aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libffi/src/pa/ffi.c
blob: 8f1789bace0e43467f49e1fe6f3988a10052f241 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
/* -----------------------------------------------------------------------
   ffi.c - (c) 2003-2004 Randolph Chung <tausq@debian.org>

   HPPA Foreign Function Interface
   HP-UX PA ABI support (c) 2006 Free Software Foundation, Inc.

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   ``Software''), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be included
   in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
   IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
   OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
   ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
   OTHER DEALINGS IN THE SOFTWARE.
   ----------------------------------------------------------------------- */

#include <ffi.h>
#include <ffi_common.h>

#include <stdlib.h>
#include <stdio.h>

#define ROUND_UP(v, a)  (((size_t)(v) + (a) - 1) & ~((a) - 1))

#define MIN_STACK_SIZE  64
#define FIRST_ARG_SLOT  9
#define DEBUG_LEVEL   0

#define fldw(addr, fpreg) \
  __asm__ volatile ("fldw 0(%0), %%" #fpreg "L" : : "r"(addr) : #fpreg)
#define fstw(fpreg, addr) \
  __asm__ volatile ("fstw %%" #fpreg "L, 0(%0)" : : "r"(addr))
#define fldd(addr, fpreg) \
  __asm__ volatile ("fldd 0(%0), %%" #fpreg : : "r"(addr) : #fpreg)
#define fstd(fpreg, addr) \
  __asm__ volatile ("fstd %%" #fpreg "L, 0(%0)" : : "r"(addr))

#define debug(lvl, x...) do { if (lvl <= DEBUG_LEVEL) { printf(x); } } while (0)

static inline int ffi_struct_type(ffi_type *t)
{
  size_t sz = t->size;

  /* Small structure results are passed in registers,
     larger ones are passed by pointer.  Note that
     small structures of size 2, 4 and 8 differ from
     the corresponding integer types in that they have
     different alignment requirements.  */

  if (sz <= 1)
    return FFI_TYPE_UINT8;
  else if (sz == 2)
    return FFI_TYPE_SMALL_STRUCT2;
  else if (sz == 3)
    return FFI_TYPE_SMALL_STRUCT3;
  else if (sz == 4)
    return FFI_TYPE_SMALL_STRUCT4;
  else if (sz == 5)
    return FFI_TYPE_SMALL_STRUCT5;
  else if (sz == 6)
    return FFI_TYPE_SMALL_STRUCT6;
  else if (sz == 7)
    return FFI_TYPE_SMALL_STRUCT7;
  else if (sz <= 8)
    return FFI_TYPE_SMALL_STRUCT8;
  else
    return FFI_TYPE_STRUCT; /* else, we pass it by pointer.  */
}

/* PA has a downward growing stack, which looks like this:

   Offset
	[ Variable args ]
   SP = (4*(n+9))       arg word N
   ...
   SP-52                arg word 4
	[ Fixed args ]
   SP-48                arg word 3
   SP-44                arg word 2
   SP-40                arg word 1
   SP-36                arg word 0
	[ Frame marker ]
   ...
   SP-20                RP
   SP-4                 previous SP

   The first four argument words on the stack are reserved for use by
   the callee.  Instead, the general and floating registers replace
   the first four argument slots.  Non FP arguments are passed solely
   in the general registers.  FP arguments are passed in both general
   and floating registers when using libffi.

   Non-FP 32-bit args are passed in gr26, gr25, gr24 and gr23.
   Non-FP 64-bit args are passed in register pairs, starting
   on an odd numbered register (i.e. r25+r26 and r23+r24).
   FP 32-bit arguments are passed in fr4L, fr5L, fr6L and fr7L.
   FP 64-bit arguments are passed in fr5 and fr7.

   The registers are allocated in the same manner as stack slots.
   This allows the callee to save its arguments on the stack if
   necessary:

   arg word 3 -> gr23 or fr7L
   arg word 2 -> gr24 or fr6L or fr7R
   arg word 1 -> gr25 or fr5L
   arg word 0 -> gr26 or fr4L or fr5R

   Note that fr4R and fr6R are never used for arguments (i.e.,
   doubles are not passed in fr4 or fr6).

   The rest of the arguments are passed on the stack starting at SP-52,
   but 64-bit arguments need to be aligned to an 8-byte boundary

   This means we can have holes either in the register allocation,
   or in the stack.  */

/* ffi_prep_args is called by the assembly routine once stack space
   has been allocated for the function's arguments

   The following code will put everything into the stack frame
   (which was allocated by the asm routine), and on return
   the asm routine will load the arguments that should be
   passed by register into the appropriate registers

   NOTE: We load floating point args in this function... that means we
   assume gcc will not mess with fp regs in here.  */

void ffi_prep_args_pa32(UINT32 *stack, extended_cif *ecif, unsigned bytes)
{
  register unsigned int i;
  register ffi_type **p_arg;
  register void **p_argv;
  unsigned int slot = FIRST_ARG_SLOT;
  char *dest_cpy;
  size_t len;

  debug(1, "%s: stack = %p, ecif = %p, bytes = %u\n", __FUNCTION__, stack,
	ecif, bytes);

  p_arg = ecif->cif->arg_types;
  p_argv = ecif->avalue;

  for (i = 0; i < ecif->cif->nargs; i++)
    {
      int type = (*p_arg)->type;

      switch (type)
	{
	case FFI_TYPE_SINT8:
	  *(SINT32 *)(stack - slot) = *(SINT8 *)(*p_argv);
	  break;

	case FFI_TYPE_UINT8:
	  *(UINT32 *)(stack - slot) = *(UINT8 *)(*p_argv);
	  break;

	case FFI_TYPE_SINT16:
	  *(SINT32 *)(stack - slot) = *(SINT16 *)(*p_argv);
	  break;

	case FFI_TYPE_UINT16:
	  *(UINT32 *)(stack - slot) = *(UINT16 *)(*p_argv);
	  break;

	case FFI_TYPE_UINT32:
	case FFI_TYPE_SINT32:
	case FFI_TYPE_POINTER:
	  debug(3, "Storing UINT32 %u in slot %u\n", *(UINT32 *)(*p_argv),
		slot);
	  *(UINT32 *)(stack - slot) = *(UINT32 *)(*p_argv);
	  break;

	case FFI_TYPE_UINT64:
	case FFI_TYPE_SINT64:
	  /* Align slot for 64-bit type.  */
	  slot += (slot & 1) ? 1 : 2;
	  *(UINT64 *)(stack - slot) = *(UINT64 *)(*p_argv);
	  break;

	case FFI_TYPE_FLOAT:
	  /* First 4 args go in fr4L - fr7L.  */
	  debug(3, "Storing UINT32(float) in slot %u\n", slot);
	  *(UINT32 *)(stack - slot) = *(UINT32 *)(*p_argv);
	  switch (slot - FIRST_ARG_SLOT)
	    {
	    /* First 4 args go in fr4L - fr7L.  */
	    case 0: fldw(stack - slot, fr4); break;
	    case 1: fldw(stack - slot, fr5); break;
	    case 2: fldw(stack - slot, fr6); break;
	    case 3: fldw(stack - slot, fr7); break;
	    }
	  break;

	case FFI_TYPE_DOUBLE:
	  /* Align slot for 64-bit type.  */
	  slot += (slot & 1) ? 1 : 2;
	  debug(3, "Storing UINT64(double) at slot %u\n", slot);
	  *(UINT64 *)(stack - slot) = *(UINT64 *)(*p_argv);
	  switch (slot - FIRST_ARG_SLOT)
	    {
	      /* First 2 args go in fr5, fr7.  */
	      case 1: fldd(stack - slot, fr5); break;
	      case 3: fldd(stack - slot, fr7); break;
	    }
	  break;

#ifdef PA_HPUX
	case FFI_TYPE_LONGDOUBLE:
	  /* Long doubles are passed in the same manner as structures
	     larger than 8 bytes.  */
	  *(UINT32 *)(stack - slot) = (UINT32)(*p_argv);
	  break;
#endif

	case FFI_TYPE_STRUCT:

	  /* Structs smaller or equal than 4 bytes are passed in one
	     register. Structs smaller or equal 8 bytes are passed in two
	     registers. Larger structures are passed by pointer.  */

	  len = (*p_arg)->size;
	  if (len <= 4)
	    {
	      dest_cpy = (char *)(stack - slot) + 4 - len;
	      memcpy(dest_cpy, (char *)*p_argv, len);
	    }
	  else if (len <= 8)
	    {
	      slot += (slot & 1) ? 1 : 2;
	      dest_cpy = (char *)(stack - slot) + 8 - len;
	      memcpy(dest_cpy, (char *)*p_argv, len);
	    }
	  else
	    *(UINT32 *)(stack - slot) = (UINT32)(*p_argv);
	  break;

	default:
	  FFI_ASSERT(0);
	}

      slot++;
      p_arg++;
      p_argv++;
    }

  /* Make sure we didn't mess up and scribble on the stack.  */
  {
    unsigned int n;

    debug(5, "Stack setup:\n");
    for (n = 0; n < (bytes + 3) / 4; n++)
      {
	if ((n%4) == 0) { debug(5, "\n%08x: ", (unsigned int)(stack - n)); }
	debug(5, "%08x ", *(stack - n));
      }
    debug(5, "\n");
  }

  FFI_ASSERT(slot * 4 <= bytes);

  return;
}

static void ffi_size_stack_pa32(ffi_cif *cif)
{
  ffi_type **ptr;
  int i;
  int z = 0; /* # stack slots */

  for (ptr = cif->arg_types, i = 0; i < cif->nargs; ptr++, i++)
    {
      int type = (*ptr)->type;

      switch (type)
	{
	case FFI_TYPE_DOUBLE:
	case FFI_TYPE_UINT64:
	case FFI_TYPE_SINT64:
	  z += 2 + (z & 1); /* must start on even regs, so we may waste one */
	  break;

#ifdef PA_HPUX
	case FFI_TYPE_LONGDOUBLE:
#endif
	case FFI_TYPE_STRUCT:
	  z += 1; /* pass by ptr, callee will copy */
	  break;

	default: /* <= 32-bit values */
	  z++;
	}
    }

  /* We can fit up to 6 args in the default 64-byte stack frame,
     if we need more, we need more stack.  */
  if (z <= 6)
    cif->bytes = MIN_STACK_SIZE; /* min stack size */
  else
    cif->bytes = 64 + ROUND_UP((z - 6) * sizeof(UINT32), MIN_STACK_SIZE);

  debug(3, "Calculated stack size is %u bytes\n", cif->bytes);
}

/* Perform machine dependent cif processing.  */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
  /* Set the return type flag */
  switch (cif->rtype->type)
    {
    case FFI_TYPE_VOID:
    case FFI_TYPE_FLOAT:
    case FFI_TYPE_DOUBLE:
      cif->flags = (unsigned) cif->rtype->type;
      break;

#ifdef PA_HPUX
    case FFI_TYPE_LONGDOUBLE:
      /* Long doubles are treated like a structure.  */
      cif->flags = FFI_TYPE_STRUCT;
      break;
#endif

    case FFI_TYPE_STRUCT:
      /* For the return type we have to check the size of the structures.
	 If the size is smaller or equal 4 bytes, the result is given back
	 in one register. If the size is smaller or equal 8 bytes than we
	 return the result in two registers. But if the size is bigger than
	 8 bytes, we work with pointers.  */
      cif->flags = ffi_struct_type(cif->rtype);
      break;

    case FFI_TYPE_UINT64:
    case FFI_TYPE_SINT64:
      cif->flags = FFI_TYPE_UINT64;
      break;

    default:
      cif->flags = FFI_TYPE_INT;
      break;
    }

  /* Lucky us, because of the unique PA ABI we get to do our
     own stack sizing.  */
  switch (cif->abi)
    {
    case FFI_PA32:
      ffi_size_stack_pa32(cif);
      break;

    default:
      FFI_ASSERT(0);
      break;
    }

  return FFI_OK;
}

extern void ffi_call_pa32(void (*)(UINT32 *, extended_cif *, unsigned),
			  extended_cif *, unsigned, unsigned, unsigned *,
			  void (*fn)());

void ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
{
  extended_cif ecif;

  ecif.cif = cif;
  ecif.avalue = avalue;

  /* If the return value is a struct and we don't have a return
     value address then we need to make one.  */

  if (rvalue == NULL
#ifdef PA_HPUX
      && (cif->rtype->type == FFI_TYPE_STRUCT
	  || cif->rtype->type == FFI_TYPE_LONGDOUBLE))
#else
      && cif->rtype->type == FFI_TYPE_STRUCT)
#endif
    {
      ecif.rvalue = alloca(cif->rtype->size);
    }
  else
    ecif.rvalue = rvalue;


  switch (cif->abi)
    {
    case FFI_PA32:
      debug(3, "Calling ffi_call_pa32: ecif=%p, bytes=%u, flags=%u, rvalue=%p, fn=%p\n", &ecif, cif->bytes, cif->flags, ecif.rvalue, (void *)fn);
      ffi_call_pa32(ffi_prep_args_pa32, &ecif, cif->bytes,
		     cif->flags, ecif.rvalue, fn);
      break;

    default:
      FFI_ASSERT(0);
      break;
    }
}

#if FFI_CLOSURES
/* This is more-or-less an inverse of ffi_call -- we have arguments on
   the stack, and we need to fill them into a cif structure and invoke
   the user function. This really ought to be in asm to make sure
   the compiler doesn't do things we don't expect.  */
ffi_status ffi_closure_inner_pa32(ffi_closure *closure, UINT32 *stack)
{
  ffi_cif *cif;
  void **avalue;
  void *rvalue;
  UINT32 ret[2]; /* function can return up to 64-bits in registers */
  ffi_type **p_arg;
  char *tmp;
  int i, avn;
  unsigned int slot = FIRST_ARG_SLOT;
  register UINT32 r28 asm("r28");

  cif = closure->cif;

  /* If returning via structure, callee will write to our pointer.  */
  if (cif->flags == FFI_TYPE_STRUCT)
    rvalue = (void *)r28;
  else
    rvalue = &ret[0];

  avalue = (void **)alloca(cif->nargs * FFI_SIZEOF_ARG);
  avn = cif->nargs;
  p_arg = cif->arg_types;

  for (i = 0; i < avn; i++)
    {
      int type = (*p_arg)->type;

      switch (type)
	{
	case FFI_TYPE_SINT8:
	case FFI_TYPE_UINT8:
	case FFI_TYPE_SINT16:
	case FFI_TYPE_UINT16:
	case FFI_TYPE_SINT32:
	case FFI_TYPE_UINT32:
	case FFI_TYPE_POINTER:
	  avalue[i] = (char *)(stack - slot) + sizeof(UINT32) - (*p_arg)->size;
	  break;

	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT64:
	  slot += (slot & 1) ? 1 : 2;
	  avalue[i] = (void *)(stack - slot);
	  break;

	case FFI_TYPE_FLOAT:
#ifdef PA_LINUX
	  /* The closure call is indirect.  In Linux, floating point
	     arguments in indirect calls with a prototype are passed
	     in the floating point registers instead of the general
	     registers.  So, we need to replace what was previously
	     stored in the current slot with the value in the
	     corresponding floating point register.  */
	  switch (slot - FIRST_ARG_SLOT)
	    {
	    case 0: fstw(fr4, (void *)(stack - slot)); break;
	    case 1: fstw(fr5, (void *)(stack - slot)); break;
	    case 2: fstw(fr6, (void *)(stack - slot)); break;
	    case 3: fstw(fr7, (void *)(stack - slot)); break;
	    }
#endif
	  avalue[i] = (void *)(stack - slot);
	  break;

	case FFI_TYPE_DOUBLE:
	  slot += (slot & 1) ? 1 : 2;
#ifdef PA_LINUX
	  /* See previous comment for FFI_TYPE_FLOAT.  */
	  switch (slot - FIRST_ARG_SLOT)
	    {
	    case 1: fstd(fr5, (void *)(stack - slot)); break;
	    case 3: fstd(fr7, (void *)(stack - slot)); break;
	    }
#endif
	  avalue[i] = (void *)(stack - slot);
	  break;

	case FFI_TYPE_STRUCT:
	  /* Structs smaller or equal than 4 bytes are passed in one
	     register. Structs smaller or equal 8 bytes are passed in two
	     registers. Larger structures are passed by pointer.  */
	  if((*p_arg)->size <= 4)
	    {
	      avalue[i] = (void *)(stack - slot) + sizeof(UINT32) -
		(*p_arg)->size;
	    }
	  else if ((*p_arg)->size <= 8)
	    {
	      slot += (slot & 1) ? 1 : 2;
	      avalue[i] = (void *)(stack - slot) + sizeof(UINT64) -
		(*p_arg)->size;
	    }
	  else
	    avalue[i] = (void *) *(stack - slot);
	  break;

	default:
	  FFI_ASSERT(0);
	}

      slot++;
      p_arg++;
    }

  /* Invoke the closure.  */
  (closure->fun) (cif, rvalue, avalue, closure->user_data);

  debug(3, "after calling function, ret[0] = %08x, ret[1] = %08x\n", ret[0],
	ret[1]);

  /* Store the result using the lower 2 bytes of the flags.  */
  switch (cif->flags)
    {
    case FFI_TYPE_UINT8:
      *(stack - FIRST_ARG_SLOT) = (UINT8)(ret[0] >> 24);
      break;
    case FFI_TYPE_SINT8:
      *(stack - FIRST_ARG_SLOT) = (SINT8)(ret[0] >> 24);
      break;
    case FFI_TYPE_UINT16:
      *(stack - FIRST_ARG_SLOT) = (UINT16)(ret[0] >> 16);
      break;
    case FFI_TYPE_SINT16:
      *(stack - FIRST_ARG_SLOT) = (SINT16)(ret[0] >> 16);
      break;
    case FFI_TYPE_INT:
    case FFI_TYPE_SINT32:
    case FFI_TYPE_UINT32:
      *(stack - FIRST_ARG_SLOT) = ret[0];
      break;
    case FFI_TYPE_SINT64:
    case FFI_TYPE_UINT64:
      *(stack - FIRST_ARG_SLOT) = ret[0];
      *(stack - FIRST_ARG_SLOT - 1) = ret[1];
      break;

    case FFI_TYPE_DOUBLE:
      fldd(rvalue, fr4);
      break;

    case FFI_TYPE_FLOAT:
      fldw(rvalue, fr4);
      break;

    case FFI_TYPE_STRUCT:
      /* Don't need a return value, done by caller.  */
      break;

    case FFI_TYPE_SMALL_STRUCT2:
    case FFI_TYPE_SMALL_STRUCT3:
    case FFI_TYPE_SMALL_STRUCT4:
      tmp = (void*)(stack -  FIRST_ARG_SLOT);
      tmp += 4 - cif->rtype->size;
      memcpy((void*)tmp, &ret[0], cif->rtype->size);
      break;

    case FFI_TYPE_SMALL_STRUCT5:
    case FFI_TYPE_SMALL_STRUCT6:
    case FFI_TYPE_SMALL_STRUCT7:
    case FFI_TYPE_SMALL_STRUCT8:
      {
	unsigned int ret2[2];
	int off;

	/* Right justify ret[0] and ret[1] */
	switch (cif->flags)
	  {
	    case FFI_TYPE_SMALL_STRUCT5: off = 3; break;
	    case FFI_TYPE_SMALL_STRUCT6: off = 2; break;
	    case FFI_TYPE_SMALL_STRUCT7: off = 1; break;
	    default: off = 0; break;
	  }

	memset (ret2, 0, sizeof (ret2));
	memcpy ((char *)ret2 + off, ret, 8 - off);

	*(stack - FIRST_ARG_SLOT) = ret2[0];
	*(stack - FIRST_ARG_SLOT - 1) = ret2[1];
      }
      break;

    case FFI_TYPE_POINTER:
    case FFI_TYPE_VOID:
      break;

    default:
      debug(0, "assert with cif->flags: %d\n",cif->flags);
      FFI_ASSERT(0);
      break;
    }
  return FFI_OK;
}

/* Fill in a closure to refer to the specified fun and user_data.
   cif specifies the argument and result types for fun.
   The cif must already be prep'ed.  */

extern void ffi_closure_pa32(void);

ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
		      ffi_cif* cif,
		      void (*fun)(ffi_cif*,void*,void**,void*),
		      void *user_data,
		      void *codeloc)
{
  UINT32 *tramp = (UINT32 *)(closure->tramp);
#ifdef PA_HPUX
  UINT32 *tmp;
#endif

  FFI_ASSERT (cif->abi == FFI_PA32);

  /* Make a small trampoline that will branch to our
     handler function. Use PC-relative addressing.  */

#ifdef PA_LINUX
  tramp[0] = 0xeaa00000; /* b,l .+8,%r21        ; %r21 <- pc+8 */
  tramp[1] = 0xd6a01c1e; /* depi 0,31,2,%r21    ; mask priv bits */
  tramp[2] = 0x4aa10028; /* ldw 20(%r21),%r1    ; load plabel */
  tramp[3] = 0x36b53ff1; /* ldo -8(%r21),%r21   ; get closure addr */
  tramp[4] = 0x0c201096; /* ldw 0(%r1),%r22     ; address of handler */
  tramp[5] = 0xeac0c000; /* bv%r0(%r22)         ; branch to handler */
  tramp[6] = 0x0c281093; /* ldw 4(%r1),%r19     ; GP of handler */
  tramp[7] = ((UINT32)(ffi_closure_pa32) & ~2);

  /* Flush d/icache -- have to flush up 2 two lines because of
     alignment.  */
  __asm__ volatile(
		   "fdc 0(%0)\n\t"
		   "fdc %1(%0)\n\t"
		   "fic 0(%%sr4, %0)\n\t"
		   "fic %1(%%sr4, %0)\n\t"
		   "sync\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n"
		   :
		   : "r"((unsigned long)tramp & ~31),
		     "r"(32 /* stride */)
		   : "memory");
#endif

#ifdef PA_HPUX
  tramp[0] = 0xeaa00000; /* b,l .+8,%r21        ; %r21 <- pc+8  */
  tramp[1] = 0xd6a01c1e; /* depi 0,31,2,%r21    ; mask priv bits  */
  tramp[2] = 0x4aa10038; /* ldw 28(%r21),%r1    ; load plabel  */
  tramp[3] = 0x36b53ff1; /* ldo -8(%r21),%r21   ; get closure addr  */
  tramp[4] = 0x0c201096; /* ldw 0(%r1),%r22     ; address of handler  */
  tramp[5] = 0x02c010b4; /* ldsid (%r22),%r20   ; load space id  */
  tramp[6] = 0x00141820; /* mtsp %r20,%sr0      ; into %sr0  */
  tramp[7] = 0xe2c00000; /* be 0(%sr0,%r22)     ; branch to handler  */
  tramp[8] = 0x0c281093; /* ldw 4(%r1),%r19     ; GP of handler  */
  tramp[9] = ((UINT32)(ffi_closure_pa32) & ~2);

  /* Flush d/icache -- have to flush three lines because of alignment.  */
  __asm__ volatile(
		   "copy %1,%0\n\t"
		   "fdc,m %2(%0)\n\t"
		   "fdc,m %2(%0)\n\t"
		   "fdc,m %2(%0)\n\t"
		   "ldsid (%1),%0\n\t"
		   "mtsp %0,%%sr0\n\t"
		   "copy %1,%0\n\t"
		   "fic,m %2(%%sr0,%0)\n\t"
		   "fic,m %2(%%sr0,%0)\n\t"
		   "fic,m %2(%%sr0,%0)\n\t"
		   "sync\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n\t"
		   "nop\n"
		   : "=&r" ((unsigned long)tmp)
		   : "r" ((unsigned long)tramp & ~31),
		     "r" (32/* stride */)
		   : "memory");
#endif

  closure->cif  = cif;
  closure->user_data = user_data;
  closure->fun  = fun;

  return FFI_OK;
}
#endif