
      --  that the Image function produces a more natural looking output.

      ---------
      -- Arb --
      ---------

      --  An Arb pattern builds the structure

      --    +---+
      --    | X |---->
      --    +---+
      --      .
      --      .
      --    +---+
      --    | Y |---->
      --    +---+

      --  The X node is a PC_Arb_X node, which matches null, and stacks a
      --  pointer to Y node, which is the PC_Arb_Y node that matches one
      --  extra character and restacks itself.

      --  The PC_Arb_X node is numbered 2, and the PC_Arb_Y node is 1

      -------------------------
      -- Arbno (simple case) --
      -------------------------

      --  The simple form of Arbno can be used where the pattern always
      --  matches at least one character if it succeeds, and it is known
      --  not to make any history stack entries. In this case, Arbno (P)
      --  can construct the following structure:

      --      +-------------+
      --      |             ^
      --      V             |
      --    +---+           |
      --    | S |---->      |
      --    +---+           |
      --      .             |
      --      .             |
      --    +---+           |
      --    | P |---------->+
      --    +---+

      --  The S (PC_Arbno_S) node matches null stacking a pointer to the
      --  pattern P. If a subsequent failure causes P to be matched and
      --  this match succeeds, then node A gets restacked to try another
      --  instance if needed by a subsequent failure.

      --  The node numbering of the constituent pattern P is not affected.
      --  The S node has a node number of P.Index + 1.

      --------------------------
      -- Arbno (complex case) --
      --------------------------

      --  A call to Arbno (P), where P can match null (or at least is not
      --  known to require a non-null string) and/or P requires pattern stack
      --  entries, constructs the following structure:

      --      +--------------------------+
      --      |                          ^
      --      V                          |
      --    +---+                        |
      --    | X |---->                   |
      --    +---+                        |
      --      .                          |
      --      .                          |
      --    +---+     +---+     +---+    |
      --    | E |---->| P |---->| Y |--->+
      --    +---+     +---+     +---+

      --  The node X (PC_Arbno_X) matches null, stacking a pointer to the
      --  E-P-X structure used to match one Arbno instance.

      --  Here E is the PC_R_Enter node which matches null and creates two
      --  stack entries. The first is a special entry whose node field is
      --  not used at all, and whose cursor field has the initial cursor.

      --  The second entry corresponds to a standard new region action. A
      --  PC_R_Remove node is stacked, whose cursor field is used to store
      --  the outer stack base, and the stack base is reset to point to
      --  this PC_R_Remove node. Then the pattern P is matched, and it can
      --  make history stack entries in the normal manner, so now the stack
      --  looks like:

      --     (stack entries made before assign pattern)

      --     (Special entry, node field not used,
      --      used only to save initial cursor)

      --     (PC_R_Remove entry, "cursor" value is (negative)  <-- Stack Base
      --      saved base value for the enclosing region)

      --     (stack entries made by matching P)

      --  If the match of P fails, then the PC_R_Remove entry is popped and
      --  it removes both itself and the special entry underneath it,
      --  restores the outer stack base, and signals failure.

      --  If the match of P succeeds, then node Y, the PC_Arbno_Y node, pops
      --  the inner region. There are two possibilities. If matching P left
      --  no stack entries, then all traces of the inner region can be removed.
      --  If there are stack entries, then we push an PC_Region_Replace stack
      --  entry whose "cursor" value is the inner stack base value, and then
      --  restore the outer stack base value, so the stack looks like:

      --     (stack entries made before assign pattern)

      --     (Special entry, node field not used,
      --      used only to save initial cursor)

      --     (PC_R_Remove entry, "cursor" value is (negative)
      --      saved base value for the enclosing region)

      --     (stack entries made by matching P)

      --     (PC_Region_Replace entry, "cursor" value is (negative)
      --      stack pointer value referencing the PC_R_Remove entry).

      --  Now that we have matched another instance of the Arbno pattern,
      --  we need to move to the successor. There are two cases. If the
      --  Arbno pattern matched null, then there is no point in seeking
      --  alternatives, since we would just match a whole bunch of nulls.
      --  In this case we look through the alternative node, and move
      --  directly to its successor (i.e. the successor of the Arbno
      --  pattern). If on the other hand a non-null string was matched,
      --  we simply follow the successor to the alternative node, which
      --  sets up for another possible match of the Arbno pattern.

      --  As noted in the section on stack checking, the stack count (and
      --  hence the stack check) for a pattern includes only one iteration
      --  of the Arbno pattern. To make sure that multiple iterations do not
      --  overflow the stack, the Arbno node saves the stack count required
      --  by a single iteration, and the Concat function increments this to
      --  include stack entries required by any successor. The PC_Arbno_Y
      --  node uses this count to ensure that sufficient stack remains
      --  before proceeding after matching each new instance.

      --  The node numbering of the constituent pattern P is not affected.
      --  Where N is the number of nodes in P, the Y node is numbered N + 1,
      --  the E node is N + 2, and the X node is N + 3.

      ----------------------
      -- Assign Immediate --
      ----------------------

      --  Immediate assignment (P * V) constructs the following structure

      --    +---+     +---+     +---+
      --    | E |---->| P |---->| A |---->
      --    +---+     +---+     +---+

      --  Here E is the PC_R_Enter node which matches null and creates two
      --  stack entries. The first is a special entry whose node field is
      --  not used at all, and whose cursor field has the initial cursor.

      --  The second entry corresponds to a standard new region action. A
      --  PC_R_Remove node is stacked, whose cursor field is used to store
      --  the outer stack base, and the stack base is reset to point to
      --  this PC_R_Remove node. Then the pattern P is matched, and it can
      --  make history stack entries in the normal manner, so now the stack
      --  looks like:

      --     (stack entries made before assign pattern)

      --     (Special entry, node field not used,
      --      used only to save initial cursor)

      --     (PC_R_Remove entry, "cursor" value is (negative)  <-- Stack Base
      --      saved base value for the enclosing region)

      --     (stack entries made by matching P)

      --  If the match of P fails, then the PC_R_Remove entry is popped
      --  and it removes both itself and the special entry underneath it,
      --  restores the outer stack base, and signals failure.

      --  If the match of P succeeds, then node A, which is the actual
      --  PC_Assign_Imm node, executes the assignment (using the stack
      --  base to locate the entry with the saved starting cursor value),
      --  and the pops the inner region. There are two possibilities, if
      --  matching P left no stack entries, then all traces of the inner
      --  region can be removed. If there are stack entries, then we push
      --  an PC_Region_Replace stack entry whose "cursor" value is the
      --  inner stack base value, and then restore the outer stack base
      --  value, so the stack looks like:

      --     (stack entries made before assign pattern)

      --     (Special entry, node field not used,
      --      used only to save initial cursor)

      --     (PC_R_Remove entry, "cursor" value is (negative)
      --      saved base value for the enclosing region)

      --     (stack entries made by matching P)

      --     (PC_Region_Replace entry, "cursor" value is the (negative)
      --      stack pointer value referencing the PC_R_Remove entry).

      --  If a subsequent failure occurs, the PC_Region_Replace node restores
      --  the inner stack base value and signals failure to explore rematches
      --  of the pattern P.

      --  The node numbering of the constituent pattern P is not affected.
      --  Where N is the number of nodes in P, the A node is numbered N + 1,
      --  and the E node is N + 2.

      ---------------------
      -- Assign On Match --
      ---------------------

      --  The assign on match (**) pattern is quite similar to the assign
      --  immediate pattern, except that the actual assignment has to be
      --  delayed. The following structure is constructed:

      --    +---+     +---+     +---+
      --    | E |---->| P |---->| A |---->
      --    +---+     +---+     +---+

      --  The operation of this pattern is identical to that described above
      --  for deferred assignment, up to the point where P has been matched.

      --  The A node, which is the PC_Assign_OnM node first pushes a
      --  PC_Assign node onto the history stack. This node saves the ending
      --  cursor and acts as a flag for the final assignment, as further
      --  described below.

      --  It then stores a pointer to itself in the special entry node field.
      --  This was otherwise unused, and is now used to retrieve the address
      --  of the variable to be assigned at the end of the pattern.

      --  After that the inner region is terminated in the usual manner,
      --  by stacking a PC_R_Restore entry as described for the assign
      --  immediate case. Note that the optimization of completely
      --  removing the inner region does not happen in this case, since
      --  we have at least one stack entry (the PC_Assign one we just made).
      --  The stack now looks like:

      --     (stack entries made before assign pattern)

      --     (Special entry, node points to copy of
      --      the PC_Assign_OnM node, and the
      --      cursor field saves the initial cursor).

      --     (PC_R_Remove entry, "cursor" value is (negative)
      --      saved base value for the enclosing region)

      --     (stack entries made by matching P)

      --     (PC_Assign entry, saves final cursor)

      --     (PC_Region_Replace entry, "cursor" value is (negative)
      --      stack pointer value referencing the PC_R_Remove entry).

      --  If a subsequent failure causes the PC_Assign node to execute it
      --  simply removes itself and propagates the failure.

      --  If the match succeeds, then the history stack is scanned for
      --  PC_Assign nodes, and the assignments are executed (examination
      --  of the above diagram will show that all the necessary data is
      --  at hand for the assignment).

      --  To optimize the common case where no assign-on-match operations
      --  are present, a global flag Assign_OnM is maintained which is
      --  initialize to False, and gets set True as part of the execution
      --  of the PC_Assign_OnM node. The scan of the history stack for
      --  PC_Assign entries is done only if this flag is set.

      --  The node numbering of the constituent pattern P is not affected.
      --  Where N is the number of nodes in P, the A node is numbered N + 1,
      --  and the E node is N + 2.

      ---------
      -- Bal --
      ---------

      --  Bal builds a single node:

      --    +---+
      --    | B |---->
      --    +---+

      --  The node B is the PC_Bal node which matches a parentheses balanced
      --  string, starting at the current cursor position. It then updates
      --  the cursor past this matched string, and stacks a pointer to itself
      --  with this updated cursor value on the history stack, to extend the
      --  matched string on a subsequent failure.

      --  Since this is a single node it is numbered 1 (the reason we include
      --  it in the compound patterns section is that it backtracks).

      ------------
      -- BreakX --
      ------------

      --  BreakX builds the structure

      --    +---+     +---+
      --    | B |---->| A |---->
      --    +---+     +---+
      --      ^         .
      --      |         .
      --      |       +---+
      --      +<------| X |
      --              +---+

      --  Here the B node is the BreakX_xx node that performs a normal Break
      --  function. The A node is an alternative (PC_Alt) node that matches
      --  null, but stacks a pointer to node X (the PC_BreakX_X node) which
      --  extends the match one character (to eat up the previously detected
      --  break character), and then rematches the break.

      --  The B node is numbered 3, the alternative node is 1, and the X
      --  node is 2.

      -----------
      -- Fence --
      -----------

      --  Fence builds a single node:

      --    +---+
      --    | F |---->
      --    +---+

      --  The element F, PC_Fence,  matches null, and stacks a pointer to a
      --  PC_Cancel element which will abort the match on a subsequent failure.

      --  Since this is a single element it is numbered 1 (the reason we
      --  include it in the compound patterns section is that it backtracks).

      --------------------
      -- Fence Function --
      --------------------

      --  A call to the Fence function builds the structure:

      --    +---+     +---+     +---+
      --    | E |---->| P |---->| X |---->
      --    +---+     +---+     +---+

      --  Here E is the PC_R_Enter node which matches null and creates two
      --  stack entries. The first is a special entry which is not used at
      --  all in the fence case (it is present merely for uniformity with
      --  other cases of region enter operations).

      --  The second entry corresponds to a standard new region action. A
      --  PC_R_Remove node is stacked, whose cursor field is used to store
      --  the outer stack base, and the stack base is reset to point to
      --  this PC_R_Remove node. Then the pattern P is matched, and it can
      --  make history stack entries in the normal manner, so now the stack
      --  looks like:

      --     (stack entries made before fence pattern)

      --     (Special entry, not used at all)

      --     (PC_R_Remove entry, "cursor" value is (negative)  <-- Stack Base
      --      saved base value for the enclosing region)

      --     (stack entries made by matching P)

      --  If the match of P fails, then the PC_R_Remove entry is popped
      --  and it removes both itself and the special entry underneath it,
      --  restores the outer stack base, and signals failure.

      --  If the match of P succeeds, then node X, the PC_Fence_X node, gets
      --  control. One might be tempted to think that at this point, the
      --  history stack entries made by matching P can just be removed since
      --  they certainly are not going to be used for rematching (that is
      --  whole point of Fence after all!) However, this is wrong, because
      --  it would result in the loss of possible assign-on-match entries
      --  for deferred pattern assignments.

      --  Instead what we do is to make a special entry whose node references
      --  PC_Fence_Y, and whose cursor saves the inner stack base value, i.e.
      --  the pointer to the PC_R_Remove entry. Then the outer stack base
      --  pointer is restored, so the stack looks like:

      --     (stack entries made before assign pattern)

      --     (Special entry, not used at all)

      --     (PC_R_Remove entry, "cursor" value is (negative)
      --      saved base value for the enclosing region)

      --     (stack entries made by matching P)

      --     (PC_Fence_Y entry, "cursor" value is (negative) stack
      --      pointer value referencing the PC_R_Remove entry).

      --  If a subsequent failure occurs, then the PC_Fence_Y entry removes
      --  the entire inner region, including all entries made by matching P,
      --  and alternatives prior to the Fence pattern are sought.

      --  The node numbering of the constituent pattern P is not affected.
      --  Where N is the number of nodes in P, the X node is numbered N + 1,
      --  and the E node is N + 2.

      -------------
      -- Succeed --
      -------------

      --  Succeed builds a single node:

      --    +---+
      --    | S |---->
      --    +---+

      --  The node S is the PC_Succeed node which matches null, and stacks
      --  a pointer to itself on the history stack, so that a subsequent
      --  failure repeats the same match.

      --  Since this is a single node it is numbered 1 (the reason we include
      --  it in the compound patterns section is that it backtracks).

      ---------------------
      -- Write Immediate --
      ---------------------

      --  The structure built for a write immediate operation (P * F, where
      --  F is a file access value) is:

      --    +---+     +---+     +---+
      --    | E |---->| P |---->| W |---->
      --    +---+     +---+     +---+

      --  Here E is the PC_R_Enter node and W is the PC_Write_Imm node. The
      --  handling is identical to that described above for Assign Immediate,
      --  except that at the point where a successful match occurs, the matched
      --  substring is written to the referenced file.

      --  The node numbering of the constituent pattern P is not affected.
      --  Where N is the number of nodes in P, the W node is numbered N + 1,
      --  and the E node is N + 2.

      --------------------
      -- Write On Match --
      --------------------

      --  The structure built for a write on match operation (P ** F, where
      --  F is a file access value) is:

      --    +---+     +---+     +---+
      --    | E |---->| P |---->| W |---->
      --    +---+     +---+     +---+

      --  Here E is the PC_R_Enter node and W is the PC_Write_OnM node. The
      --  handling is identical to that described above for Assign On Match,
      --  except that at the point where a successful match has completed,
      --  the matched substring is written to the referenced file.

      --  The node numbering of the constituent pattern P is not affected.
      --  Where N is the number of nodes in P, the W node is numbered N + 1,
      --  and the E node is N + 2.
   -----------------------
   -- Constant Patterns --
   -----------------------

   --  The following pattern elements are referenced only from the pattern
   --  history stack. In each case the processing for the pattern element
   --  results in pattern match abort, or further failure, so there is no
   --  need for a successor and no need for a node number

   CP_Assign    : aliased PE := (PC_Assign,    0, N);
   CP_Cancel    : aliased PE := (PC_Cancel,    0, N);
   CP_Fence_Y   : aliased PE := (PC_Fence_Y,   0, N);
   CP_R_Remove  : aliased PE := (PC_R_Remove,  0, N);
   CP_R_Restore : aliased PE := (PC_R_Restore, 0, N);

   -----------------------
   -- Local Subprograms --
   -----------------------

   function Alternate (L, R : PE_Ptr) return PE_Ptr;
   function "or"      (L, R : PE_Ptr) return PE_Ptr renames Alternate;
   --  Build pattern structure corresponding to the alternation of L, R.
   --  (i.e. try to match L, and if that fails, try to match R).

   function Arbno_Simple (P : PE_Ptr) return PE_Ptr;
   --  Build simple Arbno pattern, P is a pattern that is guaranteed to
   --  match at least one character if it succeeds and to require no
   --  stack entries under all circumstances. The result returned is
   --  a simple Arbno structure as previously described.

   function Bracket (E, P, A : PE_Ptr) return PE_Ptr;
   --  Given two single node pattern elements E and A, and a (possible
   --  complex) pattern P, construct the concatenation E-->P-->A and
   --  return a pointer to E. The concatenation does not affect the
   --  node numbering in P. A has a number one higher than the maximum
   --  number in P, and E has a number two higher than the maximum
   --  number in P (see for example the Assign_Immediate structure to
   --  understand a typical use of this function).

   function BreakX_Make (B : PE_Ptr) return Pattern;
   --  Given a pattern element for a Break pattern, returns the
   --  corresponding BreakX compound pattern structure.

   function Concat (L, R : PE_Ptr; Incr : Natural) return PE_Ptr;
   --  Creates a pattern element that represents a concatenation of the
   --  two given pattern elements (i.e. the pattern L followed by R).
   --  The result returned is always the same as L, but the pattern
   --  referenced by L is modified to have R as a successor. This
   --  procedure does not copy L or R, so if a copy is required, it
   --  is the responsibility of the caller. The Incr parameter is an
   --  amount to be added to the Nat field of any P_Arbno_Y node that is
   --  in the left operand, it represents the additional stack space
   --  required by the right operand.

   function C_To_PE (C : PChar) return PE_Ptr;
   --  Given a character, constructs a pattern element that matches
   --  the single character.

   function Copy (P : PE_Ptr) return PE_Ptr;
   --  Creates a copy of the pattern element referenced by the given
   --  pattern element reference. This is a deep copy, which means that
   --  it follows the Next and Alt pointers.

   function Image (P : PE_Ptr) return String;
   --  Returns the image of the address of the referenced pattern element.
   --  This is equivalent to Image (To_Address (P));

   function Is_In (C : Character; Str : String) return Boolean;
   pragma Inline (Is_In);
   --  Determines if the character C is in string Str

   procedure Logic_Error;
   --  Called to raise Program_Error with an appropriate message if an
   --  internal logic error is detected.

   function Str_BF (A : Boolean_Func)   return String;
   function Str_FP (A : File_Ptr)       return String;
   function Str_NF (A : Natural_Func)   return String;
   function Str_NP (A : Natural_Ptr)    return String;
   function Str_PP (A : Pattern_Ptr)    return String;
   function Str_VF (A : VString_Func)   return String;
   function Str_VP (A : VString_Ptr)    return String;
   --  These are debugging routines, which return a representation of the
   --  given access value (they are called only by Image and Dump)

   procedure Set_Successor (Pat : PE_Ptr; Succ : PE_Ptr);
   --  Adjusts all EOP pointers in Pat to point to Succ. No other changes
   --  are made. In particular, Succ is unchanged, and no index numbers
   --  are modified. Note that Pat may not be equal to EOP on entry.

   function S_To_PE (Str : PString) return PE_Ptr;
   --  Given a string, constructs a pattern element that matches the string

   procedure Uninitialized_Pattern;
   pragma No_Return (Uninitialized_Pattern);
   --  Called to raise Program_Error with an appropriate error message if
   --  an uninitialized pattern is used in any pattern construction or
   --  pattern matching operation.

   procedure XMatch
     (Subject : String;
      Pat_P   : PE_Ptr;
      Pat_S   : Natural;
      Start   : out Natural;
      Stop    : out Natural);
   --  This is the common pattern match routine. It is passed a string and
   --  a pattern, and it indicates success or failure, and on success the
   --  section of the string matched. It does not perform any assignments
   --  to the subject string, so pattern replacement is for the caller.
   --
   --  Subject The subject string. The lower bound is always one. In the
   --          Match procedures, it is fine to use strings whose lower bound
   --          is not one, but we perform a one time conversion before the
   --          call to XMatch, so that XMatch does not have to be bothered
   --          with strange lower bounds.
   --
   --  Pat_P   Points to initial pattern element of pattern to be matched
   --
   --  Pat_S   Maximum required stack entries for pattern to be matched
   --
   --  Start   If match is successful, starting index of matched section.
   --          This value is always non-zero. A value of zero is used to
   --          indicate a failed match.
   --
   --  Stop    If match is successful, ending index of matched section.
   --          This can be zero if we match the null string at the start,
   --          in which case Start is set to zero, and Stop to one. If the
   --          Match fails, then the contents of Stop is undefined.

   procedure XMatchD
     (Subject : String;
      Pat_P   : PE_Ptr;
      Pat_S   : Natural;
      Start   : out Natural;
      Stop    : out Natural);
   --  Identical in all respects to XMatch, except that trace information is
   --  output on Standard_Output during execution of the match. This is the
   --  version that is called if the original Match call has Debug => True.

   ---------
   -- "&" --
   ---------

   function "&" (L : PString; R : Pattern) return Pattern is
   begin
      return (AFC with R.Stk, Concat (S_To_PE (L), Copy (R.P), R.Stk));
   end "&";

   function "&" (L : Pattern; R : PString) return Pattern is
   begin
      return (AFC with L.Stk, Concat (Copy (L.P), S_To_PE (R), 0));
   end "&";

   function "&" (L : PChar; R : Pattern) return Pattern is
   begin
      return (AFC with R.Stk, Concat (C_To_PE (L), Copy (R.P), R.Stk));
   end "&";

   function "&" (L : Pattern; R : PChar) return Pattern is
   begin
      return (AFC with L.Stk, Concat (Copy (L.P), C_To_PE (R), 0));
   end "&";

   function "&" (L : Pattern; R : Pattern) return Pattern is
   begin
      return (AFC with L.Stk + R.Stk, Concat (Copy (L.P), Copy (R.P), R.Stk));
   end "&";

   ---------
   -- "*" --
   ---------

   --  Assign immediate

   --    +---+     +---+     +---+
   --    | E |---->| P |---->| A |---->
   --    +---+     +---+     +---+

   --  The node numbering of the constituent pattern P is not affected.
   --  Where N is the number of nodes in P, the A node is numbered N + 1,
   --  and the E node is N + 2.

   function "*" (P : Pattern; Var : VString_Var) return Pattern is
      Pat : constant PE_Ptr := Copy (P.P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,    0, EOP);
      A   : constant PE_Ptr :=
              new PE'(PC_Assign_Imm, 0, EOP, Var'Unrestricted_Access);
   begin
      return (AFC with P.Stk + 3, Bracket (E, Pat, A));
   end "*";

   function "*" (P : PString; Var : VString_Var) return Pattern is
      Pat : constant PE_Ptr := S_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,    0, EOP);
      A   : constant PE_Ptr :=
              new PE'(PC_Assign_Imm, 0, EOP, Var'Unrestricted_Access);
   begin
      return (AFC with 3, Bracket (E, Pat, A));
   end "*";

   function "*" (P : PChar; Var : VString_Var) return Pattern is
      Pat : constant PE_Ptr := C_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,    0, EOP);
      A   : constant PE_Ptr :=
              new PE'(PC_Assign_Imm, 0, EOP, Var'Unrestricted_Access);
   begin
      return (AFC with 3, Bracket (E, Pat, A));
   end "*";

   --  Write immediate

   --    +---+     +---+     +---+
   --    | E |---->| P |---->| W |---->
   --    +---+     +---+     +---+

   --  The node numbering of the constituent pattern P is not affected.
   --  Where N is the number of nodes in P, the W node is numbered N + 1,
   --  and the E node is N + 2.

   function "*" (P : Pattern; Fil : File_Access) return Pattern is
      Pat : constant PE_Ptr := Copy (P.P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,   0, EOP);
      W   : constant PE_Ptr := new PE'(PC_Write_Imm, 0, EOP, Fil);
   begin
      return (AFC with 3, Bracket (E, Pat, W));
   end "*";

   function "*" (P : PString; Fil : File_Access) return Pattern is
      Pat : constant PE_Ptr := S_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,   0, EOP);
      W   : constant PE_Ptr := new PE'(PC_Write_Imm, 0, EOP, Fil);
   begin
      return (AFC with 3, Bracket (E, Pat, W));
   end "*";

   function "*" (P : PChar; Fil : File_Access) return Pattern is
      Pat : constant PE_Ptr := C_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,   0, EOP);
      W   : constant PE_Ptr := new PE'(PC_Write_Imm, 0, EOP, Fil);
   begin
      return (AFC with 3, Bracket (E, Pat, W));
   end "*";

   ----------
   -- "**" --
   ----------

   --  Assign on match

   --    +---+     +---+     +---+
   --    | E |---->| P |---->| A |---->
   --    +---+     +---+     +---+

   --  The node numbering of the constituent pattern P is not affected.
   --  Where N is the number of nodes in P, the A node is numbered N + 1,
   --  and the E node is N + 2.

   function "**" (P : Pattern; Var : VString_Var) return Pattern is
      Pat : constant PE_Ptr := Copy (P.P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,    0, EOP);
      A   : constant PE_Ptr :=
              new PE'(PC_Assign_OnM, 0, EOP, Var'Unrestricted_Access);
   begin
      return (AFC with P.Stk + 3, Bracket (E, Pat, A));
   end "**";

   function "**" (P : PString; Var : VString_Var) return Pattern is
      Pat : constant PE_Ptr := S_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,    0, EOP);
      A   : constant PE_Ptr :=
              new PE'(PC_Assign_OnM, 0, EOP, Var'Unrestricted_Access);
   begin
      return (AFC with 3, Bracket (E, Pat, A));
   end "**";

   function "**" (P : PChar; Var : VString_Var) return Pattern is
      Pat : constant PE_Ptr := C_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,    0, EOP);
      A   : constant PE_Ptr :=
              new PE'(PC_Assign_OnM, 0, EOP, Var'Unrestricted_Access);
   begin
      return (AFC with 3, Bracket (E, Pat, A));
   end "**";

   --  Write on match

   --    +---+     +---+     +---+
   --    | E |---->| P |---->| W |---->
   --    +---+     +---+     +---+

   --  The node numbering of the constituent pattern P is not affected.
   --  Where N is the number of nodes in P, the W node is numbered N + 1,
   --  and the E node is N + 2.

   function "**" (P : Pattern; Fil : File_Access) return Pattern is
      Pat : constant PE_Ptr := Copy (P.P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,   0, EOP);
      W   : constant PE_Ptr := new PE'(PC_Write_OnM, 0, EOP, Fil);
   begin
      return (AFC with P.Stk + 3, Bracket (E, Pat, W));
   end "**";

   function "**" (P : PString; Fil : File_Access) return Pattern is
      Pat : constant PE_Ptr := S_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,   0, EOP);
      W   : constant PE_Ptr := new PE'(PC_Write_OnM, 0, EOP, Fil);
   begin
      return (AFC with 3, Bracket (E, Pat, W));
   end "**";

   function "**" (P : PChar; Fil : File_Access) return Pattern is
      Pat : constant PE_Ptr := C_To_PE (P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter,   0, EOP);
      W   : constant PE_Ptr := new PE'(PC_Write_OnM, 0, EOP, Fil);
   begin
      return (AFC with 3, Bracket (E, Pat, W));
   end "**";

   ---------
   -- "+" --
   ---------

   function "+" (Str : VString_Var) return Pattern is
   begin
      return
        (AFC with 0,
         new PE'(PC_String_VP, 1, EOP, Str'Unrestricted_Access));
   end "+";

   function "+" (Str : VString_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_String_VF, 1, EOP, Str));
   end "+";

   function "+" (P : Pattern_Var) return Pattern is
   begin
      return
        (AFC with 3,
         new PE'(PC_Rpat, 1, EOP, P'Unrestricted_Access));
   end "+";

   function "+" (P : Boolean_Func) return Pattern is
   begin
      return (AFC with 3, new PE'(PC_Pred_Func, 1, EOP, P));
   end "+";

   ----------
   -- "or" --
   ----------

   function "or" (L : PString; R : Pattern) return Pattern is
   begin
      return (AFC with R.Stk + 1, S_To_PE (L) or Copy (R.P));
   end "or";

   function "or" (L : Pattern; R : PString) return Pattern is
   begin
      return (AFC with L.Stk + 1, Copy (L.P) or S_To_PE (R));
   end "or";

   function "or" (L : PString; R : PString) return Pattern is
   begin
      return (AFC with 1, S_To_PE (L) or S_To_PE (R));
   end "or";

   function "or" (L : Pattern; R : Pattern) return Pattern is
   begin
      return (AFC with
                Natural'Max (L.Stk, R.Stk) + 1, Copy (L.P) or Copy (R.P));
   end "or";

   function "or" (L : PChar;   R : Pattern) return Pattern is
   begin
      return (AFC with 1, C_To_PE (L) or Copy (R.P));
   end "or";

   function "or" (L : Pattern; R : PChar) return Pattern is
   begin
      return (AFC with 1, Copy (L.P) or C_To_PE (R));
   end "or";

   function "or" (L : PChar;   R : PChar) return Pattern is
   begin
      return (AFC with 1, C_To_PE (L) or C_To_PE (R));
   end "or";

   function "or" (L : PString; R : PChar) return Pattern is
   begin
      return (AFC with 1, S_To_PE (L) or C_To_PE (R));
   end "or";

   function "or" (L : PChar;   R : PString) return Pattern is
   begin
      return (AFC with 1, C_To_PE (L) or S_To_PE (R));
   end "or";

   ------------
   -- Adjust --
   ------------

   --  No two patterns share the same pattern elements, so the adjust
   --  procedure for a Pattern assignment must do a deep copy of the
   --  pattern element structure.

   procedure Adjust (Object : in out Pattern) is
   begin
      Object.P := Copy (Object.P);
   end Adjust;

   ---------------
   -- Alternate --
   ---------------

   function Alternate (L, R : PE_Ptr) return PE_Ptr is
   begin
      --  If the left pattern is null, then we just add the alternation
      --  node with an index one greater than the right hand pattern.

      if L = EOP then
         return new PE'(PC_Alt, R.Index + 1, EOP, R);

      --  If the left pattern is non-null, then build a reference vector
      --  for its elements, and adjust their index values to accommodate
      --  the right hand elements. Then add the alternation node.

      else
         declare
            Refs : Ref_Array (1 .. L.Index);

         begin
            Build_Ref_Array (L, Refs);

            for J in Refs'Range loop
               Refs (J).Index := Refs (J).Index + R.Index;
            end loop;
         end;

         return new PE'(PC_Alt, L.Index + 1, L, R);
      end if;
   end Alternate;

   ---------
   -- Any --
   ---------

   function Any (Str : String) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Any_CS, 1, EOP, To_Set (Str)));
   end Any;

   function Any (Str : VString) return Pattern is
   begin
      return Any (S (Str));
   end Any;

   function Any (Str : Character) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Any_CH, 1, EOP, Str));
   end Any;

   function Any (Str : Character_Set) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Any_CS, 1, EOP, Str));
   end Any;

   function Any (Str : not null access VString) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Any_VP, 1, EOP, VString_Ptr (Str)));
   end Any;

   function Any (Str : VString_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Any_VF, 1, EOP, Str));
   end Any;

   ---------
   -- Arb --
   ---------

   --    +---+
   --    | X |---->
   --    +---+
   --      .
   --      .
   --    +---+
   --    | Y |---->
   --    +---+

   --  The PC_Arb_X element is numbered 2, and the PC_Arb_Y element is 1

   function Arb return Pattern is
      Y : constant PE_Ptr := new PE'(PC_Arb_Y, 1, EOP);
      X : constant PE_Ptr := new PE'(PC_Arb_X, 2, EOP, Y);
   begin
      return (AFC with 1, X);
   end Arb;

   -----------
   -- Arbno --
   -----------

   function Arbno (P : PString) return Pattern is
   begin
      if P'Length = 0 then
         return (AFC with 0, EOP);
      else
         return (AFC with 0, Arbno_Simple (S_To_PE (P)));
      end if;
   end Arbno;

   function Arbno (P : PChar) return Pattern is
   begin
      return (AFC with 0, Arbno_Simple (C_To_PE (P)));
   end Arbno;

   function Arbno (P : Pattern) return Pattern is
      Pat : constant PE_Ptr := Copy (P.P);

   begin
      if P.Stk = 0
        and then OK_For_Simple_Arbno (Pat.Pcode)
      then
         return (AFC with 0, Arbno_Simple (Pat));
      end if;

      --  This is the complex case, either the pattern makes stack entries
      --  or it is possible for the pattern to match the null string (more
      --  accurately, we don't know that this is not the case).

      --      +--------------------------+
      --      |                          ^
      --      V                          |
      --    +---+                        |
      --    | X |---->                   |
      --    +---+                        |
      --      .                          |
      --      .                          |
      --    +---+     +---+     +---+    |
      --    | E |---->| P |---->| Y |--->+
      --    +---+     +---+     +---+

      --  The node numbering of the constituent pattern P is not affected.
      --  Where N is the number of nodes in P, the Y node is numbered N + 1,
      --  the E node is N + 2, and the X node is N + 3.

      declare
         E   : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
         X   : constant PE_Ptr := new PE'(PC_Arbno_X, 0, EOP, E);
         Y   : constant PE_Ptr := new PE'(PC_Arbno_Y, 0, X,   P.Stk + 3);
         EPY : constant PE_Ptr := Bracket (E, Pat, Y);
      begin
         X.Alt := EPY;
         X.Index := EPY.Index + 1;
         return (AFC with P.Stk + 3, X);
      end;
   end Arbno;

   ------------------
   -- Arbno_Simple --
   ------------------

      --      +-------------+
      --      |             ^
      --      V             |
      --    +---+           |
      --    | S |---->      |
      --    +---+           |
      --      .             |
      --      .             |
      --    +---+           |
      --    | P |---------->+
      --    +---+

   --  The node numbering of the constituent pattern P is not affected.
   --  The S node has a node number of P.Index + 1.

   --  Note that we know that P cannot be EOP, because a null pattern
   --  does not meet the requirements for simple Arbno.

   function Arbno_Simple (P : PE_Ptr) return PE_Ptr is
      S : constant PE_Ptr := new PE'(PC_Arbno_S, P.Index + 1, EOP, P);
   begin
      Set_Successor (P, S);
      return S;
   end Arbno_Simple;

   ---------
   -- Bal --
   ---------

   function Bal return Pattern is
   begin
      return (AFC with 1, new PE'(PC_Bal, 1, EOP));
   end Bal;

   -------------
   -- Bracket --
   -------------

   function Bracket (E, P, A : PE_Ptr) return PE_Ptr is
   begin
      if P = EOP then
         E.Pthen := A;
         E.Index := 2;
         A.Index := 1;

      else
         E.Pthen := P;
         Set_Successor (P, A);
         E.Index := P.Index + 2;
         A.Index := P.Index + 1;
      end if;

      return E;
   end Bracket;

   -----------
   -- Break --
   -----------

   function Break (Str : String) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Break_CS, 1, EOP, To_Set (Str)));
   end Break;

   function Break (Str : VString) return Pattern is
   begin
      return Break (S (Str));
   end Break;

   function Break (Str : Character) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Break_CH, 1, EOP, Str));
   end Break;

   function Break (Str : Character_Set) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Break_CS, 1, EOP, Str));
   end Break;

   function Break (Str : not null access VString) return Pattern is
   begin
      return (AFC with 0,
              new PE'(PC_Break_VP, 1, EOP, Str.all'Unchecked_Access));
   end Break;

   function Break (Str : VString_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Break_VF, 1, EOP, Str));
   end Break;

   ------------
   -- BreakX --
   ------------

   function BreakX (Str : String) return Pattern is
   begin
      return BreakX_Make (new PE'(PC_BreakX_CS, 3, N, To_Set (Str)));
   end BreakX;

   function BreakX (Str : VString) return Pattern is
   begin
      return BreakX (S (Str));
   end BreakX;

   function BreakX (Str : Character) return Pattern is
   begin
      return BreakX_Make (new PE'(PC_BreakX_CH, 3, N, Str));
   end BreakX;

   function BreakX (Str : Character_Set) return Pattern is
   begin
      return BreakX_Make (new PE'(PC_BreakX_CS, 3, N, Str));
   end BreakX;

   function BreakX (Str : not null access VString) return Pattern is
   begin
      return BreakX_Make (new PE'(PC_BreakX_VP, 3, N, VString_Ptr (Str)));
   end BreakX;

   function BreakX (Str : VString_Func) return Pattern is
   begin
      return BreakX_Make (new PE'(PC_BreakX_VF, 3, N, Str));
   end BreakX;

   -----------------
   -- BreakX_Make --
   -----------------

   --    +---+     +---+
   --    | B |---->| A |---->
   --    +---+     +---+
   --      ^         .
   --      |         .
   --      |       +---+
   --      +<------| X |
   --              +---+

   --  The B node is numbered 3, the alternative node is 1, and the X
   --  node is 2.

   function BreakX_Make (B : PE_Ptr) return Pattern is
      X : constant PE_Ptr := new PE'(PC_BreakX_X, 2, B);
      A : constant PE_Ptr := new PE'(PC_Alt,      1, EOP, X);
   begin
      B.Pthen := A;
      return (AFC with 2, B);
   end BreakX_Make;

   ---------------------
   -- Build_Ref_Array --
   ---------------------

   procedure Build_Ref_Array (E : PE_Ptr; RA : out Ref_Array) is

      procedure Record_PE (E : PE_Ptr);
      --  Record given pattern element if not already recorded in RA,
      --  and also record any referenced pattern elements recursively.

      ---------------
      -- Record_PE --
      ---------------

      procedure Record_PE (E : PE_Ptr) is
      begin
         PutD ("  Record_PE called with PE_Ptr = " & Image (E));

         if E = EOP or else RA (E.Index) /= null then
            Put_LineD (", nothing to do");
            return;

         else
            Put_LineD (", recording" & IndexT'Image (E.Index));
            RA (E.Index) := E;
            Record_PE (E.Pthen);

            if E.Pcode in PC_Has_Alt then
               Record_PE (E.Alt);
            end if;
         end if;
      end Record_PE;

   --  Start of processing for Build_Ref_Array

   begin
      New_LineD;
      Put_LineD ("Entering Build_Ref_Array");
      Record_PE (E);
      New_LineD;
   end Build_Ref_Array;

   -------------
   -- C_To_PE --
   -------------

   function C_To_PE (C : PChar) return PE_Ptr is
   begin
      return new PE'(PC_Char, 1, EOP, C);
   end C_To_PE;

   ------------
   -- Cancel --
   ------------

   function Cancel return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Cancel, 1, EOP));
   end Cancel;

   ------------
   -- Concat --
   ------------

   --  Concat needs to traverse the left operand performing the following
   --  set of fixups:

   --    a) Any successor pointers (Pthen fields) that are set to EOP are
   --       reset to point to the second operand.

   --    b) Any PC_Arbno_Y node has its stack count field incremented
   --       by the parameter Incr provided for this purpose.

   --    d) Num fields of all pattern elements in the left operand are
   --       adjusted to include the elements of the right operand.

   --  Note: we do not use Set_Successor in the processing for Concat, since
   --  there is no point in doing two traversals, we may as well do everything
   --  at the same time.

   function Concat (L, R : PE_Ptr; Incr : Natural) return PE_Ptr is
   begin
      if L = EOP then
         return R;

      elsif R = EOP then
         return L;

      else
         declare
            Refs : Ref_Array (1 .. L.Index);
            --  We build a reference array for L whose N'th element points to
            --  the pattern element of L whose original Index value is N.

            P : PE_Ptr;

         begin
            Build_Ref_Array (L, Refs);

            for J in Refs'Range loop
               P := Refs (J);

               P.Index := P.Index + R.Index;

               if P.Pcode = PC_Arbno_Y then
                  P.Nat := P.Nat + Incr;
               end if;

               if P.Pthen = EOP then
                  P.Pthen := R;
               end if;

               if P.Pcode in PC_Has_Alt and then P.Alt = EOP then
                  P.Alt := R;
               end if;
            end loop;
         end;

         return L;
      end if;
   end Concat;

   ----------
   -- Copy --
   ----------

   function Copy (P : PE_Ptr) return PE_Ptr is
   begin
      if P = null then
         Uninitialized_Pattern;

      else
         declare
            Refs : Ref_Array (1 .. P.Index);
            --  References to elements in P, indexed by Index field

            Copy : Ref_Array (1 .. P.Index);
            --  Holds copies of elements of P, indexed by Index field

            E : PE_Ptr;

         begin
            Build_Ref_Array (P, Refs);

            --  Now copy all nodes

            for J in Refs'Range loop
               Copy (J) := new PE'(Refs (J).all);
            end loop;

            --  Adjust all internal references

            for J in Copy'Range loop
               E := Copy (J);

               --  Adjust successor pointer to point to copy

               if E.Pthen /= EOP then
                  E.Pthen := Copy (E.Pthen.Index);
               end if;

               --  Adjust Alt pointer if there is one to point to copy

               if E.Pcode in PC_Has_Alt and then E.Alt /= EOP then
                  E.Alt := Copy (E.Alt.Index);
               end if;

               --  Copy referenced string

               if E.Pcode = PC_String then
                  E.Str := new String'(E.Str.all);
               end if;
            end loop;

            return Copy (P.Index);
         end;
      end if;
   end Copy;

   ----------
   -- Dump --
   ----------

   procedure Dump (P : Pattern) is

      subtype Count is Ada.Text_IO.Count;
      Scol : Count;
      --  Used to keep track of column in dump output

      Refs : Ref_Array (1 .. P.P.Index);
      --  We build a reference array whose N'th element points to the
      --  pattern element whose Index value is N.

      Cols : Natural := 2;
      --  Number of columns used for pattern numbers, minimum is 2

      E : PE_Ptr;

      procedure Write_Node_Id (E : PE_Ptr);
      --  Writes out a string identifying the given pattern element

      -------------------
      -- Write_Node_Id --
      -------------------

      procedure Write_Node_Id (E : PE_Ptr) is
      begin
         if E = EOP then
            Put ("EOP");

            for J in 4 .. Cols loop
               Put (' ');
            end loop;

         else
            declare
               Str : String (1 .. Cols);
               N   : Natural := Natural (E.Index);

            begin
               Put ("#");

               for J in reverse Str'Range loop
                  Str (J) := Character'Val (48 + N mod 10);
                  N := N / 10;
               end loop;

               Put (Str);
            end;
         end if;
      end Write_Node_Id;

   --  Start of processing for Dump

   begin
      New_Line;
      Put ("Pattern Dump Output (pattern at " &
           Image (P'Address) &
           ", S = " & Natural'Image (P.Stk) & ')');

      Scol := Col;
      New_Line;

      while Col < Scol loop
         Put ('-');
      end loop;

      New_Line;

      --  If uninitialized pattern, dump line and we are done

      if P.P = null then
         Put_Line ("Uninitialized pattern value");
         return;
      end if;

      --  If null pattern, just dump it and we are all done

      if P.P = EOP then
         Put_Line ("EOP (null pattern)");
         return;
      end if;

      Build_Ref_Array (P.P, Refs);

      --  Set number of columns required for node numbers

      while 10 ** Cols - 1 < Integer (P.P.Index) loop
         Cols := Cols + 1;
      end loop;

      --  Now dump the nodes in reverse sequence. We output them in reverse
      --  sequence since this corresponds to the natural order used to
      --  construct the patterns.

      for J in reverse Refs'Range loop
         E := Refs (J);
         Write_Node_Id (E);
         Set_Col (Count (Cols) + 4);
         Put (Image (E));
         Put ("  ");
         Put (Pattern_Code'Image (E.Pcode));
         Put ("  ");
         Set_Col (21 + Count (Cols) + Address_Image_Length);
         Write_Node_Id (E.Pthen);
         Set_Col (24 + 2 * Count (Cols) + Address_Image_Length);

         case E.Pcode is

            when PC_Alt     |
                 PC_Arb_X   |
                 PC_Arbno_S |
                 PC_Arbno_X =>
               Write_Node_Id (E.Alt);

            when PC_Rpat =>
               Put (Str_PP (E.PP));

            when PC_Pred_Func =>
               Put (Str_BF (E.BF));

            when PC_Assign_Imm |
                 PC_Assign_OnM |
                 PC_Any_VP     |
                 PC_Break_VP   |
                 PC_BreakX_VP  |
                 PC_NotAny_VP  |
                 PC_NSpan_VP   |
                 PC_Span_VP    |
                 PC_String_VP  =>
               Put (Str_VP (E.VP));

            when PC_Write_Imm  |
                 PC_Write_OnM =>
               Put (Str_FP (E.FP));

            when PC_String =>
               Put (Image (E.Str.all));

            when PC_String_2 =>
               Put (Image (E.Str2));

            when PC_String_3 =>
               Put (Image (E.Str3));

            when PC_String_4 =>
               Put (Image (E.Str4));

            when PC_String_5 =>
               Put (Image (E.Str5));

            when PC_String_6 =>
               Put (Image (E.Str6));

            when PC_Setcur =>
               Put (Str_NP (E.Var));

            when PC_Any_CH      |
                 PC_Break_CH    |
                 PC_BreakX_CH   |
                 PC_Char        |
                 PC_NotAny_CH   |
                 PC_NSpan_CH    |
                 PC_Span_CH     =>
               Put (''' & E.Char & ''');

            when PC_Any_CS      |
                 PC_Break_CS    |
                 PC_BreakX_CS   |
                 PC_NotAny_CS   |
                 PC_NSpan_CS    |
                 PC_Span_CS     =>
               Put ('"' & To_Sequence (E.CS) & '"');

            when PC_Arbno_Y     |
                 PC_Len_Nat     |
                 PC_Pos_Nat     |
                 PC_RPos_Nat    |
                 PC_RTab_Nat    |
                 PC_Tab_Nat     =>
               Put (S (E.Nat));

            when PC_Pos_NF      |
                 PC_Len_NF      |
                 PC_RPos_NF     |
                 PC_RTab_NF     |
                 PC_Tab_NF      =>
               Put (Str_NF (E.NF));

            when PC_Pos_NP      |
                 PC_Len_NP      |
                 PC_RPos_NP     |
                 PC_RTab_NP     |
                 PC_Tab_NP      =>
               Put (Str_NP (E.NP));

            when PC_Any_VF      |
                 PC_Break_VF    |
                 PC_BreakX_VF   |
                 PC_NotAny_VF   |
                 PC_NSpan_VF    |
                 PC_Span_VF     |
                 PC_String_VF   =>
               Put (Str_VF (E.VF));

            when others => null;

         end case;

         New_Line;
      end loop;

      New_Line;
   end Dump;

   ----------
   -- Fail --
   ----------

   function Fail return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Fail, 1, EOP));
   end Fail;

   -----------
   -- Fence --
   -----------

   --  Simple case

   function Fence return Pattern is
   begin
      return (AFC with 1, new PE'(PC_Fence, 1, EOP));
   end Fence;

   --  Function case

   --    +---+     +---+     +---+
   --    | E |---->| P |---->| X |---->
   --    +---+     +---+     +---+

   --  The node numbering of the constituent pattern P is not affected.
   --  Where N is the number of nodes in P, the X node is numbered N + 1,
   --  and the E node is N + 2.

   function Fence (P : Pattern) return Pattern is
      Pat : constant PE_Ptr := Copy (P.P);
      E   : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
      X   : constant PE_Ptr := new PE'(PC_Fence_X, 0, EOP);
   begin
      return (AFC with P.Stk + 1, Bracket (E, Pat, X));
   end Fence;

   --------------
   -- Finalize --
   --------------

   procedure Finalize (Object : in out Pattern) is

      procedure Free is new Ada.Unchecked_Deallocation (PE, PE_Ptr);
      procedure Free is new Ada.Unchecked_Deallocation (String, String_Ptr);

   begin
      --  Nothing to do if already freed

      if Object.P = null then
         return;

      --  Otherwise we must free all elements

      else
         declare
            Refs : Ref_Array (1 .. Object.P.Index);
            --  References to elements in pattern to be finalized

         begin
            Build_Ref_Array (Object.P, Refs);

            for J in Refs'Range loop
               if Refs (J).Pcode = PC_String then
                  Free (Refs (J).Str);
               end if;

               Free (Refs (J));
            end loop;

            Object.P := null;
         end;
      end if;
   end Finalize;

   -----------
   -- Image --
   -----------

   function Image (P : PE_Ptr) return String is
   begin
      return Image (To_Address (P));
   end Image;

   function Image (P : Pattern) return String is
   begin
      return S (Image (P));
   end Image;

   function Image (P : Pattern) return VString is

      Kill_Ampersand : Boolean := False;
      --  Set True to delete next & to be output to Result

      Result : VString := Nul;
      --  The result is accumulated here, using Append

      Refs : Ref_Array (1 .. P.P.Index);
      --  We build a reference array whose N'th element points to the
      --  pattern element whose Index value is N.

      procedure Delete_Ampersand;
      --  Deletes the ampersand at the end of Result

      procedure Image_Seq (E : PE_Ptr; Succ : PE_Ptr; Paren : Boolean);
      --  E refers to a pattern structure whose successor is given by Succ.
      --  This procedure appends to Result a representation of this pattern.
      --  The Paren parameter indicates whether parentheses are required if
      --  the output is more than one element.

      procedure Image_One (E : in out PE_Ptr);
      --  E refers to a pattern structure. This procedure appends to Result
      --  a representation of the single simple or compound pattern structure
      --  at the start of E and updates E to point to its successor.

      ----------------------
      -- Delete_Ampersand --
      ----------------------

      procedure Delete_Ampersand is
         L : constant Natural := Length (Result);
      begin
         if L > 2 then
            Delete (Result, L - 1, L);
         end if;
      end Delete_Ampersand;

      ---------------
      -- Image_One --
      ---------------

      procedure Image_One (E : in out PE_Ptr) is

         ER : PE_Ptr := E.Pthen;
         --  Successor set as result in E unless reset

      begin
         case E.Pcode is

            when PC_Cancel =>
               Append (Result, "Cancel");

            when PC_Alt => Alt : declare

               Elmts_In_L : constant IndexT := E.Pthen.Index - E.Alt.Index;
               --  Number of elements in left pattern of alternation

               Lowest_In_L : constant IndexT := E.Index - Elmts_In_L;
               --  Number of lowest index in elements of left pattern

               E1 : PE_Ptr;

            begin
               --  The successor of the alternation node must have a lower
               --  index than any node that is in the left pattern or a
               --  higher index than the alternation node itself.

               while ER /= EOP
                 and then ER.Index >= Lowest_In_L
                 and then ER.Index < E.Index
               loop
                  ER := ER.Pthen;
               end loop;

               Append (Result, '(');

               E1 := E;
               loop
                  Image_Seq (E1.Pthen, ER, False);
                  Append (Result, " or ");
                  E1 := E1.Alt;
                  exit when E1.Pcode /= PC_Alt;
               end loop;

               Image_Seq (E1, ER, False);
               Append (Result, ')');
            end Alt;

            when PC_Any_CS =>
               Append (Result, "Any (" & Image (To_Sequence (E.CS)) & ')');

            when PC_Any_VF =>
               Append (Result, "Any (" & Str_VF (E.VF) & ')');

            when PC_Any_VP =>
               Append (Result, "Any (" & Str_VP (E.VP) & ')');

            when PC_Arb_X =>
               Append (Result, "Arb");

            when PC_Arbno_S =>
               Append (Result, "Arbno (");
               Image_Seq (E.Alt, E, False);
               Append (Result, ')');

            when PC_Arbno_X =>
               Append (Result, "Arbno (");
               Image_Seq (E.Alt.Pthen, Refs (E.Index - 2), False);
               Append (Result, ')');

            when PC_Assign_Imm =>
               Delete_Ampersand;
               Append (Result, "* " & Str_VP (Refs (E.Index).VP));

            when PC_Assign_OnM =>
               Delete_Ampersand;
               Append (Result, "** " & Str_VP (Refs (E.Index).VP));

            when PC_Any_CH =>
               Append (Result, "Any ('" & E.Char & "')");

            when PC_Bal =>
               Append (Result, "Bal");

            when PC_Break_CH =>
               Append (Result, "Break ('" & E.Char & "')");

            when PC_Break_CS =>
               Append (Result, "Break (" & Image (To_Sequence (E.CS)) & ')');

            when PC_Break_VF =>
               Append (Result, "Break (" & Str_VF (E.VF) & ')');

            when PC_Break_VP =>
               Append (Result, "Break (" & Str_VP (E.VP) & ')');

            when PC_BreakX_CH =>
               Append (Result, "BreakX ('" & E.Char & "')");
               ER := ER.Pthen;

            when PC_BreakX_CS =>
               Append (Result, "BreakX (" & Image (To_Sequence (E.CS)) & ')');
               ER := ER.Pthen;

            when PC_BreakX_VF =>
               Append (Result, "BreakX (" & Str_VF (E.VF) & ')');
               ER := ER.Pthen;

            when PC_BreakX_VP =>
               Append (Result, "BreakX (" & Str_VP (E.VP) & ')');
               ER := ER.Pthen;

            when PC_Char =>
               Append (Result, ''' & E.Char & ''');

            when PC_Fail =>
               Append (Result, "Fail");

            when PC_Fence =>
               Append (Result, "Fence");

            when PC_Fence_X =>
               Append (Result, "Fence (");
               Image_Seq (E.Pthen, Refs (E.Index - 1), False);
               Append (Result, ")");
               ER := Refs (E.Index - 1).Pthen;

            when PC_Len_Nat =>
               Append (Result, "Len (" & E.Nat & ')');

            when PC_Len_NF =>
               Append (Result, "Len (" & Str_NF (E.NF) & ')');

            when PC_Len_NP =>
               Append (Result, "Len (" & Str_NP (E.NP) & ')');

            when PC_NotAny_CH =>
               Append (Result, "NotAny ('" & E.Char & "')");

            when PC_NotAny_CS =>
               Append (Result, "NotAny (" & Image (To_Sequence (E.CS)) & ')');

            when PC_NotAny_VF =>
               Append (Result, "NotAny (" & Str_VF (E.VF) & ')');

            when PC_NotAny_VP =>
               Append (Result, "NotAny (" & Str_VP (E.VP) & ')');

            when PC_NSpan_CH =>
               Append (Result, "NSpan ('" & E.Char & "')");

            when PC_NSpan_CS =>
               Append (Result, "NSpan (" & Image (To_Sequence (E.CS)) & ')');

            when PC_NSpan_VF =>
               Append (Result, "NSpan (" & Str_VF (E.VF) & ')');

            when PC_NSpan_VP =>
               Append (Result, "NSpan (" & Str_VP (E.VP) & ')');

            when PC_Null =>
               Append (Result, """""");

            when PC_Pos_Nat =>
               Append (Result, "Pos (" & E.Nat & ')');

            when PC_Pos_NF =>
               Append (Result, "Pos (" & Str_NF (E.NF) & ')');

            when PC_Pos_NP =>
               Append (Result, "Pos (" & Str_NP (E.NP) & ')');

            when PC_R_Enter =>
               Kill_Ampersand := True;

            when PC_Rest =>
               Append (Result, "Rest");

            when PC_Rpat =>
               Append (Result, "(+ " & Str_PP (E.PP) & ')');

            when PC_Pred_Func =>
               Append (Result, "(+ " & Str_BF (E.BF) & ')');

            when PC_RPos_Nat =>
               Append (Result, "RPos (" & E.Nat & ')');

            when PC_RPos_NF =>
               Append (Result, "RPos (" & Str_NF (E.NF) & ')');

            when PC_RPos_NP =>
               Append (Result, "RPos (" & Str_NP (E.NP) & ')');

            when PC_RTab_Nat =>
               Append (Result, "RTab (" & E.Nat & ')');

            when PC_RTab_NF =>
               Append (Result, "RTab (" & Str_NF (E.NF) & ')');

            when PC_RTab_NP =>
               Append (Result, "RTab (" & Str_NP (E.NP) & ')');

            when PC_Setcur =>
               Append (Result, "Setcur (" & Str_NP (E.Var) & ')');

            when PC_Span_CH =>
               Append (Result, "Span ('" & E.Char & "')");

            when PC_Span_CS =>
               Append (Result, "Span (" & Image (To_Sequence (E.CS)) & ')');

            when PC_Span_VF =>
               Append (Result, "Span (" & Str_VF (E.VF) & ')');

            when PC_Span_VP =>
               Append (Result, "Span (" & Str_VP (E.VP) & ')');

            when PC_String =>
               Append (Result, Image (E.Str.all));

            when PC_String_2 =>
               Append (Result, Image (E.Str2));

            when PC_String_3 =>
               Append (Result, Image (E.Str3));

            when PC_String_4 =>
               Append (Result, Image (E.Str4));

            when PC_String_5 =>
               Append (Result, Image (E.Str5));

            when PC_String_6 =>
               Append (Result, Image (E.Str6));

            when PC_String_VF =>
               Append (Result, "(+" &  Str_VF (E.VF) & ')');

            when PC_String_VP =>
               Append (Result, "(+" & Str_VP (E.VP) & ')');

            when PC_Succeed =>
               Append (Result, "Succeed");

            when PC_Tab_Nat =>
               Append (Result, "Tab (" & E.Nat & ')');

            when PC_Tab_NF =>
               Append (Result, "Tab (" & Str_NF (E.NF) & ')');

            when PC_Tab_NP =>
               Append (Result, "Tab (" & Str_NP (E.NP) & ')');

            when PC_Write_Imm =>
               Append (Result, '(');
               Image_Seq (E, Refs (E.Index - 1), True);
               Append (Result, " * " & Str_FP (Refs (E.Index - 1).FP));
               ER := Refs (E.Index - 1).Pthen;

            when PC_Write_OnM =>
               Append (Result, '(');
               Image_Seq (E.Pthen, Refs (E.Index - 1), True);
               Append (Result, " ** " & Str_FP (Refs (E.Index - 1).FP));
               ER := Refs (E.Index - 1).Pthen;

            --  Other pattern codes should not appear as leading elements

            when PC_Arb_Y      |
                 PC_Arbno_Y    |
                 PC_Assign     |
                 PC_BreakX_X   |
                 PC_EOP        |
                 PC_Fence_Y    |
                 PC_R_Remove   |
                 PC_R_Restore  |
                 PC_Unanchored =>
               Append (Result, "???");

         end case;

         E := ER;
      end Image_One;

      ---------------
      -- Image_Seq --
      ---------------

      procedure Image_Seq (E : PE_Ptr; Succ : PE_Ptr; Paren : Boolean) is
         Indx : constant Natural := Length (Result);
         E1   : PE_Ptr  := E;
         Mult : Boolean := False;

      begin
         --  The image of EOP is "" (the null string)

         if E = EOP then
            Append (Result, """""");

         --  Else generate appropriate concatenation sequence

         else
            loop
               Image_One (E1);
               exit when E1 = Succ;
               exit when E1 = EOP;
               Mult := True;

               if Kill_Ampersand then
                  Kill_Ampersand := False;
               else
                  Append (Result, " & ");
               end if;
            end loop;
         end if;

         if Mult and Paren then
            Insert (Result, Indx + 1, "(");
            Append (Result, ")");
         end if;
      end Image_Seq;

   --  Start of processing for Image

   begin
      Build_Ref_Array (P.P, Refs);
      Image_Seq (P.P, EOP, False);
      return Result;
   end Image;

   -----------
   -- Is_In --
   -----------

   function Is_In (C : Character; Str : String) return Boolean is
   begin
      for J in Str'Range loop
         if Str (J) = C then
            return True;
         end if;
      end loop;

      return False;
   end Is_In;

   ---------
   -- Len --
   ---------

   function Len (Count : Natural) return Pattern is
   begin
      --  Note, the following is not just an optimization, it is needed
      --  to ensure that Arbno (Len (0)) does not generate an infinite
      --  matching loop (since PC_Len_Nat is OK_For_Simple_Arbno).

      if Count = 0 then
         return (AFC with 0, new PE'(PC_Null, 1, EOP));

      else
         return (AFC with 0, new PE'(PC_Len_Nat, 1, EOP, Count));
      end if;
   end Len;

   function Len (Count : Natural_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Len_NF, 1, EOP, Count));
   end Len;

   function Len (Count : not null access Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Len_NP, 1, EOP, Natural_Ptr (Count)));
   end Len;

   -----------------
   -- Logic_Error --
   -----------------

   procedure Logic_Error is
   begin
      raise Program_Error with
         "Internal logic error in GNAT.Spitbol.Patterns";
   end Logic_Error;

   -----------
   -- Match --
   -----------

   function Match
     (Subject : VString;
      Pat     : Pattern) return Boolean
   is
      S     : Big_String_Access;
      L     : Natural;
      Start : Natural;
      Stop  : Natural;
      pragma Unreferenced (Stop);

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;

      return Start /= 0;
   end Match;

   function Match
     (Subject : String;
      Pat     : Pattern) return Boolean
   is
      Start, Stop : Natural;
      pragma Unreferenced (Stop);

      subtype String1 is String (1 .. Subject'Length);

   begin
      if Debug_Mode then
         XMatchD (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
      end if;

      return Start /= 0;
   end Match;

   function Match
     (Subject : VString_Var;
      Pat     : Pattern;
      Replace : VString) return Boolean
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;

      if Start = 0 then
         return False;
      else
         Get_String (Replace, S, L);
         Replace_Slice
           (Subject'Unrestricted_Access.all, Start, Stop, S (1 .. L));
         return True;
      end if;
   end Match;

   function Match
     (Subject : VString_Var;
      Pat     : Pattern;
      Replace : String) return Boolean
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;

      if Start = 0 then
         return False;
      else
         Replace_Slice
           (Subject'Unrestricted_Access.all, Start, Stop, Replace);
         return True;
      end if;
   end Match;

   procedure Match
     (Subject : VString;
      Pat     : Pattern)
   is
      S : Big_String_Access;
      L : Natural;

      Start : Natural;
      Stop  : Natural;
      pragma Unreferenced (Start, Stop);

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;
   end Match;

   procedure Match
     (Subject : String;
      Pat     : Pattern)
   is
      Start, Stop : Natural;
      pragma Unreferenced (Start, Stop);

      subtype String1 is String (1 .. Subject'Length);

   begin
      if Debug_Mode then
         XMatchD (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
      end if;
   end Match;

   procedure Match
     (Subject : in out VString;
      Pat     : Pattern;
      Replace : VString)
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;

      if Start /= 0 then
         Get_String (Replace, S, L);
         Replace_Slice (Subject, Start, Stop, S (1 .. L));
      end if;
   end Match;

   procedure Match
     (Subject : in out VString;
      Pat     : Pattern;
      Replace : String)
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;

      if Start /= 0 then
         Replace_Slice (Subject, Start, Stop, Replace);
      end if;
   end Match;

   function Match
     (Subject : VString;
      Pat     : PString) return Boolean
   is
      Pat_Len : constant Natural := Pat'Length;
      S       : Big_String_Access;
      L       : Natural;

   begin
      Get_String (Subject, S, L);

      if Anchored_Mode then
         if Pat_Len > L then
            return False;
         else
            return Pat = S (1 .. Pat_Len);
         end if;

      else
         for J in 1 .. L - Pat_Len + 1 loop
            if Pat = S (J .. J + (Pat_Len - 1)) then
               return True;
            end if;
         end loop;

         return False;
      end if;
   end Match;

   function Match
     (Subject : String;
      Pat     : PString) return Boolean
   is
      Pat_Len : constant Natural := Pat'Length;
      Sub_Len : constant Natural := Subject'Length;
      SFirst  : constant Natural := Subject'First;

   begin
      if Anchored_Mode then
         if Pat_Len > Sub_Len then
            return False;
         else
            return Pat = Subject (SFirst .. SFirst + Pat_Len - 1);
         end if;

      else
         for J in SFirst .. SFirst + Sub_Len - Pat_Len loop
            if Pat = Subject (J .. J + (Pat_Len - 1)) then
               return True;
            end if;
         end loop;

         return False;
      end if;
   end Match;

   function Match
     (Subject : VString_Var;
      Pat     : PString;
      Replace : VString) return Boolean
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      else
         XMatch  (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      end if;

      if Start = 0 then
         return False;
      else
         Get_String (Replace, S, L);
         Replace_Slice
           (Subject'Unrestricted_Access.all, Start, Stop, S (1 .. L));
         return True;
      end if;
   end Match;

   function Match
     (Subject : VString_Var;
      Pat     : PString;
      Replace : String) return Boolean
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      else
         XMatch  (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      end if;

      if Start = 0 then
         return False;
      else
         Replace_Slice
           (Subject'Unrestricted_Access.all, Start, Stop, Replace);
         return True;
      end if;
   end Match;

   procedure Match
     (Subject : VString;
      Pat     : PString)
   is
      S : Big_String_Access;
      L : Natural;

      Start : Natural;
      Stop  : Natural;
      pragma Unreferenced (Start, Stop);

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      else
         XMatch  (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      end if;
   end Match;

   procedure Match
     (Subject : String;
      Pat     : PString)
   is
      Start, Stop : Natural;
      pragma Unreferenced (Start, Stop);

      subtype String1 is String (1 .. Subject'Length);

   begin
      if Debug_Mode then
         XMatchD (String1 (Subject), S_To_PE (Pat), 0, Start, Stop);
      else
         XMatch  (String1 (Subject), S_To_PE (Pat), 0, Start, Stop);
      end if;
   end Match;

   procedure Match
     (Subject : in out VString;
      Pat     : PString;
      Replace : VString)
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      else
         XMatch  (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      end if;

      if Start /= 0 then
         Get_String (Replace, S, L);
         Replace_Slice (Subject, Start, Stop, S (1 .. L));
      end if;
   end Match;

   procedure Match
     (Subject : in out VString;
      Pat     : PString;
      Replace : String)
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      else
         XMatch  (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
      end if;

      if Start /= 0 then
         Replace_Slice (Subject, Start, Stop, Replace);
      end if;
   end Match;

   function Match
     (Subject : VString_Var;
      Pat     : Pattern;
      Result  : Match_Result_Var) return Boolean
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;

      if Start = 0 then
         Result'Unrestricted_Access.all.Var := null;
         return False;

      else
         Result'Unrestricted_Access.all.Var   := Subject'Unrestricted_Access;
         Result'Unrestricted_Access.all.Start := Start;
         Result'Unrestricted_Access.all.Stop  := Stop;
         return True;
      end if;
   end Match;

   procedure Match
     (Subject : in out VString;
      Pat     : Pattern;
      Result  : out Match_Result)
   is
      Start : Natural;
      Stop  : Natural;
      S     : Big_String_Access;
      L     : Natural;

   begin
      Get_String (Subject, S, L);

      if Debug_Mode then
         XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      else
         XMatch  (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
      end if;

      if Start = 0 then
         Result.Var := null;
      else
         Result.Var   := Subject'Unrestricted_Access;
         Result.Start := Start;
         Result.Stop  := Stop;
      end if;
   end Match;

   ---------------
   -- New_LineD --
   ---------------

   procedure New_LineD is
   begin
      if Internal_Debug then
         New_Line;
      end if;
   end New_LineD;

   ------------
   -- NotAny --
   ------------

   function NotAny (Str : String) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NotAny_CS, 1, EOP, To_Set (Str)));
   end NotAny;

   function NotAny (Str : VString) return Pattern is
   begin
      return NotAny (S (Str));
   end NotAny;

   function NotAny (Str : Character) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NotAny_CH, 1, EOP, Str));
   end NotAny;

   function NotAny (Str : Character_Set) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NotAny_CS, 1, EOP, Str));
   end NotAny;

   function NotAny (Str : not null access VString) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NotAny_VP, 1, EOP, VString_Ptr (Str)));
   end NotAny;

   function NotAny (Str : VString_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NotAny_VF, 1, EOP, Str));
   end NotAny;

   -----------
   -- NSpan --
   -----------

   function NSpan (Str : String) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NSpan_CS, 1, EOP, To_Set (Str)));
   end NSpan;

   function NSpan (Str : VString) return Pattern is
   begin
      return NSpan (S (Str));
   end NSpan;

   function NSpan (Str : Character) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NSpan_CH, 1, EOP, Str));
   end NSpan;

   function NSpan (Str : Character_Set) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NSpan_CS, 1, EOP, Str));
   end NSpan;

   function NSpan (Str : not null access VString) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NSpan_VP, 1, EOP, VString_Ptr (Str)));
   end NSpan;

   function NSpan (Str : VString_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_NSpan_VF, 1, EOP, Str));
   end NSpan;

   ---------
   -- Pos --
   ---------

   function Pos (Count : Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Pos_Nat, 1, EOP, Count));
   end Pos;

   function Pos (Count : Natural_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Pos_NF, 1, EOP, Count));
   end Pos;

   function Pos (Count : not null access Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Pos_NP, 1, EOP, Natural_Ptr (Count)));
   end Pos;

   ----------
   -- PutD --
   ----------

   procedure PutD (Str : String) is
   begin
      if Internal_Debug then
         Put (Str);
      end if;
   end PutD;

   ---------------
   -- Put_LineD --
   ---------------

   procedure Put_LineD (Str : String) is
   begin
      if Internal_Debug then
         Put_Line (Str);
      end if;
   end Put_LineD;

   -------------
   -- Replace --
   -------------

   procedure Replace
     (Result  : in out Match_Result;
      Replace : VString)
   is
      S : Big_String_Access;
      L : Natural;

   begin
      Get_String (Replace, S, L);

      if Result.Var /= null then
         Replace_Slice (Result.Var.all, Result.Start, Result.Stop, S (1 .. L));
         Result.Var := null;
      end if;
   end Replace;

   ----------
   -- Rest --
   ----------

   function Rest return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Rest, 1, EOP));
   end Rest;

   ----------
   -- Rpos --
   ----------

   function Rpos (Count : Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_RPos_Nat, 1, EOP, Count));
   end Rpos;

   function Rpos (Count : Natural_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_RPos_NF, 1, EOP, Count));
   end Rpos;

   function Rpos (Count : not null access Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_RPos_NP, 1, EOP, Natural_Ptr (Count)));
   end Rpos;

   ----------
   -- Rtab --
   ----------

   function Rtab (Count : Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_RTab_Nat, 1, EOP, Count));
   end Rtab;

   function Rtab (Count : Natural_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_RTab_NF, 1, EOP, Count));
   end Rtab;

   function Rtab (Count : not null access Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_RTab_NP, 1, EOP, Natural_Ptr (Count)));
   end Rtab;

   -------------
   -- S_To_PE --
   -------------

   function S_To_PE (Str : PString) return PE_Ptr is
      Len : constant Natural := Str'Length;

   begin
      case Len is
         when 0 =>
            return new PE'(PC_Null,     1, EOP);

         when 1 =>
            return new PE'(PC_Char,     1, EOP, Str (Str'First));

         when 2 =>
            return new PE'(PC_String_2, 1, EOP, Str);

         when 3 =>
            return new PE'(PC_String_3, 1, EOP, Str);

         when 4 =>
            return new PE'(PC_String_4, 1, EOP, Str);

         when 5 =>
            return new PE'(PC_String_5, 1, EOP, Str);

         when 6 =>
            return new PE'(PC_String_6, 1, EOP, Str);

         when others =>
            return new PE'(PC_String, 1, EOP, new String'(Str));

      end case;
   end S_To_PE;

   -------------------
   -- Set_Successor --
   -------------------

   --  Note: this procedure is not used by the normal concatenation circuit,
   --  since other fixups are required on the left operand in this case, and
   --  they might as well be done all together.

   procedure Set_Successor (Pat : PE_Ptr; Succ : PE_Ptr) is
   begin
      if Pat = null then
         Uninitialized_Pattern;

      elsif Pat = EOP then
         Logic_Error;

      else
         declare
            Refs : Ref_Array (1 .. Pat.Index);
            --  We build a reference array for L whose N'th element points to
            --  the pattern element of L whose original Index value is N.

            P : PE_Ptr;

         begin
            Build_Ref_Array (Pat, Refs);

            for J in Refs'Range loop
               P := Refs (J);

               if P.Pthen = EOP then
                  P.Pthen := Succ;
               end if;

               if P.Pcode in PC_Has_Alt and then P.Alt = EOP then
                  P.Alt := Succ;
               end if;
            end loop;
         end;
      end if;
   end Set_Successor;

   ------------
   -- Setcur --
   ------------

   function Setcur (Var : not null access Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Setcur, 1, EOP, Natural_Ptr (Var)));
   end Setcur;

   ----------
   -- Span --
   ----------

   function Span (Str : String) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Span_CS, 1, EOP, To_Set (Str)));
   end Span;

   function Span (Str : VString) return Pattern is
   begin
      return Span (S (Str));
   end Span;

   function Span (Str : Character) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Span_CH, 1, EOP, Str));
   end Span;

   function Span (Str : Character_Set) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Span_CS, 1, EOP, Str));
   end Span;

   function Span (Str : not null access VString) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Span_VP, 1, EOP, VString_Ptr (Str)));
   end Span;

   function Span (Str : VString_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Span_VF, 1, EOP, Str));
   end Span;

   ------------
   -- Str_BF --
   ------------

   function Str_BF (A : Boolean_Func) return String is
      function To_A is new Ada.Unchecked_Conversion (Boolean_Func, Address);
   begin
      return "BF(" & Image (To_A (A)) & ')';
   end Str_BF;

   ------------
   -- Str_FP --
   ------------

   function Str_FP (A : File_Ptr) return String is
   begin
      return "FP(" & Image (A.all'Address) & ')';
   end Str_FP;

   ------------
   -- Str_NF --
   ------------

   function Str_NF (A : Natural_Func) return String is
      function To_A is new Ada.Unchecked_Conversion (Natural_Func, Address);
   begin
      return "NF(" & Image (To_A (A)) & ')';
   end Str_NF;

   ------------
   -- Str_NP --
   ------------

   function Str_NP (A : Natural_Ptr) return String is
   begin
      return "NP(" & Image (A.all'Address) & ')';
   end Str_NP;

   ------------
   -- Str_PP --
   ------------

   function Str_PP (A : Pattern_Ptr) return String is
   begin
      return "PP(" & Image (A.all'Address) & ')';
   end Str_PP;

   ------------
   -- Str_VF --
   ------------

   function Str_VF (A : VString_Func) return String is
      function To_A is new Ada.Unchecked_Conversion (VString_Func, Address);
   begin
      return "VF(" & Image (To_A (A)) & ')';
   end Str_VF;

   ------------
   -- Str_VP --
   ------------

   function Str_VP (A : VString_Ptr) return String is
   begin
      return "VP(" & Image (A.all'Address) & ')';
   end Str_VP;

   -------------
   -- Succeed --
   -------------

   function Succeed return Pattern is
   begin
      return (AFC with 1, new PE'(PC_Succeed, 1, EOP));
   end Succeed;

   ---------
   -- Tab --
   ---------

   function Tab (Count : Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Tab_Nat, 1, EOP, Count));
   end Tab;

   function Tab (Count : Natural_Func) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Tab_NF, 1, EOP, Count));
   end Tab;

   function Tab (Count : not null access Natural) return Pattern is
   begin
      return (AFC with 0, new PE'(PC_Tab_NP, 1, EOP, Natural_Ptr (Count)));
   end Tab;

   ---------------------------
   -- Uninitialized_Pattern --
   ---------------------------

   procedure Uninitialized_Pattern is
   begin
      raise Program_Error with
         "uninitialized value of type GNAT.Spitbol.Patterns.Pattern";
   end Uninitialized_Pattern;

   ------------
   -- XMatch --
   ------------

   procedure XMatch
     (Subject : String;
      Pat_P   : PE_Ptr;
      Pat_S   : Natural;
      Start   : out Natural;
      Stop    : out Natural)
   is
      Node : PE_Ptr;
      --  Pointer to current pattern node. Initialized from Pat_P, and then
      --  updated as the match proceeds through its constituent elements.

      Length : constant Natural := Subject'Length;
      --  Length of string (= Subject'Last, since Subject'First is always 1)

      Cursor : Integer := 0;
      --  If the value is non-negative, then this value is the index showing
      --  the current position of the match in the subject string. The next
      --  character to be matched is at Subject (Cursor + 1). Note that since
      --  our view of the subject string in XMatch always has a lower bound
      --  of one, regardless of original bounds, that this definition exactly
      --  corresponds to the cursor value as referenced by functions like Pos.
      --
      --  If the value is negative, then this is a saved stack pointer,
      --  typically a base pointer of an inner or outer region. Cursor
      --  temporarily holds such a value when it is popped from the stack
      --  by Fail. In all cases, Cursor is reset to a proper non-negative
      --  cursor value before the match proceeds (e.g. by propagating the
      --  failure and popping a "real" cursor value from the stack.

      PE_Unanchored : aliased PE := (PC_Unanchored, 0, Pat_P);
      --  Dummy pattern element used in the unanchored case

      Stack : Stack_Type;
      --  The pattern matching failure stack for this call to Match

      Stack_Ptr : Stack_Range;
      --  Current stack pointer. This points to the top element of the stack
      --  that is currently in use. At the outer level this is the special
      --  entry placed on the stack according to the anchor mode.

      Stack_Init : constant Stack_Range := Stack'First + 1;
      --  This is the initial value of the Stack_Ptr and Stack_Base. The
      --  initial (Stack'First) element of the stack is not used so that
      --  when we pop the last element off, Stack_Ptr is still in range.

      Stack_Base : Stack_Range;
      --  This value is the stack base value, i.e. the stack pointer for the
      --  first history stack entry in the current stack region. See separate
      --  section on handling of recursive pattern matches.

      Assign_OnM : Boolean := False;
      --  Set True if assign-on-match or write-on-match operations may be
      --  present in the history stack, which must then be scanned on a
      --  successful match.

      procedure Pop_Region;
      pragma Inline (Pop_Region);
      --  Used at the end of processing of an inner region. If the inner
      --  region left no stack entries, then all trace of it is removed.
      --  Otherwise a PC_Restore_Region entry is pushed to ensure proper
      --  handling of alternatives in the inner region.

      procedure Push (Node : PE_Ptr);
      pragma Inline (Push);
      --  Make entry in pattern matching stack with current cursor value

      procedure Push_Region;
      pragma Inline (Push_Region);
      --  This procedure makes a new region on the history stack. The
      --  caller first establishes the special entry on the stack, but
      --  does not push the stack pointer. Then this call stacks a
      --  PC_Remove_Region node, on top of this entry, using the cursor
      --  field of the PC_Remove_Region entry to save the outer level
      --  stack base value, and resets the stack base to point to this
      --  PC_Remove_Region node.

      ----------------
      -- Pop_Region --
      ----------------

      procedure Pop_Region is
      begin
         --  If nothing was pushed in the inner region, we can just get
         --  rid of it entirely, leaving no traces that it was ever there

         if Stack_Ptr = Stack_Base then
            Stack_Ptr := Stack_Base - 2;
            Stack_Base := Stack (Stack_Ptr + 2).Cursor;

         --  If stuff was pushed in the inner region, then we have to
         --  push a PC_R_Restore node so that we properly handle possible
         --  rematches within the region.

         else
            Stack_Ptr := Stack_Ptr + 1;
            Stack (Stack_Ptr).Cursor := Stack_Base;
            Stack (Stack_Ptr).Node   := CP_R_Restore'Access;
            Stack_Base := Stack (Stack_Base).Cursor;
         end if;
      end Pop_Region;

      ----------
      -- Push --
      ----------

      procedure Push (Node : PE_Ptr) is
      begin
         Stack_Ptr := Stack_Ptr + 1;
         Stack (Stack_Ptr).Cursor := Cursor;
         Stack (Stack_Ptr).Node   := Node;
      end Push;

      -----------------
      -- Push_Region --
      -----------------

      procedure Push_Region is
      begin
         Stack_Ptr := Stack_Ptr + 2;
         Stack (Stack_Ptr).Cursor := Stack_Base;
         Stack (Stack_Ptr).Node   := CP_R_Remove'Access;
         Stack_Base := Stack_Ptr;
      end Push_Region;

   --  Start of processing for XMatch

   begin
      if Pat_P = null then
         Uninitialized_Pattern;
      end if;

      --  Check we have enough stack for this pattern. This check deals with
      --  every possibility except a match of a recursive pattern, where we
      --  make a check at each recursion level.

      if Pat_S >= Stack_Size - 1 then
         raise Pattern_Stack_Overflow;
      end if;

      --  In anchored mode, the bottom entry on the stack is an abort entry

      if Anchored_Mode then
         Stack (Stack_Init).Node   := CP_Cancel'Access;
         Stack (Stack_Init).Cursor := 0;

      --  In unanchored more, the bottom entry on the stack references
      --  the special pattern element PE_Unanchored, whose Pthen field
      --  points to the initial pattern element. The cursor value in this
      --  entry is the number of anchor moves so far.

      else
         Stack (Stack_Init).Node   := PE_Unanchored'Unchecked_Access;
         Stack (Stack_Init).Cursor := 0;
      end if;

      Stack_Ptr    := Stack_Init;
      Stack_Base   := Stack_Ptr;
      Cursor       := 0;
      Node         := Pat_P;
      goto Match;

      -----------------------------------------
      -- Main Pattern Matching State Control --
      -----------------------------------------

      --  This is a state machine which uses gotos to change state. The
      --  initial state is Match, to initiate the matching of the first
      --  element, so the goto Match above starts the match. In the
      --  following descriptions, we indicate the global values that
      --  are relevant for the state transition.

      --  Come here if entire match fails

      <<Match_Fail>>
         Start := 0;
         Stop  := 0;
         return;

      --  Come here if entire match succeeds

      --    Cursor        current position in subject string

      <<Match_Succeed>>
         Start := Stack (Stack_Init).Cursor + 1;
         Stop  := Cursor;

         --  Scan history stack for deferred assignments or writes

         if Assign_OnM then
            for S in Stack_Init .. Stack_Ptr loop
               if Stack (S).Node = CP_Assign'Access then
                  declare
                     Inner_Base    : constant Stack_Range :=
                                       Stack (S + 1).Cursor;
                     Special_Entry : constant Stack_Range :=
                                       Inner_Base - 1;
                     Node_OnM      : constant PE_Ptr  :=
                                       Stack (Special_Entry).Node;
                     Start         : constant Natural :=
                                       Stack (Special_Entry).Cursor + 1;
                     Stop          : constant Natural := Stack (S).Cursor;

                  begin
                     if Node_OnM.Pcode = PC_Assign_OnM then
                        Set_Unbounded_String
                          (Node_OnM.VP.all, Subject (Start .. Stop));

                     elsif Node_OnM.Pcode = PC_Write_OnM then
                        Put_Line (Node_OnM.FP.all, Subject (Start .. Stop));

                     else
                        Logic_Error;
                     end if;
                  end;
               end if;
            end loop;
         end if;

         return;

      --  Come here if attempt to match current element fails

      --    Stack_Base    current stack base
      --    Stack_Ptr     current stack pointer

      <<Fail>>
         Cursor := Stack (Stack_Ptr).Cursor;
         Node   := Stack (Stack_Ptr).Node;
         Stack_Ptr := Stack_Ptr - 1;
         goto Match;

      --  Come here if attempt to match current element succeeds

      --    Cursor        current position in subject string
      --    Node          pointer to node successfully matched
      --    Stack_Base    current stack base
      --    Stack_Ptr     current stack pointer

      <<Succeed>>
         Node := Node.Pthen;

      --  Come here to match the next pattern element

      --    Cursor        current position in subject string
      --    Node          pointer to node to be matched
      --    Stack_Base    current stack base
      --    Stack_Ptr     current stack pointer

      <<Match>>

      --------------------------------------------------
      -- Main Pattern Match Element Matching Routines --
      --------------------------------------------------

      --  Here is the case statement that processes the current node. The
      --  processing for each element does one of five things:

      --    goto Succeed        to move to the successor
      --    goto Match_Succeed  if the entire match succeeds
      --    goto Match_Fail     if the entire match fails
      --    goto Fail           to signal failure of current match

      --  Processing is NOT allowed to fall through

      case Node.Pcode is

         --  Cancel

         when PC_Cancel =>
            goto Match_Fail;

         --  Alternation

         when PC_Alt =>
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Any (one character case)

         when PC_Any_CH =>
            if Cursor < Length
              and then Subject (Cursor + 1) = Node.Char
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Any (character set case)

         when PC_Any_CS =>
            if Cursor < Length
              and then Is_In (Subject (Cursor + 1), Node.CS)
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Any (string function case)

         when PC_Any_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            if Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Any (string pointer case)

         when PC_Any_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            if Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Arb (initial match)

         when PC_Arb_X =>
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Arb (extension)

         when PC_Arb_Y  =>
            if Cursor < Length then
               Cursor := Cursor + 1;
               Push (Node);
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Arbno_S (simple Arbno initialize). This is the node that
         --  initiates the match of a simple Arbno structure.

         when PC_Arbno_S =>
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Arbno_X (Arbno initialize). This is the node that initiates
         --  the match of a complex Arbno structure.

         when PC_Arbno_X =>
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Arbno_Y (Arbno rematch). This is the node that is executed
         --  following successful matching of one instance of a complex
         --  Arbno pattern.

         when PC_Arbno_Y => declare
            Null_Match : constant Boolean :=
                           Cursor = Stack (Stack_Base - 1).Cursor;

         begin
            Pop_Region;

            --  If arbno extension matched null, then immediately fail

            if Null_Match then
               goto Fail;
            end if;

            --  Here we must do a stack check to make sure enough stack
            --  is left. This check will happen once for each instance of
            --  the Arbno pattern that is matched. The Nat field of a
            --  PC_Arbno pattern contains the maximum stack entries needed
            --  for the Arbno with one instance and the successor pattern

            if Stack_Ptr + Node.Nat >= Stack'Last then
               raise Pattern_Stack_Overflow;
            end if;

            goto Succeed;
         end;

         --  Assign. If this node is executed, it means the assign-on-match
         --  or write-on-match operation will not happen after all, so we
         --  is propagate the failure, removing the PC_Assign node.

         when PC_Assign =>
            goto Fail;

         --  Assign immediate. This node performs the actual assignment

         when PC_Assign_Imm =>
            Set_Unbounded_String
              (Node.VP.all,
               Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
            Pop_Region;
            goto Succeed;

         --  Assign on match. This node sets up for the eventual assignment

         when PC_Assign_OnM =>
            Stack (Stack_Base - 1).Node := Node;
            Push (CP_Assign'Access);
            Pop_Region;
            Assign_OnM := True;
            goto Succeed;

         --  Bal

         when PC_Bal =>
            if Cursor >= Length or else Subject (Cursor + 1) = ')' then
               goto Fail;

            elsif Subject (Cursor + 1) = '(' then
               declare
                  Paren_Count : Natural := 1;

               begin
                  loop
                     Cursor := Cursor + 1;

                     if Cursor >= Length then
                        goto Fail;

                     elsif Subject (Cursor + 1) = '(' then
                        Paren_Count := Paren_Count + 1;

                     elsif Subject (Cursor + 1) = ')' then
                        Paren_Count := Paren_Count - 1;
                        exit when Paren_Count = 0;
                     end if;
                  end loop;
               end;
            end if;

            Cursor := Cursor + 1;
            Push (Node);
            goto Succeed;

         --  Break (one character case)

         when PC_Break_CH =>
            while Cursor < Length loop
               if Subject (Cursor + 1) = Node.Char then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  Break (character set case)

         when PC_Break_CS =>
            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), Node.CS) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  Break (string function case)

         when PC_Break_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  Break (string pointer case)

         when PC_Break_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  BreakX (one character case)

         when PC_BreakX_CH =>
            while Cursor < Length loop
               if Subject (Cursor + 1) = Node.Char then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  BreakX (character set case)

         when PC_BreakX_CS =>
            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), Node.CS) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  BreakX (string function case)

         when PC_BreakX_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  BreakX (string pointer case)

         when PC_BreakX_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  BreakX_X (BreakX extension). See section on "Compound Pattern
         --  Structures". This node is the alternative that is stacked to
         --  skip past the break character and extend the break.

         when PC_BreakX_X =>
            Cursor := Cursor + 1;
            goto Succeed;

         --  Character (one character string)

         when PC_Char =>
            if Cursor < Length
              and then Subject (Cursor + 1) = Node.Char
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  End of Pattern

         when PC_EOP =>
            if Stack_Base = Stack_Init then
               goto Match_Succeed;

            --  End of recursive inner match. See separate section on
            --  handing of recursive pattern matches for details.

            else
               Node := Stack (Stack_Base - 1).Node;
               Pop_Region;
               goto Match;
            end if;

         --  Fail

         when PC_Fail =>
            goto Fail;

         --  Fence (built in pattern)

         when PC_Fence =>
            Push (CP_Cancel'Access);
            goto Succeed;

         --  Fence function node X. This is the node that gets control
         --  after a successful match of the fenced pattern.

         when PC_Fence_X =>
            Stack_Ptr := Stack_Ptr + 1;
            Stack (Stack_Ptr).Cursor := Stack_Base;
            Stack (Stack_Ptr).Node   := CP_Fence_Y'Access;
            Stack_Base := Stack (Stack_Base).Cursor;
            goto Succeed;

         --  Fence function node Y. This is the node that gets control on
         --  a failure that occurs after the fenced pattern has matched.

         --  Note: the Cursor at this stage is actually the inner stack
         --  base value. We don't reset this, but we do use it to strip
         --  off all the entries made by the fenced pattern.

         when PC_Fence_Y =>
            Stack_Ptr := Cursor - 2;
            goto Fail;

         --  Len (integer case)

         when PC_Len_Nat =>
            if Cursor + Node.Nat > Length then
               goto Fail;
            else
               Cursor := Cursor + Node.Nat;
               goto Succeed;
            end if;

         --  Len (Integer function case)

         when PC_Len_NF => declare
            N : constant Natural := Node.NF.all;
         begin
            if Cursor + N > Length then
               goto Fail;
            else
               Cursor := Cursor + N;
               goto Succeed;
            end if;
         end;

         --  Len (integer pointer case)

         when PC_Len_NP =>
            if Cursor + Node.NP.all > Length then
               goto Fail;
            else
               Cursor := Cursor + Node.NP.all;
               goto Succeed;
            end if;

         --  NotAny (one character case)

         when PC_NotAny_CH =>
            if Cursor < Length
              and then Subject (Cursor + 1) /= Node.Char
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  NotAny (character set case)

         when PC_NotAny_CS =>
            if Cursor < Length
              and then not Is_In (Subject (Cursor + 1), Node.CS)
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  NotAny (string function case)

         when PC_NotAny_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            if Cursor < Length
              and then
                not Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  NotAny (string pointer case)

         when PC_NotAny_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            if Cursor < Length
              and then
                not Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  NSpan (one character case)

         when PC_NSpan_CH =>
            while Cursor < Length
              and then Subject (Cursor + 1) = Node.Char
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;

         --  NSpan (character set case)

         when PC_NSpan_CS =>
            while Cursor < Length
              and then Is_In (Subject (Cursor + 1), Node.CS)
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;

         --  NSpan (string function case)

         when PC_NSpan_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            while Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;
         end;

         --  NSpan (string pointer case)

         when PC_NSpan_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            while Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;
         end;

         --  Null string

         when PC_Null =>
            goto Succeed;

         --  Pos (integer case)

         when PC_Pos_Nat =>
            if Cursor = Node.Nat then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Pos (Integer function case)

         when PC_Pos_NF => declare
            N : constant Natural := Node.NF.all;
         begin
            if Cursor = N then
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Pos (integer pointer case)

         when PC_Pos_NP =>
            if Cursor = Node.NP.all then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Predicate function

         when PC_Pred_Func =>
            if Node.BF.all then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Region Enter. Initiate new pattern history stack region

         when PC_R_Enter =>
            Stack (Stack_Ptr + 1).Cursor := Cursor;
            Push_Region;
            goto Succeed;

         --  Region Remove node. This is the node stacked by an R_Enter.
         --  It removes the special format stack entry right underneath, and
         --  then restores the outer level stack base and signals failure.

         --  Note: the cursor value at this stage is actually the (negative)
         --  stack base value for the outer level.

         when PC_R_Remove =>
            Stack_Base := Cursor;
            Stack_Ptr := Stack_Ptr - 1;
            goto Fail;

         --  Region restore node. This is the node stacked at the end of an
         --  inner level match. Its function is to restore the inner level
         --  region, so that alternatives in this region can be sought.

         --  Note: the Cursor at this stage is actually the negative of the
         --  inner stack base value, which we use to restore the inner region.

         when PC_R_Restore =>
            Stack_Base := Cursor;
            goto Fail;

         --  Rest

         when PC_Rest =>
            Cursor := Length;
            goto Succeed;

         --  Initiate recursive match (pattern pointer case)

         when PC_Rpat =>
            Stack (Stack_Ptr + 1).Node := Node.Pthen;
            Push_Region;

            if Stack_Ptr + Node.PP.all.Stk >= Stack_Size then
               raise Pattern_Stack_Overflow;
            else
               Node := Node.PP.all.P;
               goto Match;
            end if;

         --  RPos (integer case)

         when PC_RPos_Nat =>
            if Cursor = (Length - Node.Nat) then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  RPos (integer function case)

         when PC_RPos_NF => declare
            N : constant Natural := Node.NF.all;
         begin
            if Length - Cursor = N then
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  RPos (integer pointer case)

         when PC_RPos_NP =>
            if Cursor = (Length - Node.NP.all) then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  RTab (integer case)

         when PC_RTab_Nat =>
            if Cursor <= (Length - Node.Nat) then
               Cursor := Length - Node.Nat;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  RTab (integer function case)

         when PC_RTab_NF => declare
            N : constant Natural := Node.NF.all;
         begin
            if Length - Cursor >= N then
               Cursor := Length - N;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  RTab (integer pointer case)

         when PC_RTab_NP =>
            if Cursor <= (Length - Node.NP.all) then
               Cursor := Length - Node.NP.all;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Cursor assignment

         when PC_Setcur =>
            Node.Var.all := Cursor;
            goto Succeed;

         --  Span (one character case)

         when PC_Span_CH => declare
            P : Natural;

         begin
            P := Cursor;
            while P < Length
              and then Subject (P + 1) = Node.Char
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Span (character set case)

         when PC_Span_CS => declare
            P : Natural;

         begin
            P := Cursor;
            while P < Length
              and then Is_In (Subject (P + 1), Node.CS)
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Span (string function case)

         when PC_Span_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;
            P : Natural;

         begin
            Get_String (U, S, L);

            P := Cursor;
            while P < Length
              and then Is_In (Subject (P + 1), S (1 .. L))
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Span (string pointer case)

         when PC_Span_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;
            P : Natural;

         begin
            Get_String (U, S, L);

            P := Cursor;
            while P < Length
              and then Is_In (Subject (P + 1), S (1 .. L))
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  String (two character case)

         when PC_String_2 =>
            if (Length - Cursor) >= 2
              and then Subject (Cursor + 1 .. Cursor + 2) = Node.Str2
            then
               Cursor := Cursor + 2;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (three character case)

         when PC_String_3 =>
            if (Length - Cursor) >= 3
              and then Subject (Cursor + 1 .. Cursor + 3) = Node.Str3
            then
               Cursor := Cursor + 3;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (four character case)

         when PC_String_4 =>
            if (Length - Cursor) >= 4
              and then Subject (Cursor + 1 .. Cursor + 4) = Node.Str4
            then
               Cursor := Cursor + 4;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (five character case)

         when PC_String_5 =>
            if (Length - Cursor) >= 5
              and then Subject (Cursor + 1 .. Cursor + 5) = Node.Str5
            then
               Cursor := Cursor + 5;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (six character case)

         when PC_String_6 =>
            if (Length - Cursor) >= 6
              and then Subject (Cursor + 1 .. Cursor + 6) = Node.Str6
            then
               Cursor := Cursor + 6;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (case of more than six characters)

         when PC_String => declare
            Len : constant Natural := Node.Str'Length;
         begin
            if (Length - Cursor) >= Len
              and then Node.Str.all = Subject (Cursor + 1 .. Cursor + Len)
            then
               Cursor := Cursor + Len;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  String (function case)

         when PC_String_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            if (Length - Cursor) >= L
              and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
            then
               Cursor := Cursor + L;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  String (pointer case)

         when PC_String_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            if (Length - Cursor) >= L
              and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
            then
               Cursor := Cursor + L;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Succeed

         when PC_Succeed =>
            Push (Node);
            goto Succeed;

         --  Tab (integer case)

         when PC_Tab_Nat =>
            if Cursor <= Node.Nat then
               Cursor := Node.Nat;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Tab (integer function case)

         when PC_Tab_NF => declare
            N : constant Natural := Node.NF.all;
         begin
            if Cursor <= N then
               Cursor := N;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Tab (integer pointer case)

         when PC_Tab_NP =>
            if Cursor <= Node.NP.all then
               Cursor := Node.NP.all;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Unanchored movement

         when PC_Unanchored =>

            --  All done if we tried every position

            if Cursor > Length then
               goto Match_Fail;

            --  Otherwise extend the anchor point, and restack ourself

            else
               Cursor := Cursor + 1;
               Push (Node);
               goto Succeed;
            end if;

         --  Write immediate. This node performs the actual write

         when PC_Write_Imm =>
            Put_Line
              (Node.FP.all,
               Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
            Pop_Region;
            goto Succeed;

         --  Write on match. This node sets up for the eventual write

         when PC_Write_OnM =>
            Stack (Stack_Base - 1).Node := Node;
            Push (CP_Assign'Access);
            Pop_Region;
            Assign_OnM := True;
            goto Succeed;

      end case;

      --  We are NOT allowed to fall though this case statement, since every
      --  match routine must end by executing a goto to the appropriate point
      --  in the finite state machine model.

      pragma Warnings (Off);
      Logic_Error;
      pragma Warnings (On);
   end XMatch;

   -------------
   -- XMatchD --
   -------------

   --  Maintenance note: There is a LOT of code duplication between XMatch
   --  and XMatchD. This is quite intentional, the point is to avoid any
   --  unnecessary debugging overhead in the XMatch case, but this does mean
   --  that any changes to XMatchD must be mirrored in XMatch. In case of
   --  any major changes, the proper approach is to delete XMatch, make the
   --  changes to XMatchD, and then make a copy of XMatchD, removing all
   --  calls to Dout, and all Put and Put_Line operations. This copy becomes
   --  the new XMatch.

   procedure XMatchD
     (Subject : String;
      Pat_P   : PE_Ptr;
      Pat_S   : Natural;
      Start   : out Natural;
      Stop    : out Natural)
   is
      Node : PE_Ptr;
      --  Pointer to current pattern node. Initialized from Pat_P, and then
      --  updated as the match proceeds through its constituent elements.

      Length : constant Natural := Subject'Length;
      --  Length of string (= Subject'Last, since Subject'First is always 1)

      Cursor : Integer := 0;
      --  If the value is non-negative, then this value is the index showing
      --  the current position of the match in the subject string. The next
      --  character to be matched is at Subject (Cursor + 1). Note that since
      --  our view of the subject string in XMatch always has a lower bound
      --  of one, regardless of original bounds, that this definition exactly
      --  corresponds to the cursor value as referenced by functions like Pos.
      --
      --  If the value is negative, then this is a saved stack pointer,
      --  typically a base pointer of an inner or outer region. Cursor
      --  temporarily holds such a value when it is popped from the stack
      --  by Fail. In all cases, Cursor is reset to a proper non-negative
      --  cursor value before the match proceeds (e.g. by propagating the
      --  failure and popping a "real" cursor value from the stack.

      PE_Unanchored : aliased PE := (PC_Unanchored, 0, Pat_P);
      --  Dummy pattern element used in the unanchored case

      Region_Level : Natural := 0;
      --  Keeps track of recursive region level. This is used only for
      --  debugging, it is the number of saved history stack base values.

      Stack : Stack_Type;
      --  The pattern matching failure stack for this call to Match

      Stack_Ptr : Stack_Range;
      --  Current stack pointer. This points to the top element of the stack
      --  that is currently in use. At the outer level this is the special
      --  entry placed on the stack according to the anchor mode.

      Stack_Init : constant Stack_Range := Stack'First + 1;
      --  This is the initial value of the Stack_Ptr and Stack_Base. The
      --  initial (Stack'First) element of the stack is not used so that
      --  when we pop the last element off, Stack_Ptr is still in range.

      Stack_Base : Stack_Range;
      --  This value is the stack base value, i.e. the stack pointer for the
      --  first history stack entry in the current stack region. See separate
      --  section on handling of recursive pattern matches.

      Assign_OnM : Boolean := False;
      --  Set True if assign-on-match or write-on-match operations may be
      --  present in the history stack, which must then be scanned on a
      --  successful match.

      procedure Dout (Str : String);
      --  Output string to standard error with bars indicating region level

      procedure Dout (Str : String; A : Character);
      --  Calls Dout with the string S ('A')

      procedure Dout (Str : String; A : Character_Set);
      --  Calls Dout with the string S ("A")

      procedure Dout (Str : String; A : Natural);
      --  Calls Dout with the string S (A)

      procedure Dout (Str : String; A : String);
      --  Calls Dout with the string S ("A")

      function Img (P : PE_Ptr) return String;
      --  Returns a string of the form #nnn where nnn is P.Index

      procedure Pop_Region;
      pragma Inline (Pop_Region);
      --  Used at the end of processing of an inner region. If the inner
      --  region left no stack entries, then all trace of it is removed.
      --  Otherwise a PC_Restore_Region entry is pushed to ensure proper
      --  handling of alternatives in the inner region.

      procedure Push (Node : PE_Ptr);
      pragma Inline (Push);
      --  Make entry in pattern matching stack with current cursor value

      procedure Push_Region;
      pragma Inline (Push_Region);
      --  This procedure makes a new region on the history stack. The
      --  caller first establishes the special entry on the stack, but
      --  does not push the stack pointer. Then this call stacks a
      --  PC_Remove_Region node, on top of this entry, using the cursor
      --  field of the PC_Remove_Region entry to save the outer level
      --  stack base value, and resets the stack base to point to this
      --  PC_Remove_Region node.

      ----------
      -- Dout --
      ----------

      procedure Dout (Str : String) is
      begin
         for J in 1 .. Region_Level loop
            Put ("| ");
         end loop;

         Put_Line (Str);
      end Dout;

      procedure Dout (Str : String; A : Character) is
      begin
         Dout (Str & " ('" & A & "')");
      end Dout;

      procedure Dout (Str : String; A : Character_Set) is
      begin
         Dout (Str & " (" & Image (To_Sequence (A)) & ')');
      end Dout;

      procedure Dout (Str : String; A : Natural) is
      begin
         Dout (Str & " (" & A & ')');
      end Dout;

      procedure Dout (Str : String; A : String) is
      begin
         Dout (Str & " (" & Image (A) & ')');
      end Dout;

      ---------
      -- Img --
      ---------

      function Img (P : PE_Ptr) return String is
      begin
         return "#" & Integer (P.Index) & " ";
      end Img;

      ----------------
      -- Pop_Region --
      ----------------

      procedure Pop_Region is
      begin
         Region_Level := Region_Level - 1;

         --  If nothing was pushed in the inner region, we can just get
         --  rid of it entirely, leaving no traces that it was ever there

         if Stack_Ptr = Stack_Base then
            Stack_Ptr := Stack_Base - 2;
            Stack_Base := Stack (Stack_Ptr + 2).Cursor;

         --  If stuff was pushed in the inner region, then we have to
         --  push a PC_R_Restore node so that we properly handle possible
         --  rematches within the region.

         else
            Stack_Ptr := Stack_Ptr + 1;
            Stack (Stack_Ptr).Cursor := Stack_Base;
            Stack (Stack_Ptr).Node   := CP_R_Restore'Access;
            Stack_Base := Stack (Stack_Base).Cursor;
         end if;
      end Pop_Region;

      ----------
      -- Push --
      ----------

      procedure Push (Node : PE_Ptr) is
      begin
         Stack_Ptr := Stack_Ptr + 1;
         Stack (Stack_Ptr).Cursor := Cursor;
         Stack (Stack_Ptr).Node   := Node;
      end Push;

      -----------------
      -- Push_Region --
      -----------------

      procedure Push_Region is
      begin
         Region_Level := Region_Level + 1;
         Stack_Ptr := Stack_Ptr + 2;
         Stack (Stack_Ptr).Cursor := Stack_Base;
         Stack (Stack_Ptr).Node   := CP_R_Remove'Access;
         Stack_Base := Stack_Ptr;
      end Push_Region;

   --  Start of processing for XMatchD

   begin
      New_Line;
      Put_Line ("Initiating pattern match, subject = " & Image (Subject));
      Put      ("--------------------------------------");

      for J in 1 .. Length loop
         Put ('-');
      end loop;

      New_Line;
      Put_Line ("subject length = " & Length);

      if Pat_P = null then
         Uninitialized_Pattern;
      end if;

      --  Check we have enough stack for this pattern. This check deals with
      --  every possibility except a match of a recursive pattern, where we
      --  make a check at each recursion level.

      if Pat_S >= Stack_Size - 1 then
         raise Pattern_Stack_Overflow;
      end if;

      --  In anchored mode, the bottom entry on the stack is an abort entry

      if Anchored_Mode then
         Stack (Stack_Init).Node   := CP_Cancel'Access;
         Stack (Stack_Init).Cursor := 0;

      --  In unanchored more, the bottom entry on the stack references
      --  the special pattern element PE_Unanchored, whose Pthen field
      --  points to the initial pattern element. The cursor value in this
      --  entry is the number of anchor moves so far.

      else
         Stack (Stack_Init).Node   := PE_Unanchored'Unchecked_Access;
         Stack (Stack_Init).Cursor := 0;
      end if;

      Stack_Ptr    := Stack_Init;
      Stack_Base   := Stack_Ptr;
      Cursor       := 0;
      Node         := Pat_P;
      goto Match;

      -----------------------------------------
      -- Main Pattern Matching State Control --
      -----------------------------------------

      --  This is a state machine which uses gotos to change state. The
      --  initial state is Match, to initiate the matching of the first
      --  element, so the goto Match above starts the match. In the
      --  following descriptions, we indicate the global values that
      --  are relevant for the state transition.

      --  Come here if entire match fails

      <<Match_Fail>>
         Dout ("match fails");
         New_Line;
         Start := 0;
         Stop  := 0;
         return;

      --  Come here if entire match succeeds

      --    Cursor        current position in subject string

      <<Match_Succeed>>
         Dout ("match succeeds");
         Start := Stack (Stack_Init).Cursor + 1;
         Stop  := Cursor;
         Dout ("first matched character index = " & Start);
         Dout ("last matched character index = " & Stop);
         Dout ("matched substring = " & Image (Subject (Start .. Stop)));

         --  Scan history stack for deferred assignments or writes

         if Assign_OnM then
            for S in Stack'First .. Stack_Ptr loop
               if Stack (S).Node = CP_Assign'Access then
                  declare
                     Inner_Base    : constant Stack_Range :=
                                       Stack (S + 1).Cursor;
                     Special_Entry : constant Stack_Range :=
                                       Inner_Base - 1;
                     Node_OnM      : constant PE_Ptr  :=
                                       Stack (Special_Entry).Node;
                     Start         : constant Natural :=
                                       Stack (Special_Entry).Cursor + 1;
                     Stop          : constant Natural := Stack (S).Cursor;

                  begin
                     if Node_OnM.Pcode = PC_Assign_OnM then
                        Set_Unbounded_String
                          (Node_OnM.VP.all, Subject (Start .. Stop));
                        Dout
                          (Img (Stack (S).Node) &
                           "deferred assignment of " &
                           Image (Subject (Start .. Stop)));

                     elsif Node_OnM.Pcode = PC_Write_OnM then
                        Put_Line (Node_OnM.FP.all, Subject (Start .. Stop));
                        Dout
                          (Img (Stack (S).Node) &
                           "deferred write of " &
                           Image (Subject (Start .. Stop)));

                     else
                        Logic_Error;
                     end if;
                  end;
               end if;
            end loop;
         end if;

         New_Line;
         return;

      --  Come here if attempt to match current element fails

      --    Stack_Base    current stack base
      --    Stack_Ptr     current stack pointer

      <<Fail>>
         Cursor := Stack (Stack_Ptr).Cursor;
         Node   := Stack (Stack_Ptr).Node;
         Stack_Ptr := Stack_Ptr - 1;

         if Cursor >= 0 then
            Dout ("failure, cursor reset to " & Cursor);
         end if;

         goto Match;

      --  Come here if attempt to match current element succeeds

      --    Cursor        current position in subject string
      --    Node          pointer to node successfully matched
      --    Stack_Base    current stack base
      --    Stack_Ptr     current stack pointer

      <<Succeed>>
         Dout ("success, cursor = " & Cursor);
         Node := Node.Pthen;

      --  Come here to match the next pattern element

      --    Cursor        current position in subject string
      --    Node          pointer to node to be matched
      --    Stack_Base    current stack base
      --    Stack_Ptr     current stack pointer

      <<Match>>

      --------------------------------------------------
      -- Main Pattern Match Element Matching Routines --
      --------------------------------------------------

      --  Here is the case statement that processes the current node. The
      --  processing for each element does one of five things:

      --    goto Succeed        to move to the successor
      --    goto Match_Succeed  if the entire match succeeds
      --    goto Match_Fail     if the entire match fails
      --    goto Fail           to signal failure of current match

      --  Processing is NOT allowed to fall through

      case Node.Pcode is

         --  Cancel

         when PC_Cancel =>
            Dout (Img (Node) & "matching Cancel");
            goto Match_Fail;

         --  Alternation

         when PC_Alt =>
            Dout
              (Img (Node) & "setting up alternative " & Img (Node.Alt));
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Any (one character case)

         when PC_Any_CH =>
            Dout (Img (Node) & "matching Any", Node.Char);

            if Cursor < Length
              and then Subject (Cursor + 1) = Node.Char
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Any (character set case)

         when PC_Any_CS =>
            Dout (Img (Node) & "matching Any", Node.CS);

            if Cursor < Length
              and then Is_In (Subject (Cursor + 1), Node.CS)
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Any (string function case)

         when PC_Any_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);

            Dout (Img (Node) & "matching Any", S (1 .. L));

            if Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Any (string pointer case)

         when PC_Any_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching Any", S (1 .. L));

            if Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Arb (initial match)

         when PC_Arb_X =>
            Dout (Img (Node) & "matching Arb");
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Arb (extension)

         when PC_Arb_Y  =>
            Dout (Img (Node) & "extending Arb");

            if Cursor < Length then
               Cursor := Cursor + 1;
               Push (Node);
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Arbno_S (simple Arbno initialize). This is the node that
         --  initiates the match of a simple Arbno structure.

         when PC_Arbno_S =>
            Dout (Img (Node) &
                  "setting up Arbno alternative " & Img (Node.Alt));
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Arbno_X (Arbno initialize). This is the node that initiates
         --  the match of a complex Arbno structure.

         when PC_Arbno_X =>
            Dout (Img (Node) &
                  "setting up Arbno alternative " & Img (Node.Alt));
            Push (Node.Alt);
            Node := Node.Pthen;
            goto Match;

         --  Arbno_Y (Arbno rematch). This is the node that is executed
         --  following successful matching of one instance of a complex
         --  Arbno pattern.

         when PC_Arbno_Y => declare
            Null_Match : constant Boolean :=
                           Cursor = Stack (Stack_Base - 1).Cursor;

         begin
            Dout (Img (Node) & "extending Arbno");
            Pop_Region;

            --  If arbno extension matched null, then immediately fail

            if Null_Match then
               Dout ("Arbno extension matched null, so fails");
               goto Fail;
            end if;

            --  Here we must do a stack check to make sure enough stack
            --  is left. This check will happen once for each instance of
            --  the Arbno pattern that is matched. The Nat field of a
            --  PC_Arbno pattern contains the maximum stack entries needed
            --  for the Arbno with one instance and the successor pattern

            if Stack_Ptr + Node.Nat >= Stack'Last then
               raise Pattern_Stack_Overflow;
            end if;

            goto Succeed;
         end;

         --  Assign. If this node is executed, it means the assign-on-match
         --  or write-on-match operation will not happen after all, so we
         --  is propagate the failure, removing the PC_Assign node.

         when PC_Assign =>
            Dout (Img (Node) & "deferred assign/write cancelled");
            goto Fail;

         --  Assign immediate. This node performs the actual assignment

         when PC_Assign_Imm =>
            Dout
              (Img (Node) & "executing immediate assignment of " &
               Image (Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor)));
            Set_Unbounded_String
              (Node.VP.all,
               Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
            Pop_Region;
            goto Succeed;

         --  Assign on match. This node sets up for the eventual assignment

         when PC_Assign_OnM =>
            Dout (Img (Node) & "registering deferred assignment");
            Stack (Stack_Base - 1).Node := Node;
            Push (CP_Assign'Access);
            Pop_Region;
            Assign_OnM := True;
            goto Succeed;

         --  Bal

         when PC_Bal =>
            Dout (Img (Node) & "matching or extending Bal");
            if Cursor >= Length or else Subject (Cursor + 1) = ')' then
               goto Fail;

            elsif Subject (Cursor + 1) = '(' then
               declare
                  Paren_Count : Natural := 1;

               begin
                  loop
                     Cursor := Cursor + 1;

                     if Cursor >= Length then
                        goto Fail;

                     elsif Subject (Cursor + 1) = '(' then
                        Paren_Count := Paren_Count + 1;

                     elsif Subject (Cursor + 1) = ')' then
                        Paren_Count := Paren_Count - 1;
                        exit when Paren_Count = 0;
                     end if;
                  end loop;
               end;
            end if;

            Cursor := Cursor + 1;
            Push (Node);
            goto Succeed;

         --  Break (one character case)

         when PC_Break_CH =>
            Dout (Img (Node) & "matching Break", Node.Char);

            while Cursor < Length loop
               if Subject (Cursor + 1) = Node.Char then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  Break (character set case)

         when PC_Break_CS =>
            Dout (Img (Node) & "matching Break", Node.CS);

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), Node.CS) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  Break (string function case)

         when PC_Break_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching Break", S (1 .. L));

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  Break (string pointer case)

         when PC_Break_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching Break", S (1 .. L));

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  BreakX (one character case)

         when PC_BreakX_CH =>
            Dout (Img (Node) & "matching BreakX", Node.Char);

            while Cursor < Length loop
               if Subject (Cursor + 1) = Node.Char then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  BreakX (character set case)

         when PC_BreakX_CS =>
            Dout (Img (Node) & "matching BreakX", Node.CS);

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), Node.CS) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;

         --  BreakX (string function case)

         when PC_BreakX_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching BreakX", S (1 .. L));

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  BreakX (string pointer case)

         when PC_BreakX_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching BreakX", S (1 .. L));

            while Cursor < Length loop
               if Is_In (Subject (Cursor + 1), S (1 .. L)) then
                  goto Succeed;
               else
                  Cursor := Cursor + 1;
               end if;
            end loop;

            goto Fail;
         end;

         --  BreakX_X (BreakX extension). See section on "Compound Pattern
         --  Structures". This node is the alternative that is stacked
         --  to skip past the break character and extend the break.

         when PC_BreakX_X =>
            Dout (Img (Node) & "extending BreakX");
            Cursor := Cursor + 1;
            goto Succeed;

         --  Character (one character string)

         when PC_Char =>
            Dout (Img (Node) & "matching '" & Node.Char & ''');

            if Cursor < Length
              and then Subject (Cursor + 1) = Node.Char
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  End of Pattern

         when PC_EOP =>
            if Stack_Base = Stack_Init then
               Dout ("end of pattern");
               goto Match_Succeed;

            --  End of recursive inner match. See separate section on
            --  handing of recursive pattern matches for details.

            else
               Dout ("terminating recursive match");
               Node := Stack (Stack_Base - 1).Node;
               Pop_Region;
               goto Match;
            end if;

         --  Fail

         when PC_Fail =>
            Dout (Img (Node) & "matching Fail");
            goto Fail;

         --  Fence (built in pattern)

         when PC_Fence =>
            Dout (Img (Node) & "matching Fence");
            Push (CP_Cancel'Access);
            goto Succeed;

         --  Fence function node X. This is the node that gets control
         --  after a successful match of the fenced pattern.

         when PC_Fence_X =>
            Dout (Img (Node) & "matching Fence function");
            Stack_Ptr := Stack_Ptr + 1;
            Stack (Stack_Ptr).Cursor := Stack_Base;
            Stack (Stack_Ptr).Node   := CP_Fence_Y'Access;
            Stack_Base := Stack (Stack_Base).Cursor;
            Region_Level := Region_Level - 1;
            goto Succeed;

         --  Fence function node Y. This is the node that gets control on
         --  a failure that occurs after the fenced pattern has matched.

         --  Note: the Cursor at this stage is actually the inner stack
         --  base value. We don't reset this, but we do use it to strip
         --  off all the entries made by the fenced pattern.

         when PC_Fence_Y =>
            Dout (Img (Node) & "pattern matched by Fence caused failure");
            Stack_Ptr := Cursor - 2;
            goto Fail;

         --  Len (integer case)

         when PC_Len_Nat =>
            Dout (Img (Node) & "matching Len", Node.Nat);

            if Cursor + Node.Nat > Length then
               goto Fail;
            else
               Cursor := Cursor + Node.Nat;
               goto Succeed;
            end if;

         --  Len (Integer function case)

         when PC_Len_NF => declare
            N : constant Natural := Node.NF.all;

         begin
            Dout (Img (Node) & "matching Len", N);

            if Cursor + N > Length then
               goto Fail;
            else
               Cursor := Cursor + N;
               goto Succeed;
            end if;
         end;

         --  Len (integer pointer case)

         when PC_Len_NP =>
            Dout (Img (Node) & "matching Len", Node.NP.all);

            if Cursor + Node.NP.all > Length then
               goto Fail;
            else
               Cursor := Cursor + Node.NP.all;
               goto Succeed;
            end if;

         --  NotAny (one character case)

         when PC_NotAny_CH =>
            Dout (Img (Node) & "matching NotAny", Node.Char);

            if Cursor < Length
              and then Subject (Cursor + 1) /= Node.Char
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  NotAny (character set case)

         when PC_NotAny_CS =>
            Dout (Img (Node) & "matching NotAny", Node.CS);

            if Cursor < Length
              and then not Is_In (Subject (Cursor + 1), Node.CS)
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  NotAny (string function case)

         when PC_NotAny_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching NotAny", S (1 .. L));

            if Cursor < Length
              and then
                not Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  NotAny (string pointer case)

         when PC_NotAny_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching NotAny", S (1 .. L));

            if Cursor < Length
              and then
                not Is_In (Subject (Cursor + 1), S (1 .. L))
            then
               Cursor := Cursor + 1;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  NSpan (one character case)

         when PC_NSpan_CH =>
            Dout (Img (Node) & "matching NSpan", Node.Char);

            while Cursor < Length
              and then Subject (Cursor + 1) = Node.Char
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;

         --  NSpan (character set case)

         when PC_NSpan_CS =>
            Dout (Img (Node) & "matching NSpan", Node.CS);

            while Cursor < Length
              and then Is_In (Subject (Cursor + 1), Node.CS)
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;

         --  NSpan (string function case)

         when PC_NSpan_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching NSpan", S (1 .. L));

            while Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;
         end;

         --  NSpan (string pointer case)

         when PC_NSpan_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching NSpan", S (1 .. L));

            while Cursor < Length
              and then Is_In (Subject (Cursor + 1), S (1 .. L))
            loop
               Cursor := Cursor + 1;
            end loop;

            goto Succeed;
         end;

         when PC_Null =>
            Dout (Img (Node) & "matching null");
            goto Succeed;

         --  Pos (integer case)

         when PC_Pos_Nat =>
            Dout (Img (Node) & "matching Pos", Node.Nat);

            if Cursor = Node.Nat then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Pos (Integer function case)

         when PC_Pos_NF => declare
            N : constant Natural := Node.NF.all;

         begin
            Dout (Img (Node) & "matching Pos", N);

            if Cursor = N then
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Pos (integer pointer case)

         when PC_Pos_NP =>
            Dout (Img (Node) & "matching Pos", Node.NP.all);

            if Cursor = Node.NP.all then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Predicate function

         when PC_Pred_Func =>
            Dout (Img (Node) & "matching predicate function");

            if Node.BF.all then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Region Enter. Initiate new pattern history stack region

         when PC_R_Enter =>
            Dout (Img (Node) & "starting match of nested pattern");
            Stack (Stack_Ptr + 1).Cursor := Cursor;
            Push_Region;
            goto Succeed;

         --  Region Remove node. This is the node stacked by an R_Enter.
         --  It removes the special format stack entry right underneath, and
         --  then restores the outer level stack base and signals failure.

         --  Note: the cursor value at this stage is actually the (negative)
         --  stack base value for the outer level.

         when PC_R_Remove =>
            Dout ("failure, match of nested pattern terminated");
            Stack_Base := Cursor;
            Region_Level := Region_Level - 1;
            Stack_Ptr := Stack_Ptr - 1;
            goto Fail;

         --  Region restore node. This is the node stacked at the end of an
         --  inner level match. Its function is to restore the inner level
         --  region, so that alternatives in this region can be sought.

         --  Note: the Cursor at this stage is actually the negative of the
         --  inner stack base value, which we use to restore the inner region.

         when PC_R_Restore =>
            Dout ("failure, search for alternatives in nested pattern");
            Region_Level := Region_Level + 1;
            Stack_Base := Cursor;
            goto Fail;

         --  Rest

         when PC_Rest =>
            Dout (Img (Node) & "matching Rest");
            Cursor := Length;
            goto Succeed;

         --  Initiate recursive match (pattern pointer case)

         when PC_Rpat =>
            Stack (Stack_Ptr + 1).Node := Node.Pthen;
            Push_Region;
            Dout (Img (Node) & "initiating recursive match");

            if Stack_Ptr + Node.PP.all.Stk >= Stack_Size then
               raise Pattern_Stack_Overflow;
            else
               Node := Node.PP.all.P;
               goto Match;
            end if;

         --  RPos (integer case)

         when PC_RPos_Nat =>
            Dout (Img (Node) & "matching RPos", Node.Nat);

            if Cursor = (Length - Node.Nat) then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  RPos (integer function case)

         when PC_RPos_NF => declare
            N : constant Natural := Node.NF.all;

         begin
            Dout (Img (Node) & "matching RPos", N);

            if Length - Cursor = N then
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  RPos (integer pointer case)

         when PC_RPos_NP =>
            Dout (Img (Node) & "matching RPos", Node.NP.all);

            if Cursor = (Length - Node.NP.all) then
               goto Succeed;
            else
               goto Fail;
            end if;

         --  RTab (integer case)

         when PC_RTab_Nat =>
            Dout (Img (Node) & "matching RTab", Node.Nat);

            if Cursor <= (Length - Node.Nat) then
               Cursor := Length - Node.Nat;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  RTab (integer function case)

         when PC_RTab_NF => declare
            N : constant Natural := Node.NF.all;

         begin
            Dout (Img (Node) & "matching RPos", N);

            if Length - Cursor >= N then
               Cursor := Length - N;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  RTab (integer pointer case)

         when PC_RTab_NP =>
            Dout (Img (Node) & "matching RPos", Node.NP.all);

            if Cursor <= (Length - Node.NP.all) then
               Cursor := Length - Node.NP.all;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Cursor assignment

         when PC_Setcur =>
            Dout (Img (Node) & "matching Setcur");
            Node.Var.all := Cursor;
            goto Succeed;

         --  Span (one character case)

         when PC_Span_CH => declare
            P : Natural := Cursor;

         begin
            Dout (Img (Node) & "matching Span", Node.Char);

            while P < Length
              and then Subject (P + 1) = Node.Char
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Span (character set case)

         when PC_Span_CS => declare
            P : Natural := Cursor;

         begin
            Dout (Img (Node) & "matching Span", Node.CS);

            while P < Length
              and then Is_In (Subject (P + 1), Node.CS)
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Span (string function case)

         when PC_Span_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;
            P : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching Span", S (1 .. L));

            P := Cursor;
            while P < Length
              and then Is_In (Subject (P + 1), S (1 .. L))
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Span (string pointer case)

         when PC_Span_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;
            P : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching Span", S (1 .. L));

            P := Cursor;
            while P < Length
              and then Is_In (Subject (P + 1), S (1 .. L))
            loop
               P := P + 1;
            end loop;

            if P /= Cursor then
               Cursor := P;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  String (two character case)

         when PC_String_2 =>
            Dout (Img (Node) & "matching " & Image (Node.Str2));

            if (Length - Cursor) >= 2
              and then Subject (Cursor + 1 .. Cursor + 2) = Node.Str2
            then
               Cursor := Cursor + 2;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (three character case)

         when PC_String_3 =>
            Dout (Img (Node) & "matching " & Image (Node.Str3));

            if (Length - Cursor) >= 3
              and then Subject (Cursor + 1 .. Cursor + 3) = Node.Str3
            then
               Cursor := Cursor + 3;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (four character case)

         when PC_String_4 =>
            Dout (Img (Node) & "matching " & Image (Node.Str4));

            if (Length - Cursor) >= 4
              and then Subject (Cursor + 1 .. Cursor + 4) = Node.Str4
            then
               Cursor := Cursor + 4;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (five character case)

         when PC_String_5 =>
            Dout (Img (Node) & "matching " & Image (Node.Str5));

            if (Length - Cursor) >= 5
              and then Subject (Cursor + 1 .. Cursor + 5) = Node.Str5
            then
               Cursor := Cursor + 5;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (six character case)

         when PC_String_6 =>
            Dout (Img (Node) & "matching " & Image (Node.Str6));

            if (Length - Cursor) >= 6
              and then Subject (Cursor + 1 .. Cursor + 6) = Node.Str6
            then
               Cursor := Cursor + 6;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  String (case of more than six characters)

         when PC_String => declare
            Len : constant Natural := Node.Str'Length;

         begin
            Dout (Img (Node) & "matching " & Image (Node.Str.all));

            if (Length - Cursor) >= Len
              and then Node.Str.all = Subject (Cursor + 1 .. Cursor + Len)
            then
               Cursor := Cursor + Len;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  String (function case)

         when PC_String_VF => declare
            U : constant VString := Node.VF.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching " & Image (S (1 .. L)));

            if (Length - Cursor) >= L
              and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
            then
               Cursor := Cursor + L;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  String (vstring pointer case)

         when PC_String_VP => declare
            U : constant VString := Node.VP.all;
            S : Big_String_Access;
            L : Natural;

         begin
            Get_String (U, S, L);
            Dout (Img (Node) & "matching " & Image (S (1 .. L)));

            if (Length - Cursor) >= L
              and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
            then
               Cursor := Cursor + L;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Succeed

         when PC_Succeed =>
            Dout (Img (Node) & "matching Succeed");
            Push (Node);
            goto Succeed;

         --  Tab (integer case)

         when PC_Tab_Nat =>
            Dout (Img (Node) & "matching Tab", Node.Nat);

            if Cursor <= Node.Nat then
               Cursor := Node.Nat;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Tab (integer function case)

         when PC_Tab_NF => declare
            N : constant Natural := Node.NF.all;

         begin
            Dout (Img (Node) & "matching Tab ", N);

            if Cursor <= N then
               Cursor := N;
               goto Succeed;
            else
               goto Fail;
            end if;
         end;

         --  Tab (integer pointer case)

         when PC_Tab_NP =>
            Dout (Img (Node) & "matching Tab ", Node.NP.all);

            if Cursor <= Node.NP.all then
               Cursor := Node.NP.all;
               goto Succeed;
            else
               goto Fail;
            end if;

         --  Unanchored movement

         when PC_Unanchored =>
            Dout ("attempting to move anchor point");

            --  All done if we tried every position

            if Cursor > Length then
               goto Match_Fail;

            --  Otherwise extend the anchor point, and restack ourself

            else
               Cursor := Cursor + 1;
               Push (Node);
               goto Succeed;
            end if;

         --  Write immediate. This node performs the actual write

         when PC_Write_Imm =>
            Dout (Img (Node) & "executing immediate write of " &
                   Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));

            Put_Line
              (Node.FP.all,
               Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
            Pop_Region;
            goto Succeed;

         --  Write on match. This node sets up for the eventual write

         when PC_Write_OnM =>
            Dout (Img (Node) & "registering deferred write");
            Stack (Stack_Base - 1).Node := Node;
            Push (CP_Assign'Access);
            Pop_Region;
            Assign_OnM := True;
            goto Succeed;

      end case;

      --  We are NOT allowed to fall though this case statement, since every
      --  match routine must end by executing a goto to the appropriate point
      --  in the finite state machine model.

      pragma Warnings (Off);
      Logic_Error;
      pragma Warnings (On);
   end XMatchD;

end GNAT.Spitbol.Patterns;