aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/config/mips/10000.md
blob: ad21e9e936e52806f4b31930708e741748c87569 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
;; DFA-based pipeline description for the VR1x000.
;;   Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
;;
;; This file is part of GCC.

;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.

;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
;; License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.


;; R12K/R14K/R16K are derivatives of R10K, thus copy its description
;; until specific tuning for each is added.

;; R10000 has an int queue, fp queue, address queue.
;; The int queue feeds ALU1 and ALU2.
;; The fp queue feeds the fp-adder and fp-multiplier.
;; The addr queue feeds the Load/Store unit.
;;
;; However, we define the fp-adder and fp-multiplier as
;; separate automatons, because the fp-multiplier is
;; divided into fp-multiplier, fp-division, and
;; fp-squareroot units, all of which share the same
;; issue and completion logic, yet can operate in
;; parallel.
;;
;; This is based on the model described in the R10K Manual
;; and it helps to reduce the size of the automata.
(define_automaton "r10k_a_int, r10k_a_fpadder, r10k_a_addr,
                   r10k_a_fpmpy, r10k_a_fpdiv, r10k_a_fpsqrt")

(define_cpu_unit "r10k_alu1" "r10k_a_int")
(define_cpu_unit "r10k_alu2" "r10k_a_int")
(define_cpu_unit "r10k_fpadd" "r10k_a_fpadder")
(define_cpu_unit "r10k_fpmpy" "r10k_a_fpmpy")
(define_cpu_unit "r10k_fpdiv" "r10k_a_fpdiv")
(define_cpu_unit "r10k_fpsqrt" "r10k_a_fpsqrt")
(define_cpu_unit "r10k_loadstore" "r10k_a_addr")


;; R10k Loads and Stores.
(define_insn_reservation "r10k_load" 2
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "load,prefetch,prefetchx"))
  "r10k_loadstore")

(define_insn_reservation "r10k_store" 0
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "store,fpstore,fpidxstore"))
  "r10k_loadstore")

(define_insn_reservation "r10k_fpload" 3
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "fpload,fpidxload"))
  "r10k_loadstore")


;; Integer add/sub + logic ops, and mt hi/lo can be done by alu1 or alu2.
;; Miscellaneous arith goes here too (this is a guess).
(define_insn_reservation "r10k_arith" 1
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "arith,mthilo,slt,clz,const,nop,trap,logical"))
  "r10k_alu1 | r10k_alu2")

;; We treat mfhilo differently, because we need to know when
;; it's HI and when it's LO.
(define_insn_reservation "r10k_mfhi" 1
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "mfhilo")
            (not (match_operand 1 "lo_operand"))))
  "r10k_alu1 | r10k_alu2")

(define_insn_reservation "r10k_mflo" 1
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "mfhilo")
            (match_operand 1 "lo_operand")))
  "r10k_alu1 | r10k_alu2")


;; ALU1 handles shifts, branch eval, and condmove.
;;
;; Brancher is separate, but part of ALU1, but can only
;; do one branch per cycle (is this even implementable?).
;;
;; Unsure if the brancher handles jumps and calls as well, but since
;; they're related, we'll add them here for now.
(define_insn_reservation "r10k_brancher" 1
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "shift,branch,jump,call"))
  "r10k_alu1")

(define_insn_reservation "r10k_int_cmove" 1
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "condmove")
            (eq_attr "mode" "SI,DI")))
  "r10k_alu1")


;; Coprocessor Moves.
;; mtc1/dmtc1 are handled by ALU1.
;; mfc1/dmfc1 are handled by the fp-multiplier.
(define_insn_reservation "r10k_mt_xfer" 3
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "mtc"))
  "r10k_alu1")

(define_insn_reservation "r10k_mf_xfer" 2
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "mfc"))
  "r10k_fpmpy")


;; Only ALU2 does int multiplications and divisions.
;;
;; According to the Vr10000 series user manual,
;; integer mult and div insns can be issued one
;; cycle earlier if using register Lo.  We model
;; this by using the Lo value by default, as it
;; is the more common value, and use a bypass
;; for the Hi value when needed.
;;
;; Also of note, There are different latencies
;; for MULT/DMULT (Lo 5/Hi 6) and MULTU/DMULTU (Lo 6/Hi 7).
;; However, gcc does not have separate types
;; for these insns.  Thus to strike a balance,
;; we use the Hi latency value for imul
;; operations until the imul type can be split.
(define_insn_reservation "r10k_imul_single" 6
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "imul,imul3")
            (eq_attr "mode" "SI")))
  "r10k_alu2 * 6")

(define_insn_reservation "r10k_imul_double" 10
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "imul,imul3")
            (eq_attr "mode" "DI")))
  "r10k_alu2 * 10")

;; Divides keep ALU2 busy.
(define_insn_reservation "r10k_idiv_single" 34
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "idiv")
            (eq_attr "mode" "SI")))
  "r10k_alu2 * 35")

(define_insn_reservation "r10k_idiv_double" 66
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "idiv")
            (eq_attr "mode" "DI")))
  "r10k_alu2 * 67")

(define_bypass 35 "r10k_idiv_single" "r10k_mfhi")
(define_bypass 67 "r10k_idiv_double" "r10k_mfhi")


;; Floating point add/sub, mul, abs value, neg, comp, & moves.
(define_insn_reservation "r10k_fp_miscadd" 2
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "fadd,fabs,fneg,fcmp"))
  "r10k_fpadd")

(define_insn_reservation "r10k_fp_miscmul" 2
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "fmul,fmove"))
  "r10k_fpmpy")

(define_insn_reservation "r10k_fp_cmove" 2
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "condmove")
            (eq_attr "mode" "SF,DF")))
  "r10k_fpmpy")


;; The fcvt.s.[wl] insn has latency 4, repeat 2.
;; All other fcvt insns have latency 2, repeat 1.
(define_insn_reservation "r10k_fcvt_single" 4
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "fcvt")
            (eq_attr "cnv_mode" "I2S")))
  "r10k_fpadd * 2")

(define_insn_reservation "r10k_fcvt_other" 2
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "fcvt")
            (eq_attr "cnv_mode" "!I2S")))
  "r10k_fpadd")


;; Run the fmadd insn through fp-adder first, then fp-multiplier.
;;
;; The latency for fmadd is 2 cycles if the result is used
;; by another fmadd instruction.
(define_insn_reservation "r10k_fmadd" 4
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "fmadd"))
  "r10k_fpadd, r10k_fpmpy")

(define_bypass 2 "r10k_fmadd" "r10k_fmadd")


;; Floating point Divisions & square roots.
(define_insn_reservation "r10k_fdiv_single" 12
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "fdiv,frdiv")
            (eq_attr "mode" "SF")))
  "r10k_fpdiv * 14")

(define_insn_reservation "r10k_fdiv_double" 19
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "fdiv,frdiv")
            (eq_attr "mode" "DF")))
  "r10k_fpdiv * 21")

(define_insn_reservation "r10k_fsqrt_single" 18
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "fsqrt")
            (eq_attr "mode" "SF")))
  "r10k_fpsqrt * 20")

(define_insn_reservation "r10k_fsqrt_double" 33
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "fsqrt")
            (eq_attr "mode" "DF")))
  "r10k_fpsqrt * 35")

(define_insn_reservation "r10k_frsqrt_single" 30
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "frsqrt")
            (eq_attr "mode" "SF")))
  "r10k_fpsqrt * 20")

(define_insn_reservation "r10k_frsqrt_double" 52
  (and (eq_attr "cpu" "r10000")
       (and (eq_attr "type" "frsqrt")
            (eq_attr "mode" "DF")))
  "r10k_fpsqrt * 35")


;; Handle unknown/multi insns here (this is a guess).
(define_insn_reservation "r10k_unknown" 1
  (and (eq_attr "cpu" "r10000")
       (eq_attr "type" "unknown,multi"))
  "r10k_alu1 + r10k_alu2")