aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libstdc++-v3/include/ext/bitmap_allocator.h
blob: 3ad08fbef1891566681d6f764495a1f118f1b532 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
// Bitmap Allocator. -*- C++ -*-

// Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file ext/bitmap_allocator.h
 *  This file is a GNU extension to the Standard C++ Library.
 */

#ifndef _BITMAP_ALLOCATOR_H
#define _BITMAP_ALLOCATOR_H 1

#include <cstddef> // For std::size_t, and ptrdiff_t.
#include <bits/functexcept.h> // For __throw_bad_alloc().
#include <utility> // For std::pair.
#include <functional> // For greater_equal, and less_equal.
#include <new> // For operator new.
#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
#include <ext/concurrence.h>
#include <bits/move.h>

/** @brief The constant in the expression below is the alignment
 * required in bytes.
 */
#define _BALLOC_ALIGN_BYTES 8

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

  using std::size_t;
  using std::ptrdiff_t;

  namespace __detail
  {
    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
     *
     *  @brief  __mini_vector<> is a stripped down version of the
     *  full-fledged std::vector<>.
     *
     *  It is to be used only for built-in types or PODs. Notable
     *  differences are:
     * 
     *  @detail
     *  1. Not all accessor functions are present.
     *  2. Used ONLY for PODs.
     *  3. No Allocator template argument. Uses ::operator new() to get
     *  memory, and ::operator delete() to free it.
     *  Caveat: The dtor does NOT free the memory allocated, so this a
     *  memory-leaking vector!
     */
    template<typename _Tp>
      class __mini_vector
      {
	__mini_vector(const __mini_vector&);
	__mini_vector& operator=(const __mini_vector&);

      public:
	typedef _Tp value_type;
	typedef _Tp* pointer;
	typedef _Tp& reference;
	typedef const _Tp& const_reference;
	typedef size_t size_type;
	typedef ptrdiff_t difference_type;
	typedef pointer iterator;

      private:
	pointer _M_start;
	pointer _M_finish;
	pointer _M_end_of_storage;

	size_type
	_M_space_left() const throw()
	{ return _M_end_of_storage - _M_finish; }

	pointer
	allocate(size_type __n)
	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }

	void
	deallocate(pointer __p, size_type)
	{ ::operator delete(__p); }

      public:
	// Members used: size(), push_back(), pop_back(),
	// insert(iterator, const_reference), erase(iterator),
	// begin(), end(), back(), operator[].

	__mini_vector() : _M_start(0), _M_finish(0), 
			  _M_end_of_storage(0)
	{ }

#if 0
	~__mini_vector()
	{
	  if (this->_M_start)
	    {
	      this->deallocate(this->_M_start, this->_M_end_of_storage 
			       - this->_M_start);
	    }
	}
#endif

	size_type
	size() const throw()
	{ return _M_finish - _M_start; }

	iterator
	begin() const throw()
	{ return this->_M_start; }

	iterator
	end() const throw()
	{ return this->_M_finish; }

	reference
	back() const throw()
	{ return *(this->end() - 1); }

	reference
	operator[](const size_type __pos) const throw()
	{ return this->_M_start[__pos]; }

	void
	insert(iterator __pos, const_reference __x);

	void
	push_back(const_reference __x)
	{
	  if (this->_M_space_left())
	    {
	      *this->end() = __x;
	      ++this->_M_finish;
	    }
	  else
	    this->insert(this->end(), __x);
	}

	void
	pop_back() throw()
	{ --this->_M_finish; }

	void
	erase(iterator __pos) throw();

	void
	clear() throw()
	{ this->_M_finish = this->_M_start; }
      };

    // Out of line function definitions.
    template<typename _Tp>
      void __mini_vector<_Tp>::
      insert(iterator __pos, const_reference __x)
      {
	if (this->_M_space_left())
	  {
	    size_type __to_move = this->_M_finish - __pos;
	    iterator __dest = this->end();
	    iterator __src = this->end() - 1;

	    ++this->_M_finish;
	    while (__to_move)
	      {
		*__dest = *__src;
		--__dest; --__src; --__to_move;
	      }
	    *__pos = __x;
	  }
	else
	  {
	    size_type __new_size = this->size() ? this->size() * 2 : 1;
	    iterator __new_start = this->allocate(__new_size);
	    iterator __first = this->begin();
	    iterator __start = __new_start;
	    while (__first != __pos)
	      {
		*__start = *__first;
		++__start; ++__first;
	      }
	    *__start = __x;
	    ++__start;
	    while (__first != this->end())
	      {
		*__start = *__first;
		++__start; ++__first;
	      }
	    if (this->_M_start)
	      this->deallocate(this->_M_start, this->size());

	    this->_M_start = __new_start;
	    this->_M_finish = __start;
	    this->_M_end_of_storage = this->_M_start + __new_size;
	  }
      }

    template<typename _Tp>
      void __mini_vector<_Tp>::
      erase(iterator __pos) throw()
      {
	while (__pos + 1 != this->end())
	  {
	    *__pos = __pos[1];
	    ++__pos;
	  }
	--this->_M_finish;
      }


    template<typename _Tp>
      struct __mv_iter_traits
      {
	typedef typename _Tp::value_type value_type;
	typedef typename _Tp::difference_type difference_type;
      };

    template<typename _Tp>
      struct __mv_iter_traits<_Tp*>
      {
	typedef _Tp value_type;
	typedef ptrdiff_t difference_type;
      };

    enum 
      { 
	bits_per_byte = 8,
	bits_per_block = sizeof(size_t) * size_t(bits_per_byte) 
      };

    template<typename _ForwardIterator, typename _Tp, typename _Compare>
      _ForwardIterator
      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
		    const _Tp& __val, _Compare __comp)
      {
	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
	  _ValueType;
	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
	  _DistanceType;

	_DistanceType __len = __last - __first;
	_DistanceType __half;
	_ForwardIterator __middle;

	while (__len > 0)
	  {
	    __half = __len >> 1;
	    __middle = __first;
	    __middle += __half;
	    if (__comp(*__middle, __val))
	      {
		__first = __middle;
		++__first;
		__len = __len - __half - 1;
	      }
	    else
	      __len = __half;
	  }
	return __first;
      }

    template<typename _InputIterator, typename _Predicate>
      inline _InputIterator
      __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
      {
	while (__first != __last && !__p(*__first))
	  ++__first;
	return __first;
      }

    /** @brief The number of Blocks pointed to by the address pair
     *  passed to the function.
     */
    template<typename _AddrPair>
      inline size_t
      __num_blocks(_AddrPair __ap)
      { return (__ap.second - __ap.first) + 1; }

    /** @brief The number of Bit-maps pointed to by the address pair
     *  passed to the function.
     */
    template<typename _AddrPair>
      inline size_t
      __num_bitmaps(_AddrPair __ap)
      { return __num_blocks(__ap) / size_t(bits_per_block); }

    // _Tp should be a pointer type.
    template<typename _Tp>
      class _Inclusive_between 
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
      {
	typedef _Tp pointer;
	pointer _M_ptr_value;
	typedef typename std::pair<_Tp, _Tp> _Block_pair;
	
      public:
	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
	{ }
	
	bool 
	operator()(_Block_pair __bp) const throw()
	{
	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
	    return true;
	  else
	    return false;
	}
      };
  
    // Used to pass a Functor to functions by reference.
    template<typename _Functor>
      class _Functor_Ref 
      : public std::unary_function<typename _Functor::argument_type, 
				   typename _Functor::result_type>
      {
	_Functor& _M_fref;
	
      public:
	typedef typename _Functor::argument_type argument_type;
	typedef typename _Functor::result_type result_type;

	_Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
	{ }

	result_type 
	operator()(argument_type __arg) 
	{ return _M_fref(__arg); }
      };

    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
     *
     *  @brief  The class which acts as a predicate for applying the
     *  first-fit memory allocation policy for the bitmap allocator.
     */
    // _Tp should be a pointer type, and _Alloc is the Allocator for
    // the vector.
    template<typename _Tp>
      class _Ffit_finder 
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
      {
	typedef typename std::pair<_Tp, _Tp> _Block_pair;
	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
	typedef typename _BPVector::difference_type _Counter_type;

	size_t* _M_pbitmap;
	_Counter_type _M_data_offset;

      public:
	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
	{ }

	bool 
	operator()(_Block_pair __bp) throw()
	{
	  // Set the _rover to the last physical location bitmap,
	  // which is the bitmap which belongs to the first free
	  // block. Thus, the bitmaps are in exact reverse order of
	  // the actual memory layout. So, we count down the bitmaps,
	  // which is the same as moving up the memory.

	  // If the used count stored at the start of the Bit Map headers
	  // is equal to the number of Objects that the current Block can
	  // store, then there is definitely no space for another single
	  // object, so just return false.
	  _Counter_type __diff = 
	    __gnu_cxx::__detail::__num_bitmaps(__bp);

	  if (*(reinterpret_cast<size_t*>
		(__bp.first) - (__diff + 1))
	      == __gnu_cxx::__detail::__num_blocks(__bp))
	    return false;

	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;

	  for (_Counter_type __i = 0; __i < __diff; ++__i)
	    {
	      _M_data_offset = __i;
	      if (*__rover)
		{
		  _M_pbitmap = __rover;
		  return true;
		}
	      --__rover;
	    }
	  return false;
	}

    
	size_t*
	_M_get() const throw()
	{ return _M_pbitmap; }

	_Counter_type
	_M_offset() const throw()
	{ return _M_data_offset * size_t(bits_per_block); }
      };


    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
     *
     *  @brief  The bitmap counter which acts as the bitmap
     *  manipulator, and manages the bit-manipulation functions and
     *  the searching and identification functions on the bit-map.
     */
    // _Tp should be a pointer type.
    template<typename _Tp>
      class _Bitmap_counter
      {
	typedef typename __detail::__mini_vector<typename std::pair<_Tp, _Tp> >
	_BPVector;
	typedef typename _BPVector::size_type _Index_type;
	typedef _Tp pointer;
    
	_BPVector& _M_vbp;
	size_t* _M_curr_bmap;
	size_t* _M_last_bmap_in_block;
	_Index_type _M_curr_index;
    
      public:
	// Use the 2nd parameter with care. Make sure that such an
	// entry exists in the vector before passing that particular
	// index to this ctor.
	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
	{ this->_M_reset(__index); }
    
	void 
	_M_reset(long __index = -1) throw()
	{
	  if (__index == -1)
	    {
	      _M_curr_bmap = 0;
	      _M_curr_index = static_cast<_Index_type>(-1);
	      return;
	    }

	  _M_curr_index = __index;
	  _M_curr_bmap = reinterpret_cast<size_t*>
	    (_M_vbp[_M_curr_index].first) - 1;
	  
	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
	
	  _M_last_bmap_in_block = _M_curr_bmap
	    - ((_M_vbp[_M_curr_index].second 
		- _M_vbp[_M_curr_index].first + 1) 
	       / size_t(bits_per_block) - 1);
	}
    
	// Dangerous Function! Use with extreme care. Pass to this
	// function ONLY those values that are known to be correct,
	// otherwise this will mess up big time.
	void
	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
	{ _M_curr_bmap = __new_internal_marker; }
    
	bool
	_M_finished() const throw()
	{ return(_M_curr_bmap == 0); }
    
	_Bitmap_counter&
	operator++() throw()
	{
	  if (_M_curr_bmap == _M_last_bmap_in_block)
	    {
	      if (++_M_curr_index == _M_vbp.size())
		_M_curr_bmap = 0;
	      else
		this->_M_reset(_M_curr_index);
	    }
	  else
	    --_M_curr_bmap;
	  return *this;
	}
    
	size_t*
	_M_get() const throw()
	{ return _M_curr_bmap; }
    
	pointer 
	_M_base() const throw()
	{ return _M_vbp[_M_curr_index].first; }

	_Index_type
	_M_offset() const throw()
	{
	  return size_t(bits_per_block)
	    * ((reinterpret_cast<size_t*>(this->_M_base()) 
		- _M_curr_bmap) - 1);
	}
    
	_Index_type
	_M_where() const throw()
	{ return _M_curr_index; }
      };

    /** @brief  Mark a memory address as allocated by re-setting the
     *  corresponding bit in the bit-map.
     */
    inline void 
    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
    {
      size_t __mask = 1 << __pos;
      __mask = ~__mask;
      *__pbmap &= __mask;
    }
  
    /** @brief  Mark a memory address as free by setting the
     *  corresponding bit in the bit-map.
     */
    inline void 
    __bit_free(size_t* __pbmap, size_t __pos) throw()
    {
      size_t __mask = 1 << __pos;
      *__pbmap |= __mask;
    }
  } // namespace __detail

  /** @brief  Generic Version of the bsf instruction.
   */
  inline size_t 
  _Bit_scan_forward(size_t __num)
  { return static_cast<size_t>(__builtin_ctzl(__num)); }

  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
   *
   *  @brief  The free list class for managing chunks of memory to be
   *  given to and returned by the bitmap_allocator.
   */
  class free_list
  {
    typedef size_t* 				value_type;
    typedef __detail::__mini_vector<value_type> vector_type;
    typedef vector_type::iterator 		iterator;
    typedef __mutex				__mutex_type;

    struct _LT_pointer_compare
    {
      bool
      operator()(const size_t* __pui, 
		 const size_t __cui) const throw()
      { return *__pui < __cui; }
    };

#if defined __GTHREADS
    __mutex_type&
    _M_get_mutex()
    {
      static __mutex_type _S_mutex;
      return _S_mutex;
    }
#endif

    vector_type&
    _M_get_free_list()
    {
      static vector_type _S_free_list;
      return _S_free_list;
    }

    /** @brief  Performs validation of memory based on their size.
     *
     *  @param  __addr The pointer to the memory block to be
     *  validated.
     *
     *  @detail  Validates the memory block passed to this function and
     *  appropriately performs the action of managing the free list of
     *  blocks by adding this block to the free list or deleting this
     *  or larger blocks from the free list.
     */
    void
    _M_validate(size_t* __addr) throw()
    {
      vector_type& __free_list = _M_get_free_list();
      const vector_type::size_type __max_size = 64;
      if (__free_list.size() >= __max_size)
	{
	  // Ok, the threshold value has been reached.  We determine
	  // which block to remove from the list of free blocks.
	  if (*__addr >= *__free_list.back())
	    {
	      // Ok, the new block is greater than or equal to the
	      // last block in the list of free blocks. We just free
	      // the new block.
	      ::operator delete(static_cast<void*>(__addr));
	      return;
	    }
	  else
	    {
	      // Deallocate the last block in the list of free lists,
	      // and insert the new one in its correct position.
	      ::operator delete(static_cast<void*>(__free_list.back()));
	      __free_list.pop_back();
	    }
	}
	  
      // Just add the block to the list of free lists unconditionally.
      iterator __temp = __gnu_cxx::__detail::__lower_bound
	(__free_list.begin(), __free_list.end(), 
	 *__addr, _LT_pointer_compare());

      // We may insert the new free list before _temp;
      __free_list.insert(__temp, __addr);
    }

    /** @brief  Decides whether the wastage of memory is acceptable for
     *  the current memory request and returns accordingly.
     *
     *  @param __block_size The size of the block available in the free
     *  list.
     *
     *  @param __required_size The required size of the memory block.
     *
     *  @return true if the wastage incurred is acceptable, else returns
     *  false.
     */
    bool 
    _M_should_i_give(size_t __block_size, 
		     size_t __required_size) throw()
    {
      const size_t __max_wastage_percentage = 36;
      if (__block_size >= __required_size && 
	  (((__block_size - __required_size) * 100 / __block_size)
	   < __max_wastage_percentage))
	return true;
      else
	return false;
    }

  public:
    /** @brief This function returns the block of memory to the
     *  internal free list.
     *
     *  @param  __addr The pointer to the memory block that was given
     *  by a call to the _M_get function.
     */
    inline void 
    _M_insert(size_t* __addr) throw()
    {
#if defined __GTHREADS
      __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
#endif
      // Call _M_validate to decide what should be done with
      // this particular free list.
      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
      // See discussion as to why this is 1!
    }
    
    /** @brief  This function gets a block of memory of the specified
     *  size from the free list.
     *
     *  @param  __sz The size in bytes of the memory required.
     *
     *  @return  A pointer to the new memory block of size at least
     *  equal to that requested.
     */
    size_t*
    _M_get(size_t __sz) throw(std::bad_alloc);

    /** @brief  This function just clears the internal Free List, and
     *  gives back all the memory to the OS.
     */
    void 
    _M_clear();
  };


  // Forward declare the class.
  template<typename _Tp> 
    class bitmap_allocator;

  // Specialize for void:
  template<>
    class bitmap_allocator<void>
    {
    public:
      typedef void*       pointer;
      typedef const void* const_pointer;

      // Reference-to-void members are impossible.
      typedef void  value_type;
      template<typename _Tp1>
        struct rebind
	{
	  typedef bitmap_allocator<_Tp1> other;
	};
    };

  /**
   * @brief Bitmap Allocator, primary template.
   * @ingroup allocators
   */
  template<typename _Tp>
    class bitmap_allocator : private free_list
    {
    public:
      typedef size_t    		size_type;
      typedef ptrdiff_t 		difference_type;
      typedef _Tp*        		pointer;
      typedef const _Tp*  		const_pointer;
      typedef _Tp&        		reference;
      typedef const _Tp&  		const_reference;
      typedef _Tp         		value_type;
      typedef free_list::__mutex_type 	__mutex_type;

      template<typename _Tp1>
        struct rebind
	{
	  typedef bitmap_allocator<_Tp1> other;
	};

    private:
      template<size_t _BSize, size_t _AlignSize>
        struct aligned_size
	{
	  enum
	    { 
	      modulus = _BSize % _AlignSize,
	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
	    };
	};

      struct _Alloc_block
      {
	char __M_unused[aligned_size<sizeof(value_type),
			_BALLOC_ALIGN_BYTES>::value];
      };


      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;

      typedef typename 
      __detail::__mini_vector<_Block_pair> _BPVector;

#if defined _GLIBCXX_DEBUG
      // Complexity: O(lg(N)). Where, N is the number of block of size
      // sizeof(value_type).
      void 
      _S_check_for_free_blocks() throw()
      {
	typedef typename 
	  __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
	_FFF __fff;
	typedef typename _BPVector::iterator _BPiter;
	_BPiter __bpi = 
	  __gnu_cxx::__detail::__find_if
	  (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
	   __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));

	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
      }
#endif

      /** @brief  Responsible for exponentially growing the internal
       *  memory pool.
       *
       *  @throw  std::bad_alloc. If memory can not be allocated.
       *
       *  @detail  Complexity: O(1), but internally depends upon the
       *  complexity of the function free_list::_M_get. The part where
       *  the bitmap headers are written has complexity: O(X),where X
       *  is the number of blocks of size sizeof(value_type) within
       *  the newly acquired block. Having a tight bound.
       */
      void 
      _S_refill_pool() throw(std::bad_alloc)
      {
#if defined _GLIBCXX_DEBUG
	_S_check_for_free_blocks();
#endif

	const size_t __num_bitmaps = (_S_block_size
				      / size_t(__detail::bits_per_block));
	const size_t __size_to_allocate = sizeof(size_t) 
	  + _S_block_size * sizeof(_Alloc_block) 
	  + __num_bitmaps * sizeof(size_t);

	size_t* __temp = 
	  reinterpret_cast<size_t*>
	  (this->_M_get(__size_to_allocate));
	*__temp = 0;
	++__temp;

	// The Header information goes at the Beginning of the Block.
	_Block_pair __bp = 
	  std::make_pair(reinterpret_cast<_Alloc_block*>
			 (__temp + __num_bitmaps), 
			 reinterpret_cast<_Alloc_block*>
			 (__temp + __num_bitmaps) 
			 + _S_block_size - 1);
	
	// Fill the Vector with this information.
	_S_mem_blocks.push_back(__bp);

	size_t __bit_mask = 0; // 0 Indicates all Allocated.
	__bit_mask = ~__bit_mask; // 1 Indicates all Free.

	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
	  __temp[__i] = __bit_mask;

	_S_block_size *= 2;
      }


      static _BPVector _S_mem_blocks;
      static size_t _S_block_size;
      static __gnu_cxx::__detail::
      _Bitmap_counter<_Alloc_block*> _S_last_request;
      static typename _BPVector::size_type _S_last_dealloc_index;
#if defined __GTHREADS
      static __mutex_type _S_mut;
#endif

    public:

      /** @brief  Allocates memory for a single object of size
       *  sizeof(_Tp).
       *
       *  @throw  std::bad_alloc. If memory can not be allocated.
       *
       *  @detail  Complexity: Worst case complexity is O(N), but that
       *  is hardly ever hit. If and when this particular case is
       *  encountered, the next few cases are guaranteed to have a
       *  worst case complexity of O(1)!  That's why this function
       *  performs very well on average. You can consider this
       *  function to have a complexity referred to commonly as:
       *  Amortized Constant time.
       */
      pointer 
      _M_allocate_single_object() throw(std::bad_alloc)
      {
#if defined __GTHREADS
	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
#endif

	// The algorithm is something like this: The last_request
	// variable points to the last accessed Bit Map. When such a
	// condition occurs, we try to find a free block in the
	// current bitmap, or succeeding bitmaps until the last bitmap
	// is reached. If no free block turns up, we resort to First
	// Fit method.

	// WARNING: Do not re-order the condition in the while
	// statement below, because it relies on C++'s short-circuit
	// evaluation. The return from _S_last_request->_M_get() will
	// NOT be dereference able if _S_last_request->_M_finished()
	// returns true. This would inevitably lead to a NULL pointer
	// dereference if tinkered with.
	while (_S_last_request._M_finished() == false
	       && (*(_S_last_request._M_get()) == 0))
	  {
	    _S_last_request.operator++();
	  }

	if (__builtin_expect(_S_last_request._M_finished() == true, false))
	  {
	    // Fall Back to First Fit algorithm.
	    typedef typename 
	      __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
	    _FFF __fff;
	    typedef typename _BPVector::iterator _BPiter;
	    _BPiter __bpi = 
	      __gnu_cxx::__detail::__find_if
	      (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
	       __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));

	    if (__bpi != _S_mem_blocks.end())
	      {
		// Search was successful. Ok, now mark the first bit from
		// the right as 0, meaning Allocated. This bit is obtained
		// by calling _M_get() on __fff.
		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
		__detail::__bit_allocate(__fff._M_get(), __nz_bit);

		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());

		// Now, get the address of the bit we marked as allocated.
		pointer __ret = reinterpret_cast<pointer>
		  (__bpi->first + __fff._M_offset() + __nz_bit);
		size_t* __puse_count = 
		  reinterpret_cast<size_t*>
		  (__bpi->first) 
		  - (__gnu_cxx::__detail::__num_bitmaps(*__bpi) + 1);
		
		++(*__puse_count);
		return __ret;
	      }
	    else
	      {
		// Search was unsuccessful. We Add more memory to the
		// pool by calling _S_refill_pool().
		_S_refill_pool();

		// _M_Reset the _S_last_request structure to the first
		// free block's bit map.
		_S_last_request._M_reset(_S_mem_blocks.size() - 1);

		// Now, mark that bit as allocated.
	      }
	  }

	// _S_last_request holds a pointer to a valid bit map, that
	// points to a free block in memory.
	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);

	pointer __ret = reinterpret_cast<pointer>
	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);

	size_t* __puse_count = reinterpret_cast<size_t*>
	  (_S_mem_blocks[_S_last_request._M_where()].first)
	  - (__gnu_cxx::__detail::
	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);

	++(*__puse_count);
	return __ret;
      }

      /** @brief  Deallocates memory that belongs to a single object of
       *  size sizeof(_Tp).
       *
       *  @detail  Complexity: O(lg(N)), but the worst case is not hit
       *  often!  This is because containers usually deallocate memory
       *  close to each other and this case is handled in O(1) time by
       *  the deallocate function.
       */
      void 
      _M_deallocate_single_object(pointer __p) throw()
      {
#if defined __GTHREADS
	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
#endif
	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);

	typedef typename _BPVector::iterator _Iterator;
	typedef typename _BPVector::difference_type _Difference_type;

	_Difference_type __diff;
	long __displacement;

	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);

	
	if (__gnu_cxx::__detail::_Inclusive_between<_Alloc_block*>
	    (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
	  {
	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
				  <= _S_mem_blocks.size() - 1);

	    // Initial Assumption was correct!
	    __diff = _S_last_dealloc_index;
	    __displacement = __real_p - _S_mem_blocks[__diff].first;
	  }
	else
	  {
	    _Iterator _iter = __gnu_cxx::__detail::
	      __find_if(_S_mem_blocks.begin(), 
			_S_mem_blocks.end(), 
			__gnu_cxx::__detail::
			_Inclusive_between<_Alloc_block*>(__real_p));

	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());

	    __diff = _iter - _S_mem_blocks.begin();
	    __displacement = __real_p - _S_mem_blocks[__diff].first;
	    _S_last_dealloc_index = __diff;
	  }

	// Get the position of the iterator that has been found.
	const size_t __rotate = (__displacement
				 % size_t(__detail::bits_per_block));
	size_t* __bitmapC = 
	  reinterpret_cast<size_t*>
	  (_S_mem_blocks[__diff].first) - 1;
	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
      
	__detail::__bit_free(__bitmapC, __rotate);
	size_t* __puse_count = reinterpret_cast<size_t*>
	  (_S_mem_blocks[__diff].first)
	  - (__gnu_cxx::__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
	
	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);

	--(*__puse_count);

	if (__builtin_expect(*__puse_count == 0, false))
	  {
	    _S_block_size /= 2;
	  
	    // We can safely remove this block.
	    // _Block_pair __bp = _S_mem_blocks[__diff];
	    this->_M_insert(__puse_count);
	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);

	    // Reset the _S_last_request variable to reflect the
	    // erased block. We do this to protect future requests
	    // after the last block has been removed from a particular
	    // memory Chunk, which in turn has been returned to the
	    // free list, and hence had been erased from the vector,
	    // so the size of the vector gets reduced by 1.
	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
	      _S_last_request._M_reset(__diff); 

	    // If the Index into the vector of the region of memory
	    // that might hold the next address that will be passed to
	    // deallocated may have been invalidated due to the above
	    // erase procedure being called on the vector, hence we
	    // try to restore this invariant too.
	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
	      {
		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
	      }
	  }
      }

    public:
      bitmap_allocator() throw()
      { }

      bitmap_allocator(const bitmap_allocator&)
      { }

      template<typename _Tp1>
        bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
        { }

      ~bitmap_allocator() throw()
      { }

      pointer 
      allocate(size_type __n)
      {
	if (__builtin_expect(__n > this->max_size(), false))
	  std::__throw_bad_alloc();

	if (__builtin_expect(__n == 1, true))
	  return this->_M_allocate_single_object();
	else
	  { 
	    const size_type __b = __n * sizeof(value_type);
	    return reinterpret_cast<pointer>(::operator new(__b));
	  }
      }

      pointer 
      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
      { return allocate(__n); }

      void 
      deallocate(pointer __p, size_type __n) throw()
      {
	if (__builtin_expect(__p != 0, true))
	  {
	    if (__builtin_expect(__n == 1, true))
	      this->_M_deallocate_single_object(__p);
	    else
	      ::operator delete(__p);
	  }
      }

      pointer 
      address(reference __r) const
      { return &__r; }

      const_pointer 
      address(const_reference __r) const
      { return &__r; }

      size_type 
      max_size() const throw()
      { return size_type(-1) / sizeof(value_type); }

      void 
      construct(pointer __p, const_reference __data)
      { ::new((void *)__p) value_type(__data); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      template<typename... _Args>
        void
        construct(pointer __p, _Args&&... __args)
	{ ::new((void *)__p) _Tp(std::forward<_Args>(__args)...); }
#endif

      void 
      destroy(pointer __p)
      { __p->~value_type(); }
    };

  template<typename _Tp1, typename _Tp2>
    bool 
    operator==(const bitmap_allocator<_Tp1>&, 
	       const bitmap_allocator<_Tp2>&) throw()
    { return true; }
  
  template<typename _Tp1, typename _Tp2>
    bool 
    operator!=(const bitmap_allocator<_Tp1>&, 
	       const bitmap_allocator<_Tp2>&) throw() 
  { return false; }

  // Static member definitions.
  template<typename _Tp>
    typename bitmap_allocator<_Tp>::_BPVector
    bitmap_allocator<_Tp>::_S_mem_blocks;

  template<typename _Tp>
    size_t bitmap_allocator<_Tp>::_S_block_size = 
    2 * size_t(__detail::bits_per_block);

  template<typename _Tp>
    typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;

  template<typename _Tp>
    __gnu_cxx::__detail::_Bitmap_counter 
  <typename bitmap_allocator<_Tp>::_Alloc_block*>
    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);

#if defined __GTHREADS
  template<typename _Tp>
    typename bitmap_allocator<_Tp>::__mutex_type
    bitmap_allocator<_Tp>::_S_mut;
#endif

_GLIBCXX_END_NAMESPACE

#endif