//===-- tsan_platform_linux.cc --------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Linux-specific code. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_platform.h" #if SANITIZER_LINUX #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_procmaps.h" #include "sanitizer_common/sanitizer_stoptheworld.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_flags.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __need_res_state #include #include #ifdef sa_handler # undef sa_handler #endif #ifdef sa_sigaction # undef sa_sigaction #endif extern "C" struct mallinfo __libc_mallinfo(); namespace __tsan { const uptr kPageSize = 4096; #ifndef TSAN_GO ScopedInRtl::ScopedInRtl() : thr_(cur_thread()) { in_rtl_ = thr_->in_rtl; thr_->in_rtl++; errno_ = errno; } ScopedInRtl::~ScopedInRtl() { thr_->in_rtl--; errno = errno_; CHECK_EQ(in_rtl_, thr_->in_rtl); } #else ScopedInRtl::ScopedInRtl() { } ScopedInRtl::~ScopedInRtl() { } #endif void FillProfileCallback(uptr start, uptr rss, bool file, uptr *mem, uptr stats_size) { CHECK_EQ(7, stats_size); mem[6] += rss; // total start >>= 40; if (start < 0x10) // shadow mem[0] += rss; else if (start >= 0x20 && start < 0x30) // compat modules mem[file ? 1 : 2] += rss; else if (start >= 0x7e) // modules mem[file ? 1 : 2] += rss; else if (start >= 0x60 && start < 0x62) // traces mem[3] += rss; else if (start >= 0x7d && start < 0x7e) // heap mem[4] += rss; else // other mem[5] += rss; } void WriteMemoryProfile(char *buf, uptr buf_size) { uptr mem[7] = {}; __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7); char *buf_pos = buf; char *buf_end = buf + buf_size; buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos, "RSS %zd MB: shadow:%zd file:%zd mmap:%zd trace:%zd heap:%zd other:%zd\n", mem[6] >> 20, mem[0] >> 20, mem[1] >> 20, mem[2] >> 20, mem[3] >> 20, mem[4] >> 20, mem[5] >> 20); struct mallinfo mi = __libc_mallinfo(); buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos, "mallinfo: arena=%d mmap=%d fordblks=%d keepcost=%d\n", mi.arena >> 20, mi.hblkhd >> 20, mi.fordblks >> 20, mi.keepcost >> 20); } uptr GetRSS() { uptr mem[7] = {}; __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7); return mem[6]; } void FlushShadowMemoryCallback( const SuspendedThreadsList &suspended_threads_list, void *argument) { FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg); } void FlushShadowMemory() { StopTheWorld(FlushShadowMemoryCallback, 0); } #ifndef TSAN_GO static void ProtectRange(uptr beg, uptr end) { ScopedInRtl in_rtl; CHECK_LE(beg, end); if (beg == end) return; if (beg != (uptr)Mprotect(beg, end - beg)) { Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end); Printf("FATAL: Make sure you are not using unlimited stack\n"); Die(); } } #endif #ifndef TSAN_GO // Mark shadow for .rodata sections with the special kShadowRodata marker. // Accesses to .rodata can't race, so this saves time, memory and trace space. static void MapRodata() { // First create temp file. const char *tmpdir = GetEnv("TMPDIR"); if (tmpdir == 0) tmpdir = GetEnv("TEST_TMPDIR"); #ifdef P_tmpdir if (tmpdir == 0) tmpdir = P_tmpdir; #endif if (tmpdir == 0) return; char filename[256]; internal_snprintf(filename, sizeof(filename), "%s/tsan.rodata.%d", tmpdir, (int)internal_getpid()); uptr openrv = internal_open(filename, O_RDWR | O_CREAT | O_EXCL, 0600); if (internal_iserror(openrv)) return; fd_t fd = openrv; // Fill the file with kShadowRodata. const uptr kMarkerSize = 512 * 1024 / sizeof(u64); InternalScopedBuffer marker(kMarkerSize); for (u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++) *p = kShadowRodata; internal_write(fd, marker.data(), marker.size()); // Map the file into memory. uptr page = internal_mmap(0, kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, fd, 0); if (internal_iserror(page)) { internal_close(fd); internal_unlink(filename); return; } // Map the file into shadow of .rodata sections. MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end, offset, prot; char name[128]; while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) { if (name[0] != 0 && name[0] != '[' && (prot & MemoryMappingLayout::kProtectionRead) && (prot & MemoryMappingLayout::kProtectionExecute) && !(prot & MemoryMappingLayout::kProtectionWrite) && IsAppMem(start)) { // Assume it's .rodata char *shadow_start = (char*)MemToShadow(start); char *shadow_end = (char*)MemToShadow(end); for (char *p = shadow_start; p < shadow_end; p += marker.size()) { internal_mmap(p, Min(marker.size(), shadow_end - p), PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0); } } } internal_close(fd); internal_unlink(filename); } void InitializeShadowMemory() { uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg); if (shadow != kLinuxShadowBeg) { Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n"); Printf("FATAL: Make sure to compile with -fPIE and " "to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg); Die(); } const uptr kClosedLowBeg = 0x200000; const uptr kClosedLowEnd = kLinuxShadowBeg - 1; const uptr kClosedMidBeg = kLinuxShadowEnd + 1; const uptr kClosedMidEnd = min(kLinuxAppMemBeg, kTraceMemBegin); ProtectRange(kClosedLowBeg, kClosedLowEnd); ProtectRange(kClosedMidBeg, kClosedMidEnd); DPrintf("kClosedLow %zx-%zx (%zuGB)\n", kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30); DPrintf("kLinuxShadow %zx-%zx (%zuGB)\n", kLinuxShadowBeg, kLinuxShadowEnd, (kLinuxShadowEnd - kLinuxShadowBeg) >> 30); DPrintf("kClosedMid %zx-%zx (%zuGB)\n", kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30); DPrintf("kLinuxAppMem %zx-%zx (%zuGB)\n", kLinuxAppMemBeg, kLinuxAppMemEnd, (kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30); DPrintf("stack %zx\n", (uptr)&shadow); MapRodata(); } #endif static uptr g_data_start; static uptr g_data_end; #ifndef TSAN_GO static void CheckPIE() { // Ensure that the binary is indeed compiled with -pie. MemoryMappingLayout proc_maps(true); uptr start, end; if (proc_maps.Next(&start, &end, /*offset*/0, /*filename*/0, /*filename_size*/0, /*protection*/0)) { if ((u64)start < kLinuxAppMemBeg) { Printf("FATAL: ThreadSanitizer can not mmap the shadow memory (" "something is mapped at 0x%zx < 0x%zx)\n", start, kLinuxAppMemBeg); Printf("FATAL: Make sure to compile with -fPIE" " and to link with -pie.\n"); Die(); } } } static void InitDataSeg() { MemoryMappingLayout proc_maps(true); uptr start, end, offset; char name[128]; bool prev_is_data = false; while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), /*protection*/ 0)) { DPrintf("%p-%p %p %s\n", start, end, offset, name); bool is_data = offset != 0 && name[0] != 0; // BSS may get merged with [heap] in /proc/self/maps. This is not very // reliable. bool is_bss = offset == 0 && (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data; if (g_data_start == 0 && is_data) g_data_start = start; if (is_bss) g_data_end = end; prev_is_data = is_data; } DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end); CHECK_LT(g_data_start, g_data_end); CHECK_GE((uptr)&g_data_start, g_data_start); CHECK_LT((uptr)&g_data_start, g_data_end); } #endif // #ifndef TSAN_GO static rlim_t getlim(int res) { rlimit rlim; CHECK_EQ(0, getrlimit(res, &rlim)); return rlim.rlim_cur; } static void setlim(int res, rlim_t lim) { // The following magic is to prevent clang from replacing it with memset. volatile rlimit rlim; rlim.rlim_cur = lim; rlim.rlim_max = lim; setrlimit(res, (rlimit*)&rlim); } const char *InitializePlatform() { void *p = 0; if (sizeof(p) == 8) { // Disable core dumps, dumping of 16TB usually takes a bit long. setlim(RLIMIT_CORE, 0); } // Go maps shadow memory lazily and works fine with limited address space. // Unlimited stack is not a problem as well, because the executable // is not compiled with -pie. if (kCppMode) { bool reexec = false; // TSan doesn't play well with unlimited stack size (as stack // overlaps with shadow memory). If we detect unlimited stack size, // we re-exec the program with limited stack size as a best effort. if (getlim(RLIMIT_STACK) == (rlim_t)-1) { const uptr kMaxStackSize = 32 * 1024 * 1024; Report("WARNING: Program is run with unlimited stack size, which " "wouldn't work with ThreadSanitizer.\n"); Report("Re-execing with stack size limited to %zd bytes.\n", kMaxStackSize); SetStackSizeLimitInBytes(kMaxStackSize); reexec = true; } if (getlim(RLIMIT_AS) != (rlim_t)-1) { Report("WARNING: Program is run with limited virtual address space," " which wouldn't work with ThreadSanitizer.\n"); Report("Re-execing with unlimited virtual address space.\n"); setlim(RLIMIT_AS, -1); reexec = true; } if (reexec) ReExec(); } #ifndef TSAN_GO CheckPIE(); InitTlsSize(); InitDataSeg(); #endif return GetEnv(kTsanOptionsEnv); } bool IsGlobalVar(uptr addr) { return g_data_start && addr >= g_data_start && addr < g_data_end; } #ifndef TSAN_GO // Extract file descriptors passed to glibc internal __res_iclose function. // This is required to properly "close" the fds, because we do not see internal // closes within glibc. The code is a pure hack. int ExtractResolvFDs(void *state, int *fds, int nfd) { int cnt = 0; __res_state *statp = (__res_state*)state; for (int i = 0; i < MAXNS && cnt < nfd; i++) { if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) fds[cnt++] = statp->_u._ext.nssocks[i]; } return cnt; } // Extract file descriptors passed via UNIX domain sockets. // This is requried to properly handle "open" of these fds. // see 'man recvmsg' and 'man 3 cmsg'. int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) { int res = 0; msghdr *msg = (msghdr*)msgp; struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg); for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) continue; int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]); for (int i = 0; i < n; i++) { fds[res++] = ((int*)CMSG_DATA(cmsg))[i]; if (res == nfd) return res; } } return res; } #endif } // namespace __tsan #endif // SANITIZER_LINUX