aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ipa-inline.c
blob: e2745dd8c0c582df1514cdd212be605221a9d35d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
/* Inlining decision heuristics.
   Copyright (C) 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
   Contributed by Jan Hubicka

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/*  Inlining decision heuristics

    We separate inlining decisions from the inliner itself and store it
    inside callgraph as so called inline plan.  Refer to cgraph.c
    documentation about particular representation of inline plans in the
    callgraph.

    There are three major parts of this file:

    cgraph_mark_inline implementation

      This function allows to mark given call inline and performs necessary
      modifications of cgraph (production of the clones and updating overall
      statistics)

    inlining heuristics limits

      These functions allow to check that particular inlining is allowed
      by the limits specified by user (allowed function growth, overall unit
      growth and so on).

    inlining heuristics

      This is implementation of IPA pass aiming to get as much of benefit
      from inlining obeying the limits checked above.

      The implementation of particular heuristics is separated from
      the rest of code to make it easier to replace it with more complicated
      implementation in the future.  The rest of inlining code acts as a
      library aimed to modify the callgraph and verify that the parameters
      on code size growth fits.

      To mark given call inline, use cgraph_mark_inline function, the
      verification is performed by cgraph_default_inline_p and
      cgraph_check_inline_constraints.

      The heuristics implements simple knapsack style algorithm ordering
      all functions by their "profitability" (estimated by code size growth)
      and inlining them in priority order.

      cgraph_decide_inlining implements heuristics taking whole callgraph
      into account, while cgraph_decide_inlining_incrementally considers
      only one function at a time and is used by early inliner.

   The inliner itself is split into several passes:

   pass_inline_parameters

     This pass computes local properties of functions that are used by inliner:
     estimated function body size, whether function is inlinable at all and
     stack frame consumption.

     Before executing any of inliner passes, this local pass has to be applied
     to each function in the callgraph (ie run as subpass of some earlier
     IPA pass).  The results are made out of date by any optimization applied
     on the function body.

   pass_early_inlining

     Simple local inlining pass inlining callees into current function.  This
     pass makes no global whole compilation unit analysis and this when allowed
     to do inlining expanding code size it might result in unbounded growth of
     whole unit.

     The pass is run during conversion into SSA form.  Only functions already
     converted into SSA form are inlined, so the conversion must happen in
     topological order on the callgraph (that is maintained by pass manager).
     The functions after inlining are early optimized so the early inliner sees
     unoptimized function itself, but all considered callees are already
     optimized allowing it to unfold abstraction penalty on C++ effectively and
     cheaply.

   pass_ipa_early_inlining

     With profiling, the early inlining is also necessary to reduce
     instrumentation costs on program with high abstraction penalty (doing
     many redundant calls).  This can't happen in parallel with early
     optimization and profile instrumentation, because we would end up
     re-instrumenting already instrumented function bodies we brought in via
     inlining.

     To avoid this, this pass is executed as IPA pass before profiling.  It is
     simple wrapper to pass_early_inlining and ensures first inlining.

   pass_ipa_inline

     This is the main pass implementing simple greedy algorithm to do inlining
     of small functions that results in overall growth of compilation unit and
     inlining of functions called once.  The pass compute just so called inline
     plan (representation of inlining to be done in callgraph) and unlike early
     inlining it is not performing the inlining itself.

   pass_apply_inline

     This pass performs actual inlining according to pass_ipa_inline on given
     function.  Possible the function body before inlining is saved when it is
     needed for further inlining later.
 */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "flags.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "toplev.h"
#include "timevar.h"
#include "params.h"
#include "fibheap.h"
#include "intl.h"
#include "tree-pass.h"
#include "hashtab.h"
#include "coverage.h"
#include "ggc.h"
#include "tree-flow.h"
#include "rtl.h"
#include "ipa-prop.h"
#include "basic-block.h"
#include "tree-sample-profile.h"
#include "toplev.h"
#include "dbgcnt.h"
#include "tree-dump.h"

#include <math.h>

/* Mode incremental inliner operate on:

   In ALWAYS_INLINE only functions marked
   always_inline are inlined.  This mode is used after detecting cycle during
   flattening.

   In SIZE mode, only functions that reduce function body size after inlining
   are inlined, this is used during early inlining.

   in ALL mode, everything is inlined.  This is used during flattening.  */
enum inlining_mode {
  INLINE_NONE = 0,
  INLINE_ALWAYS_INLINE,
  INLINE_SIZE,
  INLINE_ALL
};

/* List of user-specified plans for inlining passes.  Specified with
   -finline-plan-<pass>=<file>.  */

struct inline_plan_file *inline_plan_files;

/* A linked list of callsites used to describe a chain of inlined
   callsites which describes the context of an inlining decision.  The
   first element in the list is the outermost containing function.
   The last two elements are the caller and callee of the inlined
   edge.  */
const char *inlining_mode_strings[] = { "INLINE_NONE",
					"INLINE_ALWAYS_INLINE",
					"INLINE_SIZE",
					"INLINE_ALL" };

struct callsite_chain {
  char *function_name;
  int callsite_no;
  struct callsite_chain *next;
};

/* Defines a specific inlining decision in an inline plan file.  */

struct inline_decision {
  struct callsite_chain *chain;
  int line_no;
  struct inline_decision *next;
};

/* Defines the set of decisions in an inline plan file.  */

struct inline_plan {
  struct inline_plan_file *file;
  struct inline_decision *decisions;
};

/* If non-NULL, then the plan for the current early inlining pass.  */

struct inline_plan *einline_plan;

static bool
cgraph_decide_inlining_incrementally (struct cgraph_node *, enum inlining_mode,
				      int);


/* Statistics we collect about inlining algorithm.  */
static int ncalls_inlined;
static int nfunctions_inlined;
static int overall_insns;
static gcov_type max_count;

/* Holders of ipa cgraph hooks: */
static struct cgraph_node_hook_list *function_insertion_hook_holder;

/* Return the stringified value of enum function_frequency for
   NODE.  */

static const char *
function_frequency_string (const struct cgraph_node *node)
{
  struct function *fun = DECL_STRUCT_FUNCTION (node->decl);
  const char *freq_str = "FREQUENCY_UNKNOWN";
  if (fun)
    {
      switch (fun->function_frequency)
	{
	case (FUNCTION_FREQUENCY_UNLIKELY_EXECUTED):
	  freq_str = "FUNCTION_FREQUENCY_UNLIKELY_EXECUTED";
	  break;
	case (FUNCTION_FREQUENCY_NORMAL):
	  freq_str = "FUNCTION_FREQUENCY_NORMAL";
	  break;
	case (FUNCTION_FREQUENCY_HOT):
	  freq_str = "FUNCTION_FREQUENCY_HOT";
	  break;
	}
    }
  return freq_str;
}

/* Data structures for hot components.  */
struct hot_component {
  struct cgraph_node *root;
  int uid;
  int size;
  int original_size;
};

struct hot_component_list
{
  struct hot_component *component;
  struct hot_component_list *next;
};

/* Total number of hot components.  */
static int n_hot_components = 0;
/* Array containing all hot components.  Indexed by component uid.  */
static struct hot_component *hot_components = NULL;
/* Lists of hot components of each cgraph node.  Indexed by node uid.  */
static struct hot_component_list **node_hot_component_list = NULL;
/* Size of NODE_HOT_COMPONENT_LIST.  */
static int hot_component_max_id = 0;


static inline struct inline_summary *
inline_summary (struct cgraph_node *node)
{
  return &node->local.inline_summary;
}

/* Return the pointer to the list of hot components for NODE.  Global
   array NODE_HOT_COMPONENT_LIST is resized as necessary for new nodes
   with uid's that exceed the bounds of the current array.  This may
   occur due to cloning.  */

static struct hot_component_list**
hot_component_list_for_node (struct cgraph_node *node)
{
  if (node->uid >= hot_component_max_id)
    {
      int i, newsize;

      newsize = node->uid * 2;
      node_hot_component_list =
        XRESIZEVEC (struct hot_component_list *, node_hot_component_list,
                    newsize);
      for (i = hot_component_max_id; i < newsize; i++)
        node_hot_component_list[i] = NULL;
      hot_component_max_id = newsize;
    }
  return &node_hot_component_list[node->uid];
}

/* Return true if NODE is in the hot component with uid UID.  */

static bool
node_in_hot_component_p (struct cgraph_node *node, int uid)
{
  struct hot_component_list *p;

  for (p = *(hot_component_list_for_node (node)); p; p = p->next)
    if (p->component->uid == uid)
      return true;
  return false;
}

/* Performs a downward DFS search from NODE in the hot call graph, and
   marks all successors of NODE by setting its respective bit in
   SUCCESSORS.  */

static void
mark_all_successors  (struct cgraph_node *node, sbitmap successors)
{
  struct cgraph_edge *edge;

  SET_BIT (successors, node->uid);
  for (edge = node->callees; edge; edge = edge->next_callee)
    if (cgraph_maybe_hot_edge_p (edge)
        && !TEST_BIT (successors, edge->callee->uid))
      mark_all_successors (edge->callee, successors);
}

/* Performs an upward DFS search from NODE in the hot call graph.  If
   a node is encountered whose bit is not set in sbitmap MARKED, then
   return false otherwise return true.  As each node is visited, the
   node's corresponding element in VISITED is set to ID.  */

static bool
has_unmarked_predecessor_p  (struct cgraph_node *node, sbitmap marked,
                             int *visited, int id)
{
  struct cgraph_edge *edge;

  visited[node->uid] = id;
  for (edge = node->callers; edge; edge = edge->next_caller)
    if (cgraph_maybe_hot_edge_p (edge)
        && visited[edge->caller->uid] != id)
      {
        if (!TEST_BIT (marked, edge->caller->uid))
          /* An unmarked predecessor was encountered.  */
          return true;
        /* Continue upward DFS search.  */
        if (has_unmarked_predecessor_p (edge->caller, marked,
                                        visited, id))
            return true;
      }
  return false;
}

/* Add NODE to hot component COMP.  */

static void
add_node_to_hot_component (struct hot_component *comp,
                           struct cgraph_node *node)
{
  struct hot_component_list *p = XNEW (struct hot_component_list);
  p->component = comp;
  p->next = *(hot_component_list_for_node (node));
  *(hot_component_list_for_node (node)) = p;
}

/* Perform a downward DFS seach in the hot call graph, and mark NODE
   as a member of hot component COMP.  Returns the total number of hot
   insns beneath this point in the DFS search.  As each node is
   visited, set the corresponding element in VISITED to ID.  */

static int
construct_hot_component (struct cgraph_node *node, struct hot_component *comp,
                         int *visited, int id)
{
  struct cgraph_edge *edge;
  int size = node->local.inline_summary.self_hot_insns;

  visited[node->uid] = id;
  add_node_to_hot_component (comp, node);
  for (edge = node->callees; edge; edge = edge->next_callee)
    if (cgraph_maybe_hot_edge_p (edge)
        && visited[edge->callee->uid] != id)
      size += construct_hot_component (edge->callee, comp, visited, id);
  return size;
}

/* Recompute the hot components which NODE is contained in.  */

static void
update_hot_components_for_node (struct cgraph_node *node)
{
  struct cgraph_edge *e;
  struct hot_component_list *p, *tmp;

  /* Free old list.  */
  p = *(hot_component_list_for_node (node));
  while (p)
    {
      tmp = p->next;
      free (p);
      p = tmp;
    }
  *(hot_component_list_for_node (node)) = NULL;

  /* Hot components of NODE is the union of all hot components of
     NODE's hot callers.  */
  for (e = node->callers; e; e = e->next_caller)
    if (cgraph_maybe_hot_edge_p (e))
      for (p = *(hot_component_list_for_node (e->caller)); p; p = p->next)
        if (!node_in_hot_component_p (node, p->component->uid))
          add_node_to_hot_component (p->component, node);
}

/* Identify the hot components of the call graph, and construct data
   structures to track their size and growth.

   A hot component is a connected component of maximum size in the hot
   call graph, where the hot call graph is the subgraph of the call
   graph induced by all hot nodes and hot edges.  The total number of
   hot instructions in the component (its size) is roughly the I-cache
   footprint of this hot region of code.  Limiting the size of the hot
   component can prevent I-cache thrashing.

   Each hot component is defined by a root.  In the simple case, a
   root is a hot function with no incoming hot edges (with any number
   of outgoing hot edges).  In the more complicated case with
   recursion, a root can be a member of strongly connected component
   in the hot call graph which has no incoming hot edges from outside
   the strongly connected component.  In both cases, the hot component
   is defined as the root plus the successors of the root in the hot
   call graph.  Typically the root is a function with an un-hot entry
   that contains a hot loop and all functions called transitively
   along hot edges from within the loop.  */

struct node_list
{
  struct cgraph_node *node;
  struct node_list *next;
};

void
compute_hot_components (void)
{
  struct cgraph_node *node;
  struct node_list *p;
  struct node_list *roots = NULL;
  sbitmap successor;
  int *visited;
  int uid, i;

  /* VISITED is used to flag nodes which have already been visited
     during some DFS searches.  If VISITED[UID] equals some_unique_id,
     then the cgraph node with uid UID has been visited.  This
     mechanism is preferable for some searches to a sbitmap, because
     it not need to be reset between sequential searches which overlap
     in the call graph, only a new unique id needs to be chosen.  */
  visited = XNEWVEC (int, cgraph_max_uid);
  for (i = 0; i < cgraph_max_uid; i++)
    visited[i] = -1;

  /* Identify a root node for each hot component.  A node is a root if
     all of its predecessors (if any) in the hot call graph are also
     successors.  */
  n_hot_components = 0;
  successor = sbitmap_alloc (cgraph_max_uid);
  sbitmap_zero (successor);
  for (node = cgraph_nodes; node; node = node->next)
    if (hot_function_p (node))
      {
        /* If NODE is a successor of a node previously handled in this
           loop, then no need to consider it as a root node.  */
        if (TEST_BIT(successor, node->uid))
          continue;

        /* Set bit in successor of NODE and all successors of NODE.
           An sbitmap is used (rather than the int visited array)
           because "successor" state is preserved across calls to
           mark_all_successors.  State is not cleared.  */
        mark_all_successors (node, successor);

        /* VISITED array is used to mark nodes for upward DFS searches
           because subsequent has_marked_predecessor searches may
           overlap previous searches in the call graph, and we don't
           want to reset a bitmap every time.  ID for visited array is
           call graph node uid.  */
        if (!has_unmarked_predecessor_p (node, successor, visited, node->uid))
          {
            struct node_list *elem = XNEW (struct node_list);
            elem->node = node;
            elem->next = roots;
            roots = elem;
            n_hot_components++;
          }
      }
  sbitmap_free (successor);

  if (n_hot_components)
    {
      /* Allocate global state for hot components.  For
         NODE_HOT_COMPONENT_LIST (indexed by call graph node uid),
         allocate twice the current max node uid to allow for call graph
         node cloning.  Array is dynamically resized in the unlikely event
         this is insufficient.  */
      hot_components = XNEWVEC (struct hot_component, n_hot_components);

      hot_component_max_id = cgraph_max_uid * 2;
      node_hot_component_list = XCNEWVEC (struct hot_component_list *,
                                          hot_component_max_id);

      /* Reset VISITED array.  */
      for (i = 0; i < cgraph_max_uid; i++)
        visited[i] = -1;

      /* Iterate through list of root nodes and construct hot
         components.  */
      uid = 0;
      p = roots;
      while (p)
        {
          struct node_list *tmp;

          hot_components[uid].root = p->node;
          hot_components[uid].uid = uid;
          /* Identify all nodes in the hot component with a downward
             DFS search from the root.  Use VISITED array as
             subsequent searches may overlap (ie, a node may be in
             more than one hot component).  ID for visited array is
             uid of the root node.  */
          hot_components[uid].size =
            construct_hot_component (hot_components[uid].root,
                                     &hot_components[uid],
                                     visited, uid);
          hot_components[uid].original_size = hot_components[uid].size;
          uid++;

          /* Free node_list element.  */
          tmp = p->next;
          free (p);
          p = tmp;
        }
    }
  free (visited);

#ifdef ENABLE_CHECKING
  verify_hot_components ();
#endif
}

/* Perform a downward DFS seach in the hot call graph.  Verifies NODE
   is in hot component with uid UID.  Accumulates total number of hot
   insns in *SIZE.  Returns the number of call graph nodes beneath
   this point in the DFS search.  */

static int
verify_hot_components_1 (struct cgraph_node *node, sbitmap visited,
                         int comp_uid, int *size)
{
  struct cgraph_edge *edge;
  int nnodes = 1;

  SET_BIT (visited, node->uid);
  *size += node->local.inline_summary.self_hot_insns;
  for (edge = node->callees; edge; edge = edge->next_callee)
    if (cgraph_maybe_hot_edge_p (edge)
        && !TEST_BIT (visited, edge->callee->uid))
      {
        gcc_assert (node_in_hot_component_p (edge->callee, comp_uid));
        nnodes += verify_hot_components_1 (edge->callee, visited,
                                           comp_uid, size);
      }
  return nnodes;
}

/* Verify global data structures for hot components.  */

void
verify_hot_components (void)
{
  if (n_hot_components)
    {
      int i;
      struct cgraph_node *node;
      sbitmap visited = sbitmap_alloc (cgraph_max_uid);

      /* Each hot function must be in at least one hot component, and a
         non-hot function must not be in a hot component.  */
      for (node = cgraph_nodes; node; node = node->next)
        {
          struct hot_component_list *lst = *(hot_component_list_for_node (node));
          gcc_assert ((hot_function_p (node) && lst)
                      || (!hot_function_p (node) && !lst));
        }

      /* Verify each hot component.  */
      for (i = 0; i < n_hot_components; i++)
        {
          struct hot_component *comp = &hot_components[i];
          struct hot_component_list *root_lst =
            *(hot_component_list_for_node (comp->root));
          int nnodes;
          int size = 0;

          /* The root node of each hot component must be in exactly
             one hot component (the component it is the root of).  */
          gcc_assert (root_lst && !root_lst->next);
          gcc_assert (node_in_hot_component_p (comp->root, comp->uid));

          /* Every node accessible via downward DFS search in the hot
             call graph from a root node must be in the root node's
             hot component, and these nodes are the only nodes in the
             hot component.  */
          sbitmap_zero (visited);
          nnodes = verify_hot_components_1 (comp->root, visited,
                                            comp->uid, &size);
          gcc_assert (size == comp->size);
          /* Count down nodes which are found to in a dumb search
             through the hot component lists of cgraph nodes.  */
          for (node = cgraph_nodes; node; node = node->next)
            if (hot_function_p (node)
                && node_in_hot_component_p (node, comp->uid))
              nnodes--;
          gcc_assert (nnodes == 0);
        }
      sbitmap_free (visited);
    }
}

/* Free all global data structures for hot components.  */

void
free_hot_components (void)
{
  if (n_hot_components)
    {
      int i;

      n_hot_components = 0;
      free (hot_components);
      hot_components = NULL;
      for (i = 0; i < hot_component_max_id; i++)
        {
          struct hot_component_list *tmp, *p = node_hot_component_list[i];
          while (p)
            {
              tmp = p->next;
              free (p);
              p = tmp;
            }
        }
      hot_component_max_id = 0;
      free (node_hot_component_list);
      node_hot_component_list = NULL;
    }
}

/* Return the growth in insns of the hot component with uid UID if
   EDGE is inlined.  */

static int
hot_component_growth_after_inlining (struct cgraph_edge *edge, int uid)
{
  struct cgraph_edge *e;
  int code_duplication = 0;

  if (!node_in_hot_component_p (edge->callee, uid))
    return 0;

  /* If a hot caller of EDGE's callee (other than EDGE) is also
     contained in this hot component, then the hot component will grow
     by the number of hot insns in the callee.

     In this case, if EDGE is inlined both the old and duplicated node
     will be in the hot component.  */
  for (e = edge->callee->callers; e; e = e->next_caller)
    {
      if (e == edge || !cgraph_maybe_hot_edge_p (e))
        continue;

      if (node_in_hot_component_p (e->caller, uid))
        {
          /* Function body will be duplicated within component.  */
          code_duplication = edge->callee->local.inline_summary.self_hot_insns;
          break;
        }
    }

  return code_duplication;
}

static void
dump_hot_components_1 (FILE *f, struct cgraph_node *node, sbitmap visited,
                       int indent, struct cgraph_edge *incoming_edge)
{
  int i;
  struct hot_component_list *p;

  for (i = 0; i < indent; i++)
    fprintf (f, "  ");
  fprintf (f, "%s/%d", cgraph_node_name (node), node->uid);
  if (incoming_edge && !incoming_edge->inline_failed)
    fprintf (f, " (INLINED)");
  fprintf (f, " insns hot/all %d/%d, in components (",
           node->local.inline_summary.self_hot_insns,
           node->local.inline_summary.self_insns);
  for (p = *(hot_component_list_for_node (node)); p; p = p->next)
    fprintf (f, " %d", p->component->uid);
  fprintf (f, " )");

  if (TEST_BIT (visited, node->uid))
    /* NODE has already been dumped earlier in the output. */
    fprintf (f, " [repeat]\n");
  else
    {
      struct cgraph_edge *edge;

      fprintf (f, "\n");
      SET_BIT (visited, node->uid);
      for (edge = node->callees; edge; edge = edge->next_callee)
        if (cgraph_maybe_hot_edge_p (edge))
          dump_hot_components_1 (f, edge->callee, visited, indent + 1, edge);
    }
}

/* Dump the functions within each hot components to F in a tree
   format. */

void
dump_hot_components (FILE *f)
{
  sbitmap visited = sbitmap_alloc (cgraph_max_uid);
  int i;

  for (i = 0; i < n_hot_components; i++)
    {
      sbitmap_zero (visited);
      fprintf (f, "Hot component %d (hot insns = %d):\n", hot_components[i].uid,
               hot_components[i].size);
      dump_hot_components_1 (f, hot_components[i].root, visited, 1, NULL);
    }
  sbitmap_free (visited);
}

/* Estimate size of the function after inlining WHAT into TO.  */

static int
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
				     struct cgraph_node *what)
{
  int size;
  tree fndecl = what->decl, arg;
  int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);

  for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
    call_insns += estimate_move_cost (TREE_TYPE (arg));
  size = (what->global.insns - call_insns) * times + to->global.insns;
  gcc_assert (size >= 0);
  return size;
}

/* E is expected to be an edge being inlined.  Clone destination node of
   the edge and redirect it to the new clone.
   DUPLICATE is used for bookkeeping on whether we are actually creating new
   clones or re-using node originally representing out-of-line function call.
   */
void
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
			    bool update_original)
{
  HOST_WIDE_INT peak;

  if (duplicate)
    {
      /* We may eliminate the need for out-of-line copy to be output.
	 In that case just go ahead and re-use it.  */
      if (!e->callee->callers->next_caller
	  && !e->callee->needed
	  && !cgraph_new_nodes)
	{
	  gcc_assert (!e->callee->global.inlined_to);
	  if (e->callee->analyzed)
	    overall_insns -= e->callee->global.insns, nfunctions_inlined++;
	  duplicate = false;
	}
      else
	{
	  struct cgraph_node *n, *orig_callee = e->callee;
          bool update_hot_components =
            (flag_limit_hot_components && n_hot_components
             && cgraph_maybe_hot_edge_p (e));

	  if (update_hot_components)
            {
              struct hot_component_list *p;

              /* Update component sizes due to inlining edge before
                 cloning because hot_component_growth_after_inlining()
                 requires the edge be in its pre-inlined position.  */
              for (p = *(hot_component_list_for_node (e->caller)); p;
                   p = p->next)
                p->component->size +=
                  hot_component_growth_after_inlining (e, p->component->uid);
            }

          n = cgraph_clone_node (e->callee, e->count, e->frequency,
                                 e->loop_nest, update_original);
	  cgraph_redirect_edge_callee (e, n);

	  if (update_hot_components)
            {
              update_hot_components_for_node (n);
              update_hot_components_for_node (orig_callee);
            }
	}
    }

  if (e->caller->global.inlined_to)
    e->callee->global.inlined_to = e->caller->global.inlined_to;
  else
    e->callee->global.inlined_to = e->caller;
  e->callee->global.stack_frame_offset
    = e->caller->global.stack_frame_offset
      + inline_summary (e->caller)->estimated_self_stack_size;
  peak = e->callee->global.stack_frame_offset
      + inline_summary (e->callee)->estimated_self_stack_size;
  if (e->callee->global.inlined_to->global.estimated_stack_size < peak)
    e->callee->global.inlined_to->global.estimated_stack_size = peak;
  e->callee->global.inlined_to->global.estimated_stack_size_pessimistic +=
      inline_summary (e->callee)->estimated_self_stack_size;

  /* Recursively clone all bodies.  */
  for (e = e->callee->callees; e; e = e->next_callee)
    if (!e->inline_failed)
      cgraph_clone_inlined_nodes (e, duplicate, update_original);
}


/* Allocates and returns a unique name for NODE.  For most nodes this
   is simply the result of cgraph_node_name.  For versioned clones
   which share a common cgraph_node_name, the assembly name is
   appended.  */

static char*
create_unique_cgraph_node_name (struct cgraph_node *node)
{
  char *name;
  int len = strlen (cgraph_node_name (node)) + 1;
  if (node->is_versioned_clone)
    {
      gcc_assert (DECL_ASSEMBLER_NAME_SET_P (node->decl));
      len += strlen (" (clone )");
      len += strlen (IDENTIFIER_POINTER (decl_assembler_name (node->decl)));
    }
  name = XNEWVEC (char, len);
  if (node->is_versioned_clone)
    sprintf (name, "%s (clone %s)", cgraph_node_name (node),
             IDENTIFIER_POINTER (decl_assembler_name (node->decl)));
  else
    strcpy (name, cgraph_node_name (node));
  return name;
}

/* Print a unique name for NODE to F.  This is the same name as
   create_unique_cgraph_node_name, but this function doesn't allocate
   memory.  */

static void
dump_unique_cgraph_node_name (FILE *f, struct cgraph_node *node)
{
  fprintf (f, cgraph_node_name (node));
  if (node->is_versioned_clone)
    {
      gcc_assert (DECL_ASSEMBLER_NAME_SET_P (node->decl));
      fprintf (f, " (clone %s)",
               IDENTIFIER_POINTER (decl_assembler_name (node->decl)));
    }
}

/* Returns true if the unique name of NODE is NAME.  */

static bool
cgraph_node_matches_unique_name_p (struct cgraph_node *node, const char *name)
{
  char *node_name = create_unique_cgraph_node_name (node);
  bool matches = (strcmp (node_name, name) == 0);
  free (node_name);
  return matches;
}

/* Return the ordinal position of the callsite of EDGE among all calls
   of EDGE->CALLEE in EDGE->CALLER.  Numbering starts at 1, so the
   edge of the first call returns 1, the second returns 2, etc.  */

static int
callsite_position (struct cgraph_edge *edge)
{
  int c = 1;
  struct cgraph_edge *e;

  /* The list of call graph edges are in the inverse order in which
     their respective callsites appear in the function, so count the
     number of edges after EDGE with the same callee.  */
  for (e = edge->next_callee; e; e = e->next_callee)
    if (e->callee->decl == edge->callee->decl)
      c++;

  return c;
}

/* For the inlined edge EDGE, dump (into F) the chain of inlined
   callsites from the enclosing function down to EDGE's callee.  For
   example, suppose FuncC calls FuncB calls FuncA.  If FuncA is
   inlined into an inlined copy of FuncB called by FuncC, then the
   chain for this particular edge FuncB->FuncA might look like:

     FuncA @callsite #1 into FuncB @callsite #3 into FuncC

   Simlilar callsites (same caller, same callee) are numbered
   consecutively from the beginning of the caller to uniquely identify
   multiple calls to the same function.

   This chain precisely describes the context of inlining a particular
   edge.  The format of this dump is the same as that used to describe
   inlined callsites in the inline plan specified with
   -finline-plan-<pass>=<file>.  */

static void
dump_inlining_decision (FILE *f, struct cgraph_edge *edge)
{
  dump_unique_cgraph_node_name (f, edge->callee);
  fprintf (f, " @callsite #%d into ", callsite_position (edge));
  if (edge->caller->global.inlined_to)
    dump_inlining_decision (f, edge->caller->callers);
  else
    dump_unique_cgraph_node_name (f, edge->caller);
}

/* Mark edge E as inlined and update callgraph accordingly.  UPDATE_ORIGINAL
   specify whether profile of original function should be updated.  If any new
   indirect edges are discovered in the process, add them to NEW_EDGES, unless
   it is NULL.  Return true iff any new callgraph edges were discovered as a
   result of inlining.  */

static bool
cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original,
			 VEC (cgraph_edge_p, heap) **new_edges)
{
  int old_insns = 0, new_insns = 0;
  struct cgraph_node *to = NULL, *what;
  struct cgraph_edge *curr = e;

  if (e->callee->inline_decl)
    cgraph_redirect_edge_callee (e, cgraph_node (e->callee->inline_decl));

  gcc_assert (e->inline_failed);
  e->inline_failed = NULL;

  if (!e->callee->global.inlined)
    DECL_POSSIBLY_INLINED (e->callee->decl) = true;
  e->callee->global.inlined = true;

  cgraph_clone_inlined_nodes (e, true, update_original);

  what = e->callee;

  /* Now update size of caller and all functions caller is inlined
     into, as well as the max_bb_count.  */
  for (;e && !e->inline_failed; e = e->caller->callers)
    {
      old_insns = e->caller->global.insns;
      new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
						       what);
      gcc_assert (new_insns >= 0);
      to = e->caller;
      to->global.insns = new_insns;

      if (to->max_bb_count < e->callee->max_bb_count)
	to->max_bb_count = e->callee->max_bb_count;
    }
  gcc_assert (what->global.inlined_to == to);
  if (new_insns > old_insns)
    overall_insns += new_insns - old_insns;
  ncalls_inlined++;

  if (dump_file)
    {
      fprintf (dump_file, "INLINE: ");
      dump_inlining_decision (dump_file, curr);
      fprintf (dump_file, "\n");
    }

  if (flag_indirect_inlining)
    return ipa_propagate_indirect_call_infos (curr, new_edges);
  else
    return false;
}

/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
   Return following unredirected edge in the list of callers
   of EDGE->CALLEE  */

static struct cgraph_edge *
cgraph_mark_inline (struct cgraph_edge *edge)
{
  struct cgraph_node *to = edge->caller;
  struct cgraph_node *what = edge->callee;
  struct cgraph_edge *e, *next;

  gcc_assert (!gimple_call_cannot_inline_p (edge->call_stmt));
  /* Look for all calls, mark them inline and clone recursively
     all inlined functions.  */
  for (e = what->callers; e; e = next)
    {
      next = e->next_caller;
      if (e->caller == to && e->inline_failed
          /* Skip fake edge.  */
          && e->call_stmt)
	{
          cgraph_mark_inline_edge (e, true, NULL);
	  if (e == edge)
	    edge = next;
	}
    }

  return edge;
}

/* Estimate the growth caused by inlining NODE into all callees.
   Return value is the average expected growth per callsite.  */

static int
cgraph_estimate_growth (struct cgraph_node *node)
{
  int growth = 0, ncalls = 0;
  struct cgraph_edge *e;
  bool self_recursive = false;

  if (node->global.estimated_average_growth != INT_MIN)
    return node->global.estimated_average_growth;

  for (e = node->callers; e; e = e->next_caller)
    {
      if (e->caller == node)
        self_recursive = true;
      if (e->inline_failed)
	{
	  growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
		     - e->caller->global.insns);
	  ncalls++;
	}
    }

  /* ??? Wrong for non-trivially self recursive functions or cases where
     we decide to not inline for different reasons, but it is not big deal
     as in that case we will keep the body around, but we will also avoid
     some inlining.  */
  if (!self_recursive)
    {
      int emitted_size = (node->global.insns
			  + PARAM_VALUE(PARAM_INLINE_FUNCTION_SIZE_ADJUSTMENT));
      if (!node->needed && !DECL_EXTERNAL (node->decl))
	growth -= emitted_size;
      else if (node->address_taken)
	growth -= ((100.0
		    - PARAM_VALUE (PARAM_INLINE_ADDRESS_TAKEN_FUNCTION_EMIT_PROBABILITY))
		   * emitted_size) / 100;
      else
	growth -= ((100.0
		    - PARAM_VALUE (PARAM_INLINE_ADDRESS_NOT_TAKEN_FUNCTION_EMIT_PROBABILITY))
		   * emitted_size) / 100;
    }

  if (ncalls > 0)
    /* If growth before averaging is less than zero, we'd like the
       average to be less than zero because some heuristics cue off
       this less-than-zero growth condition, so subtract NCALLS - 1 to
       ensure that -1/NCALLS rounds down to -1.  */
    growth = (growth - (ncalls - 1)) / ncalls;

  node->global.estimated_average_growth = growth;
  return growth;
}

/* Return true if there exists a path from FROM to TO in the call
   graph which consists entirely of functions with the always_inline
   attribute.  This is trivially true if FROM calls TO.  MAX_DEPTH
   limits search depth to avoid infinite recursion and otherwise
   expensive searches.  */

static bool
always_inline_path (struct cgraph_node *from, struct cgraph_node *to,
		    int max_depth)
{
  struct cgraph_edge *e;

  if (max_depth == 0)
    return false;

  for (e = from->callees; e; e = e->next_callee)
    {
      if (e->callee == to)
	return true;

      if (!e->inline_failed
	  || lookup_attribute ("always_inline", DECL_ATTRIBUTES (e->callee->decl)))
	{
	  /* Edge is an inlined edge or callee is always_inline.
	     Continue search down edge.  Only decrement MAX_DEPTH if
	     entering a new function.  */
	  if (always_inline_path(e->callee, to,
				 e->inline_failed ? max_depth - 1 : max_depth))
	    return true;
	}
    }
  return false;
}

/* Return false when inlining WHAT into TO is not good idea as it
   would violate growth limits or other constraints.  When ONE_ONLY is
   true, assume that only one call site is going to be inlined,
   otherwise figure out how many call sites in TO calls WHAT and
   verify that all can be inlined.
   */

static bool
cgraph_check_inline_constraints (struct cgraph_node *to,
				 struct cgraph_node *what,
				 const char **reason, bool one_only)
{
  int times = 0;
  struct cgraph_edge *e;
  int newsize;
  int limit;
  HOST_WIDE_INT stack_size_limit, inlined_stack;

  if (one_only)
    times = 1;
  else
    for (e = to->callees; e; e = e->next_callee)
      if (e->callee == what)
	times++;

  if (to->global.inlined_to)
    to = to->global.inlined_to;

  /* When inlining large function body called once into small function,
     take the inlined function as base for limiting the growth.  */
  if (inline_summary (to)->self_insns > inline_summary(what)->self_insns)
    limit = inline_summary (to)->self_insns;
  else
    limit = inline_summary (what)->self_insns;

  limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;

  /* Check the size after inlining against the function limits.  But allow
     the function to shrink if it went over the limits by forced inlining.  */
  newsize = cgraph_estimate_size_after_inlining (times, to, what);
  if (newsize >= to->global.insns
      && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
      && newsize > limit)
    {
      if (reason)
        *reason = N_("--param large-function-growth limit reached");
      return false;
    }

  stack_size_limit = inline_summary (to)->estimated_self_stack_size;

  stack_size_limit += stack_size_limit * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100;

  if (flag_pessimistic_inline_stack_limit)
    inlined_stack = (to->global.estimated_stack_size_pessimistic
                     + what->global.estimated_stack_size_pessimistic);
  else
    inlined_stack = (to->global.stack_frame_offset
                     + inline_summary (to)->estimated_self_stack_size
                     + what->global.estimated_stack_size);
  if (inlined_stack  > stack_size_limit
      && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
    {
      if (reason)
        *reason = N_("--param large-stack-frame-growth limit reached");
      return false;
    }

  /* Not inlining a call to a function marked always_inline is an
     error.  If TO is marked always_inline, verify that inlining WHAT
     into TO will not result in the impossible-to-resolve situation of
     TO calling itself directly or via a chain of always_inline
     functions.  */
  if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (to->decl))
      && always_inline_path (what, to, 10))
      {
	if (reason)
	  *reason = N_("inlining would result in recursive always_inline function");
	return false;
      }

  return true;
}

/* Return false when inlining EDGE is not good idea.  Checks for hot
   component growth and calls cgraph_check_inline_constraints for all other
   checks.  */

static bool
cgraph_check_inline_constraints_edge (struct cgraph_edge *edge, const char **reason)
{
  if (flag_limit_hot_components && n_hot_components
      && cgraph_maybe_hot_edge_p (edge))
    {
      struct hot_component_list *p;

      for (p = *(hot_component_list_for_node (edge->caller)); p; p = p->next)
        {
          int newsize = p->component->size
            + hot_component_growth_after_inlining (edge, p->component->uid);
          int limit = p->component->original_size;

          limit += limit * PARAM_VALUE (PARAM_HOT_COMPONENT_GROWTH) / 100;
          if (newsize > p->component->size
              && newsize > PARAM_VALUE (PARAM_LARGE_HOT_COMPONENT_INSNS)
              && newsize > limit)
            {
              if (reason)
                *reason = N_("--param hot-component-growth limit reached");
              return false;
            }
        }
    }
  return cgraph_check_inline_constraints (edge->caller, edge->callee,
					  reason, true);
}

/* Return true when function N is small enough to be inlined.  */

bool
cgraph_default_inline_p (struct cgraph_node *n, const char **reason)
{
  tree decl = n->decl;
  const char *overlimit_reason;
  int limit;

  if (n->inline_decl)
    decl = n->inline_decl;
  if (!flag_inline_small_functions && !DECL_DECLARED_INLINE_P (decl))
    {
      if (reason)
	*reason = N_("function not inline candidate");
      return false;
    }

  if (!DECL_STRUCT_FUNCTION (decl)->cfg)
    {
      if (reason)
	*reason = N_("function body not available");
      return false;
    }

  if (DECL_DECLARED_INLINE_P (decl))
    {
      limit = MAX_INLINE_INSNS_SINGLE;
      overlimit_reason = N_("--param max-inline-insns-single limit reached");
    }
  else
    {
      limit = MAX_INLINE_INSNS_AUTO;
      overlimit_reason = N_("--param max-inline-insns-auto limit reached");
    }

  /* If profile information is available, expand maximum size limits.  */
  if (profile_info_available_p ())
    limit = ((limit
              * (100 + PARAM_VALUE (PARAM_INLINE_LIMIT_INCREASE_WITH_PROFILE)))
             / 100);

  if (n->global.insns >= limit)
    {
      if (reason)
        *reason = overlimit_reason;
      return false;
    }

  return true;
}

/* Return true when inlining WHAT would create recursive inlining.
   We call recursive inlining all cases where same function appears more than
   once in the single recursion nest path in the inline graph.  */

static bool
cgraph_recursive_inlining_p (struct cgraph_node *to,
			     struct cgraph_node *what,
			     const char **reason)
{
  bool recursive;
  if (to->global.inlined_to)
    recursive = what->decl == to->global.inlined_to->decl;
  else
    recursive = what->decl == to->decl;
  /* Marking recursive function inline has sane semantic and thus we should
     not warn on it.  */
  if (recursive && reason)
    *reason = (what->local.disregard_inline_limits
	       ? N_("recursive inlining") : "");
  return recursive;
}

/* Return true if FUNCDECL is a function with fixed
   argument list.  */

static bool
fixed_arg_function_p (tree fndecl)
{
  tree fntype = TREE_TYPE (fndecl);
  return (TYPE_ARG_TYPES (fntype) == 0
          || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
              == void_type_node));
}

/* For profile collection with flag_dyn_ipa (LIPO), we always
   want to inline comdat functions for the following reasons:
   1) Functions in comdat may be actually defined in a different
   module (depending on how linker picks). This results in a edge
   from one module to another module in the dynamic callgraph.
   The edge is false and result in unnecessary module grouping.
   2) The profile counters in comdat functions are not 'comdated'
   -- which means each copy of the same comdat function has its
   own set of counters. With inlining, we are actually splitting
   the counters and make the profile information 'context sensitive',
   which is a good thing.
   3) During profile-use pass of LIPO (flag_dyn_ipa == 1),
   the pre-tree_profile inline decisions have to be the same as the
   profile-gen pass (otherwise coverage mismatch will occur). Due to
   this reason, it is better for each module to 'use' the comdat copy
   of its own. The only way to get profile data for the copy is to
   inline the copy in profile-gen phase.
   TODO: For indirectly called comdat functions, the above issues
   still exist. */

static bool
better_inline_comdat_function_p (struct cgraph_node *node)
{
  return (profile_arc_flag && flag_dyn_ipa
          && DECL_COMDAT (node->decl)
          && node->global.insns <= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_SINGLE)
          && fixed_arg_function_p (node->decl));
}


/* Compute the inlining priority for EDGE.  The value is generally
   computed as the growth of inlining the callsite divided by the
   frequency of the callsite.  Lower values are higher priority.  */

static int
cgraph_edge_priority (struct cgraph_edge *edge)
{
  /* GROWTH is the minimum of the code growth of inlining the callsite
     and the average growth of inlining all the callsite of the
     callee.  Including the average callsite growth factors in the
     potential benefit of not having to emit the function body should
     all callsites of the callee be inlined and the function is not
     needed.  */
  int growth = MIN (cgraph_estimate_size_after_inlining (1, edge->caller,
							 edge->callee)
		    - edge->caller->global.insns,
		    cgraph_estimate_growth (edge->callee));
  int priority;

  /* Always prefer inlining saving code size, and inline comdat
     functions with LIPO.  */
  if (growth <= 0
      || better_inline_comdat_function_p (edge->callee))
    priority = 0;
  else
    {
      /* FREQ_DIVISOR is an estimate of the relative frequency of the
	 callsite.  The value can range from 0 to CGRAPH_FREQ_MAX.  */
      int freq_divisor;

      if (max_count)
	{
	  /* When profiling is available, use the execution count of the
	     callsite as a fraction of the maximum count.  */
	  struct cgraph_node *caller = (edge->caller->global.inlined_to
					? edge->caller->global.inlined_to
					: edge->caller);
	  if (flag_sample_profile
	      && get_total_count_edge (edge, cgraph_node_name (caller)) > 0)
	    /* When using sample profile, if the function is inlined during the
	       profiling run, we will give it higher priority to be inlined.  */
	    freq_divisor = CGRAPH_FREQ_MAX;
	  else
            freq_divisor = ((long long) edge->count * CGRAPH_FREQ_MAX
                            + max_count / 2) / max_count;
	}
      else if (flag_guess_branch_prob)
	/* When function local profile is available, base priorities
	   on estimated frequency, so we optimize for overall
	   frequency of inlined calls.  This is not too accurate
	   since while the call might be frequent within function,
	   the function itself is infrequent.  */
	freq_divisor = edge->frequency;
      else
	{
	  /* When function local profile is not available or it does
	     not give useful information (ie frequency is zero), base
	     the frequency upon the loop nest where each loop is
	     estimated to be executed twice.  The nest depth is capped
	     at 8.  */
	  int nest = MIN (edge->loop_nest, 8);
	  freq_divisor = CGRAPH_FREQ_MAX / (1 << (8 - nest));
	}
      if (freq_divisor <= 0)
	priority = INT_MAX;
      else
        {
          int priority_ll = (((long long) growth * CGRAPH_FREQ_MAX)
                             / freq_divisor);
	  if (priority_ll > INT_MAX)
	    priority = INT_MAX;
	  else
	    priority = priority_ll;
	}
      /* Make recursive inlining happen always after other inlining is done.  */
      if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL)
	  && priority < INT_MAX)
	priority += 1;
    }
  gcc_assert (priority >= 0);
  return priority;
}

/* Compute a key for EDGE for the priority heap of edges to inline.
   The most-significant bits of the key are the callsite priority.  To
   improve the stability of inlining decisions, the least-significant
   bits are the caller and callee sizes.  Callsites with identical key
   values are essentially selected in arbitrary order during inlining,
   so seemingly innocuous source code changes can affect inlining
   decisions significantly by changing the inlining order of callsites
   with the same key.  Adding tie-breakers (caller and callee sizes)
   reduces the incidence of such cases.  */

static fibheapkey_t
cgraph_edge_priority_key (struct cgraph_edge *edge)
{
  int priority = cgraph_edge_priority (edge);
  int shift = 0;

  /* To make room for the callee and caller sizes (prioirity tie
     breakers), the priority must be packed into 16-bits.  Rather than
     truncate or clip the value, the priority is compressed.  Values
     greater than or equal to 2**12 are right-shifted by one or more
     bits.  This is represented in 16-bits with 2 fields: the value to
     shift (lower 12 bits), and the amount to shift (upper 4 bits).
     This compressed value increases monotonically as the priority
     increases.  Priorities higher than 2**27 are clipped, but the
     priority is never that high for any callsite that has a chance of
     being inlined  */
  gcc_assert (priority >= 0);
  while ((priority >= (1 << 12)) && (shift < 16))
    {
      priority >>= 1;
      shift++;
    }
  if (shift == 16)
    priority = (1 << 16) - 1;
  else
    priority = (shift << 12) + priority;

  return (INT_MIN
	  + (priority << 16)
	  + (MIN (255, edge->callee->global.insns) << 8)
	  + MIN (255, edge->caller->global.insns));
}

static int
key_to_priority (fibheapkey_t key)
{
  int value = (key >> 16) - (INT_MIN >> 16);
  int shift;
  gcc_assert ((value >= 0) && (value < (1 << 16)));
  shift = (value >> 12) & 0xf;
  value = value & 0xfff;
  return value << shift;
}

/* Recompute heap nodes for each of caller edge.  */

static void
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
		    bitmap updated_nodes)
{
  struct cgraph_edge *edge;
  const char *failed_reason;

  if (!node->local.inlinable || node->global.inlined_to)
    return;
  if (bitmap_bit_p (updated_nodes, node->uid))
    return;
  bitmap_set_bit (updated_nodes, node->uid);
  node->global.estimated_average_growth = INT_MIN;

  if (!node->local.inlinable)
    return;
  /* Prune out edges we won't inline into anymore.  */
  if (!cgraph_default_inline_p (node, &failed_reason) 
      && !better_inline_comdat_function_p (node))
    {
      for (edge = node->callers; edge; edge = edge->next_caller)
	if (edge->aux)
	  {
	    fibheap_delete_node (heap, (fibnode_t) edge->aux);
	    edge->aux = NULL;
	    if (edge->inline_failed)
	      edge->inline_failed = failed_reason;
	  }
      return;
    }

  for (edge = node->callers; edge; edge = edge->next_caller)
    if (edge->inline_failed)
      {
	fibheapkey_t new_key = cgraph_edge_priority_key (edge);
	if (edge->aux)
	  {
	    fibnode_t n = (fibnode_t) edge->aux;
	    gcc_assert (n->data == edge);
	    if (n->key == new_key)
	      continue;

	    /* fibheap_replace_key only increase the keys.  */
	    if (new_key < n->key)
	      {
		fibheap_replace_key (heap, n, new_key);
		gcc_assert (n->key == new_key);
		continue;
	      }
	    fibheap_delete_node (heap, (fibnode_t) edge->aux);
	  }
	edge->aux = fibheap_insert (heap, new_key, edge);
      }
}

/* Recompute heap nodes for each of caller edges of each of callees.  */

static void
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
		    bitmap updated_nodes)
{
  struct cgraph_edge *e;
  node->global.estimated_average_growth = INT_MIN;

  for (e = node->callees; e; e = e->next_callee)
    if (e->inline_failed)
      update_caller_keys (heap, e->callee, updated_nodes);
    else if (!e->inline_failed)
      update_callee_keys (heap, e->callee, updated_nodes);
}

/* Enqueue all recursive calls from NODE into priority queue depending on
   how likely we want to recursively inline the call.  */

static void
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
			fibheap_t heap)
{
  static int priority;
  struct cgraph_edge *e;
  for (e = where->callees; e; e = e->next_callee)
    if (e->callee == node)
      {
	/* When profile feedback is available, prioritize by expected number
	   of calls.  Without profile feedback we maintain simple queue
	   to order candidates via recursive depths.  */
        fibheap_insert (heap,
			!max_count ? priority++
		        : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
		        e);
      }
  for (e = where->callees; e; e = e->next_callee)
    if (!e->inline_failed)
      lookup_recursive_calls (node, e->callee, heap);
}

/* Create a clone of NODE to use in recursive inlining.  */

static struct cgraph_node*
create_recursive_clone (struct cgraph_node *node)
{
  struct cgraph_node *clone;
  struct cgraph_edge *e;

  clone = cgraph_clone_node (node, node->count, CGRAPH_FREQ_BASE, 1, false);
  clone->needed = true;
  for (e = clone->callees; e; e = e->next_callee)
    if (!e->inline_failed)
      cgraph_clone_inlined_nodes (e, true, false);

  return clone;
}

/* Delete the cloned node NODE used for recursive inlining.  */

static void
delete_recursive_clone (struct cgraph_node *clone)
{
  struct cgraph_node *node, *next;

  for (node = cgraph_nodes; node != clone; node = next)
    {
      next = node->next;
      if (node->global.inlined_to == clone)
	cgraph_remove_node (node);
    }
  cgraph_remove_node (clone);
}

/* Decide on recursive inlining: in the case function has recursive calls,
   inline until body size reaches given argument.  If any new indirect edges
   are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
   is NULL.  */

static bool
cgraph_decide_recursive_inlining (struct cgraph_node *node,
				  VEC (cgraph_edge_p, heap) **new_edges)
{
  int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
  int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
  int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
  fibheap_t heap;
  struct cgraph_node *master_clone;
  int depth = 0;
  int n = 0;

  if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl))
      || (!flag_inline_functions && !DECL_DECLARED_INLINE_P (node->decl)))
    return false;

  if (DECL_DECLARED_INLINE_P (node->decl))
    {
      limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
      max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
    }

  /* Make sure that function is small enough to be considered for inlining.  */
  if (!max_depth
      || cgraph_estimate_size_after_inlining (1, node, node)  >= limit)
    return false;
  heap = fibheap_new ();
  lookup_recursive_calls (node, node, heap);
  if (fibheap_empty (heap))
    {
      fibheap_delete (heap);
      return false;
    }

  if (dump_file)
    fprintf (dump_file, 
	     "  Performing recursive inlining on %s\n",
	     cgraph_node_name (node));

  /* We need original clone to copy around.  */
  master_clone = create_recursive_clone (node);

  /* Do the inlining and update list of recursive call during process.  */
  while (!fibheap_empty (heap)
	 && (cgraph_estimate_size_after_inlining (1, node, master_clone)
	     <= limit))
    {
      struct cgraph_edge *curr
	= (struct cgraph_edge *) fibheap_extract_min (heap);
      struct cgraph_node *cnode;

      depth = 1;
      for (cnode = curr->caller;
	   cnode->global.inlined_to; cnode = cnode->callers->caller)
	if (node->decl == curr->callee->decl)
	  depth++;
      if (depth > max_depth)
	{
          if (dump_file)
	    fprintf (dump_file, 
		     "   maximal depth reached\n");
	  continue;
	}

      if (max_count)
	{
          if (!cgraph_maybe_hot_edge_p (curr))
	    {
	      if (dump_file)
		fprintf (dump_file, "   Not inlining cold call\n");
	      continue;
	    }
          if (node->count == 0 || (curr->count * 100 / node->count < probability))
	    {
	      if (dump_file)
		fprintf (dump_file, 
			 "   Probability of edge is too small\n");
	      continue;
	    }
	}

      if (!dbg_cnt (inl))
        continue;

      if (dump_file)
	{
	  fprintf (dump_file, 
		   "   Inlining call of depth %i", depth);
	  if (node->count)
	    {
	      fprintf (dump_file, " called approx. %.2f times per call",
		       (double)curr->count / node->count);
	    }
	  fprintf (dump_file, "\n");
	}
      cgraph_redirect_edge_callee (curr, master_clone);
      cgraph_mark_inline_edge (curr, false, new_edges);
      lookup_recursive_calls (node, curr->callee, heap);
      n++;
    }
  if (!fibheap_empty (heap) && dump_file)
    fprintf (dump_file, "    Recursive inlining growth limit met.\n");

  fibheap_delete (heap);
  if (dump_file)
    fprintf (dump_file, 
	     "\n   Inlined %i times, body grown from %i to %i insns\n", n,
	     master_clone->global.insns, node->global.insns);

  /* Remove master clone we used for inlining.  We rely that clones inlined
     into master clone gets queued just before master clone so we don't
     need recursion.  */
  delete_recursive_clone (master_clone);

  /* FIXME: Recursive inlining actually reduces number of calls of the
     function.  At this place we should probably walk the function and
     inline clones and compensate the counts accordingly.  This probably
     doesn't matter much in practice.  */
  return n > 0;
}

/* Set inline_failed for all callers of given function to REASON.  */

static void
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
{
  struct cgraph_edge *e;

  if (dump_file)
    fprintf (dump_file, "Inlining failed: %s\n", reason);
  for (e = node->callers; e; e = e->next_caller)
    if (e->inline_failed)
      e->inline_failed = reason;
}

/* Given whole compilation unit estimate of INSNS, compute how large we can
   allow the unit to grow.  */
static int
compute_max_insns (int insns)
{
  int max_insns = insns;
  if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
    max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);

  return ((HOST_WIDEST_INT) max_insns
	  * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
}

/* Compute priority keys of all edges in NEW_EDGES and add them to the
   HEAP.  */
static void
add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
{
  while (VEC_length (cgraph_edge_p, new_edges) > 0)
    {
      struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);

      gcc_assert (!edge->aux);
      edge->aux = fibheap_insert (heap, cgraph_edge_priority_key (edge), edge);
    }
}


/* We use greedy algorithm for inlining of small functions:
   All inline candidates are put into prioritized heap based on estimated
   growth of the overall number of instructions and then update the estimates.

   INLINED and INLINED_CALEES are just pointers to arrays large enough
   to be passed to cgraph_inlined_into and cgraph_inlined_callees.  */

static void
cgraph_decide_inlining_of_small_functions (void)
{
  struct cgraph_node *node;
  struct cgraph_edge *edge;
  const char *failed_reason;
  fibheap_t heap = fibheap_new ();
  bitmap updated_nodes = BITMAP_ALLOC (NULL);
  int min_insns, max_insns;
  VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;

  if (flag_indirect_inlining)
    new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);

  if (dump_file)
    fprintf (dump_file, "\nDeciding on smaller functions:\n");

  /* Put all inline candidates into the heap.  */

  for (node = cgraph_nodes; node; node = node->next)
    {
      if (!node->local.inlinable || !node->callers
	  || node->local.disregard_inline_limits)
	continue;

      if (dump_file)
	fprintf (dump_file, "Considering inline candidate %s.\n",
		 cgraph_node_name (node));

      node->global.estimated_average_growth = INT_MIN;
      if (!cgraph_default_inline_p (node, &failed_reason) &&
          !better_inline_comdat_function_p (node))
	{
	  cgraph_set_inline_failed (node, failed_reason);
	  continue;
	}

      for (edge = node->callers; edge; edge = edge->next_caller)
	if (edge->inline_failed)
	  {
	    gcc_assert (!edge->aux);
	    edge->aux = fibheap_insert (heap,
					cgraph_edge_priority_key (edge), edge);
	  }
    }

  max_insns = compute_max_insns (overall_insns);
  min_insns = overall_insns;

  if (dump_file)
    {
      fprintf (dump_file, "Initial max_insns = %d\n", max_insns);
      fprintf (dump_file, "Initial min_insns = %d\n", min_insns);
    }

  while (overall_insns <= max_insns && !fibheap_empty (heap))
    {
      int old_insns = overall_insns, growth;
      fibheapkey_t key;
      struct cgraph_node *caller, *callee;
      const char *not_good = NULL;

      key = fibheap_min_key (heap);
      edge = (struct cgraph_edge *) fibheap_extract_min (heap);
      gcc_assert (edge->aux);
      edge->aux = NULL;
      if (!edge->inline_failed)
	continue;

      growth =
	(cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee)
	 - edge->caller->global.insns);

      /* If fibheap keys are updated properly, these values should
	 always be identical.  */
      gcc_assert (key == cgraph_edge_priority_key (edge));

      if (dump_file)
	{
	  fprintf (dump_file,
		   "\nConsidering %s with %i insns\n",
		   cgraph_node_name (edge->callee),
		   edge->callee->global.insns);
	  fprintf (dump_file,
		   " to be inlined into %s\n"
		   " Estimated average growth after inlined into all callees is %+i insns.\n"
		   " Estimated priority is %i, frequency %.2f.\n",
		   cgraph_node_name (edge->caller),
		   cgraph_estimate_growth (edge->callee), key_to_priority (key),
		   edge->frequency / (double)CGRAPH_FREQ_BASE);
	  if (edge->count)
	    fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
	}


      /* When not having profile info ready we don't weight by any way the
         position of call in procedure itself.  This means if call of
	 function A from function B seems profitable to inline, the recursive
	 call of function A in inline copy of A in B will look profitable too
	 and we end up inlining until reaching maximal function growth.  This
	 is not good idea so prohibit the recursive inlining.

	 ??? When the frequencies are taken into account we might not need this
	 restriction.

	 We need to be cureful here, in some testcases, e.g. directivec.c in
	 libcpp, we can estimate self recursive function to have negative growth
	 for inlining completely.
	 */
      if (!edge->count && !(flag_sample_profile && get_total_count_edge (edge,
            cgraph_node_name (edge->caller->global.inlined_to ?
                              edge->caller->global.inlined_to :
                              edge->caller)) > 0))
	{
	  struct cgraph_node *where = edge->caller;
	  while (where->global.inlined_to)
	    {
	      if (where->decl == edge->callee->decl)
		break;
	      where = where->callers->caller;
	    }
	  if (where->global.inlined_to)
	    {
	      edge->inline_failed
		= (edge->callee->local.disregard_inline_limits ? N_("recursive inlining") : "");
	      if (dump_file)
		fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
	      continue;
	    }
	}

      if (!cgraph_maybe_hot_edge_p (edge))
	{
	  if (max_count && PARAM_VALUE (PARAM_MIN_COUNT_FRACTION_FOR_INLINE_COLD))
	    {
	      /* Even if an edge is cold and the function entry is
		 cold, the callee may contain hot code.  In this case,
		 inlining can be advantageous because important
		 context can be propagated to the hot code.  This edge
		 is considered for inlining only if it is one of the
		 more likely callers of the hot function and the
		 function contains sufficiently hot code.  More
		 precisely, if the estimated maximum count in the
		 callee along the edge is greater than the fraction of
		 global maximum count as defined with
		 PARAM_MIN_COUNT_FRACTION_FOR_INLINE_COLD, then the
		 edge is still an inline candidate..  */
	      if (edge->callee->count &&
		  ((int)((double)edge->count * edge->callee->max_bb_count
			 / edge->callee->count)
		   >= (profile_info->sum_max
		       / PARAM_VALUE (PARAM_MIN_COUNT_FRACTION_FOR_INLINE_COLD))))
		{
		  if (dump_file)
		    fprintf (dump_file, "Callsite is cold, but still a "
			     "candidate because callee is sufficiently hot.\n");
		}
	      else
		not_good = N_("call is unlikely and code size would grow");
	    }
	  else
	    not_good = N_("call is unlikely and code size would grow");
	}
      if (!flag_inline_functions
	  && !DECL_DECLARED_INLINE_P (edge->callee->decl)
	  && (key_to_priority (key)
	      > PARAM_VALUE (PARAM_INLINE_PRIORITY_THRESHOLD)))
 	not_good = N_("function not declared inline, code size would grow, "
		      "and priority too low");
      if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION(edge->caller->decl)))
 	not_good = N_("optimizing for size and code size would grow");
      if (not_good && growth > 0 && cgraph_estimate_growth (edge->callee) > 0)
	{
          if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
				            &edge->inline_failed))
	    {
	      edge->inline_failed = not_good;
	      if (dump_file)
		fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
	    }
	  continue;
	}
      if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed) 
          && !better_inline_comdat_function_p (edge->callee))
	{
          if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
				            &edge->inline_failed))
	    {
	      if (dump_file)
		fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
	    }
	  continue;
	}
      if (!tree_can_inline_p (edge->caller->decl, edge->callee->decl))
	{
	  gimple_call_set_cannot_inline (edge->call_stmt, true);
	  edge->inline_failed = N_("target specific option mismatch");
	  if (dump_file)
	    fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
	  continue;
	}

      caller = edge->caller;
      if (caller->global.inlined_to)
	caller = caller->global.inlined_to;
      callee = edge->callee;

      if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
				       &edge->inline_failed))
	{
	  if (!cgraph_decide_recursive_inlining (caller,
						 flag_indirect_inlining
						 ? &new_indirect_edges : NULL))
	    continue;
	  if (flag_indirect_inlining)
	    add_new_edges_to_heap (heap, new_indirect_edges);
	}
      else
	{
	  if (gimple_call_cannot_inline_p (edge->call_stmt)
	      || !cgraph_check_inline_constraints_edge (edge, &edge->inline_failed))
	    {
	      if (dump_file)
		fprintf (dump_file, " Not inlining into %s:%s.\n",
			 cgraph_node_name (edge->caller), edge->inline_failed);
	      continue;
	    }

          if (!dbg_cnt (inl))
            continue;

	  cgraph_mark_inline_edge (edge, true, &new_indirect_edges);
	  if (flag_indirect_inlining)
	    add_new_edges_to_heap (heap, new_indirect_edges);
	}

      /* Our profitability metric depends upon local properties of the
	 caller and callee, as well as global properties such as the
	 number of times a function is called.  The priority of edges
	 already in the heap need to be adjusted accordingly.  */

      /* CALLER is the function that the callee is ultimately inlined
	 into, potentially via multiple transitive inlining decisions.
	 It's size likely changed, so update all of its callers.
	 Update it's callees as well because the caller size is used
	 when computing prioirity keys.  Furthermore, updating the
	 callee keys will update callsites within the newly inlined
	 function body.  */
      update_caller_keys (heap, caller, updated_nodes);
      update_callee_keys (heap, caller, updated_nodes);

      /* If the non-inlined body of the callee is still around (CALLEE
	 is not marked as inline), then it must be updated as with
	 INLINED_CALLEE.  Also, because the number of callers of the
	 function which has been inlined has been reduced by one, all
	 callers of the function must be updated.  */
      if (!callee->global.inlined_to)
	{
	  update_callee_keys (heap, callee, updated_nodes);
	  if (caller != callee)
	    /* Add condition to avoid duplicating call to
	       UPDATE_CALLER_KEYS above.  */
	    update_caller_keys (heap, callee, updated_nodes);
	}

      bitmap_clear (updated_nodes);

      if (dump_file)
	{
	  fprintf (dump_file,
		   "%s inlined into %s which now has %i insns, "
                   "net change of %+i insns.\n",
		   cgraph_node_name (edge->callee),
		   cgraph_node_name (edge->caller),
		   edge->caller->global.insns,
		   overall_insns - old_insns);
	}
      if (min_insns > overall_insns)
	{
	  min_insns = overall_insns;
	  max_insns = compute_max_insns (min_insns);

	  if (dump_file)
	    fprintf (dump_file, "New minimal insns reached: %i\n", min_insns);
	}
      if (dump_file)
	{
	  fprintf (dump_file, "max_insns = %d\n", max_insns);
	  fprintf (dump_file, "min_insns = %d\n", min_insns);
	  fprintf (dump_file, "overall_insns = %d\n", overall_insns);
	}
    }
  if (dump_file)
    {
      if (fibheap_empty (heap))
	fprintf (dump_file, "All small function candidates inlined.\n");
      else
	fprintf (dump_file, "Small function priority cutoff is %d.\n",
		 (int) key_to_priority (fibheap_min_key (heap)));
    }
  while ((edge = (struct cgraph_edge *) fibheap_extract_min (heap)) != NULL)
    {
      gcc_assert (edge->aux);
      edge->aux = NULL;
      if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
          && !cgraph_recursive_inlining_p (edge->caller, edge->callee,
				           &edge->inline_failed))
	edge->inline_failed = N_("--param inline-unit-growth limit reached");
    }

  if (new_indirect_edges)
    VEC_free (cgraph_edge_p, heap, new_indirect_edges);
  fibheap_delete (heap);
  BITMAP_FREE (updated_nodes);
}

/* Frees the linked list LST of struct CALLSITE_CHAIN elements.  */

static void
free_callsite_chain (struct callsite_chain *lst)
{
  while (lst)
    {
      struct callsite_chain *p = lst;
      lst = lst->next;
      if (p->function_name)
        free (p->function_name);
      free (p);
    }
}

/* Frees inline plan PLAN.  */

static void
free_inline_plan (struct inline_plan *plan)
{
  struct inline_decision *decision, *tmp;

  decision = plan->decisions;
  while (decision)
    {
      free_callsite_chain (decision->chain);
      tmp = decision->next;
      free (decision);
      decision = tmp;
    }
  free (plan);
}

/* Returns a copy of SRC allocated with XNEW with leading and trailing
   whitespace removed.  */

static char *
new_stripped_string (const char *src)
{
  const char *start = NULL, *end = NULL;
  char *dst;

  for (; *src; src++)
    if (!ISSPACE (*src))
      {
        if (!start)
          start = src;
        end = src + 1;
      }
  dst = XNEWVEC (char, end - start + 1);
  strncpy (dst, start, end - start);
  dst[end - start] = 0;
  return dst;
}

/* Allocates, copies, and returns the substring up to the first
   instance of SEPARATOR in BUF.  Leading and trailing whitespace are
   stripped in the copy.  If NEXT is not NULL, then *NEXT is set to
   the location in buffer immediately after SEPARATOR.  If SEPARATOR
   is not found, then *NEXT is set to NULL and NULL is returned.  */

static char *
new_token_before_separator (char *buf, const char *separator, char **next)
{
  char tmp;
  char *p, *token;

  p = strstr (buf, separator);
  if (!p)
    {
      /* Separator not found in BUF.  */
      if (next)
        *next = NULL;
      return NULL;
    }

  /* Temporarily zero terminate BUF at the beginning of SEPARATOR.  */
  tmp = *p;
  *p = 0;
  token = new_stripped_string (buf);
  *p = tmp;

  /* Set *NEXT to beyond the end of SEPARATOR in BUF.  */
  if (next)
     *next = p + strlen (separator);

  return token;
}

/* Parse the string STR containing an inline chain.  The string
   representation of the chain is the format output by
   DUMP_INLINING_DECISION.  For example:

     FuncA @callsite #1 into FuncB @callsite #5 into ... into FuncZ

   Returns a list of CALLSITE_CHAIN elements.  */

static struct callsite_chain*
parse_inlining_decision (char *str)
{
  struct callsite_chain *chain = NULL;
  char *loc = str;
  bool error = false;

  while (loc)
    {
      char *starting_loc = loc;
      struct callsite_chain *plink = XCNEW (struct callsite_chain);

      plink->next = chain;
      chain = plink;
      plink->function_name =
        new_token_before_separator (starting_loc, "@callsite #", &loc);

      if (loc)
        {
          /* Extract callsite number.  */
          char *callsite_str = new_token_before_separator (loc, "into", &loc);
          if (!loc)
            {
              error = true;
              break;
            }
          plink->callsite_no = atoi (callsite_str);
          free (callsite_str);
        }
      else
        {
          /* No callsite string found, so this must be final function in
             chain.  Final function name is last part of line.  */
          plink->function_name = new_stripped_string (starting_loc);
          plink->callsite_no = 0;
        }
  }

  /* Check for error and at least two elements in list.  */
  if (error || !chain || !chain->next)
    {
      free_callsite_chain (chain);
      chain = NULL;
    }

  return chain;
}


/* Returns the non-inlined cgraph node with unique name NAME.  The
   search skips over cgraph node SKIP if non-NULL.  This is useful
   with recursive inlining which creates a dummy cgraph node clone.

   TODO: This is inefficient.  Probably better to do with a hash.  */

static struct cgraph_node *
find_named_cgraph_node (const char *name, struct cgraph_node *skip)
{
  struct cgraph_node *node;

  for (node = cgraph_nodes; node; node = node->next)
    if (!node->global.inlined_to
        && node != skip
        && node->analyzed
        && node->master_clone == node
        && cgraph_node_matches_unique_name_p (node, name))
      break;
  return node;
}

/* Inlines the edge specified by CHAIN.  *CLONE, if non-NULL, is the
   cloned callee used for recursive inlining.  This mechanism is
   required because a cloned node is used for consecutive recursive
   inlining decisions for edges with the same callee (see
   cgraph_decide_recursive_inlining).  *CLONE is updated to point to
   the new recursive clone if one is created.  In case of error, an
   error string is copied into ERROR_MSG of maximum length
   MSG_LEN.  */

static bool
inline_edge_defined_by_chain (struct callsite_chain *chain,
                              struct cgraph_node **clone,
                              char *error_msg, int msg_len)
{
  struct cgraph_node *caller, *first_caller;
  struct callsite_chain *pchain;
  struct cgraph_edge *edge = NULL;
  char *caller_name = NULL;

  /* The first function in the chain is the enclosing function in
     which the edge is ultimately inlined into.  Find the cgraph node
     for this function, skipping any potential clone.  */
  first_caller = find_named_cgraph_node (chain->function_name, *clone);
  if (!first_caller)
    {
      snprintf (error_msg, msg_len, "no function named %s found",
                chain->function_name);
      return false;
    }
  caller = first_caller;
  caller_name = chain->function_name;

  pchain = chain->next;
  gcc_assert (pchain);
  while (pchain)
    {
      int callsite = 0;

      /* Find last callee.  Edges in the call graph are in the reverse
         order in which they appear in the code, so the edges must be
         walked backwards to find the n-th one.  */
      for (edge = caller->callees;
           edge && edge->next_callee;
           edge = edge->next_callee)
        { /* Nothing. */ }

      if (edge)
        /* Iterating backwards, find the n-th (where n = PCHAIN->CALLSITE_NO)
           call to function PCHAIN->FUNCTION_NAME backwards in the list.  */
        for ( ; edge ; edge = edge->prev_callee)
          if (cgraph_node_matches_unique_name_p (edge->callee,
                                                 pchain->function_name))
            {
              callsite++;
              if (callsite == pchain->callsite_no)
                break;
            }

      if (edge == NULL)
        {
          /* Edge corresponding to the particular callsite defined by
             PCHAIN was not found.  */
          if (callsite == 0)
            snprintf (error_msg, msg_len, "%s does not call %s",
                      caller_name, pchain->function_name);
          else
            snprintf (error_msg, msg_len, "no callsite %d of %s in %s",
                      pchain->callsite_no,
                      pchain->function_name,
                      caller_name);
          return false;
        }

      if (pchain->next)
        /* Edge is not the last in the chain.  Verify that edge has
           been inlined.  */
        if (edge->inline_failed)
          {
            snprintf (error_msg, msg_len,
                      "inlining of callsite %d of %s in %s must precede "
		      "inlining of this edge",
                      pchain->callsite_no,
                      pchain->function_name,
                      caller_name);
            return false;
          }
      caller = edge->callee;
      caller_name = pchain->function_name;

      pchain = pchain->next;
    }

  gcc_assert (edge);
  if (!edge->inline_failed)
    {
      snprintf (error_msg, msg_len, "edge has already been inlined");
      return false;
    }

  if (edge->callee->decl == first_caller->decl)
    {
      /* This is a recursive inlining decision, so the edge needs to
         be directed to a clone of the callee prior to marking the
         edge for inlining.  */
      if (*clone && (*clone)->decl != edge->callee->decl)
        {
          /* Recursive clone exists, but it's a clone of a different
             call graph node from a previous recursive inlining
             decision.  */
          delete_recursive_clone (*clone);
          *clone = NULL;
        }
      if (!*clone)
        /* Create new clone of this node.  */
        *clone = create_recursive_clone (edge->callee);

      cgraph_redirect_edge_callee (edge, *clone);
      cgraph_mark_inline_edge (edge, false, NULL);
    }
  else
    cgraph_mark_inline_edge (edge, true, NULL);

  return true;
}

/* Read an inline plan from FILENAME and return an inline_plan struct
   describing the decisions.

   Each line in the file beginning with "INLINE:" defines a single
   inlined call graph edge.  Lines not beginning with "INLINE:" are
   ignored.  The text after "INLINE:" should be in the same format as
   output by dump_callsite_chain.

   The debugging dumps of the inlining passes include lines defining
   the inlining plan in this format, so the debugging dumps may be
   input as the inlining plan to later replicate the set of inlining
   decisions exactly.  */

static struct inline_plan*
read_inline_plan (const char *filename)
{
  FILE *f;
  unsigned int max_line_len = 4096;
  char *line = XNEWVEC (char, max_line_len);
  int line_no = 1;
  struct inline_decision *last_decision = NULL;
  struct inline_plan *plan;

  f = fopen (filename, "r");
  if (f == (FILE *) 0)
    fatal_error ("can't open inline plan file %s: %m", filename);

  #ifdef ENABLE_CHECKING
  {
    struct cgraph_node *node;
    /* Check for nodes with the same unique names.  */
    for (node = cgraph_nodes; node; node = node->next)
      if (!node->global.inlined_to && node->analyzed)
	{
	  struct cgraph_node *node2;
	  char *node_name = create_unique_cgraph_node_name (node);

	  for (node2 = node->next; node2; node2 = node2->next)
	    if (!node2->global.inlined_to
		&& node2->analyzed
		&& cgraph_node_matches_unique_name_p (node2, node_name))
	      {
		const char *asm_name =
		  IDENTIFIER_POINTER (decl_assembler_name (node->decl));
		const char *asm_name2 =
		  IDENTIFIER_POINTER (decl_assembler_name (node2->decl));

		fatal_error ("cgraph node aliased unique name %s (%s != %s)",
			     node_name, asm_name, asm_name2);
	      }
	  free (node_name);
	}
  }
  #endif

  plan = XCNEW (struct inline_plan);
  while (fgets (line, max_line_len, f) != (char *) 0)
    {
      char *p;

      /* If line doesn't fit in the buffer, then keep doubling the
         size of buffer until it fits.  */
      while (strlen (line) == max_line_len - 1
             && line[max_line_len - 2] != '\n')
        {
          /* Double the size of the line and keep reading.  */
          line = (char *) xrealloc (line, max_line_len * 2);
          fgets (line + max_line_len - 1, max_line_len + 1, f);
          max_line_len *= 2;
        }

      p = line;
      while (*p && ISBLANK (*p))
        p++;

      if (strstr (p, "INLINE:") == p)
        {
          char *stripped = new_stripped_string (p + strlen ("INLINE:"));
          struct inline_decision *decision = XNEW (struct inline_decision);

          decision->line_no = line_no;
          decision->next = NULL;
          decision->chain = parse_inlining_decision (stripped);
          if (!decision->chain)
            fatal_error ("invalid line in inline plan: %s:%d: %s",
                         filename, line_no, line);

          if (last_decision)
            {
              last_decision->next = decision;
              last_decision = decision;
            }
          else
            plan->decisions = last_decision = decision;

          free (stripped);
        }
      line_no++;
    }
  free(line);

  return plan;
}

/* Return the specified plan file, if any, for the current pass.  */

static struct inline_plan_file*
get_plan_file_for_pass (struct opt_pass *pass)
{
  struct inline_plan_file *pfile;
  struct dump_file_info *pinfo;
  const char *pass_suffix;

  if (!inline_plan_files)
    return NULL;

  /* Use the suffix of the dump file to uniquely identify the pass,
     rather than the name of the current pass.  The suffix includes a
     trailing digit to resolve multiple instances of the same pass
     (eg., "einline1" or "einline2").  It is this suffix which is
     matched against the pass name given with
     -finline-plan-<pass>=<file>.  */
  pinfo = get_dump_file_info (pass->static_pass_number);
  if (!pinfo)
    return NULL;

  /* The suffix includes a leading '.'.  Skip it.  */
  pass_suffix = pinfo->suffix + 1;

  /* Find plan for this pass, if any.  */
  for (pfile = inline_plan_files; pfile; pfile = pfile->next)
    if (strcmp (pfile->pass_name, pass_suffix) == 0)
      break;
  return pfile;
}

/* Apply the set of inlining decisions defined by PLAN.  If NODE is
   not NULL then only apply decisions with the function represented by
   NODE.  Returns true if any edges are inlined.  TODO: In the case
   where NODE is non-NULL, this function is inefficient as it examines
   all decisions.  */

static bool
apply_plan (struct inline_plan *plan,
            struct cgraph_node *node)
{
  char msg[256];
  struct inline_decision *p;
  struct cgraph_node *clone = NULL;
  bool inlined = false;

  if (dump_file)
    {
      fprintf (dump_file, "Applying inlining plan from file %s",
               plan->file->filename);
      if (node)
        {
          fprintf (dump_file, "to ");
          dump_unique_cgraph_node_name (dump_file, node);
        }
      fprintf (dump_file, ":\n");
    }

  for (p = plan->decisions; p; p = p->next)
    if (!node
        || cgraph_node_matches_unique_name_p (node, p->chain->function_name))
      {
        if (!inline_edge_defined_by_chain (p->chain, &clone, msg, 256))
          fatal_error ("in inline plan %s:%d: %s",
		       plan->file->filename, p->line_no, msg);
        inlined = true;
      }

  if (clone)
    delete_recursive_clone (clone);

  return inlined;
}

/* Recursive helper function for dumping inlining decisions within a
   function.  */

static void
dump_function_inlining_decisions_1 (FILE *file, struct cgraph_node *node,
				    int indent)
{
  struct cgraph_edge *edge;

  for (edge = node->callees; edge; edge = edge->next_callee)
    {
      int i;
      for (i = 0; i < indent; i++)
	fprintf (file, "    ");
      if (!edge->inline_failed)
	fprintf (file, "[inlined] ");
      fprintf (file, "%s [callsite #%d]",
	       cgraph_node_name (edge->callee),
	       callsite_position (edge));
      if (DECL_DECLARED_INLINE_P (edge->callee->decl))
	fprintf (file, " marked inline");
      else
	fprintf (file, " not marked inline");
      fprintf (file, ", uid %d, size %d, frequency %0.4f",
	       edge->uid, edge->callee->global.insns,
	       (double)edge->frequency / CGRAPH_FREQ_BASE);
      if (max_count)
	fprintf (file, ", count " HOST_WIDEST_INT_PRINT_DEC, edge->count);
      if (edge->inline_failed)
	{
	  if (edge->callee->local.inlinable)
	    fprintf (file, ", priority %d, inline growth %d, all inline growth %d",
		     cgraph_edge_priority (edge),
		     cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee)
		     - edge->caller->global.insns,
		     cgraph_estimate_growth (edge->callee));
	  if (flag_dyn_ipa)
	    {
	      /* For LIPO, if the edge is not entirely within the
		 main module, label it as in an auxilliary module or
		 as crossmodule.  */
		unsigned caller_id = cgraph_get_module_id (edge->caller->decl);
		unsigned callee_id = cgraph_get_module_id (edge->callee->decl);
		if (caller_id == callee_id)
		  {
		    if (caller_id != primary_module_id)
		      fprintf (file, ", aux module id=%u", caller_id);
		  }
		else
		  {
		    /* This is a cross module edge. */
		    fprintf (file, ", crossmodule: ");
		    if (caller_id == primary_module_id)
 		      fprintf (file, "main -> ");
		    else
 		      fprintf (file, "%u -> ", caller_id);
		    if (callee_id == primary_module_id)
 		      fprintf (file, "main");
		    else
 		      fprintf (file, "%u", callee_id);
		  }
	    }
	  fprintf (file, ", inlining failed: %s", edge->inline_failed);
	}
      fprintf (file, "\n");

      if (!edge->inline_failed)
	dump_function_inlining_decisions_1 (file, edge->callee, indent + 1);
    }
}

/* Dump inlining decisions for all callsites in NODE to FILE.  */

static void
dump_function_inlining_decisions (FILE *file, struct cgraph_node *node)
{
  fprintf (file, "%s, uid %d, size %d, %s",
	   cgraph_node_name (node), node->uid, node->global.insns,
	   function_frequency_string (node));
  if (max_count)
    fprintf (file, "count " HOST_WIDEST_INT_PRINT_DEC, node->count);
  if (flag_dyn_ipa && (cgraph_get_module_id (node->decl) != primary_module_id))
    fprintf (file, ", aux module id %u", cgraph_get_module_id (node->decl));
  fprintf (file, "\n");
  dump_function_inlining_decisions_1 (file, node, 1);
  fprintf (file, "\n");
}

/* Dump inlining decisions for all callsites in all functions to FILE.  */

static void
dump_cgraph_inlining_decisions (FILE *file)
{
  struct cgraph_node *node;

  fprintf (file, "\nInlining decisions:\n");
  for (node = cgraph_nodes; node; node = node->next)
    dump_function_inlining_decisions (file, node);
  fprintf (file, "\n");
}

/* Decide on the inlining.  We do so in the topological order to avoid
   expenses on updating data structures.  */

static unsigned int
cgraph_decide_inlining (void)
{
  struct cgraph_node *node;
  int nnodes;
  struct cgraph_node **order;
  int old_insns = 0;
  int i;
  int initial_insns = 0;
  bool redo_always_inline = true;
  struct inline_plan_file* plan_file;

  cgraph_remove_function_insertion_hook (function_insertion_hook_holder);

  max_count = 0;
  for (node = cgraph_nodes; node; node = node->next)
    if (node->analyzed && (node->needed || node->reachable))
      {
	struct cgraph_edge *e;

	initial_insns += inline_summary (node)->self_insns;
	gcc_assert (inline_summary (node)->self_insns == node->global.insns);
	for (e = node->callees; e; e = e->next_callee)
	  if (max_count < e->count)
	    max_count = e->count;
      }
  overall_insns = initial_insns;
  gcc_assert (!max_count || profile_info_available_p ());

  if (dump_file)
    {
      fprintf (dump_file, "cgraph_decide_inlining ()\n");
      fprintf (dump_file,
               "\nDeciding on inlining.  Starting with %i insns.\n",
               initial_insns);
      if (profile_info_available_p ())
	{
	  fprintf (dump_file, "maximum count = "
		   HOST_WIDEST_INT_PRINT_DEC "\n",
		   max_count);
	  fprintf (dump_file, "global maximum count = "
		   HOST_WIDEST_INT_PRINT_DEC "\n",
		   profile_info->sum_max);
	}
      fprintf (dump_file, "flag_inline_functions = %d\n",
               flag_inline_functions);
      fprintf (dump_file, "flag_guess_branch_prob = %d\n",
               flag_guess_branch_prob);
      fprintf (dump_file, "flag_branch_probabilities = %d\n",
               flag_branch_probabilities);
      fprintf (dump_file, "flag_sample_profile = %d\n", flag_sample_profile);
    }

  plan_file = get_plan_file_for_pass (current_pass);
  if (plan_file)
    {
      struct inline_plan *plan = read_inline_plan (plan_file->filename);
      plan->file = plan_file;
      apply_plan (plan, NULL);
      free_inline_plan (plan);
      goto end;
    }

  order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
  if (flag_limit_hot_components)
    compute_hot_components ();

  nnodes = cgraph_postorder (order);

  for (node = cgraph_nodes; node; node = node->next)
    node->aux = 0;

  if (dump_file)
    fprintf (dump_file, "\nInlining always_inline functions:\n");

  /* In the first pass mark all always_inline edges.  Do this with a priority
     so none of our later choices will make this impossible.  */
  while (redo_always_inline)
    {
      redo_always_inline = false;
      for (i = nnodes - 1; i >= 0; i--)
	{
	  struct cgraph_edge *e, *next;

	  node = order[i];

	  /* Handle nodes to be flattened, but don't update overall unit
	     size.  */
	  if (lookup_attribute ("flatten",
				DECL_ATTRIBUTES (node->decl)) != NULL)
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Flattening %s\n", cgraph_node_name (node));
	      cgraph_decide_inlining_incrementally (node, INLINE_ALL, 0);
	    }

	  if (!node->local.disregard_inline_limits)
	    continue;
	  if (dump_file)
	    fprintf (dump_file,
		     "\nConsidering %s %i insns (always inline)\n",
		     cgraph_node_name (node), node->global.insns);
	  old_insns = overall_insns;
	  for (e = node->callers; e; e = next)
	    {
	      next = e->next_caller;
	      if (!e->inline_failed
		  || gimple_call_cannot_inline_p (e->call_stmt))
		continue;
	      if (cgraph_recursive_inlining_p (e->caller, e->callee,
					       &e->inline_failed))
		continue;
	      if (!tree_can_inline_p (e->caller->decl, e->callee->decl))
		{
		  gimple_call_set_cannot_inline (e->call_stmt, true);
		  continue;
		}
              if (!dbg_cnt (inl))
                continue;

	      if (cgraph_mark_inline_edge (e, true, NULL))
		redo_always_inline = true;
	      if (dump_file)
		fprintf (dump_file,
			 "INFO: %s Inlined into %s which now has %i insns.\n",
			 cgraph_node_name (e->callee),
			 cgraph_node_name (e->caller),
			 e->caller->global.insns);
	    }
	  /* Inlining self recursive function might introduce new calls to
	     themselves we didn't see in the loop above.  Fill in the proper
	     reason why inline failed.  */
	  for (e = node->callers; e; e = e->next_caller)
	    if (e->inline_failed)
	      e->inline_failed = N_("recursive inlining");
	  if (dump_file)
	    fprintf (dump_file, 
		     " Inlined for a net change of %+i insns.\n",
		     overall_insns - old_insns);
	}
    }

  cgraph_decide_inlining_of_small_functions ();

  if (flag_inline_functions_called_once)
    {
      if (dump_file)
	fprintf (dump_file, "\nDeciding on functions called once:\n");

      /* And finally decide what functions are called once.  */
      for (i = nnodes - 1; i >= 0; i--)
	{
	  node = order[i];

	  if (node->callers
	      && !node->callers->next_caller
	      && !node->needed
	      && node->local.inlinable
	      && node->callers->inline_failed
	      && !gimple_call_cannot_inline_p (node->callers->call_stmt)
	      && !DECL_EXTERNAL (node->decl)
	      && !DECL_COMDAT (node->decl))
	    {
	      if (dump_file)
		{
		  fprintf (dump_file,
			   "\nConsidering %s %i insns.\n",
			   cgraph_node_name (node), node->global.insns);
		  fprintf (dump_file,
			   " Called once from %s %i insns.\n",
			   cgraph_node_name (node->callers->caller),
			   node->callers->caller->global.insns);
		}

	      old_insns = overall_insns;

	      if (cgraph_check_inline_constraints (node->callers->caller, node,
						   NULL, false)
                  && dbg_cnt (inl))
		{
		  cgraph_mark_inline (node->callers);
		  if (dump_file)
		    fprintf (dump_file,
			     "INFO: %s Inlined into %s which now has %i insns"
			     " for a net change of %+i insns.\n",
			     cgraph_node_name (node),
			     cgraph_node_name (node->callers->caller),
			     node->callers->caller->global.insns,
			     overall_insns - old_insns);
		}
	      else
		{
		  if (dump_file)
		    fprintf (dump_file,
			     " Inline limit reached, not inlined.\n");
		}
	    }
	}
    }
  free (order);
  if (flag_limit_hot_components)
    free_hot_components ();

 end:
  /* Free ipa-prop structures if they are no longer needed.  */
  if (flag_indirect_inlining)
    free_all_ipa_structures_after_iinln ();

  if (dump_file)
    fprintf (dump_file,
	     "\nInlined %i calls, eliminated %i functions, "
	     "%i insns turned to %i insns.\n\n",
	     ncalls_inlined, nfunctions_inlined, initial_insns,
	     overall_insns);

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_cgraph_inlining_decisions (dump_file);

  return 0;
}

/* Try to inline edge E from incremental inliner.  MODE specifies mode
   of inliner.

   We are detecting cycles by storing mode of inliner into cgraph_node last
   time we visited it in the recursion.  In general when mode is set, we have
   recursive inlining, but as an special case, we want to try harder inline
   ALWAYS_INLINE functions: consider callgraph a->b->c->b, with a being
   flatten, b being always inline.  Flattening 'a' will collapse
   a->b->c before hitting cycle.  To accommodate always inline, we however
   need to inline a->b->c->b.

   So after hitting cycle first time, we switch into ALWAYS_INLINE mode and
   stop inlining only after hitting ALWAYS_INLINE in ALWAY_INLINE mode.  */
static bool
try_inline (struct cgraph_edge *e, enum inlining_mode mode, int depth)
{
  struct cgraph_node *callee = e->callee;
  enum inlining_mode callee_mode = (enum inlining_mode) (size_t) callee->aux;
  bool always_inline = e->callee->local.disregard_inline_limits;

  /* We've hit cycle?  */
  if (callee_mode)
    {
      /* It is first time we see it and we are not in ALWAY_INLINE only
	 mode yet.  and the function in question is always_inline.  */
      if (always_inline && mode != INLINE_ALWAYS_INLINE)
	{
	  if (dump_file)
	    {
	      indent_to (dump_file, depth);
	      fprintf (dump_file,
		       "Hit cycle in %s, switching to always inline only.\n",
		       cgraph_node_name (callee));
	    }
	  mode = INLINE_ALWAYS_INLINE;
	}
      /* Otherwise it is time to give up.  */
      else
	{
	  if (dump_file)
	    {
	      indent_to (dump_file, depth);
	      fprintf (dump_file,
		       "Not inlining %s into %s to avoid cycle.\n",
		       cgraph_node_name (callee),
		       cgraph_node_name (e->caller));
	    }
	  e->inline_failed = (e->callee->local.disregard_inline_limits
		              ? N_("recursive inlining") : "");
          return false;
	}
    }
      
  callee->aux = (void *)(size_t) mode;
  if (dump_file)
    {
      indent_to (dump_file, depth);
      fprintf (dump_file, " Inlining %s into %s.\n",
	       cgraph_node_name (e->callee),
	       cgraph_node_name (e->caller));
    }
  if (e->inline_failed && dbg_cnt (inl))
    {
      cgraph_mark_inline (e);

      /* In order to fully inline always_inline functions, we need to
	 recurse here, since the inlined functions might not be processed by
	 incremental inlining at all yet.  

	 Also flattening needs to be done recursively.  */

      if (mode == INLINE_ALL || always_inline)
	cgraph_decide_inlining_incrementally (e->callee, mode, depth + 1);
    }
  callee->aux = (void *)(size_t) callee_mode;
  return true;
}

/* Decide on the inlining.  We do so in the topological order to avoid
   expenses on updating data structures.  
   DEPTH is depth of recursion, used only for debug output.  */

static bool
cgraph_decide_inlining_incrementally (struct cgraph_node *node,
				      enum inlining_mode mode,
				      int depth)
{
  struct cgraph_edge *e;
  bool inlined = false;
  const char *failed_reason;
  enum inlining_mode old_mode;
  bool after_tree_profile =
    (DECL_STRUCT_FUNCTION (node->decl))->after_tree_profile;

#ifdef ENABLE_CHECKING
  verify_cgraph_node (node);
#endif

  if (dump_file)
    {
      indent_to (dump_file, depth);
      fprintf (dump_file,
	       "cgraph_decide_inlining_incrementally (%s/%d, %s, %d)\n",
	       cgraph_node_name (node), node->uid,
	       inlining_mode_strings[mode], depth);
    }
  old_mode = (enum inlining_mode) (size_t)node->aux;

  if (mode != INLINE_ALWAYS_INLINE
      && lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
    {
      if (dump_file)
	{
	  indent_to (dump_file, depth);
	  fprintf (dump_file, "Flattening %s\n", cgraph_node_name (node));
	}
      mode = INLINE_ALL;
    }

  node->aux = (void *)(size_t) mode;

  /* First of all look for always inline functions.  */
  for (e = node->callees; e; e = e->next_callee)
    {
      if (cgraph_is_fake_indirect_call_edge (e))
        continue;

      if (!e->callee->local.disregard_inline_limits
	  && (mode != INLINE_ALL || !e->callee->local.inlinable))
	continue;
      if (gimple_call_cannot_inline_p (e->call_stmt))
	continue;
      /* Don't do cross-module inlining before profile-use, so that we have a
	 consistent CFG between the profile-gen and profile-use passes.  */
      if (!after_tree_profile
	  && L_IPO_COMP_MODE
          && !cgraph_is_inline_body_available_in_module (
              e->callee->decl, cgraph_get_module_id (e->caller->decl)))
	{
          e->inline_failed = N_("inter-module inlining disabled");
          if (dump_file)
            {
              indent_to (dump_file, depth);
              fprintf (dump_file, "Not considering inlining %s: %s.\n",
                       cgraph_node_name (e->callee), e->inline_failed);
            }
          continue;
	}
      /* When the edge is already inlined, we just need to recurse into
	 it in order to fully flatten the leaves.  */
      if (!e->inline_failed && mode == INLINE_ALL)
	{
          inlined |= try_inline (e, mode, depth);
	  continue;
	}
      if (dump_file)
	{
	  indent_to (dump_file, depth);
	  fprintf (dump_file,
		   "Considering to always inline inline candidate %s/%d.\n",
		   cgraph_node_name (e->callee), e->callee->uid);
	}
      if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
	{
	  if (dump_file)
	    {
	      indent_to (dump_file, depth);
	      fprintf (dump_file, "Not inlining: recursive call.\n");
	    }
	  continue;
	}
      if (!tree_can_inline_p (node->decl, e->callee->decl))
	{
	  gimple_call_set_cannot_inline (e->call_stmt, true);
	  if (dump_file)
	    {
	      indent_to (dump_file, depth);
	      fprintf (dump_file,
		       "Not inlining: Target specific option mismatch.\n");
	    }
	  continue;
	}
      if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
	  != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
	{
	  if (dump_file)
	    {
	      indent_to (dump_file, depth);
	      fprintf (dump_file, "Not inlining: SSA form does not match.\n");
	    }
	  continue;
	}
      if (!e->callee->analyzed && !e->callee->inline_decl)
	{
	  if (dump_file)
	    {
	      indent_to (dump_file, depth);
	      fprintf (dump_file,
		       "Not inlining: Function body no longer available.\n");
	    }
	  continue;
	}
      inlined |= try_inline (e, mode, depth);
    }

  /* Now do the automatic inlining.  */
  if (mode != INLINE_ALL && mode != INLINE_ALWAYS_INLINE)
    for (e = node->callees; e; e = e->next_callee)
      {
        if (cgraph_is_fake_indirect_call_edge (e))
          continue;
	if (!e->callee->local.inlinable
	    || !e->inline_failed
	    || e->callee->local.disregard_inline_limits)
	  continue;
	/* Don't do cross-module inlining before profile-use, so that we have a
	   consistent CFG between the profile-gen and profile-use passes.  */
	if (!after_tree_profile
            && L_IPO_COMP_MODE
            && !cgraph_is_inline_body_available_in_module (
                e->callee->decl, cgraph_get_module_id (e->caller->decl)))
	  {
            e->inline_failed = N_("inter-module inlining disabled");
            if (dump_file)
              {
                indent_to (dump_file, depth);
                fprintf (dump_file, "Not inlining considering inlining %s: %s\n", 
                         cgraph_node_name (e->callee), e->inline_failed);
              }
            continue;
	  }
	if (dump_file)
	  fprintf (dump_file, "Considering inline candidate %s/%d.\n",
		   cgraph_node_name (e->callee), e->callee->uid);
	if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
	  {
	    if (dump_file)
	      {
		indent_to (dump_file, depth);
		fprintf (dump_file, "Not inlining: recursive call.\n");
	      }
	    continue;
	  }
	if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
	    != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
	  {
	    if (dump_file)
	      {
		indent_to (dump_file, depth);
		fprintf (dump_file, "Not inlining: SSA form does not match.\n");
	      }
	    continue;
	  }
	/* When the function body would grow and inlining the function won't
	   eliminate the need for offline copy of the function, don't inline.
	 */
	if ((mode == INLINE_SIZE
	     || (!flag_inline_functions
		 && !DECL_DECLARED_INLINE_P (e->callee->decl)))
	    && (cgraph_estimate_size_after_inlining (1, e->caller, e->callee)
		> e->caller->global.insns)
	    && (cgraph_estimate_growth (e->callee) > 0
                /* With lightweight IPO, due to static function promtion,
                   it is hard to enable this heuristic and maintain consistent
                   pre-profiling inline decisions between profiile generate
                   and profile use passes.  */
                || (!after_tree_profile && flag_dyn_ipa)))
	  {
	    if (dump_file)
	      {
		indent_to (dump_file, depth);
		fprintf (dump_file,
			 "Not inlining: code size would grow by %i insns.\n",
			 cgraph_estimate_size_after_inlining (1, e->caller,
							      e->callee)
			 - e->caller->global.insns);
	      }
	    continue;
	  }
	if (!cgraph_check_inline_constraints (node, e->callee, &e->inline_failed,
					      false)
	    || gimple_call_cannot_inline_p (e->call_stmt))
	  {
	    if (dump_file)
	      {
		indent_to (dump_file, depth);
		fprintf (dump_file, "Not inlining: %s.\n", e->inline_failed);
	      }
	    continue;
	  }
	if (!e->callee->analyzed && !e->callee->inline_decl)
	  {
	    if (dump_file)
	      {
		indent_to (dump_file, depth);
		fprintf (dump_file,
			 "Not inlining: Function body no longer available.\n");
	      }
	    continue;
	  }
	if (!tree_can_inline_p (node->decl, e->callee->decl))
	  {
	    gimple_call_set_cannot_inline (e->call_stmt, true);
	    if (dump_file)
	      {
		indent_to (dump_file, depth);
		fprintf (dump_file,
			 "Not inlining: Target specific option mismatch.\n");
	      }
	    continue;
	  }
	if (cgraph_default_inline_p (e->callee, &failed_reason))
	  {
	    bool success = try_inline (e, mode, depth);
	    if (dump_file && !success)
	      fprintf (dump_file, "Not inlining: %s\n", failed_reason);
	    inlined |= success;
	  }
        else
          {
	    if (dump_file)
	      {
		indent_to (dump_file, depth);
		fprintf (dump_file,
			 "Not inlining: %s .\n", failed_reason);
              }
          }
      }
  node->aux = (void *)(size_t) old_mode;
  return inlined;
}

/* Because inlining might remove no-longer reachable nodes, we need to
   keep the array visible to garbage collector to avoid reading collected
   out nodes.  */
static int nnodes;
static GTY ((length ("nnodes"))) struct cgraph_node **order;

/* Do inlining of small functions.  Doing so early helps profiling and other
   passes to be somewhat more effective and avoids some code duplication in
   later real inlining pass for testcases with very many function calls.  */
static unsigned int
cgraph_early_inlining (void)
{
  struct cgraph_node *node = cgraph_node (current_function_decl);
  unsigned int todo = 0;
  bool inlined;

  if (sorrycount || errorcount)
    return 0;

  if (inline_plan_files)
    {
      struct inline_plan_file *pfile = get_plan_file_for_pass (current_pass);

      /* If early inlining plan exists and is for previous inlining
         pass, then free it.  */
      if (einline_plan && einline_plan->file != pfile)
        {
          free_inline_plan (einline_plan);
          einline_plan = NULL;
        }

      /* Read in new plan for this pass, if it exists and has not been
         read in yet.  */
      if (pfile && einline_plan == NULL)
        {
          einline_plan = read_inline_plan (pfile->filename);
          einline_plan->file = pfile;
        }
    }

  if (einline_plan)
    inlined = apply_plan (einline_plan, node);
  else
    inlined = cgraph_decide_inlining_incrementally (node, INLINE_SIZE, 0);

  if (inlined)
    {
      timevar_push (TV_INTEGRATION);
      todo = optimize_inline_calls (current_function_decl);
      timevar_pop (TV_INTEGRATION);
    }
  cfun->always_inline_functions_inlined = true;
  return todo;
}

/* When inlining shall be performed.  */
static bool
cgraph_gate_early_inlining (void)
{
  return flag_early_inlining;
}

struct gimple_opt_pass pass_early_inline = 
{
 {
  GIMPLE_PASS,
  "einline",	 			/* name */
  cgraph_gate_early_inlining,		/* gate */
  cgraph_early_inlining,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_INLINE_HEURISTICS,			/* tv_id */
  0,	                                /* properties_required */
  PROP_cfg,				/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func    			/* todo_flags_finish */
 }
};

/* When inlining shall be performed.  */
bool
cgraph_gate_ipa_early_inlining (void)
{
  if (flag_early_inlining)
    {
      if (flag_branch_probabilities || flag_test_coverage
	  || flag_sample_profile || profile_arc_flag)
	return true;
      else if (inline_plan_files)
	{
	  /* If there is a inline plan specified for this early inlining
	     pass, then the pass should be run.  The actual early inlining
	     pass is a subpass of PASS_IPA_EARLY_INLINE, so walk the
	     subpasses to see if there exists a plan.  */
	  struct opt_pass *pass;
	  for (pass = current_pass->sub; pass; pass = pass->next)
	    if (get_plan_file_for_pass (pass))
	      return true;
	}
    }
  return false;
}

/* IPA pass wrapper for early inlining pass.  We need to run early inlining
   before tree profiling so we have stand alone IPA pass for doing so.  */
struct simple_ipa_opt_pass pass_ipa_early_inline = 
{
 {
  SIMPLE_IPA_PASS,
  "einline_ipa",			/* name */
  cgraph_gate_ipa_early_inlining,	/* gate */
  NULL,					/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_INLINE_HEURISTICS,			/* tv_id */
  0,	                                /* properties_required */
  PROP_cfg,				/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_cgraph 		        /* todo_flags_finish */
 }
};

/* Compute parameters of functions used by inliner.  */
unsigned int
compute_inline_parameters (struct cgraph_node *node)
{
  HOST_WIDE_INT self_stack_size;
  int hot_self_insns = 0;

  gcc_assert (!node->global.inlined_to);

  /* Estimate the stack size for the function.  But not at -O0
     because estimated_stack_frame_size is a quadratic problem.  */
  self_stack_size = optimize ? estimated_stack_frame_size () : 0;
  inline_summary (node)->estimated_self_stack_size = self_stack_size;
  node->global.estimated_stack_size = self_stack_size;
  node->global.estimated_stack_size_pessimistic = self_stack_size;
  node->global.stack_frame_offset = 0;

  /* Can this function be inlined at all?  */
  node->local.inlinable = tree_inlinable_function_p (node->decl);

  /* Estimate the number of instructions for this function.
     ??? At -O0 we don't use this information except for the dumps, and
	 even then only for always_inline functions.  But disabling this
	 causes ICEs in the inline heuristics...  */
  inline_summary (node)->self_insns
      = estimate_num_insns_fn (node->decl, &eni_inlining_weights,
                               &hot_self_insns);
  inline_summary (node)->self_hot_insns = hot_self_insns;
  if (node->local.inlinable && !node->local.disregard_inline_limits)
    node->local.disregard_inline_limits
        = DECL_DISREGARD_INLINE_LIMITS (node->decl);

  /* Inlining characteristics are maintained by the cgraph_mark_inline.  */
  node->global.insns = inline_summary (node)->self_insns;
  return 0;
}


/* Compute parameters of functions used by inliner using
   current_function_decl.  */
static unsigned int
compute_inline_parameters_for_current (void)
{
  compute_inline_parameters (cgraph_node (current_function_decl));
  return 0;
}

struct gimple_opt_pass pass_inline_parameters = 
{
 {
  GIMPLE_PASS,
  NULL,	 				/* name */
  NULL,					/* gate */
  compute_inline_parameters_for_current,/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_INLINE_HEURISTICS,			/* tv_id */
  0,	                                /* properties_required */
  PROP_cfg,				/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  0					/* todo_flags_finish */
 }
};

/* This function performs intraprocedural analyzis in NODE that is required to
   inline indirect calls.  */
static void
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
{
  struct cgraph_edge *cs;

  if (!flag_ipa_cp)
    {
      ipa_initialize_node_params (node);
      ipa_detect_param_modifications (node);
    }
  ipa_analyze_params_uses (node);

  if (!flag_ipa_cp)
    for (cs = node->callees; cs; cs = cs->next_callee)
      {
	ipa_count_arguments (cs);
	ipa_compute_jump_functions (cs);
      }

  if (dump_file)
    {
      ipa_print_node_params (dump_file, node);
      ipa_print_node_jump_functions (dump_file, node);
    }
}

/* Note function body size.  */
static void
analyze_function (struct cgraph_node *node)
{
  push_cfun (DECL_STRUCT_FUNCTION (node->decl));
  current_function_decl = node->decl;

  compute_inline_parameters (node);
  if (flag_indirect_inlining)
    inline_indirect_intraprocedural_analysis (node);

  current_function_decl = NULL;
  pop_cfun ();
}

/* Called when new function is inserted to callgraph late.  */
static void
add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
  analyze_function (node);
}

/* Note function body size.  */
static void
inline_generate_summary (void)
{
  struct cgraph_node *node;

  function_insertion_hook_holder =
      cgraph_add_function_insertion_hook (&add_new_function, NULL);

  if (flag_indirect_inlining)
    {
      ipa_register_cgraph_hooks ();
      ipa_check_create_node_params ();
      ipa_check_create_edge_args ();
    }

  for (node = cgraph_nodes; node; node = node->next)
    if (node->analyzed)
      analyze_function (node);
  
  return;
}

/* Apply inline plan to function.  */
static unsigned int
inline_transform (struct cgraph_node *node)
{
  unsigned int todo = 0;
  struct cgraph_edge *e;

  /* We might need the body of this function so that we can expand
     it inline somewhere else.  */
  if (cgraph_preserve_function_body_p (node->decl))
    save_inline_function_body (node);

  for (e = node->callees; e; e = e->next_callee)
    if (!e->inline_failed || warn_inline)
      break;

  if (e)
    {
      timevar_push (TV_INTEGRATION);
      todo = optimize_inline_calls (current_function_decl);
      timevar_pop (TV_INTEGRATION);
    }
  return todo | execute_fixup_cfg ();
}

struct ipa_opt_pass pass_ipa_inline = 
{
 {
  IPA_PASS,
  "inline",				/* name */
  NULL,					/* gate */
  cgraph_decide_inlining,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_INLINE_HEURISTICS,			/* tv_id */
  0,	                                /* properties_required */
  PROP_cfg,				/* properties_provided */
  0,					/* properties_destroyed */
  TODO_remove_functions,		/* todo_flags_finish */
  TODO_dump_cgraph | TODO_dump_func
  | TODO_remove_functions		/* todo_flags_finish */
 },
 inline_generate_summary,		/* generate_summary */
 NULL,					/* write_summary */
 NULL,					/* read_summary */
 NULL,					/* function_read_summary */
 0,					/* TODOs */
 inline_transform,			/* function_transform */
 NULL,					/* variable_transform */
};


#include "gt-ipa-inline.h"