aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/gcc-interface/utils2.c
blob: 79bd19543e86898ec695bed7a0ed121a670acb5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
/****************************************************************************
 *                                                                          *
 *                         GNAT COMPILER COMPONENTS                         *
 *                                                                          *
 *                               U T I L S 2                                *
 *                                                                          *
 *                          C Implementation File                           *
 *                                                                          *
 *          Copyright (C) 1992-2009, Free Software Foundation, Inc.         *
 *                                                                          *
 * GNAT is free software;  you can  redistribute it  and/or modify it under *
 * terms of the  GNU General Public License as published  by the Free Soft- *
 * ware  Foundation;  either version 3,  or (at your option) any later ver- *
 * sion.  GNAT is distributed in the hope that it will be useful, but WITH- *
 * OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY *
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License *
 * for  more details.  You should have received a copy of the GNU General   *
 * Public License along with GCC; see the file COPYING3.  If not see        *
 * <http://www.gnu.org/licenses/>.                                          *
 *                                                                          *
 * GNAT was originally developed  by the GNAT team at  New York University. *
 * Extensive contributions were provided by Ada Core Technologies Inc.      *
 *                                                                          *
 ****************************************************************************/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "ggc.h"
#include "flags.h"
#include "output.h"
#include "ada.h"
#include "types.h"
#include "atree.h"
#include "stringt.h"
#include "namet.h"
#include "uintp.h"
#include "fe.h"
#include "elists.h"
#include "nlists.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"
#include "snames.h"

static tree find_common_type (tree, tree);
static bool contains_save_expr_p (tree);
static tree contains_null_expr (tree);
static tree compare_arrays (tree, tree, tree);
static tree nonbinary_modular_operation (enum tree_code, tree, tree, tree);
static tree build_simple_component_ref (tree, tree, tree, bool);

/* Prepare expr to be an argument of a TRUTH_NOT_EXPR or other logical
   operation.

   This preparation consists of taking the ordinary representation of
   an expression expr and producing a valid tree boolean expression
   describing whether expr is nonzero. We could simply always do

      build_binary_op (NE_EXPR, expr, integer_zero_node, 1),

   but we optimize comparisons, &&, ||, and !.

   The resulting type should always be the same as the input type.
   This function is simpler than the corresponding C version since
   the only possible operands will be things of Boolean type.  */

tree
gnat_truthvalue_conversion (tree expr)
{
  tree type = TREE_TYPE (expr);

  switch (TREE_CODE (expr))
    {
    case EQ_EXPR:  case NE_EXPR: case LE_EXPR: case GE_EXPR:
    case LT_EXPR:  case GT_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
    case ERROR_MARK:
      return expr;

    case INTEGER_CST:
      return (integer_zerop (expr)
	      ? build_int_cst (type, 0)
	      : build_int_cst (type, 1));

    case REAL_CST:
      return (real_zerop (expr)
	      ? fold_convert (type, integer_zero_node)
	      : fold_convert (type, integer_one_node));

    case COND_EXPR:
      /* Distribute the conversion into the arms of a COND_EXPR.  */
      {
	tree arg1 = gnat_truthvalue_conversion (TREE_OPERAND (expr, 1));
	tree arg2 = gnat_truthvalue_conversion (TREE_OPERAND (expr, 2));
	return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
			    arg1, arg2);
      }

    default:
      return build_binary_op (NE_EXPR, type, expr,
			      fold_convert (type, integer_zero_node));
    }
}

/* Return the base type of TYPE.  */

tree
get_base_type (tree type)
{
  if (TREE_CODE (type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (type))
    type = TREE_TYPE (TYPE_FIELDS (type));

  while (TREE_TYPE (type)
	 && (TREE_CODE (type) == INTEGER_TYPE
	     || TREE_CODE (type) == REAL_TYPE))
    type = TREE_TYPE (type);

  return type;
}

/* EXP is a GCC tree representing an address.  See if we can find how
   strictly the object at that address is aligned.   Return that alignment
   in bits.  If we don't know anything about the alignment, return 0.  */

unsigned int
known_alignment (tree exp)
{
  unsigned int this_alignment;
  unsigned int lhs, rhs;

  switch (TREE_CODE (exp))
    {
    CASE_CONVERT:
    case VIEW_CONVERT_EXPR:
    case NON_LVALUE_EXPR:
      /* Conversions between pointers and integers don't change the alignment
	 of the underlying object.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 0));
      break;

    case COMPOUND_EXPR:
      /* The value of a COMPOUND_EXPR is that of it's second operand.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 1));
      break;

    case PLUS_EXPR:
    case MINUS_EXPR:
      /* If two address are added, the alignment of the result is the
	 minimum of the two alignments.  */
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));
      this_alignment = MIN (lhs, rhs);
      break;

    case POINTER_PLUS_EXPR:
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));
      /* If we don't know the alignment of the offset, we assume that
	 of the base.  */
      if (rhs == 0)
	this_alignment = lhs;
      else
	this_alignment = MIN (lhs, rhs);
      break;

    case COND_EXPR:
      /* If there is a choice between two values, use the smallest one.  */
      lhs = known_alignment (TREE_OPERAND (exp, 1));
      rhs = known_alignment (TREE_OPERAND (exp, 2));
      this_alignment = MIN (lhs, rhs);
      break;

    case INTEGER_CST:
      {
	unsigned HOST_WIDE_INT c = TREE_INT_CST_LOW (exp);
	/* The first part of this represents the lowest bit in the constant,
	   but it is originally in bytes, not bits.  */
	this_alignment = MIN (BITS_PER_UNIT * (c & -c), BIGGEST_ALIGNMENT);
      }
      break;

    case MULT_EXPR:
      /* If we know the alignment of just one side, use it.  Otherwise,
	 use the product of the alignments.  */
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));

      if (lhs == 0)
	this_alignment = rhs;
      else if (rhs == 0)
	this_alignment = lhs;
      else
	this_alignment = MIN (lhs * rhs, BIGGEST_ALIGNMENT);
      break;

    case BIT_AND_EXPR:
      /* A bit-and expression is as aligned as the maximum alignment of the
	 operands.  We typically get here for a complex lhs and a constant
	 negative power of two on the rhs to force an explicit alignment, so
	 don't bother looking at the lhs.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 1));
      break;

    case ADDR_EXPR:
      this_alignment = expr_align (TREE_OPERAND (exp, 0));
      break;

    default:
      /* For other pointer expressions, we assume that the pointed-to object
	 is at least as aligned as the pointed-to type.  Beware that we can
	 have a dummy type here (e.g. a Taft Amendment type), for which the
	 alignment is meaningless and should be ignored.  */
      if (POINTER_TYPE_P (TREE_TYPE (exp))
	  && !TYPE_IS_DUMMY_P (TREE_TYPE (TREE_TYPE (exp))))
	this_alignment = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
      else
	this_alignment = 0;
      break;
    }

  return this_alignment;
}

/* We have a comparison or assignment operation on two types, T1 and T2, which
   are either both array types or both record types.  T1 is assumed to be for
   the left hand side operand, and T2 for the right hand side.  Return the
   type that both operands should be converted to for the operation, if any.
   Otherwise return zero.  */

static tree
find_common_type (tree t1, tree t2)
{
  /* ??? As of today, various constructs lead here with types of different
     sizes even when both constants (e.g. tagged types, packable vs regular
     component types, padded vs unpadded types, ...).  While some of these
     would better be handled upstream (types should be made consistent before
     calling into build_binary_op), some others are really expected and we
     have to be careful.  */

  /* We must prevent writing more than what the target may hold if this is for
     an assignment and the case of tagged types is handled in build_binary_op
     so use the lhs type if it is known to be smaller, or of constant size and
     the rhs type is not, whatever the modes.  We also force t1 in case of
     constant size equality to minimize occurrences of view conversions on the
     lhs of assignments.  */
  if (TREE_CONSTANT (TYPE_SIZE (t1))
      && (!TREE_CONSTANT (TYPE_SIZE (t2))
          || !tree_int_cst_lt (TYPE_SIZE (t2), TYPE_SIZE (t1))))
    return t1;

  /* Otherwise, if the lhs type is non-BLKmode, use it.  Note that we know
     that we will not have any alignment problems since, if we did, the
     non-BLKmode type could not have been used.  */
  if (TYPE_MODE (t1) != BLKmode)
    return t1;

  /* If the rhs type is of constant size, use it whatever the modes.  At
     this point it is known to be smaller, or of constant size and the
     lhs type is not.  */
  if (TREE_CONSTANT (TYPE_SIZE (t2)))
    return t2;

  /* Otherwise, if the rhs type is non-BLKmode, use it.  */
  if (TYPE_MODE (t2) != BLKmode)
    return t2;

  /* In this case, both types have variable size and BLKmode.  It's
     probably best to leave the "type mismatch" because changing it
     could cause a bad self-referential reference.  */
  return NULL_TREE;
}

/* See if EXP contains a SAVE_EXPR in a position where we would
   normally put it.

   ??? This is a real kludge, but is probably the best approach short
   of some very general solution.  */

static bool
contains_save_expr_p (tree exp)
{
  switch (TREE_CODE (exp))
    {
    case SAVE_EXPR:
      return true;

    case ADDR_EXPR:  case INDIRECT_REF:
    case COMPONENT_REF:
    CASE_CONVERT: case VIEW_CONVERT_EXPR:
      return contains_save_expr_p (TREE_OPERAND (exp, 0));

    case CONSTRUCTOR:
      {
	tree value;
	unsigned HOST_WIDE_INT ix;

	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), ix, value)
	  if (contains_save_expr_p (value))
	    return true;
	return false;
      }

    default:
      return false;
    }
}

/* See if EXP contains a NULL_EXPR in an expression we use for sizes. Return
   it if so.  This is used to detect types whose sizes involve computations
   that are known to raise Constraint_Error.  */

static tree
contains_null_expr (tree exp)
{
  tree tem;

  if (TREE_CODE (exp) == NULL_EXPR)
    return exp;

  switch (TREE_CODE_CLASS (TREE_CODE (exp)))
    {
    case tcc_unary:
      return contains_null_expr (TREE_OPERAND (exp, 0));

    case tcc_comparison:
    case tcc_binary:
      tem = contains_null_expr (TREE_OPERAND (exp, 0));
      if (tem)
	return tem;

      return contains_null_expr (TREE_OPERAND (exp, 1));

    case tcc_expression:
      switch (TREE_CODE (exp))
	{
	case SAVE_EXPR:
	  return contains_null_expr (TREE_OPERAND (exp, 0));

	case COND_EXPR:
	  tem = contains_null_expr (TREE_OPERAND (exp, 0));
	  if (tem)
	    return tem;

	  tem = contains_null_expr (TREE_OPERAND (exp, 1));
	  if (tem)
	    return tem;

	  return contains_null_expr (TREE_OPERAND (exp, 2));

	default:
	  return 0;
	}

    default:
      return 0;
    }
}

/* Return an expression tree representing an equality comparison of
   A1 and A2, two objects of ARRAY_TYPE.  The returned expression should
   be of type RESULT_TYPE

   Two arrays are equal in one of two ways: (1) if both have zero length
   in some dimension (not necessarily the same dimension) or (2) if the
   lengths in each dimension are equal and the data is equal.  We perform the
   length tests in as efficient a manner as possible.  */

static tree
compare_arrays (tree result_type, tree a1, tree a2)
{
  tree t1 = TREE_TYPE (a1);
  tree t2 = TREE_TYPE (a2);
  tree result = convert (result_type, integer_one_node);
  tree a1_is_null = convert (result_type, integer_zero_node);
  tree a2_is_null = convert (result_type, integer_zero_node);
  bool length_zero_p = false;

  /* Process each dimension separately and compare the lengths.  If any
     dimension has a size known to be zero, set SIZE_ZERO_P to 1 to
     suppress the comparison of the data.  */
  while (TREE_CODE (t1) == ARRAY_TYPE && TREE_CODE (t2) == ARRAY_TYPE)
    {
      tree lb1 = TYPE_MIN_VALUE (TYPE_DOMAIN (t1));
      tree ub1 = TYPE_MAX_VALUE (TYPE_DOMAIN (t1));
      tree lb2 = TYPE_MIN_VALUE (TYPE_DOMAIN (t2));
      tree ub2 = TYPE_MAX_VALUE (TYPE_DOMAIN (t2));
      tree bt = get_base_type (TREE_TYPE (lb1));
      tree length1 = fold_build2 (MINUS_EXPR, bt, ub1, lb1);
      tree length2 = fold_build2 (MINUS_EXPR, bt, ub2, lb2);
      tree nbt;
      tree tem;
      tree comparison, this_a1_is_null, this_a2_is_null;

      /* If the length of the first array is a constant, swap our operands
	 unless the length of the second array is the constant zero.
	 Note that we have set the `length' values to the length - 1.  */
      if (TREE_CODE (length1) == INTEGER_CST
	  && !integer_zerop (fold_build2 (PLUS_EXPR, bt, length2,
					  convert (bt, integer_one_node))))
	{
	  tem = a1, a1 = a2, a2 = tem;
	  tem = t1, t1 = t2, t2 = tem;
	  tem = lb1, lb1 = lb2, lb2 = tem;
	  tem = ub1, ub1 = ub2, ub2 = tem;
	  tem = length1, length1 = length2, length2 = tem;
	  tem = a1_is_null, a1_is_null = a2_is_null, a2_is_null = tem;
	}

      /* If the length of this dimension in the second array is the constant
	 zero, we can just go inside the original bounds for the first
	 array and see if last < first.  */
      if (integer_zerop (fold_build2 (PLUS_EXPR, bt, length2,
				      convert (bt, integer_one_node))))
	{
	  tree ub = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
	  tree lb = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));

	  comparison = build_binary_op (LT_EXPR, result_type, ub, lb);
	  comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
	  length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);

	  length_zero_p = true;
	  this_a1_is_null = comparison;
	  this_a2_is_null = convert (result_type, integer_one_node);
	}

      /* If the length is some other constant value, we know that the
	 this dimension in the first array cannot be superflat, so we
	 can just use its length from the actual stored bounds.  */
      else if (TREE_CODE (length2) == INTEGER_CST)
	{
	  ub1 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
	  lb1 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
	  ub2 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
	  lb2 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
	  nbt = get_base_type (TREE_TYPE (ub1));

	  comparison
	    = build_binary_op (EQ_EXPR, result_type,
			       build_binary_op (MINUS_EXPR, nbt, ub1, lb1),
			       build_binary_op (MINUS_EXPR, nbt, ub2, lb2));

	  /* Note that we know that UB2 and LB2 are constant and hence
	     cannot contain a PLACEHOLDER_EXPR.  */

	  comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
	  length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);

	  this_a1_is_null = build_binary_op (LT_EXPR, result_type, ub1, lb1);
	  this_a2_is_null = convert (result_type, integer_zero_node);
	}

      /* Otherwise compare the computed lengths.  */
      else
	{
	  length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
	  length2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length2, a2);

	  comparison
	    = build_binary_op (EQ_EXPR, result_type, length1, length2);

	  this_a1_is_null
	    = build_binary_op (LT_EXPR, result_type, length1,
			       convert (bt, integer_zero_node));
	  this_a2_is_null
	    = build_binary_op (LT_EXPR, result_type, length2,
			       convert (bt, integer_zero_node));
	}

      result = build_binary_op (TRUTH_ANDIF_EXPR, result_type,
				result, comparison);

      a1_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
				    this_a1_is_null, a1_is_null);
      a2_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
				    this_a2_is_null, a2_is_null);

      t1 = TREE_TYPE (t1);
      t2 = TREE_TYPE (t2);
    }

  /* Unless the size of some bound is known to be zero, compare the
     data in the array.  */
  if (!length_zero_p)
    {
      tree type = find_common_type (TREE_TYPE (a1), TREE_TYPE (a2));

      if (type)
	a1 = convert (type, a1), a2 = convert (type, a2);

      result = build_binary_op (TRUTH_ANDIF_EXPR, result_type, result,
				fold_build2 (EQ_EXPR, result_type, a1, a2));

    }

  /* The result is also true if both sizes are zero.  */
  result = build_binary_op (TRUTH_ORIF_EXPR, result_type,
			    build_binary_op (TRUTH_ANDIF_EXPR, result_type,
					     a1_is_null, a2_is_null),
			    result);

  /* If either operand contains SAVE_EXPRs, they have to be evaluated before
     starting the comparison above since the place it would be otherwise
     evaluated would be wrong.  */

  if (contains_save_expr_p (a1))
    result = build2 (COMPOUND_EXPR, result_type, a1, result);

  if (contains_save_expr_p (a2))
    result = build2 (COMPOUND_EXPR, result_type, a2, result);

  return result;
}

/* Compute the result of applying OP_CODE to LHS and RHS, where both are of
   type TYPE.  We know that TYPE is a modular type with a nonbinary
   modulus.  */

static tree
nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
                             tree rhs)
{
  tree modulus = TYPE_MODULUS (type);
  unsigned int needed_precision = tree_floor_log2 (modulus) + 1;
  unsigned int precision;
  bool unsignedp = true;
  tree op_type = type;
  tree result;

  /* If this is an addition of a constant, convert it to a subtraction
     of a constant since we can do that faster.  */
  if (op_code == PLUS_EXPR && TREE_CODE (rhs) == INTEGER_CST)
    {
      rhs = fold_build2 (MINUS_EXPR, type, modulus, rhs);
      op_code = MINUS_EXPR;
    }

  /* For the logical operations, we only need PRECISION bits.  For
     addition and subtraction, we need one more and for multiplication we
     need twice as many.  But we never want to make a size smaller than
     our size. */
  if (op_code == PLUS_EXPR || op_code == MINUS_EXPR)
    needed_precision += 1;
  else if (op_code == MULT_EXPR)
    needed_precision *= 2;

  precision = MAX (needed_precision, TYPE_PRECISION (op_type));

  /* Unsigned will do for everything but subtraction.  */
  if (op_code == MINUS_EXPR)
    unsignedp = false;

  /* If our type is the wrong signedness or isn't wide enough, make a new
     type and convert both our operands to it.  */
  if (TYPE_PRECISION (op_type) < precision
      || TYPE_UNSIGNED (op_type) != unsignedp)
    {
      /* Copy the node so we ensure it can be modified to make it modular.  */
      op_type = copy_node (gnat_type_for_size (precision, unsignedp));
      modulus = convert (op_type, modulus);
      SET_TYPE_MODULUS (op_type, modulus);
      TYPE_MODULAR_P (op_type) = 1;
      lhs = convert (op_type, lhs);
      rhs = convert (op_type, rhs);
    }

  /* Do the operation, then we'll fix it up.  */
  result = fold_build2 (op_code, op_type, lhs, rhs);

  /* For multiplication, we have no choice but to do a full modulus
     operation.  However, we want to do this in the narrowest
     possible size.  */
  if (op_code == MULT_EXPR)
    {
      tree div_type = copy_node (gnat_type_for_size (needed_precision, 1));
      modulus = convert (div_type, modulus);
      SET_TYPE_MODULUS (div_type, modulus);
      TYPE_MODULAR_P (div_type) = 1;
      result = convert (op_type,
			fold_build2 (TRUNC_MOD_EXPR, div_type,
				     convert (div_type, result), modulus));
    }

  /* For subtraction, add the modulus back if we are negative.  */
  else if (op_code == MINUS_EXPR)
    {
      result = save_expr (result);
      result = fold_build3 (COND_EXPR, op_type,
			    fold_build2 (LT_EXPR, integer_type_node, result,
					 convert (op_type, integer_zero_node)),
			    fold_build2 (PLUS_EXPR, op_type, result, modulus),
			    result);
    }

  /* For the other operations, subtract the modulus if we are >= it.  */
  else
    {
      result = save_expr (result);
      result = fold_build3 (COND_EXPR, op_type,
			    fold_build2 (GE_EXPR, integer_type_node,
					 result, modulus),
			    fold_build2 (MINUS_EXPR, op_type,
					 result, modulus),
			    result);
    }

  return convert (type, result);
}

/* Make a binary operation of kind OP_CODE.  RESULT_TYPE is the type
   desired for the result.  Usually the operation is to be performed
   in that type.  For MODIFY_EXPR and ARRAY_REF, RESULT_TYPE may be 0
   in which case the type to be used will be derived from the operands.

   This function is very much unlike the ones for C and C++ since we
   have already done any type conversion and matching required.  All we
   have to do here is validate the work done by SEM and handle subtypes.  */

tree
build_binary_op (enum tree_code op_code, tree result_type,
                 tree left_operand, tree right_operand)
{
  tree left_type  = TREE_TYPE (left_operand);
  tree right_type = TREE_TYPE (right_operand);
  tree left_base_type = get_base_type (left_type);
  tree right_base_type = get_base_type (right_type);
  tree operation_type = result_type;
  tree best_type = NULL_TREE;
  tree modulus, result;
  bool has_side_effects = false;

  if (operation_type
      && TREE_CODE (operation_type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (operation_type))
    operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));

  if (operation_type
      && !AGGREGATE_TYPE_P (operation_type)
      && TYPE_EXTRA_SUBTYPE_P (operation_type))
    operation_type = get_base_type (operation_type);

  modulus = (operation_type
	     && TREE_CODE (operation_type) == INTEGER_TYPE
	     && TYPE_MODULAR_P (operation_type)
	     ? TYPE_MODULUS (operation_type) : NULL_TREE);

  switch (op_code)
    {
    case MODIFY_EXPR:
      /* If there were integral or pointer conversions on the LHS, remove
	 them; we'll be putting them back below if needed.  Likewise for
	 conversions between array and record types, except for justified
	 modular types.  But don't do this if the right operand is not
	 BLKmode (for packed arrays) unless we are not changing the mode.  */
      while ((CONVERT_EXPR_P (left_operand)
	      || TREE_CODE (left_operand) == VIEW_CONVERT_EXPR)
	     && (((INTEGRAL_TYPE_P (left_type)
		   || POINTER_TYPE_P (left_type))
		  && (INTEGRAL_TYPE_P (TREE_TYPE
				       (TREE_OPERAND (left_operand, 0)))
		      || POINTER_TYPE_P (TREE_TYPE
					 (TREE_OPERAND (left_operand, 0)))))
		 || (((TREE_CODE (left_type) == RECORD_TYPE
		       && !TYPE_JUSTIFIED_MODULAR_P (left_type))
		      || TREE_CODE (left_type) == ARRAY_TYPE)
		     && ((TREE_CODE (TREE_TYPE
				     (TREE_OPERAND (left_operand, 0)))
			  == RECORD_TYPE)
			 || (TREE_CODE (TREE_TYPE
					(TREE_OPERAND (left_operand, 0)))
			     == ARRAY_TYPE))
		     && (TYPE_MODE (right_type) == BLKmode
			 || (TYPE_MODE (left_type)
			     == TYPE_MODE (TREE_TYPE
					   (TREE_OPERAND
					    (left_operand, 0))))))))
	{
	  left_operand = TREE_OPERAND (left_operand, 0);
	  left_type = TREE_TYPE (left_operand);
	}

      /* If a class-wide type may be involved, force use of the RHS type.  */
      if ((TREE_CODE (right_type) == RECORD_TYPE
	   || TREE_CODE (right_type) == UNION_TYPE)
	  && TYPE_ALIGN_OK (right_type))
	operation_type = right_type;

      /* If we are copying between padded objects with compatible types, use
	 the padded view of the objects, this is very likely more efficient.
	 Likewise for a padded object that is assigned a constructor, if we
	 can convert the constructor to the inner type, to avoid putting a
	 VIEW_CONVERT_EXPR on the LHS.  But don't do so if we wouldn't have
	 actually copied anything.  */
      else if (TREE_CODE (left_type) == RECORD_TYPE
	       && TYPE_IS_PADDING_P (left_type)
	       && TREE_CONSTANT (TYPE_SIZE (left_type))
	       && ((TREE_CODE (right_operand) == COMPONENT_REF
		    && TREE_CODE (TREE_TYPE (TREE_OPERAND (right_operand, 0)))
		       == RECORD_TYPE
		    && TYPE_IS_PADDING_P
		       (TREE_TYPE (TREE_OPERAND (right_operand, 0)))
		    && gnat_types_compatible_p
		       (left_type,
			TREE_TYPE (TREE_OPERAND (right_operand, 0))))
		   || (TREE_CODE (right_operand) == CONSTRUCTOR
		       && !CONTAINS_PLACEHOLDER_P
			   (DECL_SIZE (TYPE_FIELDS (left_type)))))
	       && !integer_zerop (TYPE_SIZE (right_type)))
	operation_type = left_type;

      /* Find the best type to use for copying between aggregate types.  */
      else if (((TREE_CODE (left_type) == ARRAY_TYPE
		 && TREE_CODE (right_type) == ARRAY_TYPE)
		|| (TREE_CODE (left_type) == RECORD_TYPE
		    && TREE_CODE (right_type) == RECORD_TYPE))
	       && (best_type = find_common_type (left_type, right_type)))
	operation_type = best_type;

      /* Otherwise use the LHS type.  */
      else if (!operation_type)
	operation_type = left_type;

      /* Ensure everything on the LHS is valid.  If we have a field reference,
	 strip anything that get_inner_reference can handle.  Then remove any
	 conversions between types having the same code and mode.  And mark
	 VIEW_CONVERT_EXPRs with TREE_ADDRESSABLE.  When done, we must have
	 either an INDIRECT_REF, a NULL_EXPR or a DECL node.  */
      result = left_operand;
      while (true)
	{
	  tree restype = TREE_TYPE (result);

	  if (TREE_CODE (result) == COMPONENT_REF
	      || TREE_CODE (result) == ARRAY_REF
	      || TREE_CODE (result) == ARRAY_RANGE_REF)
	    while (handled_component_p (result))
	      result = TREE_OPERAND (result, 0);
	  else if (TREE_CODE (result) == REALPART_EXPR
		   || TREE_CODE (result) == IMAGPART_EXPR
		   || (CONVERT_EXPR_P (result)
		       && (((TREE_CODE (restype)
			     == TREE_CODE (TREE_TYPE
					   (TREE_OPERAND (result, 0))))
			     && (TYPE_MODE (TREE_TYPE
					    (TREE_OPERAND (result, 0)))
				 == TYPE_MODE (restype)))
			   || TYPE_ALIGN_OK (restype))))
	    result = TREE_OPERAND (result, 0);
	  else if (TREE_CODE (result) == VIEW_CONVERT_EXPR)
	    {
	      TREE_ADDRESSABLE (result) = 1;
	      result = TREE_OPERAND (result, 0);
	    }
	  else
	    break;
	}

      gcc_assert (TREE_CODE (result) == INDIRECT_REF
		  || TREE_CODE (result) == NULL_EXPR
		  || DECL_P (result));

      /* Convert the right operand to the operation type unless it is
	 either already of the correct type or if the type involves a
	 placeholder, since the RHS may not have the same record type.  */
      if (operation_type != right_type
	  && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (operation_type)))
	{
	  right_operand = convert (operation_type, right_operand);
	  right_type = operation_type;
	}

      /* If the left operand is not of the same type as the operation
	 type, wrap it up in a VIEW_CONVERT_EXPR.  */
      if (left_type != operation_type)
	left_operand = unchecked_convert (operation_type, left_operand, false);

      has_side_effects = true;
      modulus = NULL_TREE;
      break;

    case ARRAY_REF:
      if (!operation_type)
	operation_type = TREE_TYPE (left_type);

      /* ... fall through ... */

    case ARRAY_RANGE_REF:
      /* First look through conversion between type variants.  Note that
	 this changes neither the operation type nor the type domain.  */
      if (TREE_CODE (left_operand) == VIEW_CONVERT_EXPR
	  && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (left_operand, 0)))
	     == TYPE_MAIN_VARIANT (left_type))
	{
	  left_operand = TREE_OPERAND (left_operand, 0);
	  left_type = TREE_TYPE (left_operand);
	}

      /* Then convert the right operand to its base type.  This will
	 prevent unneeded signedness conversions when sizetype is wider than
	 integer.  */
      right_operand = convert (right_base_type, right_operand);
      right_operand = convert (TYPE_DOMAIN (left_type), right_operand);

      if (!TREE_CONSTANT (right_operand)
	  || !TREE_CONSTANT (TYPE_MIN_VALUE (right_type)))
	gnat_mark_addressable (left_operand);

      modulus = NULL_TREE;
      break;

    case GE_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case LT_EXPR:
      gcc_assert (!POINTER_TYPE_P (left_type));

      /* ... fall through ... */

    case EQ_EXPR:
    case NE_EXPR:
      /* If either operand is a NULL_EXPR, just return a new one.  */
      if (TREE_CODE (left_operand) == NULL_EXPR)
	return build2 (op_code, result_type,
		       build1 (NULL_EXPR, integer_type_node,
			       TREE_OPERAND (left_operand, 0)),
		       integer_zero_node);

      else if (TREE_CODE (right_operand) == NULL_EXPR)
	return build2 (op_code, result_type,
		       build1 (NULL_EXPR, integer_type_node,
			       TREE_OPERAND (right_operand, 0)),
		       integer_zero_node);

      /* If either object is a justified modular types, get the
	 fields from within.  */
      if (TREE_CODE (left_type) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (left_type))
	{
	  left_operand = convert (TREE_TYPE (TYPE_FIELDS (left_type)),
				  left_operand);
	  left_type = TREE_TYPE (left_operand);
	  left_base_type = get_base_type (left_type);
	}

      if (TREE_CODE (right_type) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (right_type))
	{
	  right_operand = convert (TREE_TYPE (TYPE_FIELDS (right_type)),
				  right_operand);
	  right_type = TREE_TYPE (right_operand);
	  right_base_type = get_base_type (right_type);
	}

      /* If both objects are arrays, compare them specially.  */
      if ((TREE_CODE (left_type) == ARRAY_TYPE
	   || (TREE_CODE (left_type) == INTEGER_TYPE
	       && TYPE_HAS_ACTUAL_BOUNDS_P (left_type)))
	  && (TREE_CODE (right_type) == ARRAY_TYPE
	      || (TREE_CODE (right_type) == INTEGER_TYPE
		  && TYPE_HAS_ACTUAL_BOUNDS_P (right_type))))
	{
	  result = compare_arrays (result_type, left_operand, right_operand);

	  if (op_code == NE_EXPR)
	    result = invert_truthvalue (result);
	  else
	    gcc_assert (op_code == EQ_EXPR);

	  return result;
	}

      /* Otherwise, the base types must be the same unless the objects are
	 fat pointers or records.  If we have records, use the best type and
	 convert both operands to that type.  */
      if (left_base_type != right_base_type)
	{
	  if (TYPE_FAT_POINTER_P (left_base_type)
	      && TYPE_FAT_POINTER_P (right_base_type)
	      && TYPE_MAIN_VARIANT (left_base_type)
		 == TYPE_MAIN_VARIANT (right_base_type))
	    best_type = left_base_type;
	  else if (TREE_CODE (left_base_type) == RECORD_TYPE
		   && TREE_CODE (right_base_type) == RECORD_TYPE)
	    {
	      /* The only way these are permitted to be the same is if both
		 types have the same name.  In that case, one of them must
		 not be self-referential.  Use that one as the best type.
		 Even better is if one is of fixed size.  */
	      gcc_assert (TYPE_NAME (left_base_type)
			  && (TYPE_NAME (left_base_type)
			      == TYPE_NAME (right_base_type)));

	      if (TREE_CONSTANT (TYPE_SIZE (left_base_type)))
		best_type = left_base_type;
	      else if (TREE_CONSTANT (TYPE_SIZE (right_base_type)))
		best_type = right_base_type;
	      else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (left_base_type)))
		best_type = left_base_type;
	      else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (right_base_type)))
		best_type = right_base_type;
	      else
		gcc_unreachable ();
	    }
	  else
	    gcc_unreachable ();

	  left_operand = convert (best_type, left_operand);
	  right_operand = convert (best_type, right_operand);
	}

      /* If we are comparing a fat pointer against zero, we need to
	 just compare the data pointer.  */
      else if (TYPE_FAT_POINTER_P (left_base_type)
	       && TREE_CODE (right_operand) == CONSTRUCTOR
	       && integer_zerop (VEC_index (constructor_elt,
					    CONSTRUCTOR_ELTS (right_operand),
					    0)
				 ->value))
	{
	  right_operand = build_component_ref (left_operand, NULL_TREE,
					       TYPE_FIELDS (left_base_type),
					       false);
	  left_operand = convert (TREE_TYPE (right_operand),
				  integer_zero_node);
	}
      else
	{
	  left_operand = convert (left_base_type, left_operand);
	  right_operand = convert (right_base_type, right_operand);
	}

      modulus = NULL_TREE;
      break;

    case PREINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      /* These operations are not used anymore.  */
      gcc_unreachable ();

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
       /* The RHS of a shift can be any type.  Also, ignore any modulus
	 (we used to abort, but this is needed for unchecked conversion
	 to modular types).  Otherwise, processing is the same as normal.  */
      gcc_assert (operation_type == left_base_type);
      modulus = NULL_TREE;
      left_operand = convert (operation_type, left_operand);
      break;

    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
      left_operand = gnat_truthvalue_conversion (left_operand);
      right_operand = gnat_truthvalue_conversion (right_operand);
      goto common;

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      /* For binary modulus, if the inputs are in range, so are the
	 outputs.  */
      if (modulus && integer_pow2p (modulus))
	modulus = NULL_TREE;
      goto common;

    case COMPLEX_EXPR:
      gcc_assert (TREE_TYPE (result_type) == left_base_type
		  && TREE_TYPE (result_type) == right_base_type);
      left_operand = convert (left_base_type, left_operand);
      right_operand = convert (right_base_type, right_operand);
      break;

    case TRUNC_DIV_EXPR:   case TRUNC_MOD_EXPR:
    case CEIL_DIV_EXPR:    case CEIL_MOD_EXPR:
    case FLOOR_DIV_EXPR:   case FLOOR_MOD_EXPR:
    case ROUND_DIV_EXPR:   case ROUND_MOD_EXPR:
      /* These always produce results lower than either operand.  */
      modulus = NULL_TREE;
      goto common;

    case POINTER_PLUS_EXPR:
      gcc_assert (operation_type == left_base_type
		  && sizetype == right_base_type);
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (sizetype, right_operand);
      break;

    case PLUS_NOMOD_EXPR:
    case MINUS_NOMOD_EXPR:
      if (op_code == PLUS_NOMOD_EXPR)
	op_code = PLUS_EXPR;
      else
	op_code = MINUS_EXPR;
      modulus = NULL_TREE;

      /* ... fall through ... */

    case PLUS_EXPR:
    case MINUS_EXPR:
      /* Avoid doing arithmetics in ENUMERAL_TYPE or BOOLEAN_TYPE like the
	 other compilers.  Contrary to C, Ada doesn't allow arithmetics in
	 these types but can generate addition/subtraction for Succ/Pred.  */
      if (operation_type
	  && (TREE_CODE (operation_type) == ENUMERAL_TYPE
	      || TREE_CODE (operation_type) == BOOLEAN_TYPE))
	operation_type = left_base_type = right_base_type
	  = gnat_type_for_mode (TYPE_MODE (operation_type),
				TYPE_UNSIGNED (operation_type));

      /* ... fall through ... */

    default:
    common:
      /* The result type should be the same as the base types of the
	 both operands (and they should be the same).  Convert
	 everything to the result type.  */

      gcc_assert (operation_type == left_base_type
		  && left_base_type == right_base_type);
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (operation_type, right_operand);
    }

  if (modulus && !integer_pow2p (modulus))
    {
      result = nonbinary_modular_operation (op_code, operation_type,
					    left_operand, right_operand);
      modulus = NULL_TREE;
    }
  /* If either operand is a NULL_EXPR, just return a new one.  */
  else if (TREE_CODE (left_operand) == NULL_EXPR)
    return build1 (NULL_EXPR, operation_type, TREE_OPERAND (left_operand, 0));
  else if (TREE_CODE (right_operand) == NULL_EXPR)
    return build1 (NULL_EXPR, operation_type, TREE_OPERAND (right_operand, 0));
  else if (op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
    result = fold (build4 (op_code, operation_type, left_operand,
			   right_operand, NULL_TREE, NULL_TREE));
  else
    result
      = fold_build2 (op_code, operation_type, left_operand, right_operand);

  TREE_SIDE_EFFECTS (result) |= has_side_effects;
  TREE_CONSTANT (result)
    |= (TREE_CONSTANT (left_operand) & TREE_CONSTANT (right_operand)
	&& op_code != ARRAY_REF && op_code != ARRAY_RANGE_REF);

  if ((op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
      && TYPE_VOLATILE (operation_type))
    TREE_THIS_VOLATILE (result) = 1;

  /* If we are working with modular types, perform the MOD operation
     if something above hasn't eliminated the need for it.  */
  if (modulus)
    result = fold_build2 (FLOOR_MOD_EXPR, operation_type, result,
			  convert (operation_type, modulus));

  if (result_type && result_type != operation_type)
    result = convert (result_type, result);

  return result;
}

/* Similar, but for unary operations.  */

tree
build_unary_op (enum tree_code op_code, tree result_type, tree operand)
{
  tree type = TREE_TYPE (operand);
  tree base_type = get_base_type (type);
  tree operation_type = result_type;
  tree result;
  bool side_effects = false;

  if (operation_type
      && TREE_CODE (operation_type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (operation_type))
    operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));

  if (operation_type
      && !AGGREGATE_TYPE_P (operation_type)
      && TYPE_EXTRA_SUBTYPE_P (operation_type))
    operation_type = get_base_type (operation_type);

  switch (op_code)
    {
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      if (!operation_type)
	result_type = operation_type = TREE_TYPE (type);
      else
	gcc_assert (result_type == TREE_TYPE (type));

      result = fold_build1 (op_code, operation_type, operand);
      break;

    case TRUTH_NOT_EXPR:
      gcc_assert (result_type == base_type);
      result = invert_truthvalue (gnat_truthvalue_conversion (operand));
      break;

    case ATTR_ADDR_EXPR:
    case ADDR_EXPR:
      switch (TREE_CODE (operand))
	{
	case INDIRECT_REF:
	case UNCONSTRAINED_ARRAY_REF:
	  result = TREE_OPERAND (operand, 0);

	  /* Make sure the type here is a pointer, not a reference.
	     GCC wants pointer types for function addresses.  */
	  if (!result_type)
	    result_type = build_pointer_type (type);

	  /* If the underlying object can alias everything, propagate the
	     property since we are effectively retrieving the object.  */
	  if (POINTER_TYPE_P (TREE_TYPE (result))
	      && TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (result)))
	    {
	      if (TREE_CODE (result_type) == POINTER_TYPE
		  && !TYPE_REF_CAN_ALIAS_ALL (result_type))
		result_type
		  = build_pointer_type_for_mode (TREE_TYPE (result_type),
						 TYPE_MODE (result_type),
						 true);
	      else if (TREE_CODE (result_type) == REFERENCE_TYPE
		       && !TYPE_REF_CAN_ALIAS_ALL (result_type))
	        result_type
		  = build_reference_type_for_mode (TREE_TYPE (result_type),
						   TYPE_MODE (result_type),
						   true);
	    }
	  break;

	case NULL_EXPR:
	  result = operand;
	  TREE_TYPE (result) = type = build_pointer_type (type);
	  break;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	case COMPONENT_REF:
	case BIT_FIELD_REF:
	    /* If this is for 'Address, find the address of the prefix and
	       add the offset to the field.  Otherwise, do this the normal
	       way.  */
	  if (op_code == ATTR_ADDR_EXPR)
	    {
	      HOST_WIDE_INT bitsize;
	      HOST_WIDE_INT bitpos;
	      tree offset, inner;
	      enum machine_mode mode;
	      int unsignedp, volatilep;

	      inner = get_inner_reference (operand, &bitsize, &bitpos, &offset,
					   &mode, &unsignedp, &volatilep,
					   false);

	      /* If INNER is a padding type whose field has a self-referential
		 size, convert to that inner type.  We know the offset is zero
		 and we need to have that type visible.  */
	      if (TREE_CODE (TREE_TYPE (inner)) == RECORD_TYPE
		  && TYPE_IS_PADDING_P (TREE_TYPE (inner))
		  && (CONTAINS_PLACEHOLDER_P
		      (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS
					     (TREE_TYPE (inner)))))))
		inner = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (inner))),
				 inner);

	      /* Compute the offset as a byte offset from INNER.  */
	      if (!offset)
		offset = size_zero_node;

	      if (bitpos % BITS_PER_UNIT != 0)
		post_error
		  ("taking address of object not aligned on storage unit?",
		   error_gnat_node);

	      offset = size_binop (PLUS_EXPR, offset,
				   size_int (bitpos / BITS_PER_UNIT));

	      /* Take the address of INNER, convert the offset to void *, and
		 add then.  It will later be converted to the desired result
		 type, if any.  */
	      inner = build_unary_op (ADDR_EXPR, NULL_TREE, inner);
	      inner = convert (ptr_void_type_node, inner);
	      result = build_binary_op (POINTER_PLUS_EXPR, ptr_void_type_node,
					inner, offset);
	      result = convert (build_pointer_type (TREE_TYPE (operand)),
				result);
	      break;
	    }
	  goto common;

	case CONSTRUCTOR:
	  /* If this is just a constructor for a padded record, we can
	     just take the address of the single field and convert it to
	     a pointer to our type.  */
	  if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type))
	    {
	      result = (VEC_index (constructor_elt,
				   CONSTRUCTOR_ELTS (operand),
				   0)
			->value);

	      result = convert (build_pointer_type (TREE_TYPE (operand)),
				build_unary_op (ADDR_EXPR, NULL_TREE, result));
	      break;
	    }

	  goto common;

	case NOP_EXPR:
	  if (AGGREGATE_TYPE_P (type)
	      && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (operand, 0))))
	    return build_unary_op (ADDR_EXPR, result_type,
				   TREE_OPERAND (operand, 0));

	  /* ... fallthru ... */

	case VIEW_CONVERT_EXPR:
	  /* If this just a variant conversion or if the conversion doesn't
	     change the mode, get the result type from this type and go down.
	     This is needed for conversions of CONST_DECLs, to eventually get
	     to the address of their CORRESPONDING_VARs.  */
	  if ((TYPE_MAIN_VARIANT (type)
	       == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (operand, 0))))
	      || (TYPE_MODE (type) != BLKmode
		  && (TYPE_MODE (type)
		      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (operand, 0))))))
	    return build_unary_op (ADDR_EXPR,
				   (result_type ? result_type
				    : build_pointer_type (type)),
				   TREE_OPERAND (operand, 0));
	  goto common;

	case CONST_DECL:
	  operand = DECL_CONST_CORRESPONDING_VAR (operand);

	  /* ... fall through ... */

	default:
	common:

	  /* If we are taking the address of a padded record whose field is
	     contains a template, take the address of the template.  */
	  if (TREE_CODE (type) == RECORD_TYPE
	      && TYPE_IS_PADDING_P (type)
	      && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
	      && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
	    {
	      type = TREE_TYPE (TYPE_FIELDS (type));
	      operand = convert (type, operand);
	    }

	  if (type != error_mark_node)
	    operation_type = build_pointer_type (type);

	  gnat_mark_addressable (operand);
	  result = fold_build1 (ADDR_EXPR, operation_type, operand);
	}

      TREE_CONSTANT (result) = staticp (operand) || TREE_CONSTANT (operand);
      break;

    case INDIRECT_REF:
      /* If we want to refer to an entire unconstrained array,
	 make up an expression to do so.  This will never survive to
	 the backend.  If TYPE is a thin pointer, first convert the
	 operand to a fat pointer.  */
      if (TYPE_THIN_POINTER_P (type)
	  && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)))
	{
	  operand
	    = convert (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))),
		       operand);
	  type = TREE_TYPE (operand);
	}

      if (TYPE_FAT_POINTER_P (type))
	{
	  result = build1 (UNCONSTRAINED_ARRAY_REF,
			   TYPE_UNCONSTRAINED_ARRAY (type), operand);
	  TREE_READONLY (result) = TREE_STATIC (result)
	    = TYPE_READONLY (TYPE_UNCONSTRAINED_ARRAY (type));
	}
      else if (TREE_CODE (operand) == ADDR_EXPR)
	result = TREE_OPERAND (operand, 0);

      else
	{
	  result = fold_build1 (op_code, TREE_TYPE (type), operand);
	  TREE_READONLY (result) = TYPE_READONLY (TREE_TYPE (type));
	}

      side_effects
	=  (!TYPE_FAT_POINTER_P (type) && TYPE_VOLATILE (TREE_TYPE (type)));
      break;

    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
      {
	tree modulus = ((operation_type
			 && TREE_CODE (operation_type) == INTEGER_TYPE
			 && TYPE_MODULAR_P (operation_type))
			? TYPE_MODULUS (operation_type) : NULL_TREE);
	int mod_pow2 = modulus && integer_pow2p (modulus);

	/* If this is a modular type, there are various possibilities
	   depending on the operation and whether the modulus is a
	   power of two or not.  */

	if (modulus)
	  {
	    gcc_assert (operation_type == base_type);
	    operand = convert (operation_type, operand);

	    /* The fastest in the negate case for binary modulus is
	       the straightforward code; the TRUNC_MOD_EXPR below
	       is an AND operation.  */
	    if (op_code == NEGATE_EXPR && mod_pow2)
	      result = fold_build2 (TRUNC_MOD_EXPR, operation_type,
				    fold_build1 (NEGATE_EXPR, operation_type,
						 operand),
				    modulus);

	    /* For nonbinary negate case, return zero for zero operand,
	       else return the modulus minus the operand.  If the modulus
	       is a power of two minus one, we can do the subtraction
	       as an XOR since it is equivalent and faster on most machines. */
	    else if (op_code == NEGATE_EXPR && !mod_pow2)
	      {
		if (integer_pow2p (fold_build2 (PLUS_EXPR, operation_type,
						modulus,
						convert (operation_type,
							 integer_one_node))))
		  result = fold_build2 (BIT_XOR_EXPR, operation_type,
					operand, modulus);
		else
		  result = fold_build2 (MINUS_EXPR, operation_type,
					modulus, operand);

		result = fold_build3 (COND_EXPR, operation_type,
				      fold_build2 (NE_EXPR,
						   integer_type_node,
						   operand,
						   convert
						     (operation_type,
						      integer_zero_node)),
				      result, operand);
	      }
	    else
	      {
		/* For the NOT cases, we need a constant equal to
		   the modulus minus one.  For a binary modulus, we
		   XOR against the constant and subtract the operand from
		   that constant for nonbinary modulus.  */

		tree cnst = fold_build2 (MINUS_EXPR, operation_type, modulus,
					 convert (operation_type,
						  integer_one_node));

		if (mod_pow2)
		  result = fold_build2 (BIT_XOR_EXPR, operation_type,
					operand, cnst);
		else
		  result = fold_build2 (MINUS_EXPR, operation_type,
					cnst, operand);
	      }

	    break;
	  }
      }

      /* ... fall through ... */

    default:
      gcc_assert (operation_type == base_type);
      result = fold_build1 (op_code, operation_type,
			    convert (operation_type, operand));
    }

  if (side_effects)
    {
      TREE_SIDE_EFFECTS (result) = 1;
      if (TREE_CODE (result) == INDIRECT_REF)
	TREE_THIS_VOLATILE (result) = TYPE_VOLATILE (TREE_TYPE (result));
    }

  if (result_type && TREE_TYPE (result) != result_type)
    result = convert (result_type, result);

  return result;
}

/* Similar, but for COND_EXPR.  */

tree
build_cond_expr (tree result_type, tree condition_operand,
                 tree true_operand, tree false_operand)
{
  tree result;
  bool addr_p = false;

  /* The front-end verifies that result, true and false operands have same base
     type.  Convert everything to the result type.  */

  true_operand  = convert (result_type, true_operand);
  false_operand = convert (result_type, false_operand);

  /* If the result type is unconstrained, take the address of
     the operands and then dereference our result.  */
  if (TREE_CODE (result_type) == UNCONSTRAINED_ARRAY_TYPE
      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (result_type)))
    {
      addr_p = true;
      result_type = build_pointer_type (result_type);
      true_operand = build_unary_op (ADDR_EXPR, result_type, true_operand);
      false_operand = build_unary_op (ADDR_EXPR, result_type, false_operand);
    }

  result = fold_build3 (COND_EXPR, result_type, condition_operand,
			true_operand, false_operand);

  /* If either operand is a SAVE_EXPR (possibly surrounded by
     arithmetic, make sure it gets done.  */
  true_operand  = skip_simple_arithmetic (true_operand);
  false_operand = skip_simple_arithmetic (false_operand);

  if (TREE_CODE (true_operand) == SAVE_EXPR)
    result = build2 (COMPOUND_EXPR, result_type, true_operand, result);

  if (TREE_CODE (false_operand) == SAVE_EXPR)
    result = build2 (COMPOUND_EXPR, result_type, false_operand, result);

  /* ??? Seems the code above is wrong, as it may move ahead of the COND
     SAVE_EXPRs with side effects and not shared by both arms.  */

 if (addr_p)
    result = build_unary_op (INDIRECT_REF, NULL_TREE, result);

  return result;
}

/* Similar, but for RETURN_EXPR.  If RESULT_DECL is non-zero, build
   a RETURN_EXPR around the assignment of RET_VAL to RESULT_DECL.
   If RESULT_DECL is zero, build a bare RETURN_EXPR.  */

tree
build_return_expr (tree result_decl, tree ret_val)
{
  tree result_expr;

  if (result_decl)
    {
      /* The gimplifier explicitly enforces the following invariant:

           RETURN_EXPR
               |
           MODIFY_EXPR
           /        \
          /          \
      RESULT_DECL    ...

      As a consequence, type-homogeneity dictates that we use the type
      of the RESULT_DECL as the operation type.  */

      tree operation_type = TREE_TYPE (result_decl);

      /* Convert the right operand to the operation type.  Note that
         it's the same transformation as in the MODIFY_EXPR case of
         build_binary_op with the additional guarantee that the type
         cannot involve a placeholder, since otherwise the function
         would use the "target pointer" return mechanism.  */

      if (operation_type != TREE_TYPE (ret_val))
	ret_val = convert (operation_type, ret_val);

      result_expr
	= build2 (MODIFY_EXPR, operation_type, result_decl, ret_val);
    }
  else
    result_expr = NULL_TREE;

  return build1 (RETURN_EXPR, void_type_node, result_expr);
}

/* Build a CALL_EXPR to call FUNDECL with one argument, ARG.  Return
   the CALL_EXPR.  */

tree
build_call_1_expr (tree fundecl, tree arg)
{
  tree call = build_call_nary (TREE_TYPE (TREE_TYPE (fundecl)),
			       build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
			       1, arg);
  TREE_SIDE_EFFECTS (call) = 1;
  return call;
}

/* Build a CALL_EXPR to call FUNDECL with two arguments, ARG1 & ARG2.  Return
   the CALL_EXPR.  */

tree
build_call_2_expr (tree fundecl, tree arg1, tree arg2)
{
  tree call = build_call_nary (TREE_TYPE (TREE_TYPE (fundecl)),
			       build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
			       2, arg1, arg2);
  TREE_SIDE_EFFECTS (call) = 1;
  return call;
}

/* Likewise to call FUNDECL with no arguments.  */

tree
build_call_0_expr (tree fundecl)
{
  /* We rely on build_call_nary to compute TREE_SIDE_EFFECTS.  This makes
     it possible to propagate DECL_IS_PURE on parameterless functions.  */
  tree call = build_call_nary (TREE_TYPE (TREE_TYPE (fundecl)),
			       build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
			       0);
  return call;
}

/* Call a function that raises an exception and pass the line number and file
   name, if requested.  MSG says which exception function to call.

   GNAT_NODE is the gnat node conveying the source location for which the
   error should be signaled, or Empty in which case the error is signaled on
   the current ref_file_name/input_line.

   KIND says which kind of exception this is for
   (N_Raise_{Constraint,Storage,Program}_Error).  */

tree
build_call_raise (int msg, Node_Id gnat_node, char kind)
{
  tree fndecl = gnat_raise_decls[msg];
  tree label = get_exception_label (kind);
  tree filename;
  int line_number;
  const char *str;
  int len;

  /* If this is to be done as a goto, handle that case.  */
  if (label)
    {
      Entity_Id local_raise = Get_Local_Raise_Call_Entity ();
      tree gnu_result = build1 (GOTO_EXPR, void_type_node, label);

      /* If Local_Raise is present, generate
	 Local_Raise (exception'Identity);  */
      if (Present (local_raise))
	{
	  tree gnu_local_raise
	    = gnat_to_gnu_entity (local_raise, NULL_TREE, 0);
	  tree gnu_exception_entity
	    = gnat_to_gnu_entity (Get_RT_Exception_Entity (msg), NULL_TREE, 0);
	  tree gnu_call
	    = build_call_1_expr (gnu_local_raise,
				 build_unary_op (ADDR_EXPR, NULL_TREE,
						 gnu_exception_entity));

	  gnu_result = build2 (COMPOUND_EXPR, void_type_node,
			       gnu_call, gnu_result);}

      return gnu_result;
    }

  str
    = (Debug_Flag_NN || Exception_Locations_Suppressed)
      ? ""
      : (gnat_node != Empty && Sloc (gnat_node) != No_Location)
        ? IDENTIFIER_POINTER
          (get_identifier (Get_Name_String
			   (Debug_Source_Name
			    (Get_Source_File_Index (Sloc (gnat_node))))))
        : ref_filename;

  len = strlen (str) + 1;
  filename = build_string (len, str);
  line_number
    = (gnat_node != Empty && Sloc (gnat_node) != No_Location)
      ? Get_Logical_Line_Number (Sloc(gnat_node)) : input_line;

  TREE_TYPE (filename)
    = build_array_type (char_type_node,
			build_index_type (build_int_cst (NULL_TREE, len)));

  return
    build_call_2_expr (fndecl,
		       build1 (ADDR_EXPR, build_pointer_type (char_type_node),
			       filename),
		       build_int_cst (NULL_TREE, line_number));
}

/* qsort comparer for the bit positions of two constructor elements
   for record components.  */

static int
compare_elmt_bitpos (const PTR rt1, const PTR rt2)
{
  const_tree const elmt1 = * (const_tree const *) rt1;
  const_tree const elmt2 = * (const_tree const *) rt2;
  const_tree const field1 = TREE_PURPOSE (elmt1);
  const_tree const field2 = TREE_PURPOSE (elmt2);
  const int ret
    = tree_int_cst_compare (bit_position (field1), bit_position (field2));

  return ret ? ret : (int) (DECL_UID (field1) - DECL_UID (field2));
}

/* Return a CONSTRUCTOR of TYPE whose list is LIST.  */

tree
gnat_build_constructor (tree type, tree list)
{
  tree elmt;
  int n_elmts;
  bool allconstant = (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST);
  bool side_effects = false;
  tree result;

  /* Scan the elements to see if they are all constant or if any has side
     effects, to let us set global flags on the resulting constructor.  Count
     the elements along the way for possible sorting purposes below.  */
  for (n_elmts = 0, elmt = list; elmt; elmt = TREE_CHAIN (elmt), n_elmts ++)
    {
      if (!TREE_CONSTANT (TREE_VALUE (elmt))
	  || (TREE_CODE (type) == RECORD_TYPE
	      && DECL_BIT_FIELD (TREE_PURPOSE (elmt))
	      && TREE_CODE (TREE_VALUE (elmt)) != INTEGER_CST)
	  || !initializer_constant_valid_p (TREE_VALUE (elmt),
					    TREE_TYPE (TREE_VALUE (elmt))))
	allconstant = false;

      if (TREE_SIDE_EFFECTS (TREE_VALUE (elmt)))
	side_effects = true;

      /* Propagate an NULL_EXPR from the size of the type.  We won't ever
	 be executing the code we generate here in that case, but handle it
	 specially to avoid the compiler blowing up.  */
      if (TREE_CODE (type) == RECORD_TYPE
	  && (0 != (result
		    = contains_null_expr (DECL_SIZE (TREE_PURPOSE (elmt))))))
	return build1 (NULL_EXPR, type, TREE_OPERAND (result, 0));
    }

  /* For record types with constant components only, sort field list
     by increasing bit position.  This is necessary to ensure the
     constructor can be output as static data.  */
  if (allconstant && TREE_CODE (type) == RECORD_TYPE && n_elmts > 1)
    {
      /* Fill an array with an element tree per index, and ask qsort to order
	 them according to what a bitpos comparison function says.  */
      tree *gnu_arr = (tree *) alloca (sizeof (tree) * n_elmts);
      int i;

      for (i = 0, elmt = list; elmt; elmt = TREE_CHAIN (elmt), i++)
	gnu_arr[i] = elmt;

      qsort (gnu_arr, n_elmts, sizeof (tree), compare_elmt_bitpos);

      /* Then reconstruct the list from the sorted array contents.  */
      list = NULL_TREE;
      for (i = n_elmts - 1; i >= 0; i--)
	{
	  TREE_CHAIN (gnu_arr[i]) = list;
	  list = gnu_arr[i];
	}
    }

  result = build_constructor_from_list (type, list);
  TREE_CONSTANT (result) = TREE_STATIC (result) = allconstant;
  TREE_SIDE_EFFECTS (result) = side_effects;
  TREE_READONLY (result) = TYPE_READONLY (type) || allconstant;
  return result;
}

/* Return a COMPONENT_REF to access a field that is given by COMPONENT,
   an IDENTIFIER_NODE giving the name of the field, or FIELD, a FIELD_DECL,
   for the field.  Don't fold the result if NO_FOLD_P is true.

   We also handle the fact that we might have been passed a pointer to the
   actual record and know how to look for fields in variant parts.  */

static tree
build_simple_component_ref (tree record_variable, tree component,
                            tree field, bool no_fold_p)
{
  tree record_type = TYPE_MAIN_VARIANT (TREE_TYPE (record_variable));
  tree ref, inner_variable;

  gcc_assert ((TREE_CODE (record_type) == RECORD_TYPE
	       || TREE_CODE (record_type) == UNION_TYPE
	       || TREE_CODE (record_type) == QUAL_UNION_TYPE)
	      && TYPE_SIZE (record_type)
	      && (component != 0) != (field != 0));

  /* If no field was specified, look for a field with the specified name
     in the current record only.  */
  if (!field)
    for (field = TYPE_FIELDS (record_type); field;
	 field = TREE_CHAIN (field))
      if (DECL_NAME (field) == component)
	break;

  if (!field)
    return NULL_TREE;

  /* If this field is not in the specified record, see if we can find
     something in the record whose original field is the same as this one. */
  if (DECL_CONTEXT (field) != record_type)
    /* Check if there is a field with name COMPONENT in the record.  */
    {
      tree new_field;

      /* First loop thru normal components.  */

      for (new_field = TYPE_FIELDS (record_type); new_field;
	   new_field = TREE_CHAIN (new_field))
	if (field == new_field
	    || DECL_ORIGINAL_FIELD (new_field) == field
	    || new_field == DECL_ORIGINAL_FIELD (field)
	    || (DECL_ORIGINAL_FIELD (field)
		&& (DECL_ORIGINAL_FIELD (field)
		    == DECL_ORIGINAL_FIELD (new_field))))
	  break;

      /* Next, loop thru DECL_INTERNAL_P components if we haven't found
         the component in the first search. Doing this search in 2 steps
         is required to avoiding hidden homonymous fields in the
         _Parent field.  */

      if (!new_field)
	for (new_field = TYPE_FIELDS (record_type); new_field;
	     new_field = TREE_CHAIN (new_field))
	  if (DECL_INTERNAL_P (new_field))
	    {
	      tree field_ref
		= build_simple_component_ref (record_variable,
					      NULL_TREE, new_field, no_fold_p);
	      ref = build_simple_component_ref (field_ref, NULL_TREE, field,
						no_fold_p);

	      if (ref)
		return ref;
	    }

      field = new_field;
    }

  if (!field)
    return NULL_TREE;

  /* If the field's offset has overflowed, do not attempt to access it
     as doing so may trigger sanity checks deeper in the back-end.
     Note that we don't need to warn since this will be done on trying
     to declare the object.  */
  if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST
      && TREE_OVERFLOW (DECL_FIELD_OFFSET (field)))
    return NULL_TREE;

  /* Look through conversion between type variants.  Note that this
     is transparent as far as the field is concerned.  */
  if (TREE_CODE (record_variable) == VIEW_CONVERT_EXPR
      && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (record_variable, 0)))
	 == record_type)
    inner_variable = TREE_OPERAND (record_variable, 0);
  else
    inner_variable = record_variable;

  ref = build3 (COMPONENT_REF, TREE_TYPE (field), inner_variable, field,
		NULL_TREE);

  if (TREE_READONLY (record_variable) || TREE_READONLY (field))
    TREE_READONLY (ref) = 1;
  if (TREE_THIS_VOLATILE (record_variable) || TREE_THIS_VOLATILE (field)
      || TYPE_VOLATILE (record_type))
    TREE_THIS_VOLATILE (ref) = 1;

  if (no_fold_p)
    return ref;

  /* The generic folder may punt in this case because the inner array type
     can be self-referential, but folding is in fact not problematic.  */
  else if (TREE_CODE (record_variable) == CONSTRUCTOR
	   && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (record_variable)))
    {
      VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (record_variable);
      unsigned HOST_WIDE_INT idx;
      tree index, value;
      FOR_EACH_CONSTRUCTOR_ELT (elts, idx, index, value)
	if (index == field)
	  return value;
      return ref;
    }

  else
    return fold (ref);
}

/* Like build_simple_component_ref, except that we give an error if the
   reference could not be found.  */

tree
build_component_ref (tree record_variable, tree component,
                     tree field, bool no_fold_p)
{
  tree ref = build_simple_component_ref (record_variable, component, field,
					 no_fold_p);

  if (ref)
    return ref;

  /* If FIELD was specified, assume this is an invalid user field so
     raise constraint error.  Otherwise, we can't find the type to return, so
     abort.  */
  gcc_assert (field);
  return build1 (NULL_EXPR, TREE_TYPE (field),
		 build_call_raise (CE_Discriminant_Check_Failed, Empty,
				   N_Raise_Constraint_Error));
}

/* Build a GCC tree to call an allocation or deallocation function.
   If GNU_OBJ is nonzero, it is an object to deallocate.  Otherwise,
   generate an allocator.

   GNU_SIZE is the size of the object in bytes and ALIGN is the alignment in
   bits.  GNAT_PROC, if present, is a procedure to call and GNAT_POOL is the
   storage pool to use.  If not preset, malloc and free will be used except
   if GNAT_PROC is the "fake" value of -1, in which case we allocate the
   object dynamically on the stack frame.  */

tree
build_call_alloc_dealloc (tree gnu_obj, tree gnu_size, unsigned align,
                          Entity_Id gnat_proc, Entity_Id gnat_pool,
                          Node_Id gnat_node)
{
  tree gnu_align = size_int (align / BITS_PER_UNIT);

  gnu_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_size, gnu_obj);

  if (Present (gnat_proc))
    {
      /* The storage pools are obviously always tagged types, but the
	 secondary stack uses the same mechanism and is not tagged */
      if (Is_Tagged_Type (Etype (gnat_pool)))
	{
	  /* The size is the third parameter; the alignment is the
             same type.  */
	  Entity_Id gnat_size_type
	    = Etype (Next_Formal (Next_Formal (First_Formal (gnat_proc))));
	  tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);
	  tree gnu_proc = gnat_to_gnu (gnat_proc);
	  tree gnu_proc_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_proc);
	  tree gnu_pool = gnat_to_gnu (gnat_pool);
	  tree gnu_pool_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_pool);
	  tree gnu_call;

	  gnu_size = convert (gnu_size_type, gnu_size);
	  gnu_align = convert (gnu_size_type, gnu_align);

	  /* The first arg is always the address of the storage pool; next
	     comes the address of the object, for a deallocator, then the
	     size and alignment.  */
	  if (gnu_obj)
	    gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
					gnu_proc_addr, 4, gnu_pool_addr,
					gnu_obj, gnu_size, gnu_align);
	  else
	    gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
					gnu_proc_addr, 3, gnu_pool_addr,
					gnu_size, gnu_align);
	  TREE_SIDE_EFFECTS (gnu_call) = 1;
	  return gnu_call;
	}

      /* Secondary stack case.  */
      else
	{
	  /* The size is the second parameter */
	  Entity_Id gnat_size_type
	    = Etype (Next_Formal (First_Formal (gnat_proc)));
	  tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);
	  tree gnu_proc = gnat_to_gnu (gnat_proc);
	  tree gnu_proc_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_proc);
	  tree gnu_call;

	  gnu_size = convert (gnu_size_type, gnu_size);

	  /* The first arg is the address of the object, for a
	     deallocator, then the size */
	  if (gnu_obj)
	    gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
					gnu_proc_addr, 2, gnu_obj, gnu_size);
	  else
	    gnu_call = build_call_nary (TREE_TYPE (TREE_TYPE (gnu_proc)),
					gnu_proc_addr, 1, gnu_size);
	  TREE_SIDE_EFFECTS (gnu_call) = 1;
	  return gnu_call;
	}
    }

  else if (gnu_obj)
    return build_call_1_expr (free_decl, gnu_obj);

  /* ??? For now, disable variable-sized allocators in the stack since
     we can't yet gimplify an ALLOCATE_EXPR.  */
  else if (gnat_pool == -1
	   && TREE_CODE (gnu_size) == INTEGER_CST
	   && flag_stack_check != GENERIC_STACK_CHECK)
    {
      /* If the size is a constant, we can put it in the fixed portion of
	 the stack frame to avoid the need to adjust the stack pointer.  */
	{
	  tree gnu_range
	    = build_range_type (NULL_TREE, size_one_node, gnu_size);
	  tree gnu_array_type = build_array_type (char_type_node, gnu_range);
	  tree gnu_decl
	    = create_var_decl (get_identifier ("RETVAL"), NULL_TREE,
			       gnu_array_type, NULL_TREE, false, false, false,
			       false, NULL, gnat_node);

	  return convert (ptr_void_type_node,
			  build_unary_op (ADDR_EXPR, NULL_TREE, gnu_decl));
	}
#if 0
      else
	return build2 (ALLOCATE_EXPR, ptr_void_type_node, gnu_size, gnu_align);
#endif
    }
  else
    {
      if (Nkind (gnat_node) != N_Allocator || !Comes_From_Source (gnat_node))
        Check_No_Implicit_Heap_Alloc (gnat_node);

      /* If the allocator size is 32bits but the pointer size is 64bits then
	 allocate 32bit memory (sometimes necessary on 64bit VMS). Otherwise
	 default to standard malloc. */
      if (TARGET_ABI_OPEN_VMS &&
          (!TARGET_MALLOC64 ||
           (POINTER_SIZE == 64
	    && (UI_To_Int (Esize (Etype (gnat_node))) == 32
	        || Convention (Etype (gnat_node)) == Convention_C))))
        return build_call_1_expr (malloc32_decl, gnu_size);
      else
        return build_call_1_expr (malloc_decl, gnu_size);
    }
}

/* Build a GCC tree to correspond to allocating an object of TYPE whose
   initial value is INIT, if INIT is nonzero.  Convert the expression to
   RESULT_TYPE, which must be some type of pointer.  Return the tree.
   GNAT_PROC and GNAT_POOL optionally give the procedure to call and
   the storage pool to use.  GNAT_NODE is used to provide an error
   location for restriction violations messages.  If IGNORE_INIT_TYPE is
   true, ignore the type of INIT for the purpose of determining the size;
   this will cause the maximum size to be allocated if TYPE is of
   self-referential size.  */

tree
build_allocator (tree type, tree init, tree result_type, Entity_Id gnat_proc,
                 Entity_Id gnat_pool, Node_Id gnat_node, bool ignore_init_type)
{
  tree size = TYPE_SIZE_UNIT (type);
  tree result;
  unsigned int default_allocator_alignment
    = get_target_default_allocator_alignment () * BITS_PER_UNIT;

  /* If the initializer, if present, is a NULL_EXPR, just return a new one.  */
  if (init && TREE_CODE (init) == NULL_EXPR)
    return build1 (NULL_EXPR, result_type, TREE_OPERAND (init, 0));

  /* If RESULT_TYPE is a fat or thin pointer, set SIZE to be the sum of the
     sizes of the object and its template.  Allocate the whole thing and
     fill in the parts that are known.  */
  else if (TYPE_FAT_OR_THIN_POINTER_P (result_type))
    {
      tree storage_type
	= build_unc_object_type_from_ptr (result_type, type,
					  get_identifier ("ALLOC"));
      tree template_type = TREE_TYPE (TYPE_FIELDS (storage_type));
      tree storage_ptr_type = build_pointer_type (storage_type);
      tree storage;
      tree template_cons = NULL_TREE;

      size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (storage_type),
					     init);

      /* If the size overflows, pass -1 so the allocator will raise
	 storage error.  */
      if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
	size = ssize_int (-1);

      storage = build_call_alloc_dealloc (NULL_TREE, size,
					  TYPE_ALIGN (storage_type),
					  gnat_proc, gnat_pool, gnat_node);
      storage = convert (storage_ptr_type, protect_multiple_eval (storage));

      if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type))
	{
	  type = TREE_TYPE (TYPE_FIELDS (type));

	  if (init)
	    init = convert (type, init);
	}

      /* If there is an initializing expression, make a constructor for
	 the entire object including the bounds and copy it into the
	 object.  If there is no initializing expression, just set the
	 bounds.  */
      if (init)
	{
	  template_cons = tree_cons (TREE_CHAIN (TYPE_FIELDS (storage_type)),
				     init, NULL_TREE);
	  template_cons = tree_cons (TYPE_FIELDS (storage_type),
				     build_template (template_type, type,
						     init),
				     template_cons);

	  return convert
	    (result_type,
	     build2 (COMPOUND_EXPR, storage_ptr_type,
		     build_binary_op
		     (MODIFY_EXPR, storage_type,
		      build_unary_op (INDIRECT_REF, NULL_TREE,
				      convert (storage_ptr_type, storage)),
		      gnat_build_constructor (storage_type, template_cons)),
		     convert (storage_ptr_type, storage)));
	}
      else
	return build2
	  (COMPOUND_EXPR, result_type,
	   build_binary_op
	   (MODIFY_EXPR, template_type,
	    build_component_ref
	    (build_unary_op (INDIRECT_REF, NULL_TREE,
			     convert (storage_ptr_type, storage)),
	     NULL_TREE, TYPE_FIELDS (storage_type), 0),
	    build_template (template_type, type, NULL_TREE)),
	   convert (result_type, convert (storage_ptr_type, storage)));
    }

  /* If we have an initializing expression, see if its size is simpler
     than the size from the type.  */
  if (!ignore_init_type && init && TYPE_SIZE_UNIT (TREE_TYPE (init))
      && (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (init))) == INTEGER_CST
	  || CONTAINS_PLACEHOLDER_P (size)))
    size = TYPE_SIZE_UNIT (TREE_TYPE (init));

  /* If the size is still self-referential, reference the initializing
     expression, if it is present.  If not, this must have been a
     call to allocate a library-level object, in which case we use
     the maximum size.  */
  if (CONTAINS_PLACEHOLDER_P (size))
    {
      if (!ignore_init_type && init)
	size = substitute_placeholder_in_expr (size, init);
      else
	size = max_size (size, true);
    }

  /* If the size overflows, pass -1 so the allocator will raise
     storage error.  */
  if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
    size = ssize_int (-1);

  /* If this is in the default storage pool and the type alignment is larger
     than what the default allocator supports, make an "aligning" record type
     with room to store a pointer before the field, allocate an object of that
     type, store the system's allocator return value just in front of the
     field and return the field's address.  */

  if (No (gnat_proc) && TYPE_ALIGN (type) > default_allocator_alignment)
    {
      /* Construct the aligning type with enough room for a pointer ahead
	 of the field, then allocate.  */
      tree record_type
	= make_aligning_type (type, TYPE_ALIGN (type), size,
			      default_allocator_alignment,
			      POINTER_SIZE / BITS_PER_UNIT);

      tree record, record_addr;

      record_addr
	= build_call_alloc_dealloc (NULL_TREE, TYPE_SIZE_UNIT (record_type),
				    default_allocator_alignment, Empty, Empty,
				    gnat_node);

      record_addr
	= convert (build_pointer_type (record_type),
		   save_expr (record_addr));

      record = build_unary_op (INDIRECT_REF, NULL_TREE, record_addr);

      /* Our RESULT (the Ada allocator's value) is the super-aligned address
	 of the internal record field ... */
      result
	= build_unary_op (ADDR_EXPR, NULL_TREE,
			  build_component_ref
			  (record, NULL_TREE, TYPE_FIELDS (record_type), 0));
      result = convert (result_type, result);

      /* ... with the system allocator's return value stored just in
	 front.  */
      {
	tree ptr_addr
	  = build_binary_op (POINTER_PLUS_EXPR, ptr_void_type_node,
			     convert (ptr_void_type_node, result),
			     size_int (-POINTER_SIZE/BITS_PER_UNIT));

	tree ptr_ref
	  = convert (build_pointer_type (ptr_void_type_node), ptr_addr);

	result
	  = build2 (COMPOUND_EXPR, TREE_TYPE (result),
		    build_binary_op (MODIFY_EXPR, NULL_TREE,
				     build_unary_op (INDIRECT_REF, NULL_TREE,
						     ptr_ref),
				     convert (ptr_void_type_node,
					      record_addr)),
		    result);
      }
    }
  else
    result = convert (result_type,
		      build_call_alloc_dealloc (NULL_TREE, size,
						TYPE_ALIGN (type),
						gnat_proc,
						gnat_pool,
						gnat_node));

  /* If we have an initial value, put the new address into a SAVE_EXPR, assign
     the value, and return the address.  Do this with a COMPOUND_EXPR.  */

  if (init)
    {
      result = save_expr (result);
      result
	= build2 (COMPOUND_EXPR, TREE_TYPE (result),
		  build_binary_op
		  (MODIFY_EXPR, NULL_TREE,
		   build_unary_op (INDIRECT_REF,
				   TREE_TYPE (TREE_TYPE (result)), result),
		   init),
		  result);
    }

  return convert (result_type, result);
}

/* Fill in a VMS descriptor for EXPR and return a constructor for it.
   GNAT_FORMAL is how we find the descriptor record.  GNAT_ACTUAL is
   how we derive the source location to raise C_E on an out of range
   pointer. */

tree
fill_vms_descriptor (tree expr, Entity_Id gnat_formal, Node_Id gnat_actual)
{
  tree field;
  tree parm_decl = get_gnu_tree (gnat_formal);
  tree const_list = NULL_TREE;
  tree record_type = TREE_TYPE (TREE_TYPE (parm_decl));
  int do_range_check =
      strcmp ("MBO",
	      IDENTIFIER_POINTER (DECL_NAME (TYPE_FIELDS (record_type))));

  expr = maybe_unconstrained_array (expr);
  gnat_mark_addressable (expr);

  for (field = TYPE_FIELDS (record_type); field; field = TREE_CHAIN (field))
    {
      tree conexpr = convert (TREE_TYPE (field),
			      SUBSTITUTE_PLACEHOLDER_IN_EXPR
			      (DECL_INITIAL (field), expr));

      /* Check to ensure that only 32bit pointers are passed in
	 32bit descriptors */
      if (do_range_check &&
          strcmp (IDENTIFIER_POINTER (DECL_NAME (field)), "POINTER") == 0)
        {
	  tree pointer64type =
	     build_pointer_type_for_mode (void_type_node, DImode, false);
	  tree addr64expr = build_unary_op (ADDR_EXPR, pointer64type, expr);
	  tree malloc64low =
	     build_int_cstu (long_integer_type_node, 0x80000000);

	  add_stmt (build3 (COND_EXPR, void_type_node,
			    build_binary_op (GE_EXPR, long_integer_type_node,
					     convert (long_integer_type_node,
						      addr64expr),
					     malloc64low),
			    build_call_raise (CE_Range_Check_Failed, gnat_actual,
					      N_Raise_Constraint_Error),
			    NULL_TREE));
        }
      const_list = tree_cons (field, conexpr, const_list);
    }

  return gnat_build_constructor (record_type, nreverse (const_list));
}

/* Indicate that we need to make the address of EXPR_NODE and it therefore
   should not be allocated in a register.  Returns true if successful.  */

bool
gnat_mark_addressable (tree expr_node)
{
  while (1)
    switch (TREE_CODE (expr_node))
      {
      case ADDR_EXPR:
      case COMPONENT_REF:
      case ARRAY_REF:
      case ARRAY_RANGE_REF:
      case REALPART_EXPR:
      case IMAGPART_EXPR:
      case VIEW_CONVERT_EXPR:
      case NON_LVALUE_EXPR:
      CASE_CONVERT:
	expr_node = TREE_OPERAND (expr_node, 0);
	break;

      case CONSTRUCTOR:
	TREE_ADDRESSABLE (expr_node) = 1;
	return true;

      case VAR_DECL:
      case PARM_DECL:
      case RESULT_DECL:
	TREE_ADDRESSABLE (expr_node) = 1;
	return true;

      case FUNCTION_DECL:
	TREE_ADDRESSABLE (expr_node) = 1;
	return true;

      case CONST_DECL:
	return (DECL_CONST_CORRESPONDING_VAR (expr_node)
		&& (gnat_mark_addressable
		    (DECL_CONST_CORRESPONDING_VAR (expr_node))));
      default:
	return true;
    }
}