aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/locks/AbstractQueuedLongSynchronizer.java
blob: 88a4354bc714ab162312ca50a42d1869260dc896 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package java.util.concurrent.locks;
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
import sun.misc.Unsafe;

/**
 * A version of {@link AbstractQueuedSynchronizer} in
 * which synchronization state is maintained as a <tt>long</tt>.
 * This class has exactly the same structure, properties, and methods
 * as <tt>AbstractQueuedSynchronizer</tt> with the exception
 * that all state-related parameters and results are defined
 * as <tt>long</tt> rather than <tt>int</tt>. This class
 * may be useful when creating synchronizers such as
 * multilevel locks and barriers that require
 * 64 bits of state.
 *
 * <p>See {@link AbstractQueuedSynchronizer} for usage
 * notes and examples.
 *
 * @since 1.6
 * @author Doug Lea
 */
public abstract class AbstractQueuedLongSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {

    private static final long serialVersionUID = 7373984972572414692L;

    /*
      To keep sources in sync, the remainder of this source file is
      exactly cloned from AbstractQueuedSynchronizer, replacing class
      name and changing ints related with sync state to longs. Please
      keep it that way.
    */

    /**
     * Creates a new <tt>AbstractQueuedLongSynchronizer</tt> instance
     * with initial synchronization state of zero.
     */
    protected AbstractQueuedLongSynchronizer() { }

    /**
     * Wait queue node class.
     *
     * <p>The wait queue is a variant of a "CLH" (Craig, Landin, and
     * Hagersten) lock queue. CLH locks are normally used for
     * spinlocks.  We instead use them for blocking synchronizers, but
     * use the same basic tactic of holding some of the control
     * information about a thread in the predecessor of its node.  A
     * "status" field in each node keeps track of whether a thread
     * should block.  A node is signalled when its predecessor
     * releases.  Each node of the queue otherwise serves as a
     * specific-notification-style monitor holding a single waiting
     * thread. The status field does NOT control whether threads are
     * granted locks etc though.  A thread may try to acquire if it is
     * first in the queue. But being first does not guarantee success;
     * it only gives the right to contend.  So the currently released
     * contender thread may need to rewait.
     *
     * <p>To enqueue into a CLH lock, you atomically splice it in as new
     * tail. To dequeue, you just set the head field.
     * <pre>
     *      +------+  prev +-----+       +-----+
     * head |      | <---- |     | <---- |     |  tail
     *      +------+       +-----+       +-----+
     * </pre>
     *
     * <p>Insertion into a CLH queue requires only a single atomic
     * operation on "tail", so there is a simple atomic point of
     * demarcation from unqueued to queued. Similarly, dequeing
     * involves only updating the "head". However, it takes a bit
     * more work for nodes to determine who their successors are,
     * in part to deal with possible cancellation due to timeouts
     * and interrupts.
     *
     * <p>The "prev" links (not used in original CLH locks), are mainly
     * needed to handle cancellation. If a node is cancelled, its
     * successor is (normally) relinked to a non-cancelled
     * predecessor. For explanation of similar mechanics in the case
     * of spin locks, see the papers by Scott and Scherer at
     * http://www.cs.rochester.edu/u/scott/synchronization/
     *
     * <p>We also use "next" links to implement blocking mechanics.
     * The thread id for each node is kept in its own node, so a
     * predecessor signals the next node to wake up by traversing
     * next link to determine which thread it is.  Determination of
     * successor must avoid races with newly queued nodes to set
     * the "next" fields of their predecessors.  This is solved
     * when necessary by checking backwards from the atomically
     * updated "tail" when a node's successor appears to be null.
     * (Or, said differently, the next-links are an optimization
     * so that we don't usually need a backward scan.)
     *
     * <p>Cancellation introduces some conservatism to the basic
     * algorithms.  Since we must poll for cancellation of other
     * nodes, we can miss noticing whether a cancelled node is
     * ahead or behind us. This is dealt with by always unparking
     * successors upon cancellation, allowing them to stabilize on
     * a new predecessor.
     *
     * <p>CLH queues need a dummy header node to get started. But
     * we don't create them on construction, because it would be wasted
     * effort if there is never contention. Instead, the node
     * is constructed and head and tail pointers are set upon first
     * contention.
     *
     * <p>Threads waiting on Conditions use the same nodes, but
     * use an additional link. Conditions only need to link nodes
     * in simple (non-concurrent) linked queues because they are
     * only accessed when exclusively held.  Upon await, a node is
     * inserted into a condition queue.  Upon signal, the node is
     * transferred to the main queue.  A special value of status
     * field is used to mark which queue a node is on.
     *
     * <p>Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill
     * Scherer and Michael Scott, along with members of JSR-166
     * expert group, for helpful ideas, discussions, and critiques
     * on the design of this class.
     */
    static final class Node {
        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
        /** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;

        /**
         * Status field, taking on only the values:
         *   SIGNAL:     The successor of this node is (or will soon be)
         *               blocked (via park), so the current node must
         *               unpark its successor when it releases or
         *               cancels. To avoid races, acquire methods must
         *               first indicate they need a signal,
         *               then retry the atomic acquire, and then,
         *               on failure, block.
         *   CANCELLED:  This node is cancelled due to timeout or interrupt.
         *               Nodes never leave this state. In particular,
         *               a thread with cancelled node never again blocks.
         *   CONDITION:  This node is currently on a condition queue.
         *               It will not be used as a sync queue node until
         *               transferred. (Use of this value here
         *               has nothing to do with the other uses
         *               of the field, but simplifies mechanics.)
         *   0:          None of the above
         *
         * The values are arranged numerically to simplify use.
         * Non-negative values mean that a node doesn't need to
         * signal. So, most code doesn't need to check for particular
         * values, just for sign.
         *
         * The field is initialized to 0 for normal sync nodes, and
         * CONDITION for condition nodes.  It is modified only using
         * CAS.
         */
        volatile int waitStatus;

        /**
         * Link to predecessor node that current node/thread relies on
         * for checking waitStatus. Assigned during enqueing, and nulled
         * out (for sake of GC) only upon dequeuing.  Also, upon
         * cancellation of a predecessor, we short-circuit while
         * finding a non-cancelled one, which will always exist
         * because the head node is never cancelled: A node becomes
         * head only as a result of successful acquire. A
         * cancelled thread never succeeds in acquiring, and a thread only
         * cancels itself, not any other node.
         */
        volatile Node prev;

        /**
         * Link to the successor node that the current node/thread
         * unparks upon release. Assigned once during enqueuing, and
         * nulled out (for sake of GC) when no longer needed.  Upon
         * cancellation, we cannot adjust this field, but can notice
         * status and bypass the node if cancelled.  The enq operation
         * does not assign next field of a predecessor until after
         * attachment, so seeing a null next field does not
         * necessarily mean that node is at end of queue. However, if
         * a next field appears to be null, we can scan prev's from
         * the tail to double-check.
         */
        volatile Node next;

        /**
         * The thread that enqueued this node.  Initialized on
         * construction and nulled out after use.
         */
        volatile Thread thread;

        /**
         * Link to next node waiting on condition, or the special
         * value SHARED.  Because condition queues are accessed only
         * when holding in exclusive mode, we just need a simple
         * linked queue to hold nodes while they are waiting on
         * conditions. They are then transferred to the queue to
         * re-acquire. And because conditions can only be exclusive,
         * we save a field by using special value to indicate shared
         * mode.
         */
        Node nextWaiter;

        /**
         * Returns true if node is waiting in shared mode
         */
        final boolean isShared() {
            return nextWaiter == SHARED;
        }

        /**
         * Returns previous node, or throws NullPointerException if
         * null.  Use when predecessor cannot be null.
         * @return the predecessor of this node
         */
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }

        Node() {    // Used to establish initial head or SHARED marker
        }

        Node(Thread thread, Node mode) {     // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

    /**
     * Head of the wait queue, lazily initialized.  Except for
     * initialization, it is modified only via method setHead.  Note:
     * If head exists, its waitStatus is guaranteed not to be
     * CANCELLED.
     */
    private transient volatile Node head;

    /**
     * Tail of the wait queue, lazily initialized.  Modified only via
     * method enq to add new wait node.
     */
    private transient volatile Node tail;

    /**
     * The synchronization state.
     */
    private volatile long state;

    /**
     * Returns the current value of synchronization state.
     * This operation has memory semantics of a <tt>volatile</tt> read.
     * @return current state value
     */
    protected final long getState() {
        return state;
    }

    /**
     * Sets the value of synchronization state.
     * This operation has memory semantics of a <tt>volatile</tt> write.
     * @param newState the new state value
     */
    protected final void setState(long newState) {
        state = newState;
    }

    /**
     * Atomically sets synchronization state to the given updated
     * value if the current state value equals the expected value.
     * This operation has memory semantics of a <tt>volatile</tt> read
     * and write.
     *
     * @param expect the expected value
     * @param update the new value
     * @return true if successful. False return indicates that the actual
     *         value was not equal to the expected value.
     */
    protected final boolean compareAndSetState(long expect, long update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapLong(this, stateOffset, expect, update);
    }

    // Queuing utilities

    /**
     * The number of nanoseconds for which it is faster to spin
     * rather than to use timed park. A rough estimate suffices
     * to improve responsiveness with very short timeouts.
     */
    static final long spinForTimeoutThreshold = 1000L;

    /**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                Node h = new Node(); // Dummy header
                h.next = node;
                node.prev = h;
                if (compareAndSetHead(h)) {
                    tail = node;
                    return h;
                }
            }
            else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

    /**
     * Creates and enqueues node for given thread and mode.
     *
     * @param current the thread
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

    /**
     * Sets head of queue to be node, thus dequeuing. Called only by
     * acquire methods.  Also nulls out unused fields for sake of GC
     * and to suppress unnecessary signals and traversals.
     *
     * @param node the node
     */
    private void setHead(Node node) {
        head = node;
        node.thread = null;
        node.prev = null;
    }

    /**
     * Wakes up node's successor, if one exists.
     *
     * @param node the node
     */
    private void unparkSuccessor(Node node) {
        /*
         * Try to clear status in anticipation of signalling.  It is
         * OK if this fails or if status is changed by waiting thread.
         */
        compareAndSetWaitStatus(node, Node.SIGNAL, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

    /**
     * Sets head of queue, and checks if successor may be waiting
     * in shared mode, if so propagating if propagate > 0.
     *
     * @param pred the node holding waitStatus for node
     * @param node the node
     * @param propagate the return value from a tryAcquireShared
     */
    private void setHeadAndPropagate(Node node, long propagate) {
        setHead(node);
        if (propagate > 0 && node.waitStatus != 0) {
            /*
             * Don't bother fully figuring out successor.  If it
             * looks null, call unparkSuccessor anyway to be safe.
             */
            Node s = node.next;
            if (s == null || s.isShared())
                unparkSuccessor(node);
        }
    }

    // Utilities for various versions of acquire

    /**
     * Cancels an ongoing attempt to acquire.
     *
     * @param node the node
     */
    private void cancelAcquire(Node node) {
        if (node != null) { // Ignore if node doesn't exist
            node.thread = null;
            // Can use unconditional write instead of CAS here
            node.waitStatus = Node.CANCELLED;
            unparkSuccessor(node);
        }
    }

    /**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int s = pred.waitStatus;
        if (s < 0)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park
             */
            return true;
        if (s > 0)
            /*
             * Predecessor was cancelled. Move up to its predecessor
             * and indicate retry.
             */
            node.prev = pred.prev;
        else
            /*
             * Indicate that we need a signal, but don't park yet. Caller
             * will need to retry to make sure it cannot acquire before
             * parking.
             */
            compareAndSetWaitStatus(pred, 0, Node.SIGNAL);
        return false;
    }

    /**
     * Convenience method to interrupt current thread.
     */
    private static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

    /**
     * Convenience method to park and then check if interrupted
     *
     * @return {@code true} if interrupted
     */
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

    /*
     * Various flavors of acquire, varying in exclusive/shared and
     * control modes.  Each is mostly the same, but annoyingly
     * different.  Only a little bit of factoring is possible due to
     * interactions of exception mechanics (including ensuring that we
     * cancel if tryAcquire throws exception) and other control, at
     * least not without hurting performance too much.
     */

    /**
     * Acquires in exclusive uninterruptible mode for thread already in
     * queue. Used by condition wait methods as well as acquire.
     *
     * @param node the node
     * @param arg the acquire argument
     * @return {@code true} if interrupted while waiting
     */
    final boolean acquireQueued(final Node node, long arg) {
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } catch (RuntimeException ex) {
            cancelAcquire(node);
            throw ex;
        }
    }

    /**
     * Acquires in exclusive interruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireInterruptibly(long arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    break;
            }
        } catch (RuntimeException ex) {
            cancelAcquire(node);
            throw ex;
        }
        // Arrive here only if interrupted
        cancelAcquire(node);
        throw new InterruptedException();
    }

    /**
     * Acquires in exclusive timed mode.
     *
     * @param arg the acquire argument
     * @param nanosTimeout max wait time
     * @return {@code true} if acquired
     */
    private boolean doAcquireNanos(long arg, long nanosTimeout)
        throws InterruptedException {
        long lastTime = System.nanoTime();
        final Node node = addWaiter(Node.EXCLUSIVE);
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    return true;
                }
                if (nanosTimeout <= 0) {
                    cancelAcquire(node);
                    return false;
                }
                if (nanosTimeout > spinForTimeoutThreshold &&
                    shouldParkAfterFailedAcquire(p, node))
                    LockSupport.parkNanos(this, nanosTimeout);
                long now = System.nanoTime();
                nanosTimeout -= now - lastTime;
                lastTime = now;
                if (Thread.interrupted())
                    break;
            }
        } catch (RuntimeException ex) {
            cancelAcquire(node);
            throw ex;
        }
        // Arrive here only if interrupted
        cancelAcquire(node);
        throw new InterruptedException();
    }

    /**
     * Acquires in shared uninterruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireShared(long arg) {
        final Node node = addWaiter(Node.SHARED);
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    long r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } catch (RuntimeException ex) {
            cancelAcquire(node);
            throw ex;
        }
    }

    /**
     * Acquires in shared interruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireSharedInterruptibly(long arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    long r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    break;
            }
        } catch (RuntimeException ex) {
            cancelAcquire(node);
            throw ex;
        }
        // Arrive here only if interrupted
        cancelAcquire(node);
        throw new InterruptedException();
    }

    /**
     * Acquires in shared timed mode.
     *
     * @param arg the acquire argument
     * @param nanosTimeout max wait time
     * @return {@code true} if acquired
     */
    private boolean doAcquireSharedNanos(long arg, long nanosTimeout)
        throws InterruptedException {

        long lastTime = System.nanoTime();
        final Node node = addWaiter(Node.SHARED);
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    long r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        return true;
                    }
                }
                if (nanosTimeout <= 0) {
                    cancelAcquire(node);
                    return false;
                }
                if (nanosTimeout > spinForTimeoutThreshold &&
                    shouldParkAfterFailedAcquire(p, node))
                    LockSupport.parkNanos(this, nanosTimeout);
                long now = System.nanoTime();
                nanosTimeout -= now - lastTime;
                lastTime = now;
                if (Thread.interrupted())
                    break;
            }
        } catch (RuntimeException ex) {
            cancelAcquire(node);
            throw ex;
        }
        // Arrive here only if interrupted
        cancelAcquire(node);
        throw new InterruptedException();
    }

    // Main exported methods

    /**
     * Attempts to acquire in exclusive mode. This method should query
     * if the state of the object permits it to be acquired in the
     * exclusive mode, and if so to acquire it.
     *
     * <p>This method is always invoked by the thread performing
     * acquire.  If this method reports failure, the acquire method
     * may queue the thread, if it is not already queued, until it is
     * signalled by a release from some other thread. This can be used
     * to implement method {@link Lock#tryLock()}.
     *
     * <p>The default
     * implementation throws {@link UnsupportedOperationException}.
     *
     * @param arg the acquire argument. This value is always the one
     *        passed to an acquire method, or is the value saved on entry
     *        to a condition wait.  The value is otherwise uninterpreted
     *        and can represent anything you like.
     * @return {@code true} if successful. Upon success, this object has
     *         been acquired.
     * @throws IllegalMonitorStateException if acquiring would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if exclusive mode is not supported
     */
    protected boolean tryAcquire(long arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to set the state to reflect a release in exclusive
     * mode.
     *
     * <p>This method is always invoked by the thread performing release.
     *
     * <p>The default implementation throws
     * {@link UnsupportedOperationException}.
     *
     * @param arg the release argument. This value is always the one
     *        passed to a release method, or the current state value upon
     *        entry to a condition wait.  The value is otherwise
     *        uninterpreted and can represent anything you like.
     * @return {@code true} if this object is now in a fully released
     *         state, so that any waiting threads may attempt to acquire;
     *         and {@code false} otherwise.
     * @throws IllegalMonitorStateException if releasing would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if exclusive mode is not supported
     */
    protected boolean tryRelease(long arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to acquire in shared mode. This method should query if
     * the state of the object permits it to be acquired in the shared
     * mode, and if so to acquire it.
     *
     * <p>This method is always invoked by the thread performing
     * acquire.  If this method reports failure, the acquire method
     * may queue the thread, if it is not already queued, until it is
     * signalled by a release from some other thread.
     *
     * <p>The default implementation throws {@link
     * UnsupportedOperationException}.
     *
     * @param arg the acquire argument. This value is always the one
     *        passed to an acquire method, or is the value saved on entry
     *        to a condition wait.  The value is otherwise uninterpreted
     *        and can represent anything you like.
     * @return a negative value on failure; zero if acquisition in shared
     *         mode succeeded but no subsequent shared-mode acquire can
     *         succeed; and a positive value if acquisition in shared
     *         mode succeeded and subsequent shared-mode acquires might
     *         also succeed, in which case a subsequent waiting thread
     *         must check availability. (Support for three different
     *         return values enables this method to be used in contexts
     *         where acquires only sometimes act exclusively.)  Upon
     *         success, this object has been acquired.
     * @throws IllegalMonitorStateException if acquiring would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if shared mode is not supported
     */
    protected long tryAcquireShared(long arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to set the state to reflect a release in shared mode.
     *
     * <p>This method is always invoked by the thread performing release.
     *
     * <p>The default implementation throws
     * {@link UnsupportedOperationException}.
     *
     * @param arg the release argument. This value is always the one
     *        passed to a release method, or the current state value upon
     *        entry to a condition wait.  The value is otherwise
     *        uninterpreted and can represent anything you like.
     * @return {@code true} if this release of shared mode may permit a
     *         waiting acquire (shared or exclusive) to succeed; and
     *         {@code false} otherwise
     * @throws IllegalMonitorStateException if releasing would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if shared mode is not supported
     */
    protected boolean tryReleaseShared(long arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * Returns {@code true} if synchronization is held exclusively with
     * respect to the current (calling) thread.  This method is invoked
     * upon each call to a non-waiting {@link ConditionObject} method.
     * (Waiting methods instead invoke {@link #release}.)
     *
     * <p>The default implementation throws {@link
     * UnsupportedOperationException}. This method is invoked
     * internally only within {@link ConditionObject} methods, so need
     * not be defined if conditions are not used.
     *
     * @return {@code true} if synchronization is held exclusively;
     *         {@code false} otherwise
     * @throws UnsupportedOperationException if conditions are not supported
     */
    protected boolean isHeldExclusively() {
        throw new UnsupportedOperationException();
    }

    /**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     */
    public final void acquire(long arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

    /**
     * Acquires in exclusive mode, aborting if interrupted.
     * Implemented by first checking interrupt status, then invoking
     * at least once {@link #tryAcquire}, returning on
     * success.  Otherwise the thread is queued, possibly repeatedly
     * blocking and unblocking, invoking {@link #tryAcquire}
     * until success or the thread is interrupted.  This method can be
     * used to implement method {@link Lock#lockInterruptibly}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    public final void acquireInterruptibly(long arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

    /**
     * Attempts to acquire in exclusive mode, aborting if interrupted,
     * and failing if the given timeout elapses.  Implemented by first
     * checking interrupt status, then invoking at least once {@link
     * #tryAcquire}, returning on success.  Otherwise, the thread is
     * queued, possibly repeatedly blocking and unblocking, invoking
     * {@link #tryAcquire} until success or the thread is interrupted
     * or the timeout elapses.  This method can be used to implement
     * method {@link Lock#tryLock(long, TimeUnit)}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    public final boolean tryAcquireNanos(long arg, long nanosTimeout) throws InterruptedException {
	if (Thread.interrupted())
	    throw new InterruptedException();
	return tryAcquire(arg) ||
	    doAcquireNanos(arg, nanosTimeout);
    }

    /**
     * Releases in exclusive mode.  Implemented by unblocking one or
     * more threads if {@link #tryRelease} returns true.
     * This method can be used to implement method {@link Lock#unlock}.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryRelease} but is otherwise uninterpreted and
     *        can represent anything you like.
     * @return the value returned from {@link #tryRelease}
     */
    public final boolean release(long arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

    /**
     * Acquires in shared mode, ignoring interrupts.  Implemented by
     * first invoking at least once {@link #tryAcquireShared},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquireShared} until success.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquireShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     */
    public final void acquireShared(long arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }

    /**
     * Acquires in shared mode, aborting if interrupted.  Implemented
     * by first checking interrupt status, then invoking at least once
     * {@link #tryAcquireShared}, returning on success.  Otherwise the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted.
     * @param arg the acquire argument.
     * This value is conveyed to {@link #tryAcquireShared} but is
     * otherwise uninterpreted and can represent anything
     * you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    public final void acquireSharedInterruptibly(long arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    /**
     * Attempts to acquire in shared mode, aborting if interrupted, and
     * failing if the given timeout elapses.  Implemented by first
     * checking interrupt status, then invoking at least once {@link
     * #tryAcquireShared}, returning on success.  Otherwise, the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted or the timeout elapses.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquireShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    public final boolean tryAcquireSharedNanos(long arg, long nanosTimeout) throws InterruptedException {
	if (Thread.interrupted())
	    throw new InterruptedException();
	return tryAcquireShared(arg) >= 0 ||
	    doAcquireSharedNanos(arg, nanosTimeout);
    }

    /**
     * Releases in shared mode.  Implemented by unblocking one or more
     * threads if {@link #tryReleaseShared} returns true.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryReleaseShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     * @return the value returned from {@link #tryReleaseShared}
     */
    public final boolean releaseShared(long arg) {
        if (tryReleaseShared(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

    // Queue inspection methods

    /**
     * Queries whether any threads are waiting to acquire. Note that
     * because cancellations due to interrupts and timeouts may occur
     * at any time, a {@code true} return does not guarantee that any
     * other thread will ever acquire.
     *
     * <p>In this implementation, this operation returns in
     * constant time.
     *
     * @return {@code true} if there may be other threads waiting to acquire
     */
    public final boolean hasQueuedThreads() {
        return head != tail;
    }

    /**
     * Queries whether any threads have ever contended to acquire this
     * synchronizer; that is if an acquire method has ever blocked.
     *
     * <p>In this implementation, this operation returns in
     * constant time.
     *
     * @return {@code true} if there has ever been contention
     */
    public final boolean hasContended() {
        return head != null;
    }

    /**
     * Returns the first (longest-waiting) thread in the queue, or
     * {@code null} if no threads are currently queued.
     *
     * <p>In this implementation, this operation normally returns in
     * constant time, but may iterate upon contention if other threads are
     * concurrently modifying the queue.
     *
     * @return the first (longest-waiting) thread in the queue, or
     *         {@code null} if no threads are currently queued
     */
    public final Thread getFirstQueuedThread() {
        // handle only fast path, else relay
        return (head == tail)? null : fullGetFirstQueuedThread();
    }

    /**
     * Version of getFirstQueuedThread called when fastpath fails
     */
    private Thread fullGetFirstQueuedThread() {
        /*
         * The first node is normally h.next. Try to get its
         * thread field, ensuring consistent reads: If thread
         * field is nulled out or s.prev is no longer head, then
         * some other thread(s) concurrently performed setHead in
         * between some of our reads. We try this twice before
         * resorting to traversal.
         */
        Node h, s;
        Thread st;
        if (((h = head) != null && (s = h.next) != null &&
             s.prev == head && (st = s.thread) != null) ||
            ((h = head) != null && (s = h.next) != null &&
             s.prev == head && (st = s.thread) != null))
            return st;

        /*
         * Head's next field might not have been set yet, or may have
         * been unset after setHead. So we must check to see if tail
         * is actually first node. If not, we continue on, safely
         * traversing from tail back to head to find first,
         * guaranteeing termination.
         */

        Node t = tail;
        Thread firstThread = null;
        while (t != null && t != head) {
            Thread tt = t.thread;
            if (tt != null)
                firstThread = tt;
            t = t.prev;
        }
        return firstThread;
    }

    /**
     * Returns true if the given thread is currently queued.
     *
     * <p>This implementation traverses the queue to determine
     * presence of the given thread.
     *
     * @param thread the thread
     * @return {@code true} if the given thread is on the queue
     * @throws NullPointerException if the thread is null
     */
    public final boolean isQueued(Thread thread) {
        if (thread == null)
            throw new NullPointerException();
        for (Node p = tail; p != null; p = p.prev)
            if (p.thread == thread)
                return true;
        return false;
    }

    /**
     * Return {@code true} if the apparent first queued thread, if one
     * exists, is not waiting in exclusive mode. Used only as a heuristic
     * in ReentrantReadWriteLock.
     */
    final boolean apparentlyFirstQueuedIsExclusive() {
        Node h, s;
        return ((h = head) != null && (s = h.next) != null &&
                s.nextWaiter != Node.SHARED);
    }

    /**
     * Return {@code true} if the queue is empty or if the given thread
     * is at the head of the queue. This is reliable only if
     * <tt>current</tt> is actually Thread.currentThread() of caller.
     */
    final boolean isFirst(Thread current) {
        Node h, s;
        return ((h = head) == null ||
                ((s = h.next) != null && s.thread == current) ||
                fullIsFirst(current));
    }

    final boolean fullIsFirst(Thread current) {
        // same idea as fullGetFirstQueuedThread
        Node h, s;
        Thread firstThread = null;
        if (((h = head) != null && (s = h.next) != null &&
             s.prev == head && (firstThread = s.thread) != null))
            return firstThread == current;
        Node t = tail;
        while (t != null && t != head) {
            Thread tt = t.thread;
            if (tt != null)
                firstThread = tt;
            t = t.prev;
        }
        return firstThread == current || firstThread == null;
    }


    // Instrumentation and monitoring methods

    /**
     * Returns an estimate of the number of threads waiting to
     * acquire.  The value is only an estimate because the number of
     * threads may change dynamically while this method traverses
     * internal data structures.  This method is designed for use in
     * monitoring system state, not for synchronization
     * control.
     *
     * @return the estimated number of threads waiting to acquire
     */
    public final int getQueueLength() {
        int n = 0;
        for (Node p = tail; p != null; p = p.prev) {
            if (p.thread != null)
                ++n;
        }
        return n;
    }

    /**
     * Returns a collection containing threads that may be waiting to
     * acquire.  Because the actual set of threads may change
     * dynamically while constructing this result, the returned
     * collection is only a best-effort estimate.  The elements of the
     * returned collection are in no particular order.  This method is
     * designed to facilitate construction of subclasses that provide
     * more extensive monitoring facilities.
     *
     * @return the collection of threads
     */
    public final Collection<Thread> getQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
        return list;
    }

    /**
     * Returns a collection containing threads that may be waiting to
     * acquire in exclusive mode. This has the same properties
     * as {@link #getQueuedThreads} except that it only returns
     * those threads waiting due to an exclusive acquire.
     *
     * @return the collection of threads
     */
    public final Collection<Thread> getExclusiveQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (!p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * Returns a collection containing threads that may be waiting to
     * acquire in shared mode. This has the same properties
     * as {@link #getQueuedThreads} except that it only returns
     * those threads waiting due to a shared acquire.
     *
     * @return the collection of threads
     */
    public final Collection<Thread> getSharedQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * Returns a string identifying this synchronizer, as well as its state.
     * The state, in brackets, includes the String {@code "State ="}
     * followed by the current value of {@link #getState}, and either
     * {@code "nonempty"} or {@code "empty"} depending on whether the
     * queue is empty.
     *
     * @return a string identifying this synchronizer, as well as its state
     */
    public String toString() {
        long s = getState();
        String q  = hasQueuedThreads()? "non" : "";
        return super.toString() +
            "[State = " + s + ", " + q + "empty queue]";
    }


    // Internal support methods for Conditions

    /**
     * Returns true if a node, always one that was initially placed on
     * a condition queue, is now waiting to reacquire on sync queue.
     * @param node the node
     * @return true if is reacquiring
     */
    final boolean isOnSyncQueue(Node node) {
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        if (node.next != null) // If has successor, it must be on queue
            return true;
        /*
         * node.prev can be non-null, but not yet on queue because
         * the CAS to place it on queue can fail. So we have to
         * traverse from tail to make sure it actually made it.  It
         * will always be near the tail in calls to this method, and
         * unless the CAS failed (which is unlikely), it will be
         * there, so we hardly ever traverse much.
         */
        return findNodeFromTail(node);
    }

    /**
     * Returns true if node is on sync queue by searching backwards from tail.
     * Called only when needed by isOnSyncQueue.
     * @return true if present
     */
    private boolean findNodeFromTail(Node node) {
        Node t = tail;
        for (;;) {
            if (t == node)
                return true;
            if (t == null)
                return false;
            t = t.prev;
        }
    }

    /**
     * Transfers a node from a condition queue onto sync queue.
     * Returns true if successful.
     * @param node the node
     * @return true if successfully transferred (else the node was
     * cancelled before signal).
     */
    final boolean transferForSignal(Node node) {
        /*
         * If cannot change waitStatus, the node has been cancelled.
         */
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        /*
         * Splice onto queue and try to set waitStatus of predecessor to
         * indicate that thread is (probably) waiting. If cancelled or
         * attempt to set waitStatus fails, wake up to resync (in which
         * case the waitStatus can be transiently and harmlessly wrong).
         */
        Node p = enq(node);
        int c = p.waitStatus;
        if (c > 0 || !compareAndSetWaitStatus(p, c, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

    /**
     * Transfers node, if necessary, to sync queue after a cancelled
     * wait. Returns true if thread was cancelled before being
     * signalled.
     * @param current the waiting thread
     * @param node its node
     * @return true if cancelled before the node was signalled.
     */
    final boolean transferAfterCancelledWait(Node node) {
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
            enq(node);
            return true;
        }
        /*
         * If we lost out to a signal(), then we can't proceed
         * until it finishes its enq().  Cancelling during an
         * incomplete transfer is both rare and transient, so just
         * spin.
         */
        while (!isOnSyncQueue(node))
            Thread.yield();
        return false;
    }

    /**
     * Invokes release with current state value; returns saved state.
     * Cancels node and throws exception on failure.
     * @param node the condition node for this wait
     * @return previous sync state
     */
    final long fullyRelease(Node node) {
        try {
            long savedState = getState();
            if (release(savedState))
                return savedState;
        } catch (RuntimeException ex) {
            node.waitStatus = Node.CANCELLED;
            throw ex;
        }
        // reach here if release fails
        node.waitStatus = Node.CANCELLED;
        throw new IllegalMonitorStateException();
    }

    // Instrumentation methods for conditions

    /**
     * Queries whether the given ConditionObject
     * uses this synchronizer as its lock.
     *
     * @param condition the condition
     * @return <tt>true</tt> if owned
     * @throws NullPointerException if the condition is null
     */
    public final boolean owns(ConditionObject condition) {
        if (condition == null)
            throw new NullPointerException();
        return condition.isOwnedBy(this);
    }

    /**
     * Queries whether any threads are waiting on the given condition
     * associated with this synchronizer. Note that because timeouts
     * and interrupts may occur at any time, a <tt>true</tt> return
     * does not guarantee that a future <tt>signal</tt> will awaken
     * any threads.  This method is designed primarily for use in
     * monitoring of the system state.
     *
     * @param condition the condition
     * @return <tt>true</tt> if there are any waiting threads
     * @throws IllegalMonitorStateException if exclusive synchronization
     *         is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this synchronizer
     * @throws NullPointerException if the condition is null
     */
    public final boolean hasWaiters(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.hasWaiters();
    }

    /**
     * Returns an estimate of the number of threads waiting on the
     * given condition associated with this synchronizer. Note that
     * because timeouts and interrupts may occur at any time, the
     * estimate serves only as an upper bound on the actual number of
     * waiters.  This method is designed for use in monitoring of the
     * system state, not for synchronization control.
     *
     * @param condition the condition
     * @return the estimated number of waiting threads
     * @throws IllegalMonitorStateException if exclusive synchronization
     *         is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this synchronizer
     * @throws NullPointerException if the condition is null
     */
    public final int getWaitQueueLength(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitQueueLength();
    }

    /**
     * Returns a collection containing those threads that may be
     * waiting on the given condition associated with this
     * synchronizer.  Because the actual set of threads may change
     * dynamically while constructing this result, the returned
     * collection is only a best-effort estimate. The elements of the
     * returned collection are in no particular order.
     *
     * @param condition the condition
     * @return the collection of threads
     * @throws IllegalMonitorStateException if exclusive synchronization
     *         is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this synchronizer
     * @throws NullPointerException if the condition is null
     */
    public final Collection<Thread> getWaitingThreads(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitingThreads();
    }

    /**
     * Condition implementation for a {@link
     * AbstractQueuedLongSynchronizer} serving as the basis of a {@link
     * Lock} implementation.
     *
     * <p>Method documentation for this class describes mechanics,
     * not behavioral specifications from the point of view of Lock
     * and Condition users. Exported versions of this class will in
     * general need to be accompanied by documentation describing
     * condition semantics that rely on those of the associated
     * <tt>AbstractQueuedLongSynchronizer</tt>.
     *
     * <p>This class is Serializable, but all fields are transient,
     * so deserialized conditions have no waiters.
     *
     * @since 1.6
     */
    public class ConditionObject implements Condition, java.io.Serializable {
        private static final long serialVersionUID = 1173984872572414699L;
        /** First node of condition queue. */
        private transient Node firstWaiter;
        /** Last node of condition queue. */
        private transient Node lastWaiter;

        /**
         * Creates a new <tt>ConditionObject</tt> instance.
         */
        public ConditionObject() { }

        // Internal methods

        /**
         * Adds a new waiter to wait queue.
         * @return its new wait node
         */
        private Node addConditionWaiter() {
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            Node t = lastWaiter;
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }

        /**
         * Removes and transfers nodes until hit non-cancelled one or
         * null. Split out from signal in part to encourage compilers
         * to inline the case of no waiters.
         * @param first (non-null) the first node on condition queue
         */
        private void doSignal(Node first) {
            do {
                if ( (firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
            } while (!transferForSignal(first) &&
                     (first = firstWaiter) != null);
        }

        /**
         * Removes and transfers all nodes.
         * @param first (non-null) the first node on condition queue
         */
        private void doSignalAll(Node first) {
            lastWaiter = firstWaiter  = null;
            do {
                Node next = first.nextWaiter;
                first.nextWaiter = null;
                transferForSignal(first);
                first = next;
            } while (first != null);
        }

        /**
         * Returns true if given node is on this condition queue.
         * Call only when holding lock.
         */
        private boolean isOnConditionQueue(Node node) {
            return node.next != null || node == lastWaiter;
        }

        /**
         * Unlinks a cancelled waiter node from condition queue.  This
         * is called when cancellation occurred during condition wait,
         * not lock wait, and is called only after lock has been
         * re-acquired by a cancelled waiter and the node is not known
         * to already have been dequeued.  It is needed to avoid
         * garbage retention in the absence of signals. So even though
         * it may require a full traversal, it comes into play only
         * when timeouts or cancellations occur in the absence of
         * signals.
         */
        private void unlinkCancelledWaiter(Node node) {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                if (t == node) {
                    Node next = t.nextWaiter;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (lastWaiter == node)
                        lastWaiter = trail;
                    break;
                }
                trail = t;
                t = t.nextWaiter;
            }
        }

        // public methods

        /**
         * Moves the longest-waiting thread, if one exists, from the
         * wait queue for this condition to the wait queue for the
         * owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }

        /**
         * Moves all threads from the wait queue for this condition to
         * the wait queue for the owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        public final void signalAll() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignalAll(first);
        }

        /**
         * Implements uninterruptible condition wait.
         * <ol>
         * <li> Save lock state returned by {@link #getState}
         * <li> Invoke {@link #release} with
         *      saved state as argument, throwing
         *      IllegalMonitorStateException if it fails.
         * <li> Block until signalled
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * </ol>
         */
        public final void awaitUninterruptibly() {
            Node node = addConditionWaiter();
            long savedState = fullyRelease(node);
            boolean interrupted = false;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if (Thread.interrupted())
                    interrupted = true;
            }
            if (acquireQueued(node, savedState) || interrupted)
                selfInterrupt();
        }

        /*
         * For interruptible waits, we need to track whether to throw
         * InterruptedException, if interrupted while blocked on
         * condition, versus reinterrupt current thread, if
         * interrupted while blocked waiting to re-acquire.
         */

        /** Mode meaning to reinterrupt on exit from wait */
        private static final int REINTERRUPT =  1;
        /** Mode meaning to throw InterruptedException on exit from wait */
        private static final int THROW_IE    = -1;

        /**
         * Checks for interrupt, returning THROW_IE if interrupted
         * before signalled, REINTERRUPT if after signalled, or
         * 0 if not interrupted.
         */
        private int checkInterruptWhileWaiting(Node node) {
            return (Thread.interrupted()) ?
                ((transferAfterCancelledWait(node))? THROW_IE : REINTERRUPT) :
                0;
        }

        /**
         * Throws InterruptedException, reinterrupts current thread, or
         * does nothing, depending on mode.
         */
        private void reportInterruptAfterWait(int interruptMode)
            throws InterruptedException {
            if (interruptMode == THROW_IE)
                throw new InterruptedException();
            else if (interruptMode == REINTERRUPT)
                selfInterrupt();
        }

        /**
         * Implements interruptible condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException
         * <li> Save lock state returned by {@link #getState}
         * <li> Invoke {@link #release} with
         *      saved state as argument, throwing
         *      IllegalMonitorStateException  if it fails.
         * <li> Block until signalled or interrupted
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw exception
         * </ol>
         */
        public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            long savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (isOnConditionQueue(node))
                unlinkCancelledWaiter(node);
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException
         * <li> Save lock state returned by {@link #getState}
         * <li> Invoke {@link #release} with
         *      saved state as argument, throwing
         *      IllegalMonitorStateException  if it fails.
         * <li> Block until signalled, interrupted, or timed out
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException
         * </ol>
         */
        public final long awaitNanos(long nanosTimeout) throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            long savedState = fullyRelease(node);
            long lastTime = System.nanoTime();
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;

                long now = System.nanoTime();
                nanosTimeout -= now - lastTime;
                lastTime = now;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (isOnConditionQueue(node))
                unlinkCancelledWaiter(node);
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return nanosTimeout - (System.nanoTime() - lastTime);
        }

        /**
         * Implements absolute timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException
         * <li> Save lock state returned by {@link #getState}
         * <li> Invoke {@link #release} with
         *      saved state as argument, throwing
         *      IllegalMonitorStateException  if it fails.
         * <li> Block until signalled, interrupted, or timed out
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException
         * <li> If timed out while blocked in step 4, return false, else true
         * </ol>
         */
        public final boolean awaitUntil(Date deadline) throws InterruptedException {
            if (deadline == null)
                throw new NullPointerException();
            long abstime = deadline.getTime();
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            long savedState = fullyRelease(node);
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (System.currentTimeMillis() > abstime) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkUntil(this, abstime);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (isOnConditionQueue(node))
                unlinkCancelledWaiter(node);
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException
         * <li> Save lock state returned by {@link #getState}
         * <li> Invoke {@link #release} with
         *      saved state as argument, throwing
         *      IllegalMonitorStateException  if it fails.
         * <li> Block until signalled, interrupted, or timed out
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException
         * <li> If timed out while blocked in step 4, return false, else true
         * </ol>
         */
        public final boolean await(long time, TimeUnit unit) throws InterruptedException {
            if (unit == null)
                throw new NullPointerException();
            long nanosTimeout = unit.toNanos(time);
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            long savedState = fullyRelease(node);
            long lastTime = System.nanoTime();
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                long now = System.nanoTime();
                nanosTimeout -= now - lastTime;
                lastTime = now;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (isOnConditionQueue(node))
                unlinkCancelledWaiter(node);
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        //  support for instrumentation

        /**
         * Returns true if this condition was created by the given
         * synchronization object.
         *
         * @return {@code true} if owned
         */
        final boolean isOwnedBy(AbstractQueuedLongSynchronizer sync) {
            return sync == AbstractQueuedLongSynchronizer.this;
        }

        /**
         * Queries whether any threads are waiting on this condition.
         * Implements {@link AbstractQueuedLongSynchronizer#hasWaiters}.
         *
         * @return {@code true} if there are any waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final boolean hasWaiters() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    return true;
            }
            return false;
        }

        /**
         * Returns an estimate of the number of threads waiting on
         * this condition.
         * Implements {@link AbstractQueuedLongSynchronizer#getWaitQueueLength}.
         *
         * @return the estimated number of waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final int getWaitQueueLength() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int n = 0;
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    ++n;
            }
            return n;
        }

        /**
         * Returns a collection containing those threads that may be
         * waiting on this Condition.
         * Implements {@link AbstractQueuedLongSynchronizer#getWaitingThreads}.
         *
         * @return the collection of threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final Collection<Thread> getWaitingThreads() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            ArrayList<Thread> list = new ArrayList<Thread>();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION) {
                    Thread t = w.thread;
                    if (t != null)
                        list.add(t);
                }
            }
            return list;
        }
    }

    /**
     * Setup to support compareAndSet. We need to natively implement
     * this here: For the sake of permitting future enhancements, we
     * cannot explicitly subclass AtomicLong, which would be
     * efficient and useful otherwise. So, as the lesser of evils, we
     * natively implement using hotspot intrinsics API. And while we
     * are at it, we do the same for other CASable fields (which could
     * otherwise be done with atomic field updaters).
     */
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;

    static {
        try {
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedLongSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedLongSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedLongSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));

        } catch (Exception ex) { throw new Error(ex); }
    }

    /**
     * CAS head field. Used only by enq
     */
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

    /**
     * CAS tail field. Used only by enq
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

    /**
     * CAS waitStatus field of a node.
     */
    private final static boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                                        expect, update);
    }
}