aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/tree-vectorizer.c
blob: 3274a17fbda829a5d4fcc249c5fd49fd2a2bbd1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
/* Loop Vectorization
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
   Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Loop Vectorization Pass.

   This pass tries to vectorize loops. This first implementation focuses on
   simple inner-most loops, with no conditional control flow, and a set of
   simple operations which vector form can be expressed using existing
   tree codes (PLUS, MULT etc).

   For example, the vectorizer transforms the following simple loop:

	short a[N]; short b[N]; short c[N]; int i;

	for (i=0; i<N; i++){
	  a[i] = b[i] + c[i];
	}

   as if it was manually vectorized by rewriting the source code into:

	typedef int __attribute__((mode(V8HI))) v8hi;
	short a[N];  short b[N]; short c[N];   int i;
	v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
	v8hi va, vb, vc;

	for (i=0; i<N/8; i++){
	  vb = pb[i];
	  vc = pc[i];
	  va = vb + vc;
	  pa[i] = va;
	}

	The main entry to this pass is vectorize_loops(), in which
   the vectorizer applies a set of analyses on a given set of loops,
   followed by the actual vectorization transformation for the loops that
   had successfully passed the analysis phase.

	Throughout this pass we make a distinction between two types of
   data: scalars (which are represented by SSA_NAMES), and memory references
   ("data-refs"). These two types of data require different handling both 
   during analysis and transformation. The types of data-refs that the 
   vectorizer currently supports are ARRAY_REFS which base is an array DECL 
   (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
   accesses are required to have a  simple (consecutive) access pattern.

   Analysis phase:
   ===============
	The driver for the analysis phase is vect_analyze_loop_nest().
   It applies a set of analyses, some of which rely on the scalar evolution 
   analyzer (scev) developed by Sebastian Pop.

	During the analysis phase the vectorizer records some information
   per stmt in a "stmt_vec_info" struct which is attached to each stmt in the 
   loop, as well as general information about the loop as a whole, which is
   recorded in a "loop_vec_info" struct attached to each loop.

   Transformation phase:
   =====================
	The loop transformation phase scans all the stmts in the loop, and
   creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
   the loop that needs to be vectorized. It insert the vector code sequence
   just before the scalar stmt S, and records a pointer to the vector code
   in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct 
   attached to S). This pointer will be used for the vectorization of following
   stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
   otherwise, we rely on dead code elimination for removing it.

	For example, say stmt S1 was vectorized into stmt VS1:

   VS1: vb = px[i];
   S1:	b = x[i];    STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   S2:  a = b;

   To vectorize stmt S2, the vectorizer first finds the stmt that defines
   the operand 'b' (S1), and gets the relevant vector def 'vb' from the
   vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
   resulting sequence would be:

   VS1: vb = px[i];
   S1:	b = x[i];	STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   VS2: va = vb;
   S2:  a = b;          STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2

	Operands that are not SSA_NAMEs, are data-refs that appear in 
   load/store operations (like 'x[i]' in S1), and are handled differently.

   Target modeling:
   =================
	Currently the only target specific information that is used is the
   size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can 
   support different sizes of vectors, for now will need to specify one value 
   for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.

	Since we only vectorize operations which vector form can be
   expressed using existing tree codes, to verify that an operation is
   supported, the vectorizer checks the relevant optab at the relevant
   machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
   the value found is CODE_FOR_nothing, then there's no target support, and
   we can't vectorize the stmt.

   For additional information on this project see:
   http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "recog.h"
#include "optabs.h"
#include "params.h"
#include "toplev.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "input.h"
#include "hashtab.h"
#include "tree-vectorizer.h"
#include "tree-pass.h"
#include "langhooks.h"

/*************************************************************************
  General Vectorization Utilities
 *************************************************************************/

/* vect_dump will be set to stderr or dump_file if exist.  */
FILE *vect_dump;

/* vect_verbosity_level set to an invalid value 
   to mark that it's uninitialized.  */
enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;

/* Loop location.  */
static LOC vect_loop_location;

/* Bitmap of virtual variables to be renamed.  */
bitmap vect_memsyms_to_rename;

/* Vector mapping GIMPLE stmt to stmt_vec_info. */
VEC(vec_void_p,heap) *stmt_vec_info_vec;


/*************************************************************************
  Simple Loop Peeling Utilities

  Utilities to support loop peeling for vectorization purposes.
 *************************************************************************/


/* Renames the use *OP_P.  */

static void
rename_use_op (use_operand_p op_p)
{
  tree new_name;

  if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
    return;

  new_name = get_current_def (USE_FROM_PTR (op_p));

  /* Something defined outside of the loop.  */
  if (!new_name)
    return;

  /* An ordinary ssa name defined in the loop.  */

  SET_USE (op_p, new_name);
}


/* Renames the variables in basic block BB.  */

void
rename_variables_in_bb (basic_block bb)
{
  gimple_stmt_iterator gsi;
  gimple stmt;
  use_operand_p use_p;
  ssa_op_iter iter;
  edge e;
  edge_iterator ei;
  struct loop *loop = bb->loop_father;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);
      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
	rename_use_op (use_p);
    }

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      if (!flow_bb_inside_loop_p (loop, e->dest))
	continue;
      for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
        rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
    }
}


/* Renames variables in new generated LOOP.  */

void
rename_variables_in_loop (struct loop *loop)
{
  unsigned i;
  basic_block *bbs;

  bbs = get_loop_body (loop);

  for (i = 0; i < loop->num_nodes; i++)
    rename_variables_in_bb (bbs[i]);

  free (bbs);
}


/* Update the PHI nodes of NEW_LOOP.

   NEW_LOOP is a duplicate of ORIG_LOOP.
   AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
   AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
   executes before it.  */

static void
slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
				       struct loop *new_loop, bool after)
{
  tree new_ssa_name;
  gimple phi_new, phi_orig;
  tree def;
  edge orig_loop_latch = loop_latch_edge (orig_loop);
  edge orig_entry_e = loop_preheader_edge (orig_loop);
  edge new_loop_exit_e = single_exit (new_loop);
  edge new_loop_entry_e = loop_preheader_edge (new_loop);
  edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
  gimple_stmt_iterator gsi_new, gsi_orig;

  /*
     step 1. For each loop-header-phi:
             Add the first phi argument for the phi in NEW_LOOP
            (the one associated with the entry of NEW_LOOP)

     step 2. For each loop-header-phi:
             Add the second phi argument for the phi in NEW_LOOP
            (the one associated with the latch of NEW_LOOP)

     step 3. Update the phis in the successor block of NEW_LOOP.

        case 1: NEW_LOOP was placed before ORIG_LOOP:
                The successor block of NEW_LOOP is the header of ORIG_LOOP.
                Updating the phis in the successor block can therefore be done
                along with the scanning of the loop header phis, because the
                header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
                phi nodes, organized in the same order.

        case 2: NEW_LOOP was placed after ORIG_LOOP:
                The successor block of NEW_LOOP is the original exit block of 
                ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
                We postpone updating these phis to a later stage (when
                loop guards are added).
   */


  /* Scan the phis in the headers of the old and new loops
     (they are organized in exactly the same order).  */

  for (gsi_new = gsi_start_phis (new_loop->header),
       gsi_orig = gsi_start_phis (orig_loop->header);
       !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
       gsi_next (&gsi_new), gsi_next (&gsi_orig))
    {
      source_location locus;
      phi_new = gsi_stmt (gsi_new);
      phi_orig = gsi_stmt (gsi_orig);

      /* step 1.  */
      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
      locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
      add_phi_arg (phi_new, def, new_loop_entry_e, locus);

      /* step 2.  */
      def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
      locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
      if (TREE_CODE (def) != SSA_NAME)
        continue;

      new_ssa_name = get_current_def (def);
      if (!new_ssa_name)
	{
	  /* This only happens if there are no definitions
	     inside the loop. use the phi_result in this case.  */
	  new_ssa_name = PHI_RESULT (phi_new);
	}

      /* An ordinary ssa name defined in the loop.  */
      add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);

      /* step 3 (case 1).  */
      if (!after)
        {
          gcc_assert (new_loop_exit_e == orig_entry_e);
          SET_PHI_ARG_DEF (phi_orig,
                           new_loop_exit_e->dest_idx,
                           new_ssa_name);
        }
    }
}


/* Update PHI nodes for a guard of the LOOP.

   Input:
   - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
        controls whether LOOP is to be executed.  GUARD_EDGE is the edge that
        originates from the guard-bb, skips LOOP and reaches the (unique) exit
        bb of LOOP.  This loop-exit-bb is an empty bb with one successor.
        We denote this bb NEW_MERGE_BB because before the guard code was added
        it had a single predecessor (the LOOP header), and now it became a merge
        point of two paths - the path that ends with the LOOP exit-edge, and
        the path that ends with GUARD_EDGE.
   - NEW_EXIT_BB: New basic block that is added by this function between LOOP
        and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.

   ===> The CFG before the guard-code was added:
        LOOP_header_bb:
          loop_body
          if (exit_loop) goto update_bb
          else           goto LOOP_header_bb
        update_bb:

   ==> The CFG after the guard-code was added:
        guard_bb:
          if (LOOP_guard_condition) goto new_merge_bb
          else                      goto LOOP_header_bb
        LOOP_header_bb:
          loop_body
          if (exit_loop_condition) goto new_merge_bb
          else                     goto LOOP_header_bb
        new_merge_bb:
          goto update_bb
        update_bb:

   ==> The CFG after this function:
        guard_bb:
          if (LOOP_guard_condition) goto new_merge_bb
          else                      goto LOOP_header_bb
        LOOP_header_bb:
          loop_body
          if (exit_loop_condition) goto new_exit_bb
          else                     goto LOOP_header_bb
        new_exit_bb:
        new_merge_bb:
          goto update_bb
        update_bb:

   This function:
   1. creates and updates the relevant phi nodes to account for the new
      incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
      1.1. Create phi nodes at NEW_MERGE_BB.
      1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
           UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
   2. preserves loop-closed-ssa-form by creating the required phi nodes
      at the exit of LOOP (i.e, in NEW_EXIT_BB).

   There are two flavors to this function:

   slpeel_update_phi_nodes_for_guard1:
     Here the guard controls whether we enter or skip LOOP, where LOOP is a
     prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
     for variables that have phis in the loop header.

   slpeel_update_phi_nodes_for_guard2:
     Here the guard controls whether we enter or skip LOOP, where LOOP is an
     epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
     for variables that have phis in the loop exit.

   I.E., the overall structure is:

        loop1_preheader_bb:
                guard1 (goto loop1/merge1_bb)
        loop1
        loop1_exit_bb:
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
        loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
   loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
   that have phis in loop1->header).

   slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
   loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
   that have phis in next_bb). It also adds some of these phis to
   loop1_exit_bb.

   slpeel_update_phi_nodes_for_guard1 is always called before
   slpeel_update_phi_nodes_for_guard2. They are both needed in order
   to create correct data-flow and loop-closed-ssa-form.

   Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
   that change between iterations of a loop (and therefore have a phi-node
   at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
   phis for variables that are used out of the loop (and therefore have 
   loop-closed exit phis). Some variables may be both updated between 
   iterations and used after the loop. This is why in loop1_exit_bb we
   may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
   and exit phis (created by slpeel_update_phi_nodes_for_guard2).

   - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
     an original loop. i.e., we have:

           orig_loop
           guard_bb (goto LOOP/new_merge)
           new_loop <-- LOOP
           new_exit
           new_merge
           next_bb

     If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
     have:

           new_loop
           guard_bb (goto LOOP/new_merge)
           orig_loop <-- LOOP
           new_exit
           new_merge
           next_bb

     The SSA names defined in the original loop have a current
     reaching definition that that records the corresponding new
     ssa-name used in the new duplicated loop copy.
  */

/* Function slpeel_update_phi_nodes_for_guard1
   
   Input:
   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
   - DEFS - a bitmap of ssa names to mark new names for which we recorded
            information. 
   
   In the context of the overall structure, we have:

        loop1_preheader_bb: 
                guard1 (goto loop1/merge1_bb)
LOOP->  loop1
        loop1_exit_bb:
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
        loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   For each name updated between loop iterations (i.e - for each name that has
   an entry (loop-header) phi in LOOP) we create a new phi in:
   1. merge1_bb (to account for the edge from guard1)
   2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
*/

static void
slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
                                    bool is_new_loop, basic_block *new_exit_bb,
                                    bitmap *defs)
{
  gimple orig_phi, new_phi;
  gimple update_phi, update_phi2;
  tree guard_arg, loop_arg;
  basic_block new_merge_bb = guard_edge->dest;
  edge e = EDGE_SUCC (new_merge_bb, 0);
  basic_block update_bb = e->dest;
  basic_block orig_bb = loop->header;
  edge new_exit_e;
  tree current_new_name;
  tree name;
  gimple_stmt_iterator gsi_orig, gsi_update;

  /* Create new bb between loop and new_merge_bb.  */
  *new_exit_bb = split_edge (single_exit (loop));

  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);

  for (gsi_orig = gsi_start_phis (orig_bb),
       gsi_update = gsi_start_phis (update_bb);
       !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
       gsi_next (&gsi_orig), gsi_next (&gsi_update))
    {
      source_location loop_locus, guard_locus;
      orig_phi = gsi_stmt (gsi_orig);
      update_phi = gsi_stmt (gsi_update);

      /* Virtual phi; Mark it for renaming. We actually want to call
	 mar_sym_for_renaming, but since all ssa renaming datastructures
	 are going to be freed before we get to call ssa_update, we just
	 record this name for now in a bitmap, and will mark it for
	 renaming later.  */
      name = PHI_RESULT (orig_phi);
      if (!is_gimple_reg (SSA_NAME_VAR (name)))
        bitmap_set_bit (vect_memsyms_to_rename, DECL_UID (SSA_NAME_VAR (name)));

      /** 1. Handle new-merge-point phis  **/

      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 new_merge_bb);

      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
            of LOOP. Set the two phi args in NEW_PHI for these edges:  */
      loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
      loop_locus = gimple_phi_arg_location_from_edge (orig_phi, 
						      EDGE_SUCC (loop->latch, 
								 0));
      guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
      guard_locus 
	= gimple_phi_arg_location_from_edge (orig_phi, 
					     loop_preheader_edge (loop));

      add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
      add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);

      /* 1.3. Update phi in successor block.  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
                  || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
      update_phi2 = new_phi;


      /** 2. Handle loop-closed-ssa-form phis  **/

      if (!is_gimple_reg (PHI_RESULT (orig_phi)))
	continue;

      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 *new_exit_bb);

      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
      add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);

      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));

      /* 2.4. Record the newly created name with set_current_def.
         We want to find a name such that
                name = get_current_def (orig_loop_name)
         and to set its current definition as follows:
                set_current_def (name, new_phi_name)

         If LOOP is a new loop then loop_arg is already the name we're
         looking for. If LOOP is the original loop, then loop_arg is
         the orig_loop_name and the relevant name is recorded in its
         current reaching definition.  */
      if (is_new_loop)
        current_new_name = loop_arg;
      else
        {
          current_new_name = get_current_def (loop_arg);
	  /* current_def is not available only if the variable does not
	     change inside the loop, in which case we also don't care
	     about recording a current_def for it because we won't be
	     trying to create loop-exit-phis for it.  */
	  if (!current_new_name)
	    continue;
        }
      gcc_assert (get_current_def (current_new_name) == NULL_TREE);

      set_current_def (current_new_name, PHI_RESULT (new_phi));
      bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
    }
}


/* Function slpeel_update_phi_nodes_for_guard2

   Input:
   - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.

   In the context of the overall structure, we have:

        loop1_preheader_bb: 
                guard1 (goto loop1/merge1_bb)
        loop1
        loop1_exit_bb: 
                guard2 (goto merge1_bb/merge2_bb)
        merge1_bb
LOOP->  loop2
        loop2_exit_bb
        merge2_bb
        next_bb

   For each name used out side the loop (i.e - for each name that has an exit
   phi in next_bb) we create a new phi in:
   1. merge2_bb (to account for the edge from guard_bb) 
   2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
   3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
      if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
*/

static void
slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
                                    bool is_new_loop, basic_block *new_exit_bb)
{
  gimple orig_phi, new_phi;
  gimple update_phi, update_phi2;
  tree guard_arg, loop_arg;
  basic_block new_merge_bb = guard_edge->dest;
  edge e = EDGE_SUCC (new_merge_bb, 0);
  basic_block update_bb = e->dest;
  edge new_exit_e;
  tree orig_def, orig_def_new_name;
  tree new_name, new_name2;
  tree arg;
  gimple_stmt_iterator gsi;

  /* Create new bb between loop and new_merge_bb.  */
  *new_exit_bb = split_edge (single_exit (loop));

  new_exit_e = EDGE_SUCC (*new_exit_bb, 0);

  for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      update_phi = gsi_stmt (gsi);
      orig_phi = update_phi;
      orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
      /* This loop-closed-phi actually doesn't represent a use
         out of the loop - the phi arg is a constant.  */ 
      if (TREE_CODE (orig_def) != SSA_NAME)
        continue;
      orig_def_new_name = get_current_def (orig_def);
      arg = NULL_TREE;

      /** 1. Handle new-merge-point phis  **/

      /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 new_merge_bb);

      /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
            of LOOP. Set the two PHI args in NEW_PHI for these edges:  */
      new_name = orig_def;
      new_name2 = NULL_TREE;
      if (orig_def_new_name)
        {
          new_name = orig_def_new_name;
	  /* Some variables have both loop-entry-phis and loop-exit-phis.
	     Such variables were given yet newer names by phis placed in
	     guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
	     new_name2 = get_current_def (get_current_def (orig_name)).  */
          new_name2 = get_current_def (new_name);
        }
  
      if (is_new_loop)
        {
          guard_arg = orig_def;
          loop_arg = new_name;
        }
      else
        {
          guard_arg = new_name;
          loop_arg = orig_def;
        }
      if (new_name2)
        guard_arg = new_name2;
  
      add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
      add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);

      /* 1.3. Update phi in successor block.  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
      SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
      update_phi2 = new_phi;


      /** 2. Handle loop-closed-ssa-form phis  **/

      /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 *new_exit_bb);

      /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
      add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);

      /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
      SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));


      /** 3. Handle loop-closed-ssa-form phis for first loop  **/

      /* 3.1. Find the relevant names that need an exit-phi in
	 GUARD_BB, i.e. names for which
	 slpeel_update_phi_nodes_for_guard1 had not already created a
	 phi node. This is the case for names that are used outside
	 the loop (and therefore need an exit phi) but are not updated
	 across loop iterations (and therefore don't have a
	 loop-header-phi).

	 slpeel_update_phi_nodes_for_guard1 is responsible for
	 creating loop-exit phis in GUARD_BB for names that have a
	 loop-header-phi.  When such a phi is created we also record
	 the new name in its current definition.  If this new name
	 exists, then guard_arg was set to this new name (see 1.2
	 above).  Therefore, if guard_arg is not this new name, this
	 is an indication that an exit-phi in GUARD_BB was not yet
	 created, so we take care of it here.  */
      if (guard_arg == new_name2)
	continue;
      arg = guard_arg;

      /* 3.2. Generate new phi node in GUARD_BB:  */
      new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
                                 guard_edge->src);

      /* 3.3. GUARD_BB has one incoming edge:  */
      gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
      add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
      		   UNKNOWN_LOCATION);

      /* 3.4. Update phi in successor of GUARD_BB:  */
      gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
                                                                == guard_arg);
      SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
    }
}


/* Make the LOOP iterate NITERS times. This is done by adding a new IV
   that starts at zero, increases by one and its limit is NITERS.

   Assumption: the exit-condition of LOOP is the last stmt in the loop.  */

void
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
{
  tree indx_before_incr, indx_after_incr;
  gimple cond_stmt;
  gimple orig_cond;
  edge exit_edge = single_exit (loop);
  gimple_stmt_iterator loop_cond_gsi;
  gimple_stmt_iterator incr_gsi;
  bool insert_after;
  tree init = build_int_cst (TREE_TYPE (niters), 0);
  tree step = build_int_cst (TREE_TYPE (niters), 1);
  LOC loop_loc;
  enum tree_code code;

  orig_cond = get_loop_exit_condition (loop);
  gcc_assert (orig_cond);
  loop_cond_gsi = gsi_for_stmt (orig_cond);

  standard_iv_increment_position (loop, &incr_gsi, &insert_after);
  create_iv (init, step, NULL_TREE, loop,
             &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);

  indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
					      true, NULL_TREE, true,
					      GSI_SAME_STMT);
  niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
				     true, GSI_SAME_STMT);

  code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
  cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
				 NULL_TREE);

  gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);

  /* Remove old loop exit test:  */
  gsi_remove (&loop_cond_gsi, true);

  loop_loc = find_loop_location (loop);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      if (loop_loc != UNKNOWN_LOC)
        fprintf (dump_file, "\nloop at %s:%d: ",
                 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
      print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
    }

  loop->nb_iterations = niters;
}


/* Given LOOP this function generates a new copy of it and puts it 
   on E which is either the entry or exit of LOOP.  */

struct loop *
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
{
  struct loop *new_loop;
  basic_block *new_bbs, *bbs;
  bool at_exit;
  bool was_imm_dom;
  basic_block exit_dest; 
  gimple phi;
  tree phi_arg;
  edge exit, new_exit;
  gimple_stmt_iterator gsi;

  at_exit = (e == single_exit (loop)); 
  if (!at_exit && e != loop_preheader_edge (loop))
    return NULL;

  bbs = get_loop_body (loop);

  /* Check whether duplication is possible.  */
  if (!can_copy_bbs_p (bbs, loop->num_nodes))
    {
      free (bbs);
      return NULL;
    }

  /* Generate new loop structure.  */
  new_loop = duplicate_loop (loop, loop_outer (loop));
  if (!new_loop)
    {
      free (bbs);
      return NULL;
    }

  exit_dest = single_exit (loop)->dest;
  was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS, 
					  exit_dest) == loop->header ? 
		 true : false);

  new_bbs = XNEWVEC (basic_block, loop->num_nodes);

  exit = single_exit (loop);
  copy_bbs (bbs, loop->num_nodes, new_bbs,
	    &exit, 1, &new_exit, NULL,
	    e->src);

  /* Duplicating phi args at exit bbs as coming 
     also from exit of duplicated loop.  */
  for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      phi = gsi_stmt (gsi);
      phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
      if (phi_arg)
	{
	  edge new_loop_exit_edge;
	  source_location locus;

	  locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
	  if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
	  else
	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
  
	  add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
	}
    }    
   
  if (at_exit) /* Add the loop copy at exit.  */
    {
      redirect_edge_and_branch_force (e, new_loop->header);
      PENDING_STMT (e) = NULL;
      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
      if (was_imm_dom)
	set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
    }
  else /* Add the copy at entry.  */
    {
      edge new_exit_e;
      edge entry_e = loop_preheader_edge (loop);
      basic_block preheader = entry_e->src;
           
      if (!flow_bb_inside_loop_p (new_loop, 
				  EDGE_SUCC (new_loop->header, 0)->dest))
        new_exit_e = EDGE_SUCC (new_loop->header, 0);
      else
	new_exit_e = EDGE_SUCC (new_loop->header, 1); 

      redirect_edge_and_branch_force (new_exit_e, loop->header);
      PENDING_STMT (new_exit_e) = NULL;
      set_immediate_dominator (CDI_DOMINATORS, loop->header,
			       new_exit_e->src);

      /* We have to add phi args to the loop->header here as coming 
	 from new_exit_e edge.  */
      for (gsi = gsi_start_phis (loop->header);
           !gsi_end_p (gsi);
           gsi_next (&gsi))
	{
	  phi = gsi_stmt (gsi);
	  phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
	  if (phi_arg)
	    add_phi_arg (phi, phi_arg, new_exit_e,
			 gimple_phi_arg_location_from_edge (phi, entry_e));	
	}    

      redirect_edge_and_branch_force (entry_e, new_loop->header);
      PENDING_STMT (entry_e) = NULL;
      set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
    }

  free (new_bbs);
  free (bbs);

  return new_loop;
}


/* Given the condition statement COND, put it as the last statement
   of GUARD_BB; EXIT_BB is the basic block to skip the loop;
   Assumes that this is the single exit of the guarded loop.  
   Returns the skip edge.  */

static edge
slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
		       basic_block dom_bb)
{
  gimple_stmt_iterator gsi;
  edge new_e, enter_e;
  gimple cond_stmt;
  gimple_seq gimplify_stmt_list = NULL;

  enter_e = EDGE_SUCC (guard_bb, 0);
  enter_e->flags &= ~EDGE_FALLTHRU;
  enter_e->flags |= EDGE_FALSE_VALUE;
  gsi = gsi_last_bb (guard_bb);

  cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
  cond_stmt = gimple_build_cond (NE_EXPR,
				 cond, build_int_cst (TREE_TYPE (cond), 0),
				 NULL_TREE, NULL_TREE);
  if (gimplify_stmt_list)
    gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);

  gsi = gsi_last_bb (guard_bb);
  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);

  /* Add new edge to connect guard block to the merge/loop-exit block.  */
  new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
  set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
  return new_e;
}


/* This function verifies that the following restrictions apply to LOOP:
   (1) it is innermost
   (2) it consists of exactly 2 basic blocks - header, and an empty latch.
   (3) it is single entry, single exit
   (4) its exit condition is the last stmt in the header
   (5) E is the entry/exit edge of LOOP.
 */

bool
slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
{
  edge exit_e = single_exit (loop);
  edge entry_e = loop_preheader_edge (loop);
  gimple orig_cond = get_loop_exit_condition (loop);
  gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);

  if (need_ssa_update_p ())
    return false;

  if (loop->inner
      /* All loops have an outer scope; the only case loop->outer is NULL is for
         the function itself.  */
      || !loop_outer (loop)
      || loop->num_nodes != 2
      || !empty_block_p (loop->latch)
      || !single_exit (loop)
      /* Verify that new loop exit condition can be trivially modified.  */
      || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
      || (e != exit_e && e != entry_e))
    return false;

  return true;
}

#ifdef ENABLE_CHECKING
void
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
                                 struct loop *second_loop)
{
  basic_block loop1_exit_bb = single_exit (first_loop)->dest;
  basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
  basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;

  /* A guard that controls whether the second_loop is to be executed or skipped
     is placed in first_loop->exit.  first_loop->exit therefore has two
     successors - one is the preheader of second_loop, and the other is a bb
     after second_loop.
   */
  gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
   
  /* 1. Verify that one of the successors of first_loop->exit is the preheader
        of second_loop.  */
   
  /* The preheader of new_loop is expected to have two predecessors:
     first_loop->exit and the block that precedes first_loop.  */

  gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2 
              && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
                   && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
               || (EDGE_PRED (loop2_entry_bb, 1)->src ==  loop1_exit_bb
                   && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
  
  /* Verify that the other successor of first_loop->exit is after the
     second_loop.  */
  /* TODO */
}
#endif

/* If the run time cost model check determines that vectorization is
   not profitable and hence scalar loop should be generated then set
   FIRST_NITERS to prologue peeled iterations. This will allow all the
   iterations to be executed in the prologue peeled scalar loop.  */

void
set_prologue_iterations (basic_block bb_before_first_loop,
			 tree first_niters,
			 struct loop *loop,
			 unsigned int th)
{
  edge e;
  basic_block cond_bb, then_bb;
  tree var, prologue_after_cost_adjust_name;
  gimple_stmt_iterator gsi;
  gimple newphi;
  edge e_true, e_false, e_fallthru;
  gimple cond_stmt;
  gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
  tree cost_pre_condition = NULL_TREE;
  tree scalar_loop_iters = 
    unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));

  e = single_pred_edge (bb_before_first_loop);
  cond_bb = split_edge(e);

  e = single_pred_edge (bb_before_first_loop);
  then_bb = split_edge(e);
  set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);

  e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
				   EDGE_FALSE_VALUE);
  set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);

  e_true = EDGE_PRED (then_bb, 0);
  e_true->flags &= ~EDGE_FALLTHRU;
  e_true->flags |= EDGE_TRUE_VALUE;

  e_fallthru = EDGE_SUCC (then_bb, 0);

  cost_pre_condition =
    fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters, 
		 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
  cost_pre_condition =
    force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
			  true, NULL_TREE);
  cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
				 build_int_cst (TREE_TYPE (cost_pre_condition),
						0), NULL_TREE, NULL_TREE);

  gsi = gsi_last_bb (cond_bb);
  if (gimplify_stmt_list)
    gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);

  gsi = gsi_last_bb (cond_bb);
  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
					  
  var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
			"prologue_after_cost_adjust");
  add_referenced_var (var);
  prologue_after_cost_adjust_name = 
    force_gimple_operand (scalar_loop_iters, &stmts, false, var);

  gsi = gsi_last_bb (then_bb);
  if (stmts)
    gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);

  newphi = create_phi_node (var, bb_before_first_loop);
  add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
  	       UNKNOWN_LOCATION);
  add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);

  first_niters = PHI_RESULT (newphi);
}


/* Function slpeel_tree_peel_loop_to_edge.

   Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
   that is placed on the entry (exit) edge E of LOOP. After this transformation
   we have two loops one after the other - first-loop iterates FIRST_NITERS
   times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
   If the cost model indicates that it is profitable to emit a scalar 
   loop instead of the vector one, then the prolog (epilog) loop will iterate
   for the entire unchanged scalar iterations of the loop.

   Input:
   - LOOP: the loop to be peeled.
   - E: the exit or entry edge of LOOP.
        If it is the entry edge, we peel the first iterations of LOOP. In this
        case first-loop is LOOP, and second-loop is the newly created loop.
        If it is the exit edge, we peel the last iterations of LOOP. In this
        case, first-loop is the newly created loop, and second-loop is LOOP.
   - NITERS: the number of iterations that LOOP iterates.
   - FIRST_NITERS: the number of iterations that the first-loop should iterate.
   - UPDATE_FIRST_LOOP_COUNT:  specified whether this function is responsible
        for updating the loop bound of the first-loop to FIRST_NITERS.  If it
        is false, the caller of this function may want to take care of this
        (this can be useful if we don't want new stmts added to first-loop).
   - TH: cost model profitability threshold of iterations for vectorization.
   - CHECK_PROFITABILITY: specify whether cost model check has not occurred
                          during versioning and hence needs to occur during
			  prologue generation or whether cost model check 
			  has not occurred during prologue generation and hence
			  needs to occur during epilogue generation.
	    

   Output:
   The function returns a pointer to the new loop-copy, or NULL if it failed
   to perform the transformation.

   The function generates two if-then-else guards: one before the first loop,
   and the other before the second loop:
   The first guard is:
     if (FIRST_NITERS == 0) then skip the first loop,
     and go directly to the second loop.
   The second guard is:
     if (FIRST_NITERS == NITERS) then skip the second loop.

   FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
   FORNOW the resulting code will not be in loop-closed-ssa form.
*/

struct loop*
slpeel_tree_peel_loop_to_edge (struct loop *loop, 
			       edge e, tree first_niters, 
			       tree niters, bool update_first_loop_count,
			       unsigned int th, bool check_profitability)
{
  struct loop *new_loop = NULL, *first_loop, *second_loop;
  edge skip_e;
  tree pre_condition = NULL_TREE;
  bitmap definitions;
  basic_block bb_before_second_loop, bb_after_second_loop;
  basic_block bb_before_first_loop;
  basic_block bb_between_loops;
  basic_block new_exit_bb;
  edge exit_e = single_exit (loop);
  LOC loop_loc;
  tree cost_pre_condition = NULL_TREE;
  
  if (!slpeel_can_duplicate_loop_p (loop, e))
    return NULL;
  
  /* We have to initialize cfg_hooks. Then, when calling
   cfg_hooks->split_edge, the function tree_split_edge 
   is actually called and, when calling cfg_hooks->duplicate_block,
   the function tree_duplicate_bb is called.  */
  gimple_register_cfg_hooks ();


  /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
        Resulting CFG would be:

        first_loop:
        do {
        } while ...

        second_loop:
        do {
        } while ...

        orig_exit_bb:
   */
  
  if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
    {
      loop_loc = find_loop_location (loop);
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          if (loop_loc != UNKNOWN_LOC)
            fprintf (dump_file, "\n%s:%d: note: ",
                     LOC_FILE (loop_loc), LOC_LINE (loop_loc));
          fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
        }
      return NULL;
    }
  
  if (e == exit_e)
    {
      /* NEW_LOOP was placed after LOOP.  */
      first_loop = loop;
      second_loop = new_loop;
    }
  else
    {
      /* NEW_LOOP was placed before LOOP.  */
      first_loop = new_loop;
      second_loop = loop;
    }

  definitions = ssa_names_to_replace ();
  slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
  rename_variables_in_loop (new_loop);


  /* 2.  Add the guard code in one of the following ways:

     2.a Add the guard that controls whether the first loop is executed.
         This occurs when this function is invoked for prologue or epilogue
	 generation and when the cost model check can be done at compile time.

         Resulting CFG would be:

         bb_before_first_loop:
         if (FIRST_NITERS == 0) GOTO bb_before_second_loop
                                GOTO first-loop

         first_loop:
         do {
         } while ...

         bb_before_second_loop:

         second_loop:
         do {
         } while ...

         orig_exit_bb:

     2.b Add the cost model check that allows the prologue
         to iterate for the entire unchanged scalar
         iterations of the loop in the event that the cost
         model indicates that the scalar loop is more
         profitable than the vector one. This occurs when
	 this function is invoked for prologue generation
	 and the cost model check needs to be done at run
	 time.

         Resulting CFG after prologue peeling would be:

         if (scalar_loop_iterations <= th)
           FIRST_NITERS = scalar_loop_iterations

         bb_before_first_loop:
         if (FIRST_NITERS == 0) GOTO bb_before_second_loop
                                GOTO first-loop

         first_loop:
         do {
         } while ...

         bb_before_second_loop:

         second_loop:
         do {
         } while ...

         orig_exit_bb:

     2.c Add the cost model check that allows the epilogue
         to iterate for the entire unchanged scalar
         iterations of the loop in the event that the cost
         model indicates that the scalar loop is more
         profitable than the vector one. This occurs when
	 this function is invoked for epilogue generation
	 and the cost model check needs to be done at run
	 time.

         Resulting CFG after prologue peeling would be:

         bb_before_first_loop:
         if ((scalar_loop_iterations <= th)
             ||
             FIRST_NITERS == 0) GOTO bb_before_second_loop
                                GOTO first-loop

         first_loop:
         do {
         } while ...

         bb_before_second_loop:

         second_loop:
         do {
         } while ...

         orig_exit_bb:
  */

  bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
  bb_before_second_loop = split_edge (single_exit (first_loop));

  /* Epilogue peeling.  */
  if (!update_first_loop_count)
    {
      pre_condition =
	fold_build2 (LE_EXPR, boolean_type_node, first_niters, 
		     build_int_cst (TREE_TYPE (first_niters), 0));
      if (check_profitability)
	{
	  tree scalar_loop_iters
	    = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
					(loop_vec_info_for_loop (loop)));
	  cost_pre_condition = 
	    fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters, 
			 build_int_cst (TREE_TYPE (scalar_loop_iters), th));

	  pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
				       cost_pre_condition, pre_condition);
	}
    }

  /* Prologue peeling.  */  
  else
    {
      if (check_profitability)
	set_prologue_iterations (bb_before_first_loop, first_niters,
				 loop, th);

      pre_condition =
	fold_build2 (LE_EXPR, boolean_type_node, first_niters, 
		     build_int_cst (TREE_TYPE (first_niters), 0));
    }

  skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
                                  bb_before_second_loop, bb_before_first_loop);
  slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
				      first_loop == new_loop,
				      &new_exit_bb, &definitions);


  /* 3. Add the guard that controls whether the second loop is executed.
        Resulting CFG would be:

        bb_before_first_loop:
        if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
                               GOTO first-loop

        first_loop:
        do {
        } while ...

        bb_between_loops:
        if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
                                    GOTO bb_before_second_loop

        bb_before_second_loop:

        second_loop:
        do {
        } while ...

        bb_after_second_loop:

        orig_exit_bb:
   */

  bb_between_loops = new_exit_bb;
  bb_after_second_loop = split_edge (single_exit (second_loop));

  pre_condition = 
	fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
  skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
                                  bb_after_second_loop, bb_before_first_loop);
  slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
                                     second_loop == new_loop, &new_exit_bb);

  /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
   */
  if (update_first_loop_count)
    slpeel_make_loop_iterate_ntimes (first_loop, first_niters);

  BITMAP_FREE (definitions);
  delete_update_ssa ();

  return new_loop;
}

/* Function vect_get_loop_location.

   Extract the location of the loop in the source code.
   If the loop is not well formed for vectorization, an estimated
   location is calculated.
   Return the loop location if succeed and NULL if not.  */

LOC
find_loop_location (struct loop *loop)
{
  gimple stmt = NULL;
  basic_block bb;
  gimple_stmt_iterator si;

  if (!loop)
    return UNKNOWN_LOC;

  stmt = get_loop_exit_condition (loop);

  if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
    return gimple_location (stmt);

  /* If we got here the loop is probably not "well formed",
     try to estimate the loop location */

  if (!loop->header)
    return UNKNOWN_LOC;

  bb = loop->header;

  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
    {
      stmt = gsi_stmt (si);
      if (gimple_location (stmt) != UNKNOWN_LOC)
        return gimple_location (stmt);
    }

  return UNKNOWN_LOC;
}


/*************************************************************************
  Vectorization Debug Information.
 *************************************************************************/

/* Function vect_set_verbosity_level.

   Called from toplev.c upon detection of the
   -ftree-vectorizer-verbose=N option.  */

void
vect_set_verbosity_level (const char *val)
{
   unsigned int vl;

   vl = atoi (val);
   if (vl < MAX_VERBOSITY_LEVEL)
     vect_verbosity_level = vl;
   else
     vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
}


/* Function vect_set_dump_settings.

   Fix the verbosity level of the vectorizer if the
   requested level was not set explicitly using the flag
   -ftree-vectorizer-verbose=N.
   Decide where to print the debugging information (dump_file/stderr).
   If the user defined the verbosity level, but there is no dump file,
   print to stderr, otherwise print to the dump file.  */

static void
vect_set_dump_settings (void)
{
  vect_dump = dump_file;

  /* Check if the verbosity level was defined by the user:  */
  if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
    {
      /* If there is no dump file, print to stderr.  */
      if (!dump_file)
        vect_dump = stderr;
      return;
    }

  /* User didn't specify verbosity level:  */
  if (dump_file && (dump_flags & TDF_DETAILS))
    vect_verbosity_level = REPORT_DETAILS;
  else if (dump_file && (dump_flags & TDF_STATS))
    vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
  else
    vect_verbosity_level = REPORT_NONE;

  gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
}


/* Function debug_loop_details.

   For vectorization debug dumps.  */

bool
vect_print_dump_info (enum verbosity_levels vl)
{
  if (vl > vect_verbosity_level)
    return false;

  if (!current_function_decl || !vect_dump)
    return false;

  if (vect_loop_location == UNKNOWN_LOC)
    fprintf (vect_dump, "\n%s:%d: note: ",
	     DECL_SOURCE_FILE (current_function_decl),
	     DECL_SOURCE_LINE (current_function_decl));
  else
    fprintf (vect_dump, "\n%s:%d: note: ", 
	     LOC_FILE (vect_loop_location), LOC_LINE (vect_loop_location));

  return true;
}


/*************************************************************************
  Vectorization Utilities.
 *************************************************************************/

/* Function new_stmt_vec_info.

   Create and initialize a new stmt_vec_info struct for STMT.  */

stmt_vec_info
new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo)
{
  stmt_vec_info res;
  res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));

  STMT_VINFO_TYPE (res) = undef_vec_info_type;
  STMT_VINFO_STMT (res) = stmt;
  STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
  STMT_VINFO_RELEVANT (res) = 0;
  STMT_VINFO_LIVE_P (res) = false;
  STMT_VINFO_VECTYPE (res) = NULL;
  STMT_VINFO_VEC_STMT (res) = NULL;
  STMT_VINFO_IN_PATTERN_P (res) = false;
  STMT_VINFO_RELATED_STMT (res) = NULL;
  STMT_VINFO_DATA_REF (res) = NULL;

  STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
  STMT_VINFO_DR_OFFSET (res) = NULL;
  STMT_VINFO_DR_INIT (res) = NULL;
  STMT_VINFO_DR_STEP (res) = NULL;
  STMT_VINFO_DR_ALIGNED_TO (res) = NULL;

  if (gimple_code (stmt) == GIMPLE_PHI
      && is_loop_header_bb_p (gimple_bb (stmt)))
    STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
  else
    STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
  STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
  STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
  STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
  STMT_SLP_TYPE (res) = 0;
  DR_GROUP_FIRST_DR (res) = NULL;
  DR_GROUP_NEXT_DR (res) = NULL;
  DR_GROUP_SIZE (res) = 0;
  DR_GROUP_STORE_COUNT (res) = 0;
  DR_GROUP_GAP (res) = 0;
  DR_GROUP_SAME_DR_STMT (res) = NULL;
  DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;

  return res;
}

/* Create a hash table for stmt_vec_info. */

void
init_stmt_vec_info_vec (void)
{
  gcc_assert (!stmt_vec_info_vec);
  stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
}

/* Free hash table for stmt_vec_info. */

void
free_stmt_vec_info_vec (void)
{
  gcc_assert (stmt_vec_info_vec);
  VEC_free (vec_void_p, heap, stmt_vec_info_vec);
}

/* Free stmt vectorization related info.  */

void
free_stmt_vec_info (gimple stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);

  if (!stmt_info)
    return;

  VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
  set_vinfo_for_stmt (stmt, NULL);
  free (stmt_info);
}


/* Function bb_in_loop_p

   Used as predicate for dfs order traversal of the loop bbs.  */

static bool
bb_in_loop_p (const_basic_block bb, const void *data)
{
  const struct loop *const loop = (const struct loop *)data;
  if (flow_bb_inside_loop_p (loop, bb))
    return true;
  return false;
}


/* Function new_loop_vec_info.

   Create and initialize a new loop_vec_info struct for LOOP, as well as
   stmt_vec_info structs for all the stmts in LOOP.  */

loop_vec_info
new_loop_vec_info (struct loop *loop)
{
  loop_vec_info res;
  basic_block *bbs;
  gimple_stmt_iterator si;
  unsigned int i, nbbs;

  res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
  LOOP_VINFO_LOOP (res) = loop;

  bbs = get_loop_body (loop);

  /* Create/Update stmt_info for all stmts in the loop.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];

      /* BBs in a nested inner-loop will have been already processed (because 
	 we will have called vect_analyze_loop_form for any nested inner-loop).
	 Therefore, for stmts in an inner-loop we just want to update the 
	 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new 
	 loop_info of the outer-loop we are currently considering to vectorize 
	 (instead of the loop_info of the inner-loop).
	 For stmts in other BBs we need to create a stmt_info from scratch.  */
      if (bb->loop_father != loop)
	{
	  /* Inner-loop bb.  */
	  gcc_assert (loop->inner && bb->loop_father == loop->inner);
	  for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	    {
	      gimple phi = gsi_stmt (si);
	      stmt_vec_info stmt_info = vinfo_for_stmt (phi);
	      loop_vec_info inner_loop_vinfo =
		STMT_VINFO_LOOP_VINFO (stmt_info);
	      gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
	      STMT_VINFO_LOOP_VINFO (stmt_info) = res;
	    }
	  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	   {
	      gimple stmt = gsi_stmt (si);
	      stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	      loop_vec_info inner_loop_vinfo =
		 STMT_VINFO_LOOP_VINFO (stmt_info);
	      gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
	      STMT_VINFO_LOOP_VINFO (stmt_info) = res;
	   }
	}
      else
	{
	  /* bb in current nest.  */
	  for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	    {
	      gimple phi = gsi_stmt (si);
	      gimple_set_uid (phi, 0);
	      set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
	    }

	  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	    {
	      gimple stmt = gsi_stmt (si);
	      gimple_set_uid (stmt, 0);
	      set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
	    }
	}
    }

  /* CHECKME: We want to visit all BBs before their successors (except for 
     latch blocks, for which this assertion wouldn't hold).  In the simple 
     case of the loop forms we allow, a dfs order of the BBs would the same 
     as reversed postorder traversal, so we are safe.  */

   free (bbs);
   bbs = XCNEWVEC (basic_block, loop->num_nodes);
   nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p, 
			      bbs, loop->num_nodes, loop);
   gcc_assert (nbbs == loop->num_nodes);

  LOOP_VINFO_BBS (res) = bbs;
  LOOP_VINFO_NITERS (res) = NULL;
  LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
  LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
  LOOP_VINFO_VECTORIZABLE_P (res) = 0;
  LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
  LOOP_VINFO_VECT_FACTOR (res) = 0;
  LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
  LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
  LOOP_VINFO_UNALIGNED_DR (res) = NULL;
  LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
    VEC_alloc (gimple, heap,
	       PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
  LOOP_VINFO_MAY_ALIAS_DDRS (res) =
    VEC_alloc (ddr_p, heap,
	       PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
  LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
  LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
  LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;

  return res;
}


/* Function destroy_loop_vec_info.
 
   Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the 
   stmts in the loop.  */

void
destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
{
  struct loop *loop;
  basic_block *bbs;
  int nbbs;
  gimple_stmt_iterator si;
  int j;
  VEC (slp_instance, heap) *slp_instances;
  slp_instance instance;

  if (!loop_vinfo)
    return;

  loop = LOOP_VINFO_LOOP (loop_vinfo);

  bbs = LOOP_VINFO_BBS (loop_vinfo);
  nbbs = loop->num_nodes;

  if (!clean_stmts)
    {
      free (LOOP_VINFO_BBS (loop_vinfo));
      free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
      free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
      VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));

      free (loop_vinfo);
      loop->aux = NULL;
      return;
    }

  for (j = 0; j < nbbs; j++)
    {
      basic_block bb = bbs[j];

      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
        free_stmt_vec_info (gsi_stmt (si));

      for (si = gsi_start_bb (bb); !gsi_end_p (si); )
	{
	  gimple stmt = gsi_stmt (si);
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);

	  if (stmt_info)
	    {
	      /* Check if this is a "pattern stmt" (introduced by the 
		 vectorizer during the pattern recognition pass).  */
	      bool remove_stmt_p = false;
	      gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
	      if (orig_stmt)
		{
		  stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
		  if (orig_stmt_info
		      && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
		    remove_stmt_p = true; 
		}
			
	      /* Free stmt_vec_info.  */
	      free_stmt_vec_info (stmt);

	      /* Remove dead "pattern stmts".  */
	      if (remove_stmt_p)
	        gsi_remove (&si, true);
	    }
	  gsi_next (&si);
	}
    }

  free (LOOP_VINFO_BBS (loop_vinfo));
  free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
  free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
  VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
  VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
  slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
  for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
    vect_free_slp_instance (instance);

  VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
  VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));

  free (loop_vinfo);
  loop->aux = NULL;
}


/* Function vect_force_dr_alignment_p.

   Returns whether the alignment of a DECL can be forced to be aligned
   on ALIGNMENT bit boundary.  */

bool 
vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
{
  if (TREE_CODE (decl) != VAR_DECL)
    return false;

  if (DECL_EXTERNAL (decl))
    return false;

  if (TREE_ASM_WRITTEN (decl))
    return false;

  if (TREE_STATIC (decl))
    return (alignment <= MAX_OFILE_ALIGNMENT);
  else
    return (alignment <= MAX_STACK_ALIGNMENT);
}


/* Function get_vectype_for_scalar_type.

   Returns the vector type corresponding to SCALAR_TYPE as supported
   by the target.  */

tree
get_vectype_for_scalar_type (tree scalar_type)
{
  enum machine_mode inner_mode = TYPE_MODE (scalar_type);
  int nbytes = GET_MODE_SIZE (inner_mode);
  int nunits;
  tree vectype;

  if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode))
    return NULL_TREE;

  /* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD)
     is expected.  */
  nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes;

  vectype = build_vector_type (scalar_type, nunits);
  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "get vectype with %d units of type ", nunits);
      print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
    }

  if (!vectype)
    return NULL_TREE;

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "vectype: ");
      print_generic_expr (vect_dump, vectype, TDF_SLIM);
    }

  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
      && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "mode not supported by target.");
      return NULL_TREE;
    }

  return vectype;
}


/* Function vect_supportable_dr_alignment

   Return whether the data reference DR is supported with respect to its
   alignment.  */

enum dr_alignment_support
vect_supportable_dr_alignment (struct data_reference *dr)
{
  gimple stmt = DR_STMT (dr);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  enum machine_mode mode = (int) TYPE_MODE (vectype);
  struct loop *vect_loop = LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info));
  bool nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
  bool invariant_in_outerloop = false;

  if (aligned_access_p (dr))
    return dr_aligned;

  if (nested_in_vect_loop)
    {
      tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
      invariant_in_outerloop =
	(tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
    }

  /* Possibly unaligned access.  */

  /* We can choose between using the implicit realignment scheme (generating
     a misaligned_move stmt) and the explicit realignment scheme (generating
     aligned loads with a REALIGN_LOAD). There are two variants to the explicit
     realignment scheme: optimized, and unoptimized.
     We can optimize the realignment only if the step between consecutive
     vector loads is equal to the vector size.  Since the vector memory
     accesses advance in steps of VS (Vector Size) in the vectorized loop, it
     is guaranteed that the misalignment amount remains the same throughout the
     execution of the vectorized loop.  Therefore, we can create the
     "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
     at the loop preheader.

     However, in the case of outer-loop vectorization, when vectorizing a
     memory access in the inner-loop nested within the LOOP that is now being
     vectorized, while it is guaranteed that the misalignment of the
     vectorized memory access will remain the same in different outer-loop
     iterations, it is *not* guaranteed that is will remain the same throughout
     the execution of the inner-loop.  This is because the inner-loop advances
     with the original scalar step (and not in steps of VS).  If the inner-loop
     step happens to be a multiple of VS, then the misalignment remains fixed
     and we can use the optimized realignment scheme.  For example:

      for (i=0; i<N; i++)
        for (j=0; j<M; j++)
          s += a[i+j];

     When vectorizing the i-loop in the above example, the step between
     consecutive vector loads is 1, and so the misalignment does not remain
     fixed across the execution of the inner-loop, and the realignment cannot
     be optimized (as illustrated in the following pseudo vectorized loop):

      for (i=0; i<N; i+=4)
        for (j=0; j<M; j++){
          vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
                         // when j is {0,1,2,3,4,5,6,7,...} respectively.
                         // (assuming that we start from an aligned address).
          }

     We therefore have to use the unoptimized realignment scheme:

      for (i=0; i<N; i+=4)
          for (j=k; j<M; j+=4)
          vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
                           // that the misalignment of the initial address is
                           // 0).

     The loop can then be vectorized as follows:

      for (k=0; k<4; k++){
        rt = get_realignment_token (&vp[k]);
        for (i=0; i<N; i+=4){
          v1 = vp[i+k];
          for (j=k; j<M; j+=4){
            v2 = vp[i+j+VS-1];
            va = REALIGN_LOAD <v1,v2,rt>;
            vs += va;
            v1 = v2;
          }
        }
    } */

  if (DR_IS_READ (dr))
    {
      if (optab_handler (vec_realign_load_optab, mode)->insn_code != 
						   	     CODE_FOR_nothing
	  && (!targetm.vectorize.builtin_mask_for_load
	      || targetm.vectorize.builtin_mask_for_load ()))
	{
	  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
	  if (nested_in_vect_loop
	      && (TREE_INT_CST_LOW (DR_STEP (dr))
		  != GET_MODE_SIZE (TYPE_MODE (vectype))))
	    return dr_explicit_realign;
	  else
	    return dr_explicit_realign_optimized;
	}

      if (optab_handler (movmisalign_optab, mode)->insn_code != 
							     CODE_FOR_nothing)
	/* Can't software pipeline the loads, but can at least do them.  */
	return dr_unaligned_supported;
    }

  /* Unsupported.  */
  return dr_unaligned_unsupported;
}


/* Function vect_is_simple_use.

   Input:
   LOOP - the loop that is being vectorized.
   OPERAND - operand of a stmt in LOOP.
   DEF - the defining stmt in case OPERAND is an SSA_NAME.

   Returns whether a stmt with OPERAND can be vectorized.
   Supportable operands are constants, loop invariants, and operands that are
   defined by the current iteration of the loop. Unsupportable operands are 
   those that are defined by a previous iteration of the loop (as is the case
   in reduction/induction computations).  */

bool
vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, gimple *def_stmt,
		    tree *def, enum vect_def_type *dt)
{ 
  basic_block bb;
  stmt_vec_info stmt_vinfo;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);

  *def_stmt = NULL;
  *def = NULL_TREE;
  
  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "vect_is_simple_use: operand ");
      print_generic_expr (vect_dump, operand, TDF_SLIM);
    }
    
  if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
    {
      *dt = vect_constant_def;
      return true;
    }
  if (is_gimple_min_invariant (operand))
    {
      *def = operand;
      *dt = vect_invariant_def;
      return true;
    }

  if (TREE_CODE (operand) == PAREN_EXPR)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "non-associatable copy.");
      operand = TREE_OPERAND (operand, 0);
    }
  if (TREE_CODE (operand) != SSA_NAME)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "not ssa-name.");
      return false;
    }
    
  *def_stmt = SSA_NAME_DEF_STMT (operand);
  if (*def_stmt == NULL)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "no def_stmt.");
      return false;
    }

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "def_stmt: ");
      print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
    }

  /* empty stmt is expected only in case of a function argument.
     (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN).  */
  if (gimple_nop_p (*def_stmt))
    {
      *def = operand;
      *dt = vect_invariant_def;
      return true;
    }

  bb = gimple_bb (*def_stmt);
  if (!flow_bb_inside_loop_p (loop, bb))
    *dt = vect_invariant_def;
  else
    {
      stmt_vinfo = vinfo_for_stmt (*def_stmt);
      *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
    }

  if (*dt == vect_unknown_def_type)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Unsupported pattern.");
      return false;
    }

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "type of def: %d.",*dt);

  switch (gimple_code (*def_stmt))
    {
    case GIMPLE_PHI:
      *def = gimple_phi_result (*def_stmt);
      break;

    case GIMPLE_ASSIGN:
      *def = gimple_assign_lhs (*def_stmt);
      break;

    case GIMPLE_CALL:
      *def = gimple_call_lhs (*def_stmt);
      if (*def != NULL)
	break;
      /* FALLTHRU */
    default:
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "unsupported defining stmt: ");
      return false;
    }

  return true;
}


/* Function supportable_widening_operation

   Check whether an operation represented by the code CODE is a 
   widening operation that is supported by the target platform in 
   vector form (i.e., when operating on arguments of type VECTYPE).
    
   Widening operations we currently support are NOP (CONVERT), FLOAT
   and WIDEN_MULT.  This function checks if these operations are supported
   by the target platform either directly (via vector tree-codes), or via
   target builtins.

   Output:
   - CODE1 and CODE2 are codes of vector operations to be used when 
   vectorizing the operation, if available. 
   - DECL1 and DECL2 are decls of target builtin functions to be used
   when vectorizing the operation, if available. In this case,
   CODE1 and CODE2 are CALL_EXPR.  
   - MULTI_STEP_CVT determines the number of required intermediate steps in
   case of multi-step conversion (like char->short->int - in that case
   MULTI_STEP_CVT will be 1).
   - INTERM_TYPES contains the intermediate type required to perform the 
   widening operation (short in the above example).  */   

bool
supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype,
                                tree *decl1, tree *decl2,
                                enum tree_code *code1, enum tree_code *code2,
                                int *multi_step_cvt,
                                VEC (tree, heap) **interm_types)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
  bool ordered_p;
  enum machine_mode vec_mode;
  enum insn_code icode1 = 0, icode2 = 0;
  optab optab1, optab2;
  tree type = gimple_expr_type (stmt);
  tree wide_vectype = get_vectype_for_scalar_type (type);
  enum tree_code c1, c2;

  /* The result of a vectorized widening operation usually requires two vectors
     (because the widened results do not fit int one vector). The generated 
     vector results would normally be expected to be generated in the same 
     order as in the original scalar computation, i.e. if 8 results are
     generated in each vector iteration, they are to be organized as follows:
        vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8]. 

     However, in the special case that the result of the widening operation is 
     used in a reduction computation only, the order doesn't matter (because
     when vectorizing a reduction we change the order of the computation). 
     Some targets can take advantage of this and generate more efficient code.
     For example, targets like Altivec, that support widen_mult using a sequence
     of {mult_even,mult_odd} generate the following vectors:
        vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].

     When vectorizing outer-loops, we execute the inner-loop sequentially
     (each vectorized inner-loop iteration contributes to VF outer-loop 
     iterations in parallel). We therefore don't allow to change the order 
     of the computation in the inner-loop during outer-loop vectorization.  */

   if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
       && !nested_in_vect_loop_p (vect_loop, stmt))
     ordered_p = false;
   else
     ordered_p = true;

  if (!ordered_p
      && code == WIDEN_MULT_EXPR
      && targetm.vectorize.builtin_mul_widen_even
      && targetm.vectorize.builtin_mul_widen_even (vectype)
      && targetm.vectorize.builtin_mul_widen_odd
      && targetm.vectorize.builtin_mul_widen_odd (vectype))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Unordered widening operation detected.");

      *code1 = *code2 = CALL_EXPR;
      *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
      *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
      return true;
    }

  switch (code)
    {
    case WIDEN_MULT_EXPR:
      if (BYTES_BIG_ENDIAN)
        {
          c1 = VEC_WIDEN_MULT_HI_EXPR;
          c2 = VEC_WIDEN_MULT_LO_EXPR;
        }
      else
        {
          c2 = VEC_WIDEN_MULT_HI_EXPR;
          c1 = VEC_WIDEN_MULT_LO_EXPR;
        }
      break;

    CASE_CONVERT:
      if (BYTES_BIG_ENDIAN)
        {
          c1 = VEC_UNPACK_HI_EXPR;
          c2 = VEC_UNPACK_LO_EXPR;
        }
      else
        {
          c2 = VEC_UNPACK_HI_EXPR;
          c1 = VEC_UNPACK_LO_EXPR;
        }
      break;

    case FLOAT_EXPR:
      if (BYTES_BIG_ENDIAN)
        {
          c1 = VEC_UNPACK_FLOAT_HI_EXPR;
          c2 = VEC_UNPACK_FLOAT_LO_EXPR;
        }
      else
        {
          c2 = VEC_UNPACK_FLOAT_HI_EXPR;
          c1 = VEC_UNPACK_FLOAT_LO_EXPR;
        }
      break;

    case FIX_TRUNC_EXPR:
      /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
	 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
	 computing the operation.  */
      return false;

    default:
      gcc_unreachable ();
    }

  if (code == FIX_TRUNC_EXPR)
    {
      /* The signedness is determined from output operand.  */
      optab1 = optab_for_tree_code (c1, type, optab_default);
      optab2 = optab_for_tree_code (c2, type, optab_default);
    }
  else
    {
      optab1 = optab_for_tree_code (c1, vectype, optab_default);
      optab2 = optab_for_tree_code (c2, vectype, optab_default);
    }

  if (!optab1 || !optab2)
    return false;

  vec_mode = TYPE_MODE (vectype);
  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
       || (icode2 = optab_handler (optab2, vec_mode)->insn_code)
                                                       == CODE_FOR_nothing)
    return false;

  /* Check if it's a multi-step conversion that can be done using intermediate 
     types.  */
  if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
       || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
    {
      int i;
      tree prev_type = vectype, intermediate_type;
      enum machine_mode intermediate_mode, prev_mode = vec_mode;
      optab optab3, optab4;

      if (!CONVERT_EXPR_CODE_P (code))
        return false;
      
      *code1 = c1;
      *code2 = c2;
    
      /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
         intermediate  steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
         to get to NARROW_VECTYPE, and fail if we do not.  */
      *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
      for (i = 0; i < 3; i++)
        {
          intermediate_mode = insn_data[icode1].operand[0].mode;
          intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
                                                     TYPE_UNSIGNED (prev_type));
          optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
          optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);

          if (!optab3 || !optab4
              || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
                                                        == CODE_FOR_nothing
              || insn_data[icode1].operand[0].mode != intermediate_mode
              || (icode2 = optab2->handlers[(int) prev_mode].insn_code)
                                                        == CODE_FOR_nothing
              || insn_data[icode2].operand[0].mode != intermediate_mode
              || (icode1 = optab3->handlers[(int) intermediate_mode].insn_code) 
                                                        == CODE_FOR_nothing
              || (icode2 = optab4->handlers[(int) intermediate_mode].insn_code)
                                                        == CODE_FOR_nothing)
            return false;

          VEC_quick_push (tree, *interm_types, intermediate_type);
          (*multi_step_cvt)++;

          if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
              && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
            return true;

          prev_type = intermediate_type;
          prev_mode = intermediate_mode;
        }

       return false;
    }

  *code1 = c1;
  *code2 = c2;
  return true;
}


/* Function supportable_narrowing_operation

   Check whether an operation represented by the code CODE is a 
   narrowing operation that is supported by the target platform in 
   vector form (i.e., when operating on arguments of type VECTYPE).
    
   Narrowing operations we currently support are NOP (CONVERT) and
   FIX_TRUNC. This function checks if these operations are supported by
   the target platform directly via vector tree-codes.

   Output:
   - CODE1 is the code of a vector operation to be used when 
   vectorizing the operation, if available. 
   - MULTI_STEP_CVT determines the number of required intermediate steps in
   case of multi-step conversion (like int->short->char - in that case
   MULTI_STEP_CVT will be 1).
   - INTERM_TYPES contains the intermediate type required to perform the
   narrowing operation (short in the above example).   */ 

bool
supportable_narrowing_operation (enum tree_code code,
				 const_gimple stmt, tree vectype,
				 enum tree_code *code1, int *multi_step_cvt,
                                 VEC (tree, heap) **interm_types)
{
  enum machine_mode vec_mode;
  enum insn_code icode1;
  optab optab1, interm_optab;
  tree type = gimple_expr_type (stmt);
  tree narrow_vectype = get_vectype_for_scalar_type (type);
  enum tree_code c1;
  tree intermediate_type, prev_type;
  int i;

  switch (code)
    {
    CASE_CONVERT:
      c1 = VEC_PACK_TRUNC_EXPR;
      break;

    case FIX_TRUNC_EXPR:
      c1 = VEC_PACK_FIX_TRUNC_EXPR;
      break;

    case FLOAT_EXPR:
      /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
	 tree code and optabs used for computing the operation.  */
      return false;

    default:
      gcc_unreachable ();
    }

  if (code == FIX_TRUNC_EXPR)
    /* The signedness is determined from output operand.  */
    optab1 = optab_for_tree_code (c1, type, optab_default);
  else
    optab1 = optab_for_tree_code (c1, vectype, optab_default);

  if (!optab1)
    return false;

  vec_mode = TYPE_MODE (vectype);
  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) 
       == CODE_FOR_nothing)
    return false;

  /* Check if it's a multi-step conversion that can be done using intermediate
     types.  */
  if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
    {
      enum machine_mode intermediate_mode, prev_mode = vec_mode;

      *code1 = c1;
      prev_type = vectype;
      /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
         intermediate  steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
         to get to NARROW_VECTYPE, and fail if we do not.  */
      *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
      for (i = 0; i < 3; i++)
        {
          intermediate_mode = insn_data[icode1].operand[0].mode;
          intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
                                                     TYPE_UNSIGNED (prev_type));
          interm_optab = optab_for_tree_code (c1, intermediate_type, 
                                              optab_default);
          if (!interm_optab  
              || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
                                                        == CODE_FOR_nothing
              || insn_data[icode1].operand[0].mode != intermediate_mode
              || (icode1 
                  = interm_optab->handlers[(int) intermediate_mode].insn_code)
                 == CODE_FOR_nothing)
            return false;

          VEC_quick_push (tree, *interm_types, intermediate_type);
          (*multi_step_cvt)++;

          if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
            return true;

          prev_type = intermediate_type;
          prev_mode = intermediate_mode;
        }

      return false;
    }

  *code1 = c1;
  return true;
}


/* Function reduction_code_for_scalar_code

   Input:
   CODE - tree_code of a reduction operations.

   Output:
   REDUC_CODE - the corresponding tree-code to be used to reduce the
      vector of partial results into a single scalar result (which
      will also reside in a vector).

   Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise.  */

bool
reduction_code_for_scalar_code (enum tree_code code,
                                enum tree_code *reduc_code)
{
  switch (code)
  {
  case MAX_EXPR:
    *reduc_code = REDUC_MAX_EXPR;
    return true;

  case MIN_EXPR:
    *reduc_code = REDUC_MIN_EXPR;
    return true;

  case PLUS_EXPR:
    *reduc_code = REDUC_PLUS_EXPR;
    return true;

  default:
    return false;
  }
}

/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
   STMT is printed with a message MSG. */

static void
report_vect_op (gimple stmt, const char *msg)
{
  fprintf (vect_dump, "%s", msg);
  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
}

/* Function vect_is_simple_reduction

   Detect a cross-iteration def-use cycle that represents a simple
   reduction computation. We look for the following pattern:

   loop_header:
     a1 = phi < a0, a2 >
     a3 = ...
     a2 = operation (a3, a1)
  
   such that:
   1. operation is commutative and associative and it is safe to 
      change the order of the computation.
   2. no uses for a2 in the loop (a2 is used out of the loop)
   3. no uses of a1 in the loop besides the reduction operation.

   Condition 1 is tested here.
   Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.  */

gimple
vect_is_simple_reduction (loop_vec_info loop_info, gimple phi)
{
  struct loop *loop = (gimple_bb (phi))->loop_father;
  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
  edge latch_e = loop_latch_edge (loop);
  tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
  gimple def_stmt, def1, def2;
  enum tree_code code;
  tree op1, op2;
  tree type;
  int nloop_uses;
  tree name;
  imm_use_iterator imm_iter;
  use_operand_p use_p;

  gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop));

  name = PHI_RESULT (phi);
  nloop_uses = 0;
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
    {
      gimple use_stmt = USE_STMT (use_p);
      if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
	  && vinfo_for_stmt (use_stmt)
	  && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
        nloop_uses++;
      if (nloop_uses > 1)
        {
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "reduction used in loop.");
          return NULL;
        }
    }

  if (TREE_CODE (loop_arg) != SSA_NAME)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	{
	  fprintf (vect_dump, "reduction: not ssa_name: ");
	  print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
	}
      return NULL;
    }

  def_stmt = SSA_NAME_DEF_STMT (loop_arg);
  if (!def_stmt)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "reduction: no def_stmt.");
      return NULL;
    }

  if (!is_gimple_assign (def_stmt))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
      return NULL;
    }

  name = gimple_assign_lhs (def_stmt);
  nloop_uses = 0;
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
    {
      gimple use_stmt = USE_STMT (use_p);
      if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
	  && vinfo_for_stmt (use_stmt)
	  && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
	nloop_uses++;
      if (nloop_uses > 1)
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "reduction used in loop.");
	  return NULL;
	}
    }

  code = gimple_assign_rhs_code (def_stmt);

  if (!commutative_tree_code (code) || !associative_tree_code (code))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        report_vect_op (def_stmt, "reduction: not commutative/associative: ");
      return NULL;
    }

  if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, "reduction: not binary operation: ");
      return NULL;
    }

  op1 = gimple_assign_rhs1 (def_stmt);
  op2 = gimple_assign_rhs2 (def_stmt);
  if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
      return NULL;
    }

  /* Check that it's ok to change the order of the computation.  */
  type = TREE_TYPE (gimple_assign_lhs (def_stmt));
  if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
      || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "reduction: multiple types: operation type: ");
          print_generic_expr (vect_dump, type, TDF_SLIM);
          fprintf (vect_dump, ", operands types: ");
          print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
          fprintf (vect_dump, ",");
          print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
        }
      return NULL;
    }

  /* Generally, when vectorizing a reduction we change the order of the
     computation.  This may change the behavior of the program in some
     cases, so we need to check that this is ok.  One exception is when 
     vectorizing an outer-loop: the inner-loop is executed sequentially,
     and therefore vectorizing reductions in the inner-loop during
     outer-loop vectorization is safe.  */

  /* CHECKME: check for !flag_finite_math_only too?  */
  if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
      && !nested_in_vect_loop_p (vect_loop, def_stmt)) 
    {
      /* Changing the order of operations changes the semantics.  */
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
      return NULL;
    }
  else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
	   && !nested_in_vect_loop_p (vect_loop, def_stmt))
    {
      /* Changing the order of operations changes the semantics.  */
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
      return NULL;
    }
  else if (SAT_FIXED_POINT_TYPE_P (type))
    {
      /* Changing the order of operations changes the semantics.  */
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, 
			"reduction: unsafe fixed-point math optimization: ");
      return NULL;
    }

  /* reduction is safe. we're dealing with one of the following:
     1) integer arithmetic and no trapv
     2) floating point arithmetic, and special flags permit this optimization.
   */
  def1 = SSA_NAME_DEF_STMT (op1);
  def2 = SSA_NAME_DEF_STMT (op2);
  if (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, "reduction: no defs for operands: ");
      return NULL;
    }


  /* Check that one def is the reduction def, defined by PHI,
     the other def is either defined in the loop ("vect_loop_def"),
     or it's an induction (defined by a loop-header phi-node).  */

  if (def2 == phi
      && flow_bb_inside_loop_p (loop, gimple_bb (def1))
      && (is_gimple_assign (def1)
	  || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def
	  || (gimple_code (def1) == GIMPLE_PHI
	      && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_loop_def
	      && !is_loop_header_bb_p (gimple_bb (def1)))))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, "detected reduction:");
      return def_stmt;
    }
  else if (def1 == phi
	   && flow_bb_inside_loop_p (loop, gimple_bb (def2))
	   && (is_gimple_assign (def2)
	       || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def
	       || (gimple_code (def2) == GIMPLE_PHI
		   && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_loop_def
		   && !is_loop_header_bb_p (gimple_bb (def2)))))
    {
      /* Swap operands (just for simplicity - so that the rest of the code
	 can assume that the reduction variable is always the last (second)
	 argument).  */
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt ,
		        "detected reduction: need to swap operands:");
      swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
			  gimple_assign_rhs2_ptr (def_stmt));
      return def_stmt;
    }
  else
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	report_vect_op (def_stmt, "reduction: unknown pattern.");
      return NULL;
    }
}


/* Function vect_is_simple_iv_evolution.

   FORNOW: A simple evolution of an induction variables in the loop is
   considered a polynomial evolution with constant step.  */

bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init, 
			     tree * step)
{
  tree init_expr;
  tree step_expr;
  tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);

  /* When there is no evolution in this loop, the evolution function
     is not "simple".  */  
  if (evolution_part == NULL_TREE)
    return false;
  
  /* When the evolution is a polynomial of degree >= 2
     the evolution function is not "simple".  */
  if (tree_is_chrec (evolution_part))
    return false;
  
  step_expr = evolution_part;
  init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "step: ");
      print_generic_expr (vect_dump, step_expr, TDF_SLIM);
      fprintf (vect_dump, ",  init: ");
      print_generic_expr (vect_dump, init_expr, TDF_SLIM);
    }

  *init = init_expr;
  *step = step_expr;

  if (TREE_CODE (step_expr) != INTEGER_CST)
    { 
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "step unknown.");
      return false;
    }

  return true;
}


/* Function vectorize_loops.
   
   Entry Point to loop vectorization phase.  */

unsigned
vectorize_loops (void)
{
  unsigned int i;
  unsigned int num_vectorized_loops = 0;
  unsigned int vect_loops_num;
  loop_iterator li;
  struct loop *loop;

  vect_loops_num = number_of_loops ();

  /* Bail out if there are no loops.  */
  if (vect_loops_num <= 1)
    return 0;

  /* Fix the verbosity level if not defined explicitly by the user.  */
  vect_set_dump_settings ();

  /* Allocate the bitmap that records which virtual variables that 
     need to be renamed.  */
  vect_memsyms_to_rename = BITMAP_ALLOC (NULL);

  init_stmt_vec_info_vec ();

  /*  ----------- Analyze loops. -----------  */

  /* If some loop was duplicated, it gets bigger number 
     than all previously defined loops. This fact allows us to run 
     only over initial loops skipping newly generated ones.  */
  FOR_EACH_LOOP (li, loop, 0)
    if (optimize_loop_nest_for_speed_p (loop))
      {
	loop_vec_info loop_vinfo;

	vect_loop_location = find_loop_location (loop);
	loop_vinfo = vect_analyze_loop (loop);
	loop->aux = loop_vinfo;

	if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
	  continue;

	vect_transform_loop (loop_vinfo);
	num_vectorized_loops++;
      }
  vect_loop_location = UNKNOWN_LOC;

  statistics_counter_event (cfun, "Vectorized loops", num_vectorized_loops);
  if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS)
      || (vect_print_dump_info (REPORT_VECTORIZED_LOOPS)
	  && num_vectorized_loops > 0))
    fprintf (vect_dump, "vectorized %u loops in function.\n",
	     num_vectorized_loops);

  /*  ----------- Finalize. -----------  */

  BITMAP_FREE (vect_memsyms_to_rename);

  for (i = 1; i < vect_loops_num; i++)
    {
      loop_vec_info loop_vinfo;

      loop = get_loop (i);
      if (!loop)
	continue;
      loop_vinfo = (loop_vec_info) loop->aux;
      destroy_loop_vec_info (loop_vinfo, true);
      loop->aux = NULL;
    }

  free_stmt_vec_info_vec ();

  return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0;
}

/* Increase alignment of global arrays to improve vectorization potential.
   TODO:
   - Consider also structs that have an array field.
   - Use ipa analysis to prune arrays that can't be vectorized?
     This should involve global alignment analysis and in the future also
     array padding.  */

static unsigned int
increase_alignment (void)
{
  struct varpool_node *vnode;

  /* Increase the alignment of all global arrays for vectorization.  */
  for (vnode = varpool_nodes_queue;
       vnode;
       vnode = vnode->next_needed)
    {
      tree vectype, decl = vnode->decl;
      unsigned int alignment;

      if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
	continue;
      vectype = get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl)));
      if (!vectype)
	continue;
      alignment = TYPE_ALIGN (vectype);
      if (DECL_ALIGN (decl) >= alignment)
	continue;

      if (vect_can_force_dr_alignment_p (decl, alignment))
	{ 
	  DECL_ALIGN (decl) = TYPE_ALIGN (vectype);
	  DECL_USER_ALIGN (decl) = 1;
	  if (dump_file)
	    { 
	      fprintf (dump_file, "Increasing alignment of decl: ");
	      print_generic_expr (dump_file, decl, TDF_SLIM);
	    }
	}
    }
  return 0;
}

static bool
gate_increase_alignment (void)
{
  return flag_section_anchors && flag_tree_vectorize;
}

struct simple_ipa_opt_pass pass_ipa_increase_alignment = 
{
 {
  SIMPLE_IPA_PASS,
  "increase_alignment",			/* name */
  gate_increase_alignment,		/* gate */
  increase_alignment,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  0,					/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  0 					/* todo_flags_finish */
 }
};