aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libstdc++-v3/include/ext/rc_string_base.h
blob: dce5e06710c42ff7fe512ffe64df4f69f0fb6c63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
// Reference-counted versatile string base -*- C++ -*-

// Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file ext/rc_string_base.h
 *  This file is a GNU extension to the Standard C++ Library.
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _RC_STRING_BASE_H
#define _RC_STRING_BASE_H 1

#include <ext/atomicity.h>
#include <bits/stl_iterator_base_funcs.h>

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

  /**
   *  Documentation?  What's that?
   *  Nathan Myers <ncm@cantrip.org>.
   *
   *  A string looks like this:
   *
   *  @code
   *                                        [_Rep]
   *                                        _M_length
   *   [__rc_string_base<char_type>]        _M_capacity
   *   _M_dataplus                          _M_refcount
   *   _M_p ---------------->               unnamed array of char_type
   *  @endcode
   *
   *  Where the _M_p points to the first character in the string, and
   *  you cast it to a pointer-to-_Rep and subtract 1 to get a
   *  pointer to the header.
   *
   *  This approach has the enormous advantage that a string object
   *  requires only one allocation.  All the ugliness is confined
   *  within a single pair of inline functions, which each compile to
   *  a single "add" instruction: _Rep::_M_refdata(), and
   *  __rc_string_base::_M_rep(); and the allocation function which gets a
   *  block of raw bytes and with room enough and constructs a _Rep
   *  object at the front.
   *
   *  The reason you want _M_data pointing to the character array and
   *  not the _Rep is so that the debugger can see the string
   *  contents. (Probably we should add a non-inline member to get
   *  the _Rep for the debugger to use, so users can check the actual
   *  string length.)
   *
   *  Note that the _Rep object is a POD so that you can have a
   *  static "empty string" _Rep object already "constructed" before
   *  static constructors have run.  The reference-count encoding is
   *  chosen so that a 0 indicates one reference, so you never try to
   *  destroy the empty-string _Rep object.
   *
   *  All but the last paragraph is considered pretty conventional
   *  for a C++ string implementation.
  */
 template<typename _CharT, typename _Traits, typename _Alloc>
    class __rc_string_base
    : protected __vstring_utility<_CharT, _Traits, _Alloc>
    {
    public:
      typedef _Traits					    traits_type;
      typedef typename _Traits::char_type		    value_type;
      typedef _Alloc					    allocator_type;

      typedef __vstring_utility<_CharT, _Traits, _Alloc>    _Util_Base;
      typedef typename _Util_Base::_CharT_alloc_type        _CharT_alloc_type;
      typedef typename _CharT_alloc_type::size_type	    size_type;

    private:
      // _Rep: string representation
      //   Invariants:
      //   1. String really contains _M_length + 1 characters: due to 21.3.4
      //      must be kept null-terminated.
      //   2. _M_capacity >= _M_length
      //      Allocated memory is always (_M_capacity + 1) * sizeof(_CharT).
      //   3. _M_refcount has three states:
      //      -1: leaked, one reference, no ref-copies allowed, non-const.
      //       0: one reference, non-const.
      //     n>0: n + 1 references, operations require a lock, const.
      //   4. All fields == 0 is an empty string, given the extra storage
      //      beyond-the-end for a null terminator; thus, the shared
      //      empty string representation needs no constructor.
      struct _Rep
      {
	union
	{
	  struct
	  {
	    size_type	    _M_length;
	    size_type	    _M_capacity;
	    _Atomic_word    _M_refcount;
	  }                 _M_info;
	  
	  // Only for alignment purposes.
	  _CharT            _M_align;
	};

	typedef typename _Alloc::template rebind<_Rep>::other _Rep_alloc_type;

 	_CharT*
	_M_refdata() throw()
	{ return reinterpret_cast<_CharT*>(this + 1); }

	_CharT*
	_M_refcopy() throw()
	{
	  __atomic_add_dispatch(&_M_info._M_refcount, 1);
	  return _M_refdata();
	}  // XXX MT
	
	void
	_M_set_length(size_type __n)
	{ 
	  _M_info._M_refcount = 0;  // One reference.
	  _M_info._M_length = __n;
	  // grrr. (per 21.3.4)
	  // You cannot leave those LWG people alone for a second.
	  traits_type::assign(_M_refdata()[__n], _CharT());
	}

	// Create & Destroy
	static _Rep*
	_S_create(size_type, size_type, const _Alloc&);

	void
	_M_destroy(const _Alloc&) throw();

	_CharT*
	_M_clone(const _Alloc&, size_type __res = 0);
      };

      struct _Rep_empty
      : public _Rep
      {
	_CharT              _M_terminal;
      };

      static _Rep_empty     _S_empty_rep;

      // The maximum number of individual char_type elements of an
      // individual string is determined by _S_max_size. This is the
      // value that will be returned by max_size().  (Whereas npos
      // is the maximum number of bytes the allocator can allocate.)
      // If one was to divvy up the theoretical largest size string,
      // with a terminating character and m _CharT elements, it'd
      // look like this:
      // npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT)
      //        + sizeof(_Rep) - 1
      // (NB: last two terms for rounding reasons, see _M_create below)
      // Solving for m:
      // m = ((npos - 2 * sizeof(_Rep) + 1) / sizeof(_CharT)) - 1
      // In addition, this implementation halves this amount.
      enum { _S_max_size = (((static_cast<size_type>(-1) - 2 * sizeof(_Rep)
			      + 1) / sizeof(_CharT)) - 1) / 2 };

      // Data Member (private):
      mutable typename _Util_Base::template _Alloc_hider<_Alloc>  _M_dataplus;

      void
      _M_data(_CharT* __p)
      { _M_dataplus._M_p = __p; }

      _Rep*
      _M_rep() const
      { return &((reinterpret_cast<_Rep*>(_M_data()))[-1]); }

      _CharT*
      _M_grab(const _Alloc& __alloc) const
      {
	return (!_M_is_leaked() && _M_get_allocator() == __alloc)
	        ? _M_rep()->_M_refcopy() : _M_rep()->_M_clone(__alloc);
      }

      void
      _M_dispose()
      {
	if (__exchange_and_add_dispatch(&_M_rep()->_M_info._M_refcount,
					-1) <= 0)
	  _M_rep()->_M_destroy(_M_get_allocator());
      }  // XXX MT

      bool
      _M_is_leaked() const
      { return _M_rep()->_M_info._M_refcount < 0; }

      void
      _M_set_sharable()
      { _M_rep()->_M_info._M_refcount = 0; }

      void
      _M_leak_hard();

      // _S_construct_aux is used to implement the 21.3.1 para 15 which
      // requires special behaviour if _InIterator is an integral type
      template<typename _InIterator>
        static _CharT*
        _S_construct_aux(_InIterator __beg, _InIterator __end,
			 const _Alloc& __a, std::__false_type)
	{
          typedef typename iterator_traits<_InIterator>::iterator_category _Tag;
          return _S_construct(__beg, __end, __a, _Tag());
	}

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
        static _CharT*
        _S_construct_aux(_Integer __beg, _Integer __end,
			 const _Alloc& __a, std::__true_type)
	{ return _S_construct(static_cast<size_type>(__beg), __end, __a); }

      template<typename _InIterator>
        static _CharT*
        _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a)
	{
	  typedef typename std::__is_integer<_InIterator>::__type _Integral;
	  return _S_construct_aux(__beg, __end, __a, _Integral());
        }

      // For Input Iterators, used in istreambuf_iterators, etc.
      template<typename _InIterator>
        static _CharT*
         _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
		      std::input_iterator_tag);
      
      // For forward_iterators up to random_access_iterators, used for
      // string::iterator, _CharT*, etc.
      template<typename _FwdIterator>
        static _CharT*
        _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a,
		     std::forward_iterator_tag);

      static _CharT*
      _S_construct(size_type __req, _CharT __c, const _Alloc& __a);

    public:
      size_type
      _M_max_size() const
      { return size_type(_S_max_size); }

      _CharT*
      _M_data() const
      { return _M_dataplus._M_p; }

      size_type
      _M_length() const
      { return _M_rep()->_M_info._M_length; }

      size_type
      _M_capacity() const
      { return _M_rep()->_M_info._M_capacity; }

      bool
      _M_is_shared() const
      { return _M_rep()->_M_info._M_refcount > 0; }

      void
      _M_set_leaked()
      { _M_rep()->_M_info._M_refcount = -1; }

      void
      _M_leak()    // for use in begin() & non-const op[]
      {
	if (!_M_is_leaked())
	  _M_leak_hard();
      }

      void
      _M_set_length(size_type __n)
      { _M_rep()->_M_set_length(__n); }

      __rc_string_base()
      : _M_dataplus(_S_empty_rep._M_refcopy()) { }

      __rc_string_base(const _Alloc& __a);

      __rc_string_base(const __rc_string_base& __rcs);

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      __rc_string_base(__rc_string_base&& __rcs)
      : _M_dataplus(__rcs._M_get_allocator(), __rcs._M_data())
      { __rcs._M_data(_S_empty_rep._M_refcopy()); }
#endif

      __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a);

      template<typename _InputIterator>
        __rc_string_base(_InputIterator __beg, _InputIterator __end,
			 const _Alloc& __a);

      ~__rc_string_base()
      { _M_dispose(); }      

      allocator_type&
      _M_get_allocator()
      { return _M_dataplus; }

      const allocator_type&
      _M_get_allocator() const
      { return _M_dataplus; }

      void
      _M_swap(__rc_string_base& __rcs);

      void
      _M_assign(const __rc_string_base& __rcs);

      void
      _M_reserve(size_type __res);

      void
      _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
		size_type __len2);
      
      void
      _M_erase(size_type __pos, size_type __n);

      void
      _M_clear()
      { _M_erase(size_type(0), _M_length()); }

      bool
      _M_compare(const __rc_string_base&) const
      { return false; }
    };

  template<typename _CharT, typename _Traits, typename _Alloc>
    typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep_empty
    __rc_string_base<_CharT, _Traits, _Alloc>::_S_empty_rep;

  template<typename _CharT, typename _Traits, typename _Alloc>
    typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep*
    __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
    _S_create(size_type __capacity, size_type __old_capacity,
	      const _Alloc& __alloc)
    {
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 83.  String::npos vs. string::max_size()
      if (__capacity > size_type(_S_max_size))
	std::__throw_length_error(__N("__rc_string_base::_Rep::_S_create"));

      // The standard places no restriction on allocating more memory
      // than is strictly needed within this layer at the moment or as
      // requested by an explicit application call to reserve().

      // Many malloc implementations perform quite poorly when an
      // application attempts to allocate memory in a stepwise fashion
      // growing each allocation size by only 1 char.  Additionally,
      // it makes little sense to allocate less linear memory than the
      // natural blocking size of the malloc implementation.
      // Unfortunately, we would need a somewhat low-level calculation
      // with tuned parameters to get this perfect for any particular
      // malloc implementation.  Fortunately, generalizations about
      // common features seen among implementations seems to suffice.

      // __pagesize need not match the actual VM page size for good
      // results in practice, thus we pick a common value on the low
      // side.  __malloc_header_size is an estimate of the amount of
      // overhead per memory allocation (in practice seen N * sizeof
      // (void*) where N is 0, 2 or 4).  According to folklore,
      // picking this value on the high side is better than
      // low-balling it (especially when this algorithm is used with
      // malloc implementations that allocate memory blocks rounded up
      // to a size which is a power of 2).
      const size_type __pagesize = 4096;
      const size_type __malloc_header_size = 4 * sizeof(void*);

      // The below implements an exponential growth policy, necessary to
      // meet amortized linear time requirements of the library: see
      // http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html.
      if (__capacity > __old_capacity && __capacity < 2 * __old_capacity)
	{
	  __capacity = 2 * __old_capacity;
	  // Never allocate a string bigger than _S_max_size.
	  if (__capacity > size_type(_S_max_size))
	    __capacity = size_type(_S_max_size);
	}

      // NB: Need an array of char_type[__capacity], plus a terminating
      // null char_type() element, plus enough for the _Rep data structure,
      // plus sizeof(_Rep) - 1 to upper round to a size multiple of
      // sizeof(_Rep).
      // Whew. Seemingly so needy, yet so elemental.
      size_type __size = ((__capacity + 1) * sizeof(_CharT)
			  + 2 * sizeof(_Rep) - 1);

      const size_type __adj_size = __size + __malloc_header_size;
      if (__adj_size > __pagesize && __capacity > __old_capacity)
	{
	  const size_type __extra = __pagesize - __adj_size % __pagesize;
	  __capacity += __extra / sizeof(_CharT);
	  if (__capacity > size_type(_S_max_size))
	    __capacity = size_type(_S_max_size);
	  __size = (__capacity + 1) * sizeof(_CharT) + 2 * sizeof(_Rep) - 1;
	}

      // NB: Might throw, but no worries about a leak, mate: _Rep()
      // does not throw.
      _Rep* __place = _Rep_alloc_type(__alloc).allocate(__size / sizeof(_Rep));
      _Rep* __p = new (__place) _Rep;
      __p->_M_info._M_capacity = __capacity;
      return __p;
    }

  template<typename _CharT, typename _Traits, typename _Alloc>
    void
    __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
    _M_destroy(const _Alloc& __a) throw ()
    {
      const size_type __size = ((_M_info._M_capacity + 1) * sizeof(_CharT)
				+ 2 * sizeof(_Rep) - 1);
      _Rep_alloc_type(__a).deallocate(this, __size / sizeof(_Rep));
    }

  template<typename _CharT, typename _Traits, typename _Alloc>
    _CharT*
    __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
    _M_clone(const _Alloc& __alloc, size_type __res)
    {
      // Requested capacity of the clone.
      const size_type __requested_cap = _M_info._M_length + __res;
      _Rep* __r = _Rep::_S_create(__requested_cap, _M_info._M_capacity,
				  __alloc);

      if (_M_info._M_length)
	_S_copy(__r->_M_refdata(), _M_refdata(), _M_info._M_length);

      __r->_M_set_length(_M_info._M_length);
      return __r->_M_refdata();
    }

  template<typename _CharT, typename _Traits, typename _Alloc>
    __rc_string_base<_CharT, _Traits, _Alloc>::
    __rc_string_base(const _Alloc& __a)
    : _M_dataplus(__a, _S_construct(size_type(), _CharT(), __a)) { }

  template<typename _CharT, typename _Traits, typename _Alloc>
    __rc_string_base<_CharT, _Traits, _Alloc>::
    __rc_string_base(const __rc_string_base& __rcs)
    : _M_dataplus(__rcs._M_get_allocator(),
		  __rcs._M_grab(__rcs._M_get_allocator())) { }

  template<typename _CharT, typename _Traits, typename _Alloc>
    __rc_string_base<_CharT, _Traits, _Alloc>::
    __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a)
    : _M_dataplus(__a, _S_construct(__n, __c, __a)) { }

  template<typename _CharT, typename _Traits, typename _Alloc>
    template<typename _InputIterator>
    __rc_string_base<_CharT, _Traits, _Alloc>::
    __rc_string_base(_InputIterator __beg, _InputIterator __end,
		     const _Alloc& __a)
    : _M_dataplus(__a, _S_construct(__beg, __end, __a)) { }

  template<typename _CharT, typename _Traits, typename _Alloc>
    void
    __rc_string_base<_CharT, _Traits, _Alloc>::
    _M_leak_hard()
    {
      if (_M_is_shared())
	_M_erase(0, 0);
      _M_set_leaked();
    }

  // NB: This is the special case for Input Iterators, used in
  // istreambuf_iterators, etc.
  // Input Iterators have a cost structure very different from
  // pointers, calling for a different coding style.
  template<typename _CharT, typename _Traits, typename _Alloc>
    template<typename _InIterator>
      _CharT*
      __rc_string_base<_CharT, _Traits, _Alloc>::
      _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
		   std::input_iterator_tag)
      {
	if (__beg == __end && __a == _Alloc())
	  return _S_empty_rep._M_refcopy();

	// Avoid reallocation for common case.
	_CharT __buf[128];
	size_type __len = 0;
	while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT))
	  {
	    __buf[__len++] = *__beg;
	    ++__beg;
	  }
	_Rep* __r = _Rep::_S_create(__len, size_type(0), __a);
	_S_copy(__r->_M_refdata(), __buf, __len);
	__try
	  {
	    while (__beg != __end)
	      {
		if (__len == __r->_M_info._M_capacity)
		  {
		    // Allocate more space.
		    _Rep* __another = _Rep::_S_create(__len + 1, __len, __a);
		    _S_copy(__another->_M_refdata(), __r->_M_refdata(), __len);
		    __r->_M_destroy(__a);
		    __r = __another;
		  }
		__r->_M_refdata()[__len++] = *__beg;
		++__beg;
	      }
	  }
	__catch(...)
	  {
	    __r->_M_destroy(__a);
	    __throw_exception_again;
	  }
	__r->_M_set_length(__len);
	return __r->_M_refdata();
      }

  template<typename _CharT, typename _Traits, typename _Alloc>
    template<typename _InIterator>
      _CharT*
      __rc_string_base<_CharT, _Traits, _Alloc>::
      _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
		   std::forward_iterator_tag)
      {
	if (__beg == __end && __a == _Alloc())
	  return _S_empty_rep._M_refcopy();

	// NB: Not required, but considered best practice.
	if (__builtin_expect(__is_null_pointer(__beg) && __beg != __end, 0))
	  std::__throw_logic_error(__N("__rc_string_base::"
				       "_S_construct NULL not valid"));

	const size_type __dnew = static_cast<size_type>(std::distance(__beg,
								      __end));
	// Check for out_of_range and length_error exceptions.
	_Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a);
	__try
	  { _S_copy_chars(__r->_M_refdata(), __beg, __end); }
	__catch(...)
	  {
	    __r->_M_destroy(__a);
	    __throw_exception_again;
	  }
	__r->_M_set_length(__dnew);
	return __r->_M_refdata();
      }

  template<typename _CharT, typename _Traits, typename _Alloc>
    _CharT*
    __rc_string_base<_CharT, _Traits, _Alloc>::
    _S_construct(size_type __n, _CharT __c, const _Alloc& __a)
    {
      if (__n == 0 && __a == _Alloc())
	return _S_empty_rep._M_refcopy();

      // Check for out_of_range and length_error exceptions.
      _Rep* __r = _Rep::_S_create(__n, size_type(0), __a);
      if (__n)
	_S_assign(__r->_M_refdata(), __n, __c);

      __r->_M_set_length(__n);
      return __r->_M_refdata();
    }

  template<typename _CharT, typename _Traits, typename _Alloc>
    void
    __rc_string_base<_CharT, _Traits, _Alloc>::
    _M_swap(__rc_string_base& __rcs)
    {
      if (_M_is_leaked())
	_M_set_sharable();
      if (__rcs._M_is_leaked())
	__rcs._M_set_sharable();
      
      _CharT* __tmp = _M_data();
      _M_data(__rcs._M_data());
      __rcs._M_data(__tmp);

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 431. Swapping containers with unequal allocators.
      std::__alloc_swap<allocator_type>::_S_do_it(_M_get_allocator(),
						  __rcs._M_get_allocator());
    } 

  template<typename _CharT, typename _Traits, typename _Alloc>
    void
    __rc_string_base<_CharT, _Traits, _Alloc>::
    _M_assign(const __rc_string_base& __rcs)
    {
      if (_M_rep() != __rcs._M_rep())
	{
	  _CharT* __tmp = __rcs._M_grab(_M_get_allocator());
	  _M_dispose();
	  _M_data(__tmp);
	}
    }

  template<typename _CharT, typename _Traits, typename _Alloc>
    void
    __rc_string_base<_CharT, _Traits, _Alloc>::
    _M_reserve(size_type __res)
    {
      // Make sure we don't shrink below the current size.
      if (__res < _M_length())
	__res = _M_length();
      
      if (__res != _M_capacity() || _M_is_shared())
	{
	  _CharT* __tmp = _M_rep()->_M_clone(_M_get_allocator(),
					     __res - _M_length());
	  _M_dispose();
	  _M_data(__tmp);
	}
    }

  template<typename _CharT, typename _Traits, typename _Alloc>
    void
    __rc_string_base<_CharT, _Traits, _Alloc>::
    _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
	      size_type __len2)
    {
      const size_type __how_much = _M_length() - __pos - __len1;
      
      _Rep* __r = _Rep::_S_create(_M_length() + __len2 - __len1,
				  _M_capacity(), _M_get_allocator());
      
      if (__pos)
	_S_copy(__r->_M_refdata(), _M_data(), __pos);
      if (__s && __len2)
	_S_copy(__r->_M_refdata() + __pos, __s, __len2);
      if (__how_much)
	_S_copy(__r->_M_refdata() + __pos + __len2,
		_M_data() + __pos + __len1, __how_much);
      
      _M_dispose();
      _M_data(__r->_M_refdata());
    }

  template<typename _CharT, typename _Traits, typename _Alloc>
    void
    __rc_string_base<_CharT, _Traits, _Alloc>::
    _M_erase(size_type __pos, size_type __n)
    {
      const size_type __new_size = _M_length() - __n;
      const size_type __how_much = _M_length() - __pos - __n;
      
      if (_M_is_shared())
	{
	  // Must reallocate.
	  _Rep* __r = _Rep::_S_create(__new_size, _M_capacity(),
				      _M_get_allocator());

	  if (__pos)
	    _S_copy(__r->_M_refdata(), _M_data(), __pos);
	  if (__how_much)
	    _S_copy(__r->_M_refdata() + __pos,
		    _M_data() + __pos + __n, __how_much);

	  _M_dispose();
	  _M_data(__r->_M_refdata());
	}
      else if (__how_much && __n)
	{
	  // Work in-place.
	  _S_move(_M_data() + __pos,
		  _M_data() + __pos + __n, __how_much);
	}

      _M_rep()->_M_set_length(__new_size);      
    }

  template<>
    inline bool
    __rc_string_base<char, std::char_traits<char>,
		     std::allocator<char> >::
    _M_compare(const __rc_string_base& __rcs) const
    {
      if (_M_rep() == __rcs._M_rep())
	return true;
      return false;
    }

#ifdef _GLIBCXX_USE_WCHAR_T
  template<>
    inline bool
    __rc_string_base<wchar_t, std::char_traits<wchar_t>,
		     std::allocator<wchar_t> >::
    _M_compare(const __rc_string_base& __rcs) const
    {
      if (_M_rep() == __rcs._M_rep())
	return true;
      return false;
    }
#endif

_GLIBCXX_END_NAMESPACE

#endif /* _RC_STRING_BASE_H */