aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libstdc++-v3/include/bits/stl_vector.h
blob: 6871bb072f3887fa737f3bb11abb1fda1a4ef95d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
// Vector implementation -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this  software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_vector.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _STL_VECTOR_H
#define _STL_VECTOR_H 1

#include <bits/stl_iterator_base_funcs.h>
#include <bits/functexcept.h>
#include <bits/concept_check.h>
#include <initializer_list>

_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)

  /// See bits/stl_deque.h's _Deque_base for an explanation.
  template<typename _Tp, typename _Alloc>
    struct _Vector_base
    {
      typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;

      struct _Vector_impl 
      : public _Tp_alloc_type
      {
	typename _Tp_alloc_type::pointer _M_start;
	typename _Tp_alloc_type::pointer _M_finish;
	typename _Tp_alloc_type::pointer _M_end_of_storage;

	_Vector_impl()
	: _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
	{ }

	_Vector_impl(_Tp_alloc_type const& __a)
	: _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
	{ }
      };
      
    public:
      typedef _Alloc allocator_type;

      _Tp_alloc_type&
      _M_get_Tp_allocator()
      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }

      const _Tp_alloc_type&
      _M_get_Tp_allocator() const
      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }

      allocator_type
      get_allocator() const
      { return allocator_type(_M_get_Tp_allocator()); }

      _Vector_base()
      : _M_impl() { }

      _Vector_base(const allocator_type& __a)
      : _M_impl(__a) { }

      _Vector_base(size_t __n, const allocator_type& __a)
      : _M_impl(__a)
      {
	this->_M_impl._M_start = this->_M_allocate(__n);
	this->_M_impl._M_finish = this->_M_impl._M_start;
	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
      }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      _Vector_base(_Vector_base&& __x)
      : _M_impl(__x._M_get_Tp_allocator())
      {
	this->_M_impl._M_start = __x._M_impl._M_start;
	this->_M_impl._M_finish = __x._M_impl._M_finish;
	this->_M_impl._M_end_of_storage = __x._M_impl._M_end_of_storage;
	__x._M_impl._M_start = 0;
	__x._M_impl._M_finish = 0;
	__x._M_impl._M_end_of_storage = 0;
      }
#endif

      ~_Vector_base()
      { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
		      - this->_M_impl._M_start); }

    public:
      _Vector_impl _M_impl;

      typename _Tp_alloc_type::pointer
      _M_allocate(size_t __n)
      { return __n != 0 ? _M_impl.allocate(__n) : 0; }

      void
      _M_deallocate(typename _Tp_alloc_type::pointer __p, size_t __n)
      {
	if (__p)
	  _M_impl.deallocate(__p, __n);
      }
    };


  /**
   *  @brief A standard container which offers fixed time access to
   *  individual elements in any order.
   *
   *  @ingroup sequences
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and a
   *  <a href="tables.html#67">sequence</a>, including the
   *  <a href="tables.html#68">optional sequence requirements</a> with the
   *  %exception of @c push_front and @c pop_front.
   *
   *  In some terminology a %vector can be described as a dynamic
   *  C-style array, it offers fast and efficient access to individual
   *  elements in any order and saves the user from worrying about
   *  memory and size allocation.  Subscripting ( @c [] ) access is
   *  also provided as with C-style arrays.
  */
  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
    class vector : protected _Vector_base<_Tp, _Alloc>
    {
      // Concept requirements.
      typedef typename _Alloc::value_type                _Alloc_value_type;
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
      
      typedef _Vector_base<_Tp, _Alloc>			 _Base;
      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;

    public:
      typedef _Tp					 value_type;
      typedef typename _Tp_alloc_type::pointer           pointer;
      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
      typedef typename _Tp_alloc_type::reference         reference;
      typedef typename _Tp_alloc_type::const_reference   const_reference;
      typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
      typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
      const_iterator;
      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
      typedef std::reverse_iterator<iterator>		 reverse_iterator;
      typedef size_t					 size_type;
      typedef ptrdiff_t					 difference_type;
      typedef _Alloc                        		 allocator_type;

    protected:
      using _Base::_M_allocate;
      using _Base::_M_deallocate;
      using _Base::_M_impl;
      using _Base::_M_get_Tp_allocator;

    public:
      // [23.2.4.1] construct/copy/destroy
      // (assign() and get_allocator() are also listed in this section)
      /**
       *  @brief  Default constructor creates no elements.
       */
      vector()
      : _Base() { }

      /**
       *  @brief  Creates a %vector with no elements.
       *  @param  a  An allocator object.
       */
      explicit
      vector(const allocator_type& __a)
      : _Base(__a) { }

      /**
       *  @brief  Creates a %vector with copies of an exemplar element.
       *  @param  n  The number of elements to initially create.
       *  @param  value  An element to copy.
       *  @param  a  An allocator.
       *
       *  This constructor fills the %vector with @a n copies of @a value.
       */
      explicit
      vector(size_type __n, const value_type& __value = value_type(),
	     const allocator_type& __a = allocator_type())
      : _Base(__n, __a)
      { _M_fill_initialize(__n, __value); }

      /**
       *  @brief  %Vector copy constructor.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  The newly-created %vector uses a copy of the allocation
       *  object used by @a x.  All the elements of @a x are copied,
       *  but any extra memory in
       *  @a x (for fast expansion) will not be copied.
       */
      vector(const vector& __x)
      : _Base(__x.size(), __x._M_get_Tp_allocator())
      { this->_M_impl._M_finish =
	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
				      this->_M_impl._M_start,
				      _M_get_Tp_allocator());
      }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief  %Vector move constructor.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  The newly-created %vector contains the exact contents of @a x.
       *  The contents of @a x are a valid, but unspecified %vector.
       */
      vector(vector&& __x)
      : _Base(std::forward<_Base>(__x)) { }

      /**
       *  @brief  Builds a %vector from an initializer list.
       *  @param  l  An initializer_list.
       *  @param  a  An allocator.
       *
       *  Create a %vector consisting of copies of the elements in the
       *  initializer_list @a l.
       *
       *  This will call the element type's copy constructor N times
       *  (where N is @a l.size()) and do no memory reallocation.
       */
      vector(initializer_list<value_type> __l,
	     const allocator_type& __a = allocator_type())
      : _Base(__a)
      {
	_M_range_initialize(__l.begin(), __l.end(),
			    random_access_iterator_tag());
      }
#endif

      /**
       *  @brief  Builds a %vector from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       *  @param  a  An allocator.
       *
       *  Create a %vector consisting of copies of the elements from
       *  [first,last).
       *
       *  If the iterators are forward, bidirectional, or
       *  random-access, then this will call the elements' copy
       *  constructor N times (where N is distance(first,last)) and do
       *  no memory reallocation.  But if only input iterators are
       *  used, then this will do at most 2N calls to the copy
       *  constructor, and logN memory reallocations.
       */
      template<typename _InputIterator>
        vector(_InputIterator __first, _InputIterator __last,
	       const allocator_type& __a = allocator_type())
	: _Base(__a)
        {
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_initialize_dispatch(__first, __last, _Integral());
	}

      /**
       *  The dtor only erases the elements, and note that if the
       *  elements themselves are pointers, the pointed-to memory is
       *  not touched in any way.  Managing the pointer is the user's
       *  responsibility.
       */
      ~vector()
      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
		      _M_get_Tp_allocator()); }

      /**
       *  @brief  %Vector assignment operator.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  All the elements of @a x are copied, but any extra memory in
       *  @a x (for fast expansion) will not be copied.  Unlike the
       *  copy constructor, the allocator object is not copied.
       */
      vector&
      operator=(const vector& __x);

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief  %Vector move assignment operator.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  The contents of @a x are moved into this %vector (without copying).
       *  @a x is a valid, but unspecified %vector.
       */
      vector&
      operator=(vector&& __x)
      {
	// NB: DR 675.
	this->clear();
	this->swap(__x); 
	return *this;
      }

      /**
       *  @brief  %Vector list assignment operator.
       *  @param  l  An initializer_list.
       *
       *  This function fills a %vector with copies of the elements in the
       *  initializer list @a l.
       *
       *  Note that the assignment completely changes the %vector and
       *  that the resulting %vector's size is the same as the number
       *  of elements assigned.  Old data may be lost.
       */
      vector&
      operator=(initializer_list<value_type> __l)
      {
	this->assign(__l.begin(), __l.end());
	return *this;
      }
#endif

      /**
       *  @brief  Assigns a given value to a %vector.
       *  @param  n  Number of elements to be assigned.
       *  @param  val  Value to be assigned.
       *
       *  This function fills a %vector with @a n copies of the given
       *  value.  Note that the assignment completely changes the
       *  %vector and that the resulting %vector's size is the same as
       *  the number of elements assigned.  Old data may be lost.
       */
      void
      assign(size_type __n, const value_type& __val)
      { _M_fill_assign(__n, __val); }

      /**
       *  @brief  Assigns a range to a %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function fills a %vector with copies of the elements in the
       *  range [first,last).
       *
       *  Note that the assignment completely changes the %vector and
       *  that the resulting %vector's size is the same as the number
       *  of elements assigned.  Old data may be lost.
       */
      template<typename _InputIterator>
        void
        assign(_InputIterator __first, _InputIterator __last)
        {
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_assign_dispatch(__first, __last, _Integral());
	}

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief  Assigns an initializer list to a %vector.
       *  @param  l  An initializer_list.
       *
       *  This function fills a %vector with copies of the elements in the
       *  initializer list @a l.
       *
       *  Note that the assignment completely changes the %vector and
       *  that the resulting %vector's size is the same as the number
       *  of elements assigned.  Old data may be lost.
       */
      void
      assign(initializer_list<value_type> __l)
      { this->assign(__l.begin(), __l.end()); }
#endif

      /// Get a copy of the memory allocation object.
      using _Base::get_allocator;

      // iterators
      /**
       *  Returns a read/write iterator that points to the first
       *  element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      begin()
      { return iterator(this->_M_impl._M_start); }

      /**
       *  Returns a read-only (constant) iterator that points to the
       *  first element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      const_iterator
      begin() const
      { return const_iterator(this->_M_impl._M_start); }

      /**
       *  Returns a read/write iterator that points one past the last
       *  element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      end()
      { return iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %vector.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      end() const
      { return const_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read/write reverse iterator that points to the
       *  last element in the %vector.  Iteration is done in reverse
       *  element order.
       */
      reverse_iterator
      rbegin()
      { return reverse_iterator(end()); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %vector.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      rbegin() const
      { return const_reverse_iterator(end()); }

      /**
       *  Returns a read/write reverse iterator that points to one
       *  before the first element in the %vector.  Iteration is done
       *  in reverse element order.
       */
      reverse_iterator
      rend()
      { return reverse_iterator(begin()); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %vector.  Iteration
       *  is done in reverse element order.
       */
      const_reverse_iterator
      rend() const
      { return const_reverse_iterator(begin()); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  Returns a read-only (constant) iterator that points to the
       *  first element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      const_iterator
      cbegin() const
      { return const_iterator(this->_M_impl._M_start); }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %vector.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      cend() const
      { return const_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %vector.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      crbegin() const
      { return const_reverse_iterator(end()); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %vector.  Iteration
       *  is done in reverse element order.
       */
      const_reverse_iterator
      crend() const
      { return const_reverse_iterator(begin()); }
#endif

      // [23.2.4.2] capacity
      /**  Returns the number of elements in the %vector.  */
      size_type
      size() const
      { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }

      /**  Returns the size() of the largest possible %vector.  */
      size_type
      max_size() const
      { return _M_get_Tp_allocator().max_size(); }

      /**
       *  @brief  Resizes the %vector to the specified number of elements.
       *  @param  new_size  Number of elements the %vector should contain.
       *  @param  x  Data with which new elements should be populated.
       *
       *  This function will %resize the %vector to the specified
       *  number of elements.  If the number is smaller than the
       *  %vector's current size the %vector is truncated, otherwise
       *  the %vector is extended and new elements are populated with
       *  given data.
       */
      void
      resize(size_type __new_size, value_type __x = value_type())
      {
	if (__new_size < size())
	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
	else
	  insert(end(), __new_size - size(), __x);
      }

      /**
       *  Returns the total number of elements that the %vector can
       *  hold before needing to allocate more memory.
       */
      size_type
      capacity() const
      { return size_type(this->_M_impl._M_end_of_storage
			 - this->_M_impl._M_start); }

      /**
       *  Returns true if the %vector is empty.  (Thus begin() would
       *  equal end().)
       */
      bool
      empty() const
      { return begin() == end(); }

      /**
       *  @brief  Attempt to preallocate enough memory for specified number of
       *          elements.
       *  @param  n  Number of elements required.
       *  @throw  std::length_error  If @a n exceeds @c max_size().
       *
       *  This function attempts to reserve enough memory for the
       *  %vector to hold the specified number of elements.  If the
       *  number requested is more than max_size(), length_error is
       *  thrown.
       *
       *  The advantage of this function is that if optimal code is a
       *  necessity and the user can determine the number of elements
       *  that will be required, the user can reserve the memory in
       *  %advance, and thus prevent a possible reallocation of memory
       *  and copying of %vector data.
       */
      void
      reserve(size_type __n);

      // element access
      /**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       *
       *  Local modification: range checks are performed if
       *  __google_stl_debug_vector is defined to non-zero.
       */
      reference
      operator[](size_type __n)
      {
#if __google_stl_debug_vector
	_M_range_check(__n);
#endif
	return *(this->_M_impl._M_start + __n);
      }

      /**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       *
       *  Local modification: range checks are performed if
       *  __google_stl_debug_vector is defined to non-zero.
       */
      const_reference
      operator[](size_type __n) const
      {
#if __google_stl_debug_vector
	_M_range_check(__n);
#endif
	return *(this->_M_impl._M_start + __n);
      }

    protected:
      /// Safety check used only from at().
      void
      _M_range_check(size_type __n) const
      {
	if (__n >= this->size())
	  __throw_out_of_range(__N("vector::_M_range_check"));
      }

    public:
      /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the vector.  The
       *  function throws out_of_range if the check fails.
       */
      reference
      at(size_type __n)
      {
	_M_range_check(__n);
	return (*this)[__n]; 
      }

      /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the vector.  The
       *  function throws out_of_range if the check fails.
       */
      const_reference
      at(size_type __n) const
      {
	_M_range_check(__n);
	return (*this)[__n];
      }

      /**
       *  Returns a read/write reference to the data at the first
       *  element of the %vector.
       */
      reference
      front()
      { return *begin(); }

      /**
       *  Returns a read-only (constant) reference to the data at the first
       *  element of the %vector.
       */
      const_reference
      front() const
      { return *begin(); }

      /**
       *  Returns a read/write reference to the data at the last
       *  element of the %vector.
       */
      reference
      back()
      { return *(end() - 1); }
      
      /**
       *  Returns a read-only (constant) reference to the data at the
       *  last element of the %vector.
       */
      const_reference
      back() const
      { return *(end() - 1); }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 464. Suggestion for new member functions in standard containers.
      // data access
      /**
       *   Returns a pointer such that [data(), data() + size()) is a valid
       *   range.  For a non-empty %vector, data() == &front().
       */
      pointer
      data()
      { return pointer(this->_M_impl._M_start); }

      const_pointer
      data() const
      { return const_pointer(this->_M_impl._M_start); }

      // [23.2.4.3] modifiers
      /**
       *  @brief  Add data to the end of the %vector.
       *  @param  x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an
       *  element at the end of the %vector and assigns the given data
       *  to it.  Due to the nature of a %vector this operation can be
       *  done in constant time if the %vector has preallocated space
       *  available.
       */
      void
      push_back(const value_type& __x)
      {
	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
	  {
	    this->_M_impl.construct(this->_M_impl._M_finish, __x);
	    ++this->_M_impl._M_finish;
	  }
	else
	  _M_insert_aux(end(), __x);
      }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      void
      push_back(value_type&& __x)
      { emplace_back(std::move(__x)); }

      template<typename... _Args>
        void
        emplace_back(_Args&&... __args);
#endif

      /**
       *  @brief  Removes last element.
       *
       *  This is a typical stack operation. It shrinks the %vector by one.
       *
       *  Note that no data is returned, and if the last element's
       *  data is needed, it should be retrieved before pop_back() is
       *  called.
       */
      void
      pop_back()
      {
	--this->_M_impl._M_finish;
	this->_M_impl.destroy(this->_M_impl._M_finish);
      }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief  Inserts an object in %vector before specified iterator.
       *  @param  position  An iterator into the %vector.
       *  @param  args  Arguments.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert an object of type T constructed
       *  with T(std::forward<Args>(args)...) before the specified location.
       *  Note that this kind of operation could be expensive for a %vector
       *  and if it is frequently used the user should consider using
       *  std::list.
       */
      template<typename... _Args>
        iterator
        emplace(iterator __position, _Args&&... __args);
#endif

      /**
       *  @brief  Inserts given value into %vector before specified iterator.
       *  @param  position  An iterator into the %vector.
       *  @param  x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before
       *  the specified location.  Note that this kind of operation
       *  could be expensive for a %vector and if it is frequently
       *  used the user should consider using std::list.
       */
      iterator
      insert(iterator __position, const value_type& __x);

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      /**
       *  @brief  Inserts given rvalue into %vector before specified iterator.
       *  @param  position  An iterator into the %vector.
       *  @param  x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given rvalue before
       *  the specified location.  Note that this kind of operation
       *  could be expensive for a %vector and if it is frequently
       *  used the user should consider using std::list.
       */
      iterator
      insert(iterator __position, value_type&& __x)
      { return emplace(__position, std::move(__x)); }

      /**
       *  @brief  Inserts an initializer_list into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @param  l  An initializer_list.
       *
       *  This function will insert copies of the data in the 
       *  initializer_list @a l into the %vector before the location
       *  specified by @a position.
       *
       *  Note that this kind of operation could be expensive for a
       *  %vector and if it is frequently used the user should
       *  consider using std::list.
       */
      void
      insert(iterator __position, initializer_list<value_type> __l)
      { this->insert(__position, __l.begin(), __l.end()); }
#endif

      /**
       *  @brief  Inserts a number of copies of given data into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @param  n  Number of elements to be inserted.
       *  @param  x  Data to be inserted.
       *
       *  This function will insert a specified number of copies of
       *  the given data before the location specified by @a position.
       *
       *  Note that this kind of operation could be expensive for a
       *  %vector and if it is frequently used the user should
       *  consider using std::list.
       */
      void
      insert(iterator __position, size_type __n, const value_type& __x)
      { _M_fill_insert(__position, __n, __x); }

      /**
       *  @brief  Inserts a range into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function will insert copies of the data in the range
       *  [first,last) into the %vector before the location specified
       *  by @a pos.
       *
       *  Note that this kind of operation could be expensive for a
       *  %vector and if it is frequently used the user should
       *  consider using std::list.
       */
      template<typename _InputIterator>
        void
        insert(iterator __position, _InputIterator __first,
	       _InputIterator __last)
        {
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_insert_dispatch(__position, __first, __last, _Integral());
	}

      /**
       *  @brief  Remove element at given position.
       *  @param  position  Iterator pointing to element to be erased.
       *  @return  An iterator pointing to the next element (or end()).
       *
       *  This function will erase the element at the given position and thus
       *  shorten the %vector by one.
       *
       *  Note This operation could be expensive and if it is
       *  frequently used the user should consider using std::list.
       *  The user is also cautioned that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibility.
       */
      iterator
      erase(iterator __position);

      /**
       *  @brief  Remove a range of elements.
       *  @param  first  Iterator pointing to the first element to be erased.
       *  @param  last  Iterator pointing to one past the last element to be
       *                erased.
       *  @return  An iterator pointing to the element pointed to by @a last
       *           prior to erasing (or end()).
       *
       *  This function will erase the elements in the range [first,last) and
       *  shorten the %vector accordingly.
       *
       *  Note This operation could be expensive and if it is
       *  frequently used the user should consider using std::list.
       *  The user is also cautioned that this function only erases
       *  the elements, and that if the elements themselves are
       *  pointers, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(iterator __first, iterator __last);

      /**
       *  @brief  Swaps data with another %vector.
       *  @param  x  A %vector of the same element and allocator types.
       *
       *  This exchanges the elements between two vectors in constant time.
       *  (Three pointers, so it should be quite fast.)
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(v1,v2) will feed to this function.
       */
      void
#ifdef __GXX_EXPERIMENTAL_CXX0X__
      swap(vector&& __x)
#else
      swap(vector& __x)
#endif
      {
	std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
	std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
	std::swap(this->_M_impl._M_end_of_storage,
		  __x._M_impl._M_end_of_storage);

	// _GLIBCXX_RESOLVE_LIB_DEFECTS
	// 431. Swapping containers with unequal allocators.
	std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
						    __x._M_get_Tp_allocator());
      }

      /**
       *  Erases all the elements.  Note that this function only erases the
       *  elements, and that if the elements themselves are pointers, the
       *  pointed-to memory is not touched in any way.  Managing the pointer is
       *  the user's responsibility.
       */
      void
      clear()
      { _M_erase_at_end(this->_M_impl._M_start); }

    protected:
      /**
       *  Memory expansion handler.  Uses the member allocation function to
       *  obtain @a n bytes of memory, and then copies [first,last) into it.
       */
      template<typename _ForwardIterator>
        pointer
        _M_allocate_and_copy(size_type __n,
			     _ForwardIterator __first, _ForwardIterator __last)
        {
	  pointer __result = this->_M_allocate(__n);
	  __try
	    {
	      std::__uninitialized_copy_a(__first, __last, __result,
					  _M_get_Tp_allocator());
	      return __result;
	    }
	  __catch(...)
	    {
	      _M_deallocate(__result, __n);
	      __throw_exception_again;
	    }
	}


      // Internal constructor functions follow.

      // Called by the range constructor to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
        void
        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
        {
	  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
	  this->_M_impl._M_end_of_storage =
	    this->_M_impl._M_start + static_cast<size_type>(__n);
	  _M_fill_initialize(static_cast<size_type>(__n), __value);
	}

      // Called by the range constructor to implement [23.1.1]/9
      template<typename _InputIterator>
        void
        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
			       __false_type)
        {
	  typedef typename std::iterator_traits<_InputIterator>::
	    iterator_category _IterCategory;
	  _M_range_initialize(__first, __last, _IterCategory());
	}

      // Called by the second initialize_dispatch above
      template<typename _InputIterator>
        void
        _M_range_initialize(_InputIterator __first,
			    _InputIterator __last, std::input_iterator_tag)
        {
	  for (; __first != __last; ++__first)
	    push_back(*__first);
	}

      // Called by the second initialize_dispatch above
      template<typename _ForwardIterator>
        void
        _M_range_initialize(_ForwardIterator __first,
			    _ForwardIterator __last, std::forward_iterator_tag)
        {
	  const size_type __n = std::distance(__first, __last);
	  this->_M_impl._M_start = this->_M_allocate(__n);
	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
	  this->_M_impl._M_finish =
	    std::__uninitialized_copy_a(__first, __last,
					this->_M_impl._M_start,
					_M_get_Tp_allocator());
	}

      // Called by the first initialize_dispatch above and by the
      // vector(n,value,a) constructor.
      void
      _M_fill_initialize(size_type __n, const value_type& __value)
      {
	std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value, 
				      _M_get_Tp_allocator());
	this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
      }


      // Internal assign functions follow.  The *_aux functions do the actual
      // assignment work for the range versions.

      // Called by the range assign to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
        void
        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
        { _M_fill_assign(__n, __val); }

      // Called by the range assign to implement [23.1.1]/9
      template<typename _InputIterator>
        void
        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
			   __false_type)
        {
	  typedef typename std::iterator_traits<_InputIterator>::
	    iterator_category _IterCategory;
	  _M_assign_aux(__first, __last, _IterCategory());
	}

      // Called by the second assign_dispatch above
      template<typename _InputIterator>
        void
        _M_assign_aux(_InputIterator __first, _InputIterator __last,
		      std::input_iterator_tag);

      // Called by the second assign_dispatch above
      template<typename _ForwardIterator>
        void
        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
		      std::forward_iterator_tag);

      // Called by assign(n,t), and the range assign when it turns out
      // to be the same thing.
      void
      _M_fill_assign(size_type __n, const value_type& __val);


      // Internal insert functions follow.

      // Called by the range insert to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
        void
        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
			   __true_type)
        { _M_fill_insert(__pos, __n, __val); }

      // Called by the range insert to implement [23.1.1]/9
      template<typename _InputIterator>
        void
        _M_insert_dispatch(iterator __pos, _InputIterator __first,
			   _InputIterator __last, __false_type)
        {
	  typedef typename std::iterator_traits<_InputIterator>::
	    iterator_category _IterCategory;
	  _M_range_insert(__pos, __first, __last, _IterCategory());
	}

      // Called by the second insert_dispatch above
      template<typename _InputIterator>
        void
        _M_range_insert(iterator __pos, _InputIterator __first,
			_InputIterator __last, std::input_iterator_tag);

      // Called by the second insert_dispatch above
      template<typename _ForwardIterator>
        void
        _M_range_insert(iterator __pos, _ForwardIterator __first,
			_ForwardIterator __last, std::forward_iterator_tag);

      // Called by insert(p,n,x), and the range insert when it turns out to be
      // the same thing.
      void
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);

      // Called by insert(p,x)
#ifndef __GXX_EXPERIMENTAL_CXX0X__
      void
      _M_insert_aux(iterator __position, const value_type& __x);
#else
      template<typename... _Args>
        void
        _M_insert_aux(iterator __position, _Args&&... __args);
#endif

      // Called by the latter.
      size_type
      _M_check_len(size_type __n, const char* __s) const
      {
	if (max_size() - size() < __n)
	  __throw_length_error(__N(__s));

	const size_type __len = size() + std::max(size(), __n);
	return (__len < size() || __len > max_size()) ? max_size() : __len;
      }

      // Internal erase functions follow.

      // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
      // _M_assign_aux.
      void
      _M_erase_at_end(pointer __pos)
      {
	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
	this->_M_impl._M_finish = __pos;
      }
    };


  /**
   *  @brief  Vector equality comparison.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff the size and elements of the vectors are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  vectors.  Vectors are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return (__x.size() == __y.size()
	      && std::equal(__x.begin(), __x.end(), __y.begin())); }

  /**
   *  @brief  Vector ordering relation.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff @a x is lexicographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  vectors.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return std::lexicographical_compare(__x.begin(), __x.end(),
					  __y.begin(), __y.end()); }

  /// Based on operator==
  template<typename _Tp, typename _Alloc>
    inline bool
    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__x < __y); }

  /// See std::vector::swap().
  template<typename _Tp, typename _Alloc>
    inline void
    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
    { __x.swap(__y); }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
  template<typename _Tp, typename _Alloc>
    inline void
    swap(vector<_Tp, _Alloc>&& __x, vector<_Tp, _Alloc>& __y)
    { __x.swap(__y); }

  template<typename _Tp, typename _Alloc>
    inline void
    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>&& __y)
    { __x.swap(__y); }
#endif

_GLIBCXX_END_NESTED_NAMESPACE

#endif /* _STL_VECTOR_H */