aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/config/arm/lib1funcs.asm
blob: 2792b35e3e3791db06ac1ebeeefcd8ffab7bd537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
@ libgcc routines for ARM cpu.
@ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk)

/* Copyright 1995, 1996, 1998, 1999, 2000, 2003, 2004, 2005
   Free Software Foundation, Inc.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */
/* ------------------------------------------------------------------------ */

/* We need to know what prefix to add to function names.  */

#ifndef __USER_LABEL_PREFIX__
#error  __USER_LABEL_PREFIX__ not defined
#endif

/* ANSI concatenation macros.  */

#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

/* Use the right prefix for global labels.  */

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

#ifdef __ELF__
#ifdef __thumb__
#define __PLT__  /* Not supported in Thumb assembler (for now).  */
#else
#define __PLT__ (PLT)
#endif
#define TYPE(x) .type SYM(x),function
#define SIZE(x) .size SYM(x), . - SYM(x)
#define LSYM(x) .x
#else
#define __PLT__
#define TYPE(x)
#define SIZE(x)
#define LSYM(x) x
#endif

/* Function end macros.  Variants for interworking.  */

@ This selects the minimum architecture level required.
#define __ARM_ARCH__ 3

#if defined(__ARM_ARCH_3M__) || defined(__ARM_ARCH_4__) \
	|| defined(__ARM_ARCH_4T__)
/* We use __ARM_ARCH__ set to 4 here, but in reality it's any processor with
   long multiply instructions.  That includes v3M.  */
# undef __ARM_ARCH__
# define __ARM_ARCH__ 4
#endif
	
#if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \
	|| defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
	|| defined(__ARM_ARCH_5TEJ__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 5
#endif

#if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
	|| defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
	|| defined(__ARM_ARCH_6ZK__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 6
#endif

#ifndef __ARM_ARCH__
#error Unable to determine architecture.
#endif

/* How to return from a function call depends on the architecture variant.  */

#if (__ARM_ARCH__ > 4) || defined(__ARM_ARCH_4T__)

# define RET		bx	lr
# define RETc(x)	bx##x	lr

/* Special precautions for interworking on armv4t.  */
# if (__ARM_ARCH__ == 4)

/* Always use bx, not ldr pc.  */
#  if (defined(__thumb__) || defined(__THUMB_INTERWORK__))
#    define __INTERWORKING__
#   endif /* __THUMB__ || __THUMB_INTERWORK__ */

/* Include thumb stub before arm mode code.  */
#  if defined(__thumb__) && !defined(__THUMB_INTERWORK__)
#   define __INTERWORKING_STUBS__
#  endif /* __thumb__ && !__THUMB_INTERWORK__ */

#endif /* __ARM_ARCH == 4 */

#else

# define RET		mov	pc, lr
# define RETc(x)	mov##x	pc, lr

#endif

.macro	cfi_pop		advance, reg, cfa_offset
#ifdef __ELF__
	.pushsection	.debug_frame
	.byte	0x4		/* DW_CFA_advance_loc4 */
	.4byte	\advance
	.byte	(0xc0 | \reg)	/* DW_CFA_restore */
	.byte	0xe		/* DW_CFA_def_cfa_offset */
	.uleb128 \cfa_offset
	.popsection
#endif
.endm
.macro	cfi_push	advance, reg, offset, cfa_offset
#ifdef __ELF__
	.pushsection	.debug_frame
	.byte	0x4		/* DW_CFA_advance_loc4 */
	.4byte	\advance
	.byte	(0x80 | \reg)	/* DW_CFA_offset */
	.uleb128 (\offset / -4)
	.byte	0xe		/* DW_CFA_def_cfa_offset */
	.uleb128 \cfa_offset
	.popsection
#endif
.endm
.macro cfi_start	start_label, end_label
#ifdef __ELF__
	.pushsection	.debug_frame
LSYM(Lstart_frame):
	.4byte	LSYM(Lend_cie) - LSYM(Lstart_cie) @ Length of CIE
LSYM(Lstart_cie):
        .4byte	0xffffffff	@ CIE Identifier Tag
        .byte	0x1	@ CIE Version
        .ascii	"\0"	@ CIE Augmentation
        .uleb128 0x1	@ CIE Code Alignment Factor
        .sleb128 -4	@ CIE Data Alignment Factor
        .byte	0xe	@ CIE RA Column
        .byte	0xc	@ DW_CFA_def_cfa
        .uleb128 0xd
        .uleb128 0x0

	.align 2
LSYM(Lend_cie):
	.4byte	LSYM(Lend_fde)-LSYM(Lstart_fde)	@ FDE Length
LSYM(Lstart_fde):
	.4byte	LSYM(Lstart_frame)	@ FDE CIE offset
	.4byte	\start_label	@ FDE initial location
	.4byte	\end_label-\start_label	@ FDE address range
	.popsection
#endif
.endm
.macro cfi_end	end_label
#ifdef __ELF__
	.pushsection	.debug_frame
	.align	2
LSYM(Lend_fde):
	.popsection
\end_label:
#endif
.endm

/* Don't pass dirn, it's there just to get token pasting right.  */

.macro	RETLDM	regs=, cond=, unwind=, dirn=ia
#if defined (__INTERWORKING__)
	.ifc "\regs",""
	ldr\cond	lr, [sp], #8
	.else
	ldm\cond\dirn	sp!, {\regs, lr}
	.endif
	.ifnc "\unwind", ""
	/* Mark LR as restored.  */
97:	cfi_pop 97b - \unwind, 0xe, 0x0
	.endif
	bx\cond	lr
#else
	.ifc "\regs",""
	ldr\cond	pc, [sp], #8
	.else
	ldm\cond\dirn	sp!, {\regs, pc}
	.endif
#endif
.endm


.macro ARM_LDIV0 name
	str	lr, [sp, #-8]!
98:	cfi_push 98b - __\name, 0xe, -0x8, 0x8
	bl	SYM (__div0) __PLT__
	mov	r0, #0			@ About as wrong as it could be.
	RETLDM	unwind=98b
.endm


.macro THUMB_LDIV0 name
	push	{ r1, lr }
98:	cfi_push 98b - __\name, 0xe, -0x4, 0x8
	bl	SYM (__div0)
	mov	r0, #0			@ About as wrong as it could be.
#if defined (__INTERWORKING__)
	pop	{ r1, r2 }
	bx	r2
#else
	pop	{ r1, pc }
#endif
.endm

.macro FUNC_END name
	SIZE (__\name)
.endm

.macro DIV_FUNC_END name
	cfi_start	__\name, LSYM(Lend_div0)
LSYM(Ldiv0):
#ifdef __thumb__
	THUMB_LDIV0 \name
#else
	ARM_LDIV0 \name
#endif
	cfi_end	LSYM(Lend_div0)
	FUNC_END \name
.endm

.macro THUMB_FUNC_START name
	.globl	SYM (\name)
	TYPE	(\name)
	.thumb_func
SYM (\name):
.endm

/* Function start macros.  Variants for ARM and Thumb.  */

#ifdef __thumb__
#define THUMB_FUNC .thumb_func
#define THUMB_CODE .force_thumb
#else
#define THUMB_FUNC
#define THUMB_CODE
#endif
	
.macro FUNC_START name
	.text
	.globl SYM (__\name)
	TYPE (__\name)
	.align 0
	THUMB_CODE
	THUMB_FUNC
SYM (__\name):
.endm

/* Special function that will always be coded in ARM assembly, even if
   in Thumb-only compilation.  */

#if defined(__INTERWORKING_STUBS__)
.macro	ARM_FUNC_START name
	FUNC_START \name
	bx	pc
	nop
	.arm
/* A hook to tell gdb that we've switched to ARM mode.  Also used to call
   directly from other local arm routines.  */
_L__\name:		
.endm
#define EQUIV .thumb_set
/* Branch directly to a function declared with ARM_FUNC_START.
   Must be called in arm mode.  */
.macro  ARM_CALL name
	bl	_L__\name
.endm
#else
.macro	ARM_FUNC_START name
	.text
	.globl SYM (__\name)
	TYPE (__\name)
	.align 0
	.arm
SYM (__\name):
.endm
#define EQUIV .set
.macro  ARM_CALL name
	bl	__\name
.endm
#endif

.macro	FUNC_ALIAS new old
	.globl	SYM (__\new)
#if defined (__thumb__)
	.thumb_set	SYM (__\new), SYM (__\old)
#else
	.set	SYM (__\new), SYM (__\old)
#endif
.endm

.macro	ARM_FUNC_ALIAS new old
	.globl	SYM (__\new)
	EQUIV	SYM (__\new), SYM (__\old)
#if defined(__INTERWORKING_STUBS__)
	.set	SYM (_L__\new), SYM (_L__\old)
#endif
.endm

#ifdef __ARMEB__
#define xxh r0
#define xxl r1
#define yyh r2
#define yyl r3
#else
#define xxh r1
#define xxl r0
#define yyh r3
#define yyl r2
#endif	

#ifdef __thumb__
/* Register aliases.  */

work		.req	r4	@ XXXX is this safe ?
dividend	.req	r0
divisor		.req	r1
overdone	.req	r2
result		.req	r2
curbit		.req	r3
#endif
#if 0
ip		.req	r12
sp		.req	r13
lr		.req	r14
pc		.req	r15
#endif

/* ------------------------------------------------------------------------ */
/*		Bodies of the division and modulo routines.		    */
/* ------------------------------------------------------------------------ */	
.macro ARM_DIV_BODY dividend, divisor, result, curbit

#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)

	clz	\curbit, \dividend
	clz	\result, \divisor
	sub	\curbit, \result, \curbit
	rsbs	\curbit, \curbit, #31
	addne	\curbit, \curbit, \curbit, lsl #1
	mov	\result, #0
	addne	pc, pc, \curbit, lsl #2
	nop
	.set	shift, 32
	.rept	32
	.set	shift, shift - 1
	cmp	\dividend, \divisor, lsl #shift
	adc	\result, \result, \result
	subcs	\dividend, \dividend, \divisor, lsl #shift
	.endr

#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
#if __ARM_ARCH__ >= 5

	clz	\curbit, \divisor
	clz	\result, \dividend
	sub	\result, \curbit, \result
	mov	\curbit, #1
	mov	\divisor, \divisor, lsl \result
	mov	\curbit, \curbit, lsl \result
	mov	\result, #0
	
#else /* __ARM_ARCH__ < 5 */

	@ Initially shift the divisor left 3 bits if possible,
	@ set curbit accordingly.  This allows for curbit to be located
	@ at the left end of each 4 bit nibbles in the division loop
	@ to save one loop in most cases.
	tst	\divisor, #0xe0000000
	moveq	\divisor, \divisor, lsl #3
	moveq	\curbit, #8
	movne	\curbit, #1

	@ Unless the divisor is very big, shift it up in multiples of
	@ four bits, since this is the amount of unwinding in the main
	@ division loop.  Continue shifting until the divisor is 
	@ larger than the dividend.
1:	cmp	\divisor, #0x10000000
	cmplo	\divisor, \dividend
	movlo	\divisor, \divisor, lsl #4
	movlo	\curbit, \curbit, lsl #4
	blo	1b

	@ For very big divisors, we must shift it a bit at a time, or
	@ we will be in danger of overflowing.
1:	cmp	\divisor, #0x80000000
	cmplo	\divisor, \dividend
	movlo	\divisor, \divisor, lsl #1
	movlo	\curbit, \curbit, lsl #1
	blo	1b

	mov	\result, #0

#endif /* __ARM_ARCH__ < 5 */

	@ Division loop
1:	cmp	\dividend, \divisor
	subhs	\dividend, \dividend, \divisor
	orrhs	\result,   \result,   \curbit
	cmp	\dividend, \divisor,  lsr #1
	subhs	\dividend, \dividend, \divisor, lsr #1
	orrhs	\result,   \result,   \curbit,  lsr #1
	cmp	\dividend, \divisor,  lsr #2
	subhs	\dividend, \dividend, \divisor, lsr #2
	orrhs	\result,   \result,   \curbit,  lsr #2
	cmp	\dividend, \divisor,  lsr #3
	subhs	\dividend, \dividend, \divisor, lsr #3
	orrhs	\result,   \result,   \curbit,  lsr #3
	cmp	\dividend, #0			@ Early termination?
	movnes	\curbit,   \curbit,  lsr #4	@ No, any more bits to do?
	movne	\divisor,  \divisor, lsr #4
	bne	1b

#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */

.endm
/* ------------------------------------------------------------------------ */	
.macro ARM_DIV2_ORDER divisor, order

#if __ARM_ARCH__ >= 5

	clz	\order, \divisor
	rsb	\order, \order, #31

#else

	cmp	\divisor, #(1 << 16)
	movhs	\divisor, \divisor, lsr #16
	movhs	\order, #16
	movlo	\order, #0

	cmp	\divisor, #(1 << 8)
	movhs	\divisor, \divisor, lsr #8
	addhs	\order, \order, #8

	cmp	\divisor, #(1 << 4)
	movhs	\divisor, \divisor, lsr #4
	addhs	\order, \order, #4

	cmp	\divisor, #(1 << 2)
	addhi	\order, \order, #3
	addls	\order, \order, \divisor, lsr #1

#endif

.endm
/* ------------------------------------------------------------------------ */
.macro ARM_MOD_BODY dividend, divisor, order, spare

#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)

	clz	\order, \divisor
	clz	\spare, \dividend
	sub	\order, \order, \spare
	rsbs	\order, \order, #31
	addne	pc, pc, \order, lsl #3
	nop
	.set	shift, 32
	.rept	32
	.set	shift, shift - 1
	cmp	\dividend, \divisor, lsl #shift
	subcs	\dividend, \dividend, \divisor, lsl #shift
	.endr

#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
#if __ARM_ARCH__ >= 5

	clz	\order, \divisor
	clz	\spare, \dividend
	sub	\order, \order, \spare
	mov	\divisor, \divisor, lsl \order
	
#else /* __ARM_ARCH__ < 5 */

	mov	\order, #0

	@ Unless the divisor is very big, shift it up in multiples of
	@ four bits, since this is the amount of unwinding in the main
	@ division loop.  Continue shifting until the divisor is 
	@ larger than the dividend.
1:	cmp	\divisor, #0x10000000
	cmplo	\divisor, \dividend
	movlo	\divisor, \divisor, lsl #4
	addlo	\order, \order, #4
	blo	1b

	@ For very big divisors, we must shift it a bit at a time, or
	@ we will be in danger of overflowing.
1:	cmp	\divisor, #0x80000000
	cmplo	\divisor, \dividend
	movlo	\divisor, \divisor, lsl #1
	addlo	\order, \order, #1
	blo	1b

#endif /* __ARM_ARCH__ < 5 */

	@ Perform all needed substractions to keep only the reminder.
	@ Do comparisons in batch of 4 first.
	subs	\order, \order, #3		@ yes, 3 is intended here
	blt	2f

1:	cmp	\dividend, \divisor
	subhs	\dividend, \dividend, \divisor
	cmp	\dividend, \divisor,  lsr #1
	subhs	\dividend, \dividend, \divisor, lsr #1
	cmp	\dividend, \divisor,  lsr #2
	subhs	\dividend, \dividend, \divisor, lsr #2
	cmp	\dividend, \divisor,  lsr #3
	subhs	\dividend, \dividend, \divisor, lsr #3
	cmp	\dividend, #1
	mov	\divisor, \divisor, lsr #4
	subges	\order, \order, #4
	bge	1b

	tst	\order, #3
	teqne	\dividend, #0
	beq	5f

	@ Either 1, 2 or 3 comparison/substractions are left.
2:	cmn	\order, #2
	blt	4f
	beq	3f
	cmp	\dividend, \divisor
	subhs	\dividend, \dividend, \divisor
	mov	\divisor,  \divisor,  lsr #1
3:	cmp	\dividend, \divisor
	subhs	\dividend, \dividend, \divisor
	mov	\divisor,  \divisor,  lsr #1
4:	cmp	\dividend, \divisor
	subhs	\dividend, \dividend, \divisor
5:

#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */

.endm
/* ------------------------------------------------------------------------ */
.macro THUMB_DIV_MOD_BODY modulo
	@ Load the constant 0x10000000 into our work register.
	mov	work, #1
	lsl	work, #28
LSYM(Loop1):
	@ Unless the divisor is very big, shift it up in multiples of
	@ four bits, since this is the amount of unwinding in the main
	@ division loop.  Continue shifting until the divisor is 
	@ larger than the dividend.
	cmp	divisor, work
	bhs	LSYM(Lbignum)
	cmp	divisor, dividend
	bhs	LSYM(Lbignum)
	lsl	divisor, #4
	lsl	curbit,  #4
	b	LSYM(Loop1)
LSYM(Lbignum):
	@ Set work to 0x80000000
	lsl	work, #3
LSYM(Loop2):
	@ For very big divisors, we must shift it a bit at a time, or
	@ we will be in danger of overflowing.
	cmp	divisor, work
	bhs	LSYM(Loop3)
	cmp	divisor, dividend
	bhs	LSYM(Loop3)
	lsl	divisor, #1
	lsl	curbit,  #1
	b	LSYM(Loop2)
LSYM(Loop3):
	@ Test for possible subtractions ...
  .if \modulo
	@ ... On the final pass, this may subtract too much from the dividend, 
	@ so keep track of which subtractions are done, we can fix them up 
	@ afterwards.
	mov	overdone, #0
	cmp	dividend, divisor
	blo	LSYM(Lover1)
	sub	dividend, dividend, divisor
LSYM(Lover1):
	lsr	work, divisor, #1
	cmp	dividend, work
	blo	LSYM(Lover2)
	sub	dividend, dividend, work
	mov	ip, curbit
	mov	work, #1
	ror	curbit, work
	orr	overdone, curbit
	mov	curbit, ip
LSYM(Lover2):
	lsr	work, divisor, #2
	cmp	dividend, work
	blo	LSYM(Lover3)
	sub	dividend, dividend, work
	mov	ip, curbit
	mov	work, #2
	ror	curbit, work
	orr	overdone, curbit
	mov	curbit, ip
LSYM(Lover3):
	lsr	work, divisor, #3
	cmp	dividend, work
	blo	LSYM(Lover4)
	sub	dividend, dividend, work
	mov	ip, curbit
	mov	work, #3
	ror	curbit, work
	orr	overdone, curbit
	mov	curbit, ip
LSYM(Lover4):
	mov	ip, curbit
  .else
	@ ... and note which bits are done in the result.  On the final pass,
	@ this may subtract too much from the dividend, but the result will be ok,
	@ since the "bit" will have been shifted out at the bottom.
	cmp	dividend, divisor
	blo	LSYM(Lover1)
	sub	dividend, dividend, divisor
	orr	result, result, curbit
LSYM(Lover1):
	lsr	work, divisor, #1
	cmp	dividend, work
	blo	LSYM(Lover2)
	sub	dividend, dividend, work
	lsr	work, curbit, #1
	orr	result, work
LSYM(Lover2):
	lsr	work, divisor, #2
	cmp	dividend, work
	blo	LSYM(Lover3)
	sub	dividend, dividend, work
	lsr	work, curbit, #2
	orr	result, work
LSYM(Lover3):
	lsr	work, divisor, #3
	cmp	dividend, work
	blo	LSYM(Lover4)
	sub	dividend, dividend, work
	lsr	work, curbit, #3
	orr	result, work
LSYM(Lover4):
  .endif
	
	cmp	dividend, #0			@ Early termination?
	beq	LSYM(Lover5)
	lsr	curbit,  #4			@ No, any more bits to do?
	beq	LSYM(Lover5)
	lsr	divisor, #4
	b	LSYM(Loop3)
LSYM(Lover5):
  .if \modulo
	@ Any subtractions that we should not have done will be recorded in
	@ the top three bits of "overdone".  Exactly which were not needed
	@ are governed by the position of the bit, stored in ip.
	mov	work, #0xe
	lsl	work, #28
	and	overdone, work
	beq	LSYM(Lgot_result)
	
	@ If we terminated early, because dividend became zero, then the 
	@ bit in ip will not be in the bottom nibble, and we should not
	@ perform the additions below.  We must test for this though
	@ (rather relying upon the TSTs to prevent the additions) since
	@ the bit in ip could be in the top two bits which might then match
	@ with one of the smaller RORs.
	mov	curbit, ip
	mov	work, #0x7
	tst	curbit, work
	beq	LSYM(Lgot_result)
	
	mov	curbit, ip
	mov	work, #3
	ror	curbit, work
	tst	overdone, curbit
	beq	LSYM(Lover6)
	lsr	work, divisor, #3
	add	dividend, work
LSYM(Lover6):
	mov	curbit, ip
	mov	work, #2
	ror	curbit, work
	tst	overdone, curbit
	beq	LSYM(Lover7)
	lsr	work, divisor, #2
	add	dividend, work
LSYM(Lover7):
	mov	curbit, ip
	mov	work, #1
	ror	curbit, work
	tst	overdone, curbit
	beq	LSYM(Lgot_result)
	lsr	work, divisor, #1
	add	dividend, work
  .endif
LSYM(Lgot_result):
.endm	
/* ------------------------------------------------------------------------ */
/*		Start of the Real Functions				    */
/* ------------------------------------------------------------------------ */
#ifdef L_udivsi3

	FUNC_START udivsi3
	FUNC_ALIAS aeabi_uidiv udivsi3

#ifdef __thumb__

	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	mov	curbit, #1
	mov	result, #0
	
	push	{ work }
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)

	THUMB_DIV_MOD_BODY 0
	
	mov	r0, result
	pop	{ work }
	RET

#else /* ARM version.  */

	subs	r2, r1, #1
	RETc(eq)
	bcc	LSYM(Ldiv0)
	cmp	r0, r1
	bls	11f
	tst	r1, r2
	beq	12f
	
	ARM_DIV_BODY r0, r1, r2, r3
	
	mov	r0, r2
	RET	

11:	moveq	r0, #1
	movne	r0, #0
	RET

12:	ARM_DIV2_ORDER r1, r2

	mov	r0, r0, lsr r2
	RET

#endif /* ARM version */

	DIV_FUNC_END udivsi3

FUNC_START aeabi_uidivmod
#ifdef __thumb__
	push	{r0, r1, lr}
	bl	SYM(__udivsi3)
	POP	{r1, r2, r3}
	mul	r2, r0
	sub	r1, r1, r2
	bx	r3
#else
	stmfd	sp!, { r0, r1, lr }
	bl	SYM(__udivsi3)
	ldmfd	sp!, { r1, r2, lr }
	mul	r3, r2, r0
	sub	r1, r1, r3
	RET
#endif
	FUNC_END aeabi_uidivmod
	
#endif /* L_udivsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_umodsi3

	FUNC_START umodsi3

#ifdef __thumb__

	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	mov	curbit, #1
	cmp	dividend, divisor
	bhs	LSYM(Lover10)
	RET	

LSYM(Lover10):
	push	{ work }

	THUMB_DIV_MOD_BODY 1
	
	pop	{ work }
	RET
	
#else  /* ARM version.  */
	
	subs	r2, r1, #1			@ compare divisor with 1
	bcc	LSYM(Ldiv0)
	cmpne	r0, r1				@ compare dividend with divisor
	moveq   r0, #0
	tsthi	r1, r2				@ see if divisor is power of 2
	andeq	r0, r0, r2
	RETc(ls)

	ARM_MOD_BODY r0, r1, r2, r3
	
	RET	

#endif /* ARM version.  */
	
	DIV_FUNC_END umodsi3

#endif /* L_umodsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_divsi3

	FUNC_START divsi3	
	FUNC_ALIAS aeabi_idiv divsi3

#ifdef __thumb__
	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	
	push	{ work }
	mov	work, dividend
	eor	work, divisor		@ Save the sign of the result.
	mov	ip, work
	mov	curbit, #1
	mov	result, #0
	cmp	divisor, #0
	bpl	LSYM(Lover10)
	neg	divisor, divisor	@ Loops below use unsigned.
LSYM(Lover10):
	cmp	dividend, #0
	bpl	LSYM(Lover11)
	neg	dividend, dividend
LSYM(Lover11):
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)

	THUMB_DIV_MOD_BODY 0
	
	mov	r0, result
	mov	work, ip
	cmp	work, #0
	bpl	LSYM(Lover12)
	neg	r0, r0
LSYM(Lover12):
	pop	{ work }
	RET

#else /* ARM version.  */
	
	cmp	r1, #0
	eor	ip, r0, r1			@ save the sign of the result.
	beq	LSYM(Ldiv0)
	rsbmi	r1, r1, #0			@ loops below use unsigned.
	subs	r2, r1, #1			@ division by 1 or -1 ?
	beq	10f
	movs	r3, r0
	rsbmi	r3, r0, #0			@ positive dividend value
	cmp	r3, r1
	bls	11f
	tst	r1, r2				@ divisor is power of 2 ?
	beq	12f

	ARM_DIV_BODY r3, r1, r0, r2
	
	cmp	ip, #0
	rsbmi	r0, r0, #0
	RET	

10:	teq	ip, r0				@ same sign ?
	rsbmi	r0, r0, #0
	RET	

11:	movlo	r0, #0
	moveq	r0, ip, asr #31
	orreq	r0, r0, #1
	RET

12:	ARM_DIV2_ORDER r1, r2

	cmp	ip, #0
	mov	r0, r3, lsr r2
	rsbmi	r0, r0, #0
	RET

#endif /* ARM version */
	
	DIV_FUNC_END divsi3

FUNC_START aeabi_idivmod
#ifdef __thumb__
	push	{r0, r1, lr}
	bl	SYM(__divsi3)
	POP	{r1, r2, r3}
	mul	r2, r0
	sub	r1, r1, r2
	bx	r3
#else
	stmfd	sp!, { r0, r1, lr }
	bl	SYM(__divsi3)
	ldmfd	sp!, { r1, r2, lr }
	mul	r3, r2, r0
	sub	r1, r1, r3
	RET
#endif
	FUNC_END aeabi_idivmod
	
#endif /* L_divsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_modsi3

	FUNC_START modsi3

#ifdef __thumb__

	mov	curbit, #1
	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	bpl	LSYM(Lover10)
	neg	divisor, divisor		@ Loops below use unsigned.
LSYM(Lover10):
	push	{ work }
	@ Need to save the sign of the dividend, unfortunately, we need
	@ work later on.  Must do this after saving the original value of
	@ the work register, because we will pop this value off first.
	push	{ dividend }
	cmp	dividend, #0
	bpl	LSYM(Lover11)
	neg	dividend, dividend
LSYM(Lover11):
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)

	THUMB_DIV_MOD_BODY 1
		
	pop	{ work }
	cmp	work, #0
	bpl	LSYM(Lover12)
	neg	dividend, dividend
LSYM(Lover12):
	pop	{ work }
	RET	

#else /* ARM version.  */
	
	cmp	r1, #0
	beq	LSYM(Ldiv0)
	rsbmi	r1, r1, #0			@ loops below use unsigned.
	movs	ip, r0				@ preserve sign of dividend
	rsbmi	r0, r0, #0			@ if negative make positive
	subs	r2, r1, #1			@ compare divisor with 1
	cmpne	r0, r1				@ compare dividend with divisor
	moveq	r0, #0
	tsthi	r1, r2				@ see if divisor is power of 2
	andeq	r0, r0, r2
	bls	10f

	ARM_MOD_BODY r0, r1, r2, r3

10:	cmp	ip, #0
	rsbmi	r0, r0, #0
	RET	

#endif /* ARM version */
	
	DIV_FUNC_END modsi3

#endif /* L_modsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_tls

	FUNC_START div0
	FUNC_ALIAS aeabi_idiv0 div0
	FUNC_ALIAS aeabi_ldiv0 div0

	RET

	FUNC_END aeabi_ldiv0
	FUNC_END aeabi_idiv0
	FUNC_END div0
	
#endif /* L_divmodsi_tools */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_lnx
@ GNU/Linux division-by zero handler.  Used in place of L_dvmd_tls

/* Constant taken from <asm/signal.h>.  */
#define SIGFPE	8

	.code	32
	FUNC_START div0

	stmfd	sp!, {r1, lr}
	mov	r0, #SIGFPE
	bl	SYM(raise) __PLT__
	RETLDM	r1

	FUNC_END div0
	
#endif /* L_dvmd_lnx */

/* ------------------------------------------------------------------------ */
/* Dword multiplication operation.  */

#ifdef L_muldi3

# if defined(__ARM_ARCH_6M__)
	FUNC_START muldi3
	FUNC_ALIAS aeabi_lmul muldi3
# else
	ARM_FUNC_START muldi3
	ARM_FUNC_ALIAS aeabi_lmul muldi3
# endif

	mul	yyh, xxl, yyh
	mul	ip, yyl, xxh
	umull	xxl, xxh, yyl, xxl
	add	ip, ip, yyh
	add	xxh, xxh, ip
	RET

	FUNC_END muldi3
#endif

/* ------------------------------------------------------------------------ */
/* Dword shift operations.  */
/* All the following Dword shift variants rely on the fact that
	shft xxx, Reg
   is in fact done as
	shft xxx, (Reg & 255)
   so for Reg value in (32...63) and (-1...-31) we will get zero (in the
   case of logical shifts) or the sign (for asr).  */

#ifdef __ARMEB__
#define al	r1
#define ah	r0
#else
#define al	r0
#define ah	r1
#endif

/* Prevent __aeabi double-word shifts from being produced on SymbianOS.  */
#ifndef __symbian__

#ifdef L_lshrdi3

	FUNC_START lshrdi3
	FUNC_ALIAS aeabi_llsr lshrdi3
	
#ifdef __thumb__
	lsr	al, r2
	mov	r3, ah
	lsr	ah, r2
	mov	ip, r3
	sub	r2, #32
	lsr	r3, r2
	orr	al, r3
	neg	r2, r2
	mov	r3, ip
	lsl	r3, r2
	orr	al, r3
	RET
#else
	subs	r3, r2, #32
	rsb	ip, r2, #32
	movmi	al, al, lsr r2
	movpl	al, ah, lsr r3
	orrmi	al, al, ah, lsl ip
	mov	ah, ah, lsr r2
	RET
#endif
	FUNC_END aeabi_llsr
	FUNC_END lshrdi3

#endif
	
#ifdef L_ashrdi3
	
	FUNC_START ashrdi3
	FUNC_ALIAS aeabi_lasr ashrdi3
	
#ifdef __thumb__
	lsr	al, r2
	mov	r3, ah
	asr	ah, r2
	sub	r2, #32
	@ If r2 is negative at this point the following step would OR
	@ the sign bit into all of AL.  That's not what we want...
	bmi	1f
	mov	ip, r3
	asr	r3, r2
	orr	al, r3
	mov	r3, ip
1:
	neg	r2, r2
	lsl	r3, r2
	orr	al, r3
	RET
#else
	subs	r3, r2, #32
	rsb	ip, r2, #32
	movmi	al, al, lsr r2
	movpl	al, ah, asr r3
	orrmi	al, al, ah, lsl ip
	mov	ah, ah, asr r2
	RET
#endif

	FUNC_END aeabi_lasr
	FUNC_END ashrdi3

#endif

#ifdef L_ashldi3

	FUNC_START ashldi3
	FUNC_ALIAS aeabi_llsl ashldi3
	
#ifdef __thumb__
	lsl	ah, r2
	mov	r3, al
	lsl	al, r2
	mov	ip, r3
	sub	r2, #32
	lsl	r3, r2
	orr	ah, r3
	neg	r2, r2
	mov	r3, ip
	lsr	r3, r2
	orr	ah, r3
	RET
#else
	subs	r3, r2, #32
	rsb	ip, r2, #32
	movmi	ah, ah, lsl r2
	movpl	ah, al, lsl r3
	orrmi	ah, ah, al, lsr ip
	mov	al, al, lsl r2
	RET
#endif
	FUNC_END aeabi_llsl
	FUNC_END ashldi3

#endif

#endif /* __symbian__ */

/* ------------------------------------------------------------------------ */
/* These next two sections are here despite the fact that they contain Thumb 
   assembler because their presence allows interworked code to be linked even
   when the GCC library is this one.  */
		
/* Do not build the interworking functions when the target architecture does 
   not support Thumb instructions.  (This can be a multilib option).  */
#if defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__\
      || defined __ARM_ARCH_5TE__ || defined __ARM_ARCH_5TEJ__ \
      || __ARM_ARCH__ >= 6

#if defined L_call_via_rX

/* These labels & instructions are used by the Arm/Thumb interworking code. 
   The address of function to be called is loaded into a register and then 
   one of these labels is called via a BL instruction.  This puts the 
   return address into the link register with the bottom bit set, and the 
   code here switches to the correct mode before executing the function.  */
	
	.text
	.align 0
        .force_thumb

.macro call_via register
	THUMB_FUNC_START _call_via_\register

	bx	\register
	nop

	SIZE	(_call_via_\register)
.endm

	call_via r0
	call_via r1
	call_via r2
	call_via r3
	call_via r4
	call_via r5
	call_via r6
	call_via r7
	call_via r8
	call_via r9
	call_via sl
	call_via fp
	call_via ip
	call_via sp
	call_via lr

#endif /* L_call_via_rX */

#if defined L_interwork_call_via_rX

/* These labels & instructions are used by the Arm/Thumb interworking code,
   when the target address is in an unknown instruction set.  The address 
   of function to be called is loaded into a register and then one of these
   labels is called via a BL instruction.  This puts the return address 
   into the link register with the bottom bit set, and the code here 
   switches to the correct mode before executing the function.  Unfortunately
   the target code cannot be relied upon to return via a BX instruction, so
   instead we have to store the resturn address on the stack and allow the
   called function to return here instead.  Upon return we recover the real
   return address and use a BX to get back to Thumb mode.

   There are three variations of this code.  The first,
   _interwork_call_via_rN(), will push the return address onto the
   stack and pop it in _arm_return().  It should only be used if all
   arguments are passed in registers.

   The second, _interwork_r7_call_via_rN(), instead stores the return
   address at [r7, #-4].  It is the caller's responsibility to ensure
   that this address is valid and contains no useful data.

   The third, _interwork_r11_call_via_rN(), works in the same way but
   uses r11 instead of r7.  It is useful if the caller does not really
   need a frame pointer.  */
	
	.text
	.align 0

	.code   32
	.globl _arm_return
LSYM(Lstart_arm_return):
	cfi_start	LSYM(Lstart_arm_return) LSYM(Lend_arm_return)
	cfi_push	0, 0xe, -0x8, 0x8
	nop	@ This nop is for the benefit of debuggers, so that
		@ backtraces will use the correct unwind information.
_arm_return:
	RETLDM	unwind=LSYM(Lstart_arm_return)
	cfi_end	LSYM(Lend_arm_return)

	.globl _arm_return_r7
_arm_return_r7:
	ldr	lr, [r7, #-4]
	bx	lr

	.globl _arm_return_r11
_arm_return_r11:
	ldr	lr, [r11, #-4]
	bx	lr

.macro interwork_with_frame frame, register, name, return
	.code	16

	THUMB_FUNC_START \name

	bx	pc
	nop

	.code	32
	tst	\register, #1
	streq	lr, [\frame, #-4]
	adreq	lr, _arm_return_\frame
	bx	\register

	SIZE	(\name)
.endm

.macro interwork register
	.code	16

	THUMB_FUNC_START _interwork_call_via_\register

	bx	pc
	nop

	.code	32
	.globl LSYM(Lchange_\register)
LSYM(Lchange_\register):
	tst	\register, #1
	streq	lr, [sp, #-8]!
	adreq	lr, _arm_return
	bx	\register

	SIZE	(_interwork_call_via_\register)

	interwork_with_frame r7,\register,_interwork_r7_call_via_\register
	interwork_with_frame r11,\register,_interwork_r11_call_via_\register
.endm
	
	interwork r0
	interwork r1
	interwork r2
	interwork r3
	interwork r4
	interwork r5
	interwork r6
	interwork r7
	interwork r8
	interwork r9
	interwork sl
	interwork fp
	interwork ip
	interwork sp
	
	/* The LR case has to be handled a little differently...  */
	.code 16

	THUMB_FUNC_START _interwork_call_via_lr

	bx 	pc
	nop
	
	.code 32
	.globl .Lchange_lr
.Lchange_lr:
	tst	lr, #1
	stmeqdb	r13!, {lr, pc}
	mov	ip, lr
	adreq	lr, _arm_return
	bx	ip
	
	SIZE	(_interwork_call_via_lr)
	
#endif /* L_interwork_call_via_rX */
#endif /* Arch supports thumb.  */

#ifndef __symbian__
#include "ieee754-df.S"
#include "ieee754-sf.S"
#include "bpabi.S"
#endif /* __symbian__ */

/* ------------------------------------------------------------------------ */
/* Fast __clz*2 functions using the clz instruction.  These are mainly for
   thumb code.  For __ARM_ARCH__ < 5, use C implmentations in arm-libgcc2.c
   instead.  */

/* The CLZ instruction is only available on some V5 architectures. */

#if __ARM_ARCH__ > 5 \
	|| defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
	|| defined(__ARM_ARCH_5TEJ__)

#ifdef L_clzsi2

	ARM_FUNC_START clzsi2

	clz	r0, r0
	RET

	FUNC_END clzsi2

#endif /* L_clzsi2 */

#ifdef L_clzdi2

	ARM_FUNC_START clzdi2

	cmp	ah, #0
	clzeq	r3, al
	clzne	r0, ah
	addeq	r0, r3, #32
	RET

	FUNC_END clzdi2

#endif /* L_clzdi2 */

#endif	/* __ARM_ARCH__ > 5 */ \
	/* || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) */ \
	/* || defined(__ARM_ARCH_5TEJ__) */