//===-- tsan_interceptors.cc ----------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // FIXME: move as many interceptors as possible into // sanitizer_common/sanitizer_common_interceptors.inc //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_linux.h" #include "sanitizer_common/sanitizer_platform_limits_posix.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "interception/interception.h" #include "tsan_interface.h" #include "tsan_platform.h" #include "tsan_suppressions.h" #include "tsan_rtl.h" #include "tsan_mman.h" #include "tsan_fd.h" using namespace __tsan; // NOLINT const int kSigCount = 64; struct my_siginfo_t { // The size is determined by looking at sizeof of real siginfo_t on linux. u64 opaque[128 / sizeof(u64)]; }; struct ucontext_t { // The size is determined by looking at sizeof of real ucontext_t on linux. u64 opaque[936 / sizeof(u64) + 1]; }; extern "C" int pthread_attr_init(void *attr); extern "C" int pthread_attr_destroy(void *attr); DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *) extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize); extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v)); extern "C" int pthread_setspecific(unsigned key, const void *v); extern "C" int pthread_mutexattr_gettype(void *a, int *type); extern "C" int pthread_yield(); extern "C" int pthread_sigmask(int how, const __sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset); // REAL(sigfillset) defined in common interceptors. DECLARE_REAL(int, sigfillset, __sanitizer_sigset_t *set) extern "C" void *pthread_self(); extern "C" void _exit(int status); extern "C" int *__errno_location(); extern "C" int fileno_unlocked(void *stream); extern "C" void *__libc_malloc(uptr size); extern "C" void *__libc_calloc(uptr size, uptr n); extern "C" void *__libc_realloc(void *ptr, uptr size); extern "C" void __libc_free(void *ptr); extern "C" int mallopt(int param, int value); const int PTHREAD_MUTEX_RECURSIVE = 1; const int PTHREAD_MUTEX_RECURSIVE_NP = 1; const int EINVAL = 22; const int EBUSY = 16; const int EOWNERDEAD = 130; const int EPOLL_CTL_ADD = 1; const int SIGILL = 4; const int SIGABRT = 6; const int SIGFPE = 8; const int SIGSEGV = 11; const int SIGPIPE = 13; const int SIGBUS = 7; const int SIGSYS = 31; void *const MAP_FAILED = (void*)-1; const int PTHREAD_BARRIER_SERIAL_THREAD = -1; const int MAP_FIXED = 0x10; typedef long long_t; // NOLINT // From /usr/include/unistd.h # define F_ULOCK 0 /* Unlock a previously locked region. */ # define F_LOCK 1 /* Lock a region for exclusive use. */ # define F_TLOCK 2 /* Test and lock a region for exclusive use. */ # define F_TEST 3 /* Test a region for other processes locks. */ typedef void (*sighandler_t)(int sig); #define errno (*__errno_location()) struct sigaction_t { union { sighandler_t sa_handler; void (*sa_sigaction)(int sig, my_siginfo_t *siginfo, void *uctx); }; __sanitizer_sigset_t sa_mask; int sa_flags; void (*sa_restorer)(); }; const sighandler_t SIG_DFL = (sighandler_t)0; const sighandler_t SIG_IGN = (sighandler_t)1; const sighandler_t SIG_ERR = (sighandler_t)-1; const int SA_SIGINFO = 4; const int SIG_SETMASK = 2; namespace std { struct nothrow_t {}; } // namespace std static sigaction_t sigactions[kSigCount]; namespace __tsan { struct SignalDesc { bool armed; bool sigaction; my_siginfo_t siginfo; ucontext_t ctx; }; struct SignalContext { int in_blocking_func; int int_signal_send; int pending_signal_count; SignalDesc pending_signals[kSigCount]; }; // The object is 64-byte aligned, because we want hot data to be located in // a single cache line if possible (it's accessed in every interceptor). static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)]; static LibIgnore *libignore() { return reinterpret_cast(&libignore_placeholder[0]); } void InitializeLibIgnore() { libignore()->Init(*GetSuppressionContext()); libignore()->OnLibraryLoaded(0); } } // namespace __tsan static SignalContext *SigCtx(ThreadState *thr) { SignalContext *ctx = (SignalContext*)thr->signal_ctx; if (ctx == 0 && thr->is_alive) { ScopedInRtl in_rtl; ctx = (SignalContext*)MmapOrDie(sizeof(*ctx), "SignalContext"); MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx)); thr->signal_ctx = ctx; } return ctx; } static unsigned g_thread_finalize_key; class ScopedInterceptor { public: ScopedInterceptor(ThreadState *thr, const char *fname, uptr pc); ~ScopedInterceptor(); private: ThreadState *const thr_; const uptr pc_; const int in_rtl_; bool in_ignored_lib_; }; ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname, uptr pc) : thr_(thr) , pc_(pc) , in_rtl_(thr->in_rtl) , in_ignored_lib_(false) { if (thr_->in_rtl == 0) { Initialize(thr); FuncEntry(thr, pc); thr_->in_rtl++; DPrintf("#%d: intercept %s()\n", thr_->tid, fname); } else { thr_->in_rtl++; } if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) { in_ignored_lib_ = true; thr_->in_ignored_lib = true; ThreadIgnoreBegin(thr_, pc_); } } ScopedInterceptor::~ScopedInterceptor() { if (in_ignored_lib_) { thr_->in_ignored_lib = false; ThreadIgnoreEnd(thr_, pc_); } thr_->in_rtl--; if (thr_->in_rtl == 0) { FuncExit(thr_); ProcessPendingSignals(thr_); } CHECK_EQ(in_rtl_, thr_->in_rtl); } #define SCOPED_INTERCEPTOR_RAW(func, ...) \ ThreadState *thr = cur_thread(); \ StatInc(thr, StatInterceptor); \ StatInc(thr, StatInt_##func); \ const uptr caller_pc = GET_CALLER_PC(); \ ScopedInterceptor si(thr, #func, caller_pc); \ const uptr pc = __sanitizer::StackTrace::GetCurrentPc(); \ (void)pc; \ /**/ #define SCOPED_TSAN_INTERCEPTOR(func, ...) \ SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \ if (REAL(func) == 0) { \ Printf("FATAL: ThreadSanitizer: failed to intercept %s\n", #func); \ Die(); \ } \ if (thr->in_rtl > 1 || thr->in_ignored_lib) \ return REAL(func)(__VA_ARGS__); \ /**/ #define TSAN_INTERCEPTOR(ret, func, ...) INTERCEPTOR(ret, func, __VA_ARGS__) #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func) #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name)) struct BlockingCall { explicit BlockingCall(ThreadState *thr) : ctx(SigCtx(thr)) { ctx->in_blocking_func++; } ~BlockingCall() { ctx->in_blocking_func--; } SignalContext *ctx; }; TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) { SCOPED_TSAN_INTERCEPTOR(sleep, sec); unsigned res = BLOCK_REAL(sleep)(sec); AfterSleep(thr, pc); return res; } TSAN_INTERCEPTOR(int, usleep, long_t usec) { SCOPED_TSAN_INTERCEPTOR(usleep, usec); int res = BLOCK_REAL(usleep)(usec); AfterSleep(thr, pc); return res; } TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) { SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem); int res = BLOCK_REAL(nanosleep)(req, rem); AfterSleep(thr, pc); return res; } TSAN_INTERCEPTOR(void*, dlopen, const char *filename, int flag) { SCOPED_INTERCEPTOR_RAW(dlopen, filename, flag); // dlopen will execute global constructors, so it must be not in rtl. CHECK_EQ(thr->in_rtl, 1); thr->in_rtl = 0; void *res = REAL(dlopen)(filename, flag); thr->in_rtl = 1; libignore()->OnLibraryLoaded(filename); return res; } TSAN_INTERCEPTOR(int, dlclose, void *handle) { SCOPED_INTERCEPTOR_RAW(dlclose, handle); // dlclose will execute global destructors, so it must be not in rtl. CHECK_EQ(thr->in_rtl, 1); thr->in_rtl = 0; int res = REAL(dlclose)(handle); thr->in_rtl = 1; libignore()->OnLibraryUnloaded(); return res; } class AtExitContext { public: AtExitContext() : mtx_(MutexTypeAtExit, StatMtxAtExit) , pos_() { } typedef void(*atexit_t)(); int atexit(ThreadState *thr, uptr pc, bool is_on_exit, atexit_t f, void *arg) { Lock l(&mtx_); if (pos_ == kMaxAtExit) return 1; Release(thr, pc, (uptr)this); stack_[pos_] = f; args_[pos_] = arg; is_on_exits_[pos_] = is_on_exit; pos_++; return 0; } void exit(ThreadState *thr, uptr pc) { CHECK_EQ(thr->in_rtl, 0); for (;;) { atexit_t f = 0; void *arg = 0; bool is_on_exit = false; { Lock l(&mtx_); if (pos_) { pos_--; f = stack_[pos_]; arg = args_[pos_]; is_on_exit = is_on_exits_[pos_]; ScopedInRtl in_rtl; Acquire(thr, pc, (uptr)this); } } if (f == 0) break; DPrintf("#%d: executing atexit func %p\n", thr->tid, f); CHECK_EQ(thr->in_rtl, 0); if (is_on_exit) ((void(*)(int status, void *arg))f)(0, arg); else ((void(*)(void *arg, void *dso))f)(arg, 0); } } private: static const int kMaxAtExit = 128; Mutex mtx_; atexit_t stack_[kMaxAtExit]; void *args_[kMaxAtExit]; bool is_on_exits_[kMaxAtExit]; int pos_; }; static AtExitContext *atexit_ctx; TSAN_INTERCEPTOR(int, atexit, void (*f)()) { if (cur_thread()->in_symbolizer) return 0; SCOPED_TSAN_INTERCEPTOR(atexit, f); return atexit_ctx->atexit(thr, pc, false, (void(*)())f, 0); } TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) { if (cur_thread()->in_symbolizer) return 0; SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg); return atexit_ctx->atexit(thr, pc, true, (void(*)())f, arg); } TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) { if (cur_thread()->in_symbolizer) return 0; SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso); if (dso) { // Memory allocation in __cxa_atexit will race with free during exit, // because we do not see synchronization around atexit callback list. ThreadIgnoreBegin(thr, pc); int res = REAL(__cxa_atexit)(f, arg, dso); ThreadIgnoreEnd(thr, pc); return res; } return atexit_ctx->atexit(thr, pc, false, (void(*)())f, arg); } // Cleanup old bufs. static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) { for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { JmpBuf *buf = &thr->jmp_bufs[i]; if (buf->sp <= sp) { uptr sz = thr->jmp_bufs.Size(); thr->jmp_bufs[i] = thr->jmp_bufs[sz - 1]; thr->jmp_bufs.PopBack(); i--; } } } static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) { if (thr->shadow_stack_pos == 0) // called from libc guts during bootstrap return; // Cleanup old bufs. JmpBufGarbageCollect(thr, sp); // Remember the buf. JmpBuf *buf = thr->jmp_bufs.PushBack(); buf->sp = sp; buf->mangled_sp = mangled_sp; buf->shadow_stack_pos = thr->shadow_stack_pos; } static void LongJmp(ThreadState *thr, uptr *env) { uptr mangled_sp = env[6]; // Find the saved buf by mangled_sp. for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { JmpBuf *buf = &thr->jmp_bufs[i]; if (buf->mangled_sp == mangled_sp) { CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos); // Unwind the stack. while (thr->shadow_stack_pos > buf->shadow_stack_pos) FuncExit(thr); JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp return; } } Printf("ThreadSanitizer: can't find longjmp buf\n"); CHECK(0); } // FIXME: put everything below into a common extern "C" block? extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) { ScopedInRtl in_rtl; SetJmp(cur_thread(), sp, mangled_sp); } // Not called. Merely to satisfy TSAN_INTERCEPT(). extern "C" SANITIZER_INTERFACE_ATTRIBUTE int __interceptor_setjmp(void *env); extern "C" int __interceptor_setjmp(void *env) { CHECK(0); return 0; } // FIXME: any reason to have a separate declaration? extern "C" SANITIZER_INTERFACE_ATTRIBUTE int __interceptor__setjmp(void *env); extern "C" int __interceptor__setjmp(void *env) { CHECK(0); return 0; } extern "C" SANITIZER_INTERFACE_ATTRIBUTE int __interceptor_sigsetjmp(void *env); extern "C" int __interceptor_sigsetjmp(void *env) { CHECK(0); return 0; } extern "C" SANITIZER_INTERFACE_ATTRIBUTE int __interceptor___sigsetjmp(void *env); extern "C" int __interceptor___sigsetjmp(void *env) { CHECK(0); return 0; } extern "C" int setjmp(void *env); extern "C" int _setjmp(void *env); extern "C" int sigsetjmp(void *env); extern "C" int __sigsetjmp(void *env); DEFINE_REAL(int, setjmp, void *env) DEFINE_REAL(int, _setjmp, void *env) DEFINE_REAL(int, sigsetjmp, void *env) DEFINE_REAL(int, __sigsetjmp, void *env) TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) { { SCOPED_TSAN_INTERCEPTOR(longjmp, env, val); } LongJmp(cur_thread(), env); REAL(longjmp)(env, val); } TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) { { SCOPED_TSAN_INTERCEPTOR(siglongjmp, env, val); } LongJmp(cur_thread(), env); REAL(siglongjmp)(env, val); } TSAN_INTERCEPTOR(void*, malloc, uptr size) { if (cur_thread()->in_symbolizer) return __libc_malloc(size); void *p = 0; { SCOPED_INTERCEPTOR_RAW(malloc, size); p = user_alloc(thr, pc, size); } invoke_malloc_hook(p, size); return p; } TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) { SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz); return user_alloc(thr, pc, sz, align); } TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) { if (cur_thread()->in_symbolizer) return __libc_calloc(size, n); if (__sanitizer::CallocShouldReturnNullDueToOverflow(size, n)) return AllocatorReturnNull(); void *p = 0; { SCOPED_INTERCEPTOR_RAW(calloc, size, n); p = user_alloc(thr, pc, n * size); if (p) internal_memset(p, 0, n * size); } invoke_malloc_hook(p, n * size); return p; } TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) { if (cur_thread()->in_symbolizer) return __libc_realloc(p, size); if (p) invoke_free_hook(p); { SCOPED_INTERCEPTOR_RAW(realloc, p, size); p = user_realloc(thr, pc, p, size); } invoke_malloc_hook(p, size); return p; } TSAN_INTERCEPTOR(void, free, void *p) { if (p == 0) return; if (cur_thread()->in_symbolizer) return __libc_free(p); invoke_free_hook(p); SCOPED_INTERCEPTOR_RAW(free, p); user_free(thr, pc, p); } TSAN_INTERCEPTOR(void, cfree, void *p) { if (p == 0) return; if (cur_thread()->in_symbolizer) return __libc_free(p); invoke_free_hook(p); SCOPED_INTERCEPTOR_RAW(cfree, p); user_free(thr, pc, p); } TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) { SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p); return user_alloc_usable_size(thr, pc, p); } #define OPERATOR_NEW_BODY(mangled_name) \ if (cur_thread()->in_symbolizer) \ return __libc_malloc(size); \ void *p = 0; \ { \ SCOPED_INTERCEPTOR_RAW(mangled_name, size); \ p = user_alloc(thr, pc, size); \ } \ invoke_malloc_hook(p, size); \ return p; SANITIZER_INTERFACE_ATTRIBUTE void *operator new(__sanitizer::uptr size); void *operator new(__sanitizer::uptr size) { OPERATOR_NEW_BODY(_Znwm); } SANITIZER_INTERFACE_ATTRIBUTE void *operator new[](__sanitizer::uptr size); void *operator new[](__sanitizer::uptr size) { OPERATOR_NEW_BODY(_Znam); } SANITIZER_INTERFACE_ATTRIBUTE void *operator new(__sanitizer::uptr size, std::nothrow_t const&); void *operator new(__sanitizer::uptr size, std::nothrow_t const&) { OPERATOR_NEW_BODY(_ZnwmRKSt9nothrow_t); } SANITIZER_INTERFACE_ATTRIBUTE void *operator new[](__sanitizer::uptr size, std::nothrow_t const&); void *operator new[](__sanitizer::uptr size, std::nothrow_t const&) { OPERATOR_NEW_BODY(_ZnamRKSt9nothrow_t); } #define OPERATOR_DELETE_BODY(mangled_name) \ if (ptr == 0) return; \ if (cur_thread()->in_symbolizer) \ return __libc_free(ptr); \ invoke_free_hook(ptr); \ SCOPED_INTERCEPTOR_RAW(mangled_name, ptr); \ user_free(thr, pc, ptr); SANITIZER_INTERFACE_ATTRIBUTE void operator delete(void *ptr); void operator delete(void *ptr) { OPERATOR_DELETE_BODY(_ZdlPv); } SANITIZER_INTERFACE_ATTRIBUTE void operator delete[](void *ptr); void operator delete[](void *ptr) { OPERATOR_DELETE_BODY(_ZdlPvRKSt9nothrow_t); } SANITIZER_INTERFACE_ATTRIBUTE void operator delete(void *ptr, std::nothrow_t const&); void operator delete(void *ptr, std::nothrow_t const&) { OPERATOR_DELETE_BODY(_ZdaPv); } SANITIZER_INTERFACE_ATTRIBUTE void operator delete[](void *ptr, std::nothrow_t const&); void operator delete[](void *ptr, std::nothrow_t const&) { OPERATOR_DELETE_BODY(_ZdaPvRKSt9nothrow_t); } TSAN_INTERCEPTOR(uptr, strlen, const char *s) { SCOPED_TSAN_INTERCEPTOR(strlen, s); uptr len = internal_strlen(s); MemoryAccessRange(thr, pc, (uptr)s, len + 1, false); return len; } TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) { SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size); MemoryAccessRange(thr, pc, (uptr)dst, size, true); return internal_memset(dst, v, size); } TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) { SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size); MemoryAccessRange(thr, pc, (uptr)dst, size, true); MemoryAccessRange(thr, pc, (uptr)src, size, false); return internal_memcpy(dst, src, size); } TSAN_INTERCEPTOR(int, memcmp, const void *s1, const void *s2, uptr n) { SCOPED_TSAN_INTERCEPTOR(memcmp, s1, s2, n); int res = 0; uptr len = 0; for (; len < n; len++) { if ((res = ((unsigned char*)s1)[len] - ((unsigned char*)s2)[len])) break; } MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false); MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false); return res; } TSAN_INTERCEPTOR(void*, memchr, void *s, int c, uptr n) { SCOPED_TSAN_INTERCEPTOR(memchr, s, c, n); void *res = REAL(memchr)(s, c, n); uptr len = res ? (char*)res - (char*)s + 1 : n; MemoryAccessRange(thr, pc, (uptr)s, len, false); return res; } TSAN_INTERCEPTOR(void*, memrchr, char *s, int c, uptr n) { SCOPED_TSAN_INTERCEPTOR(memrchr, s, c, n); MemoryAccessRange(thr, pc, (uptr)s, n, false); return REAL(memrchr)(s, c, n); } TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) { SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n); MemoryAccessRange(thr, pc, (uptr)dst, n, true); MemoryAccessRange(thr, pc, (uptr)src, n, false); return REAL(memmove)(dst, src, n); } TSAN_INTERCEPTOR(char*, strchr, char *s, int c) { SCOPED_TSAN_INTERCEPTOR(strchr, s, c); char *res = REAL(strchr)(s, c); uptr len = res ? (char*)res - (char*)s + 1 : internal_strlen(s) + 1; MemoryAccessRange(thr, pc, (uptr)s, len, false); return res; } TSAN_INTERCEPTOR(char*, strchrnul, char *s, int c) { SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c); char *res = REAL(strchrnul)(s, c); uptr len = (char*)res - (char*)s + 1; MemoryAccessRange(thr, pc, (uptr)s, len, false); return res; } TSAN_INTERCEPTOR(char*, strrchr, char *s, int c) { SCOPED_TSAN_INTERCEPTOR(strrchr, s, c); MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s) + 1, false); return REAL(strrchr)(s, c); } TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) { // NOLINT SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT uptr srclen = internal_strlen(src); MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true); MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false); return REAL(strcpy)(dst, src); // NOLINT } TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) { SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n); uptr srclen = internal_strnlen(src, n); MemoryAccessRange(thr, pc, (uptr)dst, n, true); MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false); return REAL(strncpy)(dst, src, n); } TSAN_INTERCEPTOR(const char*, strstr, const char *s1, const char *s2) { SCOPED_TSAN_INTERCEPTOR(strstr, s1, s2); const char *res = REAL(strstr)(s1, s2); uptr len1 = internal_strlen(s1); uptr len2 = internal_strlen(s2); MemoryAccessRange(thr, pc, (uptr)s1, len1 + 1, false); MemoryAccessRange(thr, pc, (uptr)s2, len2 + 1, false); return res; } TSAN_INTERCEPTOR(char*, strdup, const char *str) { SCOPED_TSAN_INTERCEPTOR(strdup, str); // strdup will call malloc, so no instrumentation is required here. return REAL(strdup)(str); } static bool fix_mmap_addr(void **addr, long_t sz, int flags) { if (*addr) { if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) { if (flags & MAP_FIXED) { errno = EINVAL; return false; } else { *addr = 0; } } } return true; } TSAN_INTERCEPTOR(void*, mmap, void *addr, long_t sz, int prot, int flags, int fd, unsigned off) { SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off); if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED; void *res = REAL(mmap)(addr, sz, prot, flags, fd, off); if (res != MAP_FAILED) { if (fd > 0) FdAccess(thr, pc, fd); MemoryRangeImitateWrite(thr, pc, (uptr)res, sz); } return res; } TSAN_INTERCEPTOR(void*, mmap64, void *addr, long_t sz, int prot, int flags, int fd, u64 off) { SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off); if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED; void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off); if (res != MAP_FAILED) { if (fd > 0) FdAccess(thr, pc, fd); MemoryRangeImitateWrite(thr, pc, (uptr)res, sz); } return res; } TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) { SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz); DontNeedShadowFor((uptr)addr, sz); int res = REAL(munmap)(addr, sz); return res; } TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) { SCOPED_INTERCEPTOR_RAW(memalign, align, sz); return user_alloc(thr, pc, sz, align); } TSAN_INTERCEPTOR(void*, valloc, uptr sz) { SCOPED_INTERCEPTOR_RAW(valloc, sz); return user_alloc(thr, pc, sz, GetPageSizeCached()); } TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) { SCOPED_INTERCEPTOR_RAW(pvalloc, sz); sz = RoundUp(sz, GetPageSizeCached()); return user_alloc(thr, pc, sz, GetPageSizeCached()); } TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) { SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz); *memptr = user_alloc(thr, pc, sz, align); return 0; } // Used in thread-safe function static initialization. extern "C" int INTERFACE_ATTRIBUTE __cxa_guard_acquire(atomic_uint32_t *g) { SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g); for (;;) { u32 cmp = atomic_load(g, memory_order_acquire); if (cmp == 0) { if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed)) return 1; } else if (cmp == 1) { Acquire(thr, pc, (uptr)g); return 0; } else { internal_sched_yield(); } } } extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_release(atomic_uint32_t *g) { SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g); Release(thr, pc, (uptr)g); atomic_store(g, 1, memory_order_release); } extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_abort(atomic_uint32_t *g) { SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g); atomic_store(g, 0, memory_order_relaxed); } static void thread_finalize(void *v) { uptr iter = (uptr)v; if (iter > 1) { if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) { Printf("ThreadSanitizer: failed to set thread key\n"); Die(); } return; } { ScopedInRtl in_rtl; ThreadState *thr = cur_thread(); ThreadFinish(thr); SignalContext *sctx = thr->signal_ctx; if (sctx) { thr->signal_ctx = 0; UnmapOrDie(sctx, sizeof(*sctx)); } } } struct ThreadParam { void* (*callback)(void *arg); void *param; atomic_uintptr_t tid; }; extern "C" void *__tsan_thread_start_func(void *arg) { ThreadParam *p = (ThreadParam*)arg; void* (*callback)(void *arg) = p->callback; void *param = p->param; int tid = 0; { ThreadState *thr = cur_thread(); ScopedInRtl in_rtl; if (pthread_setspecific(g_thread_finalize_key, (void *)kPthreadDestructorIterations)) { Printf("ThreadSanitizer: failed to set thread key\n"); Die(); } while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0) pthread_yield(); atomic_store(&p->tid, 0, memory_order_release); ThreadStart(thr, tid, GetTid()); CHECK_EQ(thr->in_rtl, 1); } void *res = callback(param); // Prevent the callback from being tail called, // it mixes up stack traces. volatile int foo = 42; foo++; return res; } TSAN_INTERCEPTOR(int, pthread_create, void *th, void *attr, void *(*callback)(void*), void * param) { SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param); __sanitizer_pthread_attr_t myattr; if (attr == 0) { pthread_attr_init(&myattr); attr = &myattr; } int detached = 0; REAL(pthread_attr_getdetachstate)(attr, &detached); AdjustStackSizeLinux(attr); ThreadParam p; p.callback = callback; p.param = param; atomic_store(&p.tid, 0, memory_order_relaxed); int res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p); if (res == 0) { int tid = ThreadCreate(thr, pc, *(uptr*)th, detached); CHECK_NE(tid, 0); atomic_store(&p.tid, tid, memory_order_release); while (atomic_load(&p.tid, memory_order_acquire) != 0) pthread_yield(); } if (attr == &myattr) pthread_attr_destroy(&myattr); return res; } TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) { SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret); int tid = ThreadTid(thr, pc, (uptr)th); int res = BLOCK_REAL(pthread_join)(th, ret); if (res == 0) { ThreadJoin(thr, pc, tid); } return res; } TSAN_INTERCEPTOR(int, pthread_detach, void *th) { SCOPED_TSAN_INTERCEPTOR(pthread_detach, th); int tid = ThreadTid(thr, pc, (uptr)th); int res = REAL(pthread_detach)(th); if (res == 0) { ThreadDetach(thr, pc, tid); } return res; } TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) { SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a); int res = REAL(pthread_mutex_init)(m, a); if (res == 0) { bool recursive = false; if (a) { int type = 0; if (pthread_mutexattr_gettype(a, &type) == 0) recursive = (type == PTHREAD_MUTEX_RECURSIVE || type == PTHREAD_MUTEX_RECURSIVE_NP); } MutexCreate(thr, pc, (uptr)m, false, recursive, false); } return res; } TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m); int res = REAL(pthread_mutex_destroy)(m); if (res == 0 || res == EBUSY) { MutexDestroy(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m); int res = REAL(pthread_mutex_trylock)(m); if (res == EOWNERDEAD) MutexRepair(thr, pc, (uptr)m); if (res == 0 || res == EOWNERDEAD) MutexLock(thr, pc, (uptr)m); return res; } TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) { SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime); int res = REAL(pthread_mutex_timedlock)(m, abstime); if (res == 0) { MutexLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) { SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared); int res = REAL(pthread_spin_init)(m, pshared); if (res == 0) { MutexCreate(thr, pc, (uptr)m, false, false, false); } return res; } TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m); int res = REAL(pthread_spin_destroy)(m); if (res == 0) { MutexDestroy(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m); int res = REAL(pthread_spin_lock)(m); if (res == 0) { MutexLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m); int res = REAL(pthread_spin_trylock)(m); if (res == 0) { MutexLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m); MutexUnlock(thr, pc, (uptr)m); int res = REAL(pthread_spin_unlock)(m); return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a); int res = REAL(pthread_rwlock_init)(m, a); if (res == 0) { MutexCreate(thr, pc, (uptr)m, true, false, false); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m); int res = REAL(pthread_rwlock_destroy)(m); if (res == 0) { MutexDestroy(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m); int res = REAL(pthread_rwlock_rdlock)(m); if (res == 0) { MutexReadLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m); int res = REAL(pthread_rwlock_tryrdlock)(m); if (res == 0) { MutexReadLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime); int res = REAL(pthread_rwlock_timedrdlock)(m, abstime); if (res == 0) { MutexReadLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m); int res = REAL(pthread_rwlock_wrlock)(m); if (res == 0) { MutexLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m); int res = REAL(pthread_rwlock_trywrlock)(m); if (res == 0) { MutexLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime); int res = REAL(pthread_rwlock_timedwrlock)(m, abstime); if (res == 0) { MutexLock(thr, pc, (uptr)m); } return res; } TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) { SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m); MutexReadOrWriteUnlock(thr, pc, (uptr)m); int res = REAL(pthread_rwlock_unlock)(m); return res; } TSAN_INTERCEPTOR(int, pthread_cond_destroy, void *c) { SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, c); MemoryWrite(thr, pc, (uptr)c, kSizeLog1); int res = REAL(pthread_cond_destroy)(c); return res; } TSAN_INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) { SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, c, m, abstime); MutexUnlock(thr, pc, (uptr)m); MemoryRead(thr, pc, (uptr)c, kSizeLog1); int res = REAL(pthread_cond_timedwait)(c, m, abstime); MutexLock(thr, pc, (uptr)m); return res; } TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) { SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count); MemoryWrite(thr, pc, (uptr)b, kSizeLog1); int res = REAL(pthread_barrier_init)(b, a, count); return res; } TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) { SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b); MemoryWrite(thr, pc, (uptr)b, kSizeLog1); int res = REAL(pthread_barrier_destroy)(b); return res; } TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) { SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b); Release(thr, pc, (uptr)b); MemoryRead(thr, pc, (uptr)b, kSizeLog1); int res = REAL(pthread_barrier_wait)(b); MemoryRead(thr, pc, (uptr)b, kSizeLog1); if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) { Acquire(thr, pc, (uptr)b); } return res; } TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) { SCOPED_INTERCEPTOR_RAW(pthread_once, o, f); // Using SCOPED_INTERCEPTOR_RAW, because if we are called from an ignored lib, // the user callback must be executed with thr->in_rtl == 0. if (o == 0 || f == 0) return EINVAL; atomic_uint32_t *a = static_cast(o); u32 v = atomic_load(a, memory_order_acquire); if (v == 0 && atomic_compare_exchange_strong(a, &v, 1, memory_order_relaxed)) { const int old_in_rtl = thr->in_rtl; thr->in_rtl = 0; (*f)(); CHECK_EQ(thr->in_rtl, 0); thr->in_rtl = old_in_rtl; if (!thr->in_ignored_lib) Release(thr, pc, (uptr)o); atomic_store(a, 2, memory_order_release); } else { while (v != 2) { pthread_yield(); v = atomic_load(a, memory_order_acquire); } if (!thr->in_ignored_lib) Acquire(thr, pc, (uptr)o); } return 0; } TSAN_INTERCEPTOR(int, sem_init, void *s, int pshared, unsigned value) { SCOPED_TSAN_INTERCEPTOR(sem_init, s, pshared, value); int res = REAL(sem_init)(s, pshared, value); return res; } TSAN_INTERCEPTOR(int, sem_destroy, void *s) { SCOPED_TSAN_INTERCEPTOR(sem_destroy, s); int res = REAL(sem_destroy)(s); return res; } TSAN_INTERCEPTOR(int, sem_wait, void *s) { SCOPED_TSAN_INTERCEPTOR(sem_wait, s); int res = BLOCK_REAL(sem_wait)(s); if (res == 0) { Acquire(thr, pc, (uptr)s); } return res; } TSAN_INTERCEPTOR(int, sem_trywait, void *s) { SCOPED_TSAN_INTERCEPTOR(sem_trywait, s); int res = BLOCK_REAL(sem_trywait)(s); if (res == 0) { Acquire(thr, pc, (uptr)s); } return res; } TSAN_INTERCEPTOR(int, sem_timedwait, void *s, void *abstime) { SCOPED_TSAN_INTERCEPTOR(sem_timedwait, s, abstime); int res = BLOCK_REAL(sem_timedwait)(s, abstime); if (res == 0) { Acquire(thr, pc, (uptr)s); } return res; } TSAN_INTERCEPTOR(int, sem_post, void *s) { SCOPED_TSAN_INTERCEPTOR(sem_post, s); Release(thr, pc, (uptr)s); int res = REAL(sem_post)(s); return res; } TSAN_INTERCEPTOR(int, sem_getvalue, void *s, int *sval) { SCOPED_TSAN_INTERCEPTOR(sem_getvalue, s, sval); int res = REAL(sem_getvalue)(s, sval); if (res == 0) { Acquire(thr, pc, (uptr)s); } return res; } TSAN_INTERCEPTOR(int, __xstat, int version, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__xstat, version, path, buf); return REAL(__xstat)(version, path, buf); } TSAN_INTERCEPTOR(int, stat, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__xstat, 0, path, buf); return REAL(__xstat)(0, path, buf); } TSAN_INTERCEPTOR(int, __xstat64, int version, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__xstat64, version, path, buf); return REAL(__xstat64)(version, path, buf); } TSAN_INTERCEPTOR(int, stat64, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__xstat64, 0, path, buf); return REAL(__xstat64)(0, path, buf); } TSAN_INTERCEPTOR(int, __lxstat, int version, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__lxstat, version, path, buf); return REAL(__lxstat)(version, path, buf); } TSAN_INTERCEPTOR(int, lstat, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__lxstat, 0, path, buf); return REAL(__lxstat)(0, path, buf); } TSAN_INTERCEPTOR(int, __lxstat64, int version, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__lxstat64, version, path, buf); return REAL(__lxstat64)(version, path, buf); } TSAN_INTERCEPTOR(int, lstat64, const char *path, void *buf) { SCOPED_TSAN_INTERCEPTOR(__lxstat64, 0, path, buf); return REAL(__lxstat64)(0, path, buf); } TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) { SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf); if (fd > 0) FdAccess(thr, pc, fd); return REAL(__fxstat)(version, fd, buf); } TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) { SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf); if (fd > 0) FdAccess(thr, pc, fd); return REAL(__fxstat)(0, fd, buf); } TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) { SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf); if (fd > 0) FdAccess(thr, pc, fd); return REAL(__fxstat64)(version, fd, buf); } TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) { SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf); if (fd > 0) FdAccess(thr, pc, fd); return REAL(__fxstat64)(0, fd, buf); } TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) { SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode); int fd = REAL(open)(name, flags, mode); if (fd >= 0) FdFileCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) { SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode); int fd = REAL(open64)(name, flags, mode); if (fd >= 0) FdFileCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, creat, const char *name, int mode) { SCOPED_TSAN_INTERCEPTOR(creat, name, mode); int fd = REAL(creat)(name, mode); if (fd >= 0) FdFileCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) { SCOPED_TSAN_INTERCEPTOR(creat64, name, mode); int fd = REAL(creat64)(name, mode); if (fd >= 0) FdFileCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, dup, int oldfd) { SCOPED_TSAN_INTERCEPTOR(dup, oldfd); int newfd = REAL(dup)(oldfd); if (oldfd >= 0 && newfd >= 0 && newfd != oldfd) FdDup(thr, pc, oldfd, newfd); return newfd; } TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) { SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd); int newfd2 = REAL(dup2)(oldfd, newfd); if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) FdDup(thr, pc, oldfd, newfd2); return newfd2; } TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) { SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags); int newfd2 = REAL(dup3)(oldfd, newfd, flags); if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) FdDup(thr, pc, oldfd, newfd2); return newfd2; } TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) { SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags); int fd = REAL(eventfd)(initval, flags); if (fd >= 0) FdEventCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) { SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags); if (fd >= 0) FdClose(thr, pc, fd); fd = REAL(signalfd)(fd, mask, flags); if (fd >= 0) FdSignalCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, inotify_init, int fake) { SCOPED_TSAN_INTERCEPTOR(inotify_init, fake); int fd = REAL(inotify_init)(fake); if (fd >= 0) FdInotifyCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, inotify_init1, int flags) { SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags); int fd = REAL(inotify_init1)(flags); if (fd >= 0) FdInotifyCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) { SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol); int fd = REAL(socket)(domain, type, protocol); if (fd >= 0) FdSocketCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) { SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd); int res = REAL(socketpair)(domain, type, protocol, fd); if (res == 0 && fd[0] >= 0 && fd[1] >= 0) FdPipeCreate(thr, pc, fd[0], fd[1]); return res; } TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) { SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen); FdSocketConnecting(thr, pc, fd); int res = REAL(connect)(fd, addr, addrlen); if (res == 0 && fd >= 0) FdSocketConnect(thr, pc, fd); return res; } TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) { SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen); int res = REAL(bind)(fd, addr, addrlen); if (fd > 0 && res == 0) FdAccess(thr, pc, fd); return res; } TSAN_INTERCEPTOR(int, listen, int fd, int backlog) { SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog); int res = REAL(listen)(fd, backlog); if (fd > 0 && res == 0) FdAccess(thr, pc, fd); return res; } TSAN_INTERCEPTOR(int, epoll_create, int size) { SCOPED_TSAN_INTERCEPTOR(epoll_create, size); int fd = REAL(epoll_create)(size); if (fd >= 0) FdPollCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, epoll_create1, int flags) { SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags); int fd = REAL(epoll_create1)(flags); if (fd >= 0) FdPollCreate(thr, pc, fd); return fd; } TSAN_INTERCEPTOR(int, close, int fd) { SCOPED_TSAN_INTERCEPTOR(close, fd); if (fd >= 0) FdClose(thr, pc, fd); return REAL(close)(fd); } TSAN_INTERCEPTOR(int, __close, int fd) { SCOPED_TSAN_INTERCEPTOR(__close, fd); if (fd >= 0) FdClose(thr, pc, fd); return REAL(__close)(fd); } // glibc guts TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) { SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr); int fds[64]; int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds)); for (int i = 0; i < cnt; i++) { if (fds[i] > 0) FdClose(thr, pc, fds[i]); } REAL(__res_iclose)(state, free_addr); } TSAN_INTERCEPTOR(int, pipe, int *pipefd) { SCOPED_TSAN_INTERCEPTOR(pipe, pipefd); int res = REAL(pipe)(pipefd); if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) FdPipeCreate(thr, pc, pipefd[0], pipefd[1]); return res; } TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) { SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags); int res = REAL(pipe2)(pipefd, flags); if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) FdPipeCreate(thr, pc, pipefd[0], pipefd[1]); return res; } TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) { SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags); if (fd >= 0) { FdAccess(thr, pc, fd); FdRelease(thr, pc, fd); } int res = REAL(send)(fd, buf, len, flags); return res; } TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) { SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags); if (fd >= 0) { FdAccess(thr, pc, fd); FdRelease(thr, pc, fd); } int res = REAL(sendmsg)(fd, msg, flags); return res; } TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) { SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags); if (fd >= 0) FdAccess(thr, pc, fd); int res = REAL(recv)(fd, buf, len, flags); if (res >= 0 && fd >= 0) { FdAcquire(thr, pc, fd); } return res; } TSAN_INTERCEPTOR(int, unlink, char *path) { SCOPED_TSAN_INTERCEPTOR(unlink, path); Release(thr, pc, File2addr(path)); int res = REAL(unlink)(path); return res; } TSAN_INTERCEPTOR(void*, fopen, char *path, char *mode) { SCOPED_TSAN_INTERCEPTOR(fopen, path, mode); void *res = REAL(fopen)(path, mode); Acquire(thr, pc, File2addr(path)); if (res) { int fd = fileno_unlocked(res); if (fd >= 0) FdFileCreate(thr, pc, fd); } return res; } TSAN_INTERCEPTOR(void*, freopen, char *path, char *mode, void *stream) { SCOPED_TSAN_INTERCEPTOR(freopen, path, mode, stream); if (stream) { int fd = fileno_unlocked(stream); if (fd >= 0) FdClose(thr, pc, fd); } void *res = REAL(freopen)(path, mode, stream); Acquire(thr, pc, File2addr(path)); if (res) { int fd = fileno_unlocked(res); if (fd >= 0) FdFileCreate(thr, pc, fd); } return res; } TSAN_INTERCEPTOR(int, fclose, void *stream) { // libc file streams can call user-supplied functions, see fopencookie. { SCOPED_TSAN_INTERCEPTOR(fclose, stream); if (stream) { int fd = fileno_unlocked(stream); if (fd >= 0) FdClose(thr, pc, fd); } } return REAL(fclose)(stream); } TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) { // libc file streams can call user-supplied functions, see fopencookie. { SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f); MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true); } return REAL(fread)(ptr, size, nmemb, f); } TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) { // libc file streams can call user-supplied functions, see fopencookie. { SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f); MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false); } return REAL(fwrite)(p, size, nmemb, f); } TSAN_INTERCEPTOR(int, fflush, void *stream) { // libc file streams can call user-supplied functions, see fopencookie. { SCOPED_TSAN_INTERCEPTOR(fflush, stream); } return REAL(fflush)(stream); } TSAN_INTERCEPTOR(void, abort, int fake) { SCOPED_TSAN_INTERCEPTOR(abort, fake); REAL(fflush)(0); REAL(abort)(fake); } TSAN_INTERCEPTOR(int, puts, const char *s) { SCOPED_TSAN_INTERCEPTOR(puts, s); MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false); return REAL(puts)(s); } TSAN_INTERCEPTOR(int, rmdir, char *path) { SCOPED_TSAN_INTERCEPTOR(rmdir, path); Release(thr, pc, Dir2addr(path)); int res = REAL(rmdir)(path); return res; } TSAN_INTERCEPTOR(void*, opendir, char *path) { SCOPED_TSAN_INTERCEPTOR(opendir, path); void *res = REAL(opendir)(path); if (res != 0) Acquire(thr, pc, Dir2addr(path)); return res; } TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) { SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev); if (epfd >= 0) FdAccess(thr, pc, epfd); if (epfd >= 0 && fd >= 0) FdAccess(thr, pc, fd); if (op == EPOLL_CTL_ADD && epfd >= 0) FdRelease(thr, pc, epfd); int res = REAL(epoll_ctl)(epfd, op, fd, ev); return res; } TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) { SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout); if (epfd >= 0) FdAccess(thr, pc, epfd); int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout); if (res > 0 && epfd >= 0) FdAcquire(thr, pc, epfd); return res; } void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig, my_siginfo_t *info, void *ctx) { ThreadState *thr = cur_thread(); SignalContext *sctx = SigCtx(thr); // Don't mess with synchronous signals. if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS || // If we are sending signal to ourselves, we must process it now. (sctx && sig == sctx->int_signal_send) || // If we are in blocking function, we can safely process it now // (but check if we are in a recursive interceptor, // i.e. pthread_join()->munmap()). (sctx && sctx->in_blocking_func == 1 && thr->in_rtl == 1)) { int in_rtl = thr->in_rtl; thr->in_rtl = 0; CHECK_EQ(thr->in_signal_handler, false); thr->in_signal_handler = true; if (sigact) sigactions[sig].sa_sigaction(sig, info, ctx); else sigactions[sig].sa_handler(sig); CHECK_EQ(thr->in_signal_handler, true); thr->in_signal_handler = false; thr->in_rtl = in_rtl; return; } if (sctx == 0) return; SignalDesc *signal = &sctx->pending_signals[sig]; if (signal->armed == false) { signal->armed = true; signal->sigaction = sigact; if (info) internal_memcpy(&signal->siginfo, info, sizeof(*info)); if (ctx) internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx)); sctx->pending_signal_count++; } } static void rtl_sighandler(int sig) { rtl_generic_sighandler(false, sig, 0, 0); } static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) { rtl_generic_sighandler(true, sig, info, ctx); } TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) { SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old); if (old) internal_memcpy(old, &sigactions[sig], sizeof(*old)); if (act == 0) return 0; internal_memcpy(&sigactions[sig], act, sizeof(*act)); sigaction_t newact; internal_memcpy(&newact, act, sizeof(newact)); REAL(sigfillset)(&newact.sa_mask); if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) { if (newact.sa_flags & SA_SIGINFO) newact.sa_sigaction = rtl_sigaction; else newact.sa_handler = rtl_sighandler; } int res = REAL(sigaction)(sig, &newact, 0); return res; } TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) { sigaction_t act; act.sa_handler = h; REAL(memset)(&act.sa_mask, -1, sizeof(act.sa_mask)); act.sa_flags = 0; sigaction_t old; int res = sigaction(sig, &act, &old); if (res) return SIG_ERR; return old.sa_handler; } TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) { SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask); return REAL(sigsuspend)(mask); } TSAN_INTERCEPTOR(int, raise, int sig) { SCOPED_TSAN_INTERCEPTOR(raise, sig); SignalContext *sctx = SigCtx(thr); CHECK_NE(sctx, 0); int prev = sctx->int_signal_send; sctx->int_signal_send = sig; int res = REAL(raise)(sig); CHECK_EQ(sctx->int_signal_send, sig); sctx->int_signal_send = prev; return res; } TSAN_INTERCEPTOR(int, kill, int pid, int sig) { SCOPED_TSAN_INTERCEPTOR(kill, pid, sig); SignalContext *sctx = SigCtx(thr); CHECK_NE(sctx, 0); int prev = sctx->int_signal_send; if (pid == (int)internal_getpid()) { sctx->int_signal_send = sig; } int res = REAL(kill)(pid, sig); if (pid == (int)internal_getpid()) { CHECK_EQ(sctx->int_signal_send, sig); sctx->int_signal_send = prev; } return res; } TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) { SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig); SignalContext *sctx = SigCtx(thr); CHECK_NE(sctx, 0); int prev = sctx->int_signal_send; if (tid == pthread_self()) { sctx->int_signal_send = sig; } int res = REAL(pthread_kill)(tid, sig); if (tid == pthread_self()) { CHECK_EQ(sctx->int_signal_send, sig); sctx->int_signal_send = prev; } return res; } TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) { SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz); // It's intercepted merely to process pending signals. return REAL(gettimeofday)(tv, tz); } TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service, void *hints, void *rv) { SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv); // We miss atomic synchronization in getaddrinfo, // and can report false race between malloc and free // inside of getaddrinfo. So ignore memory accesses. ThreadIgnoreBegin(thr, pc); // getaddrinfo calls fopen, which can be intercepted by user. thr->in_rtl--; CHECK_EQ(thr->in_rtl, 0); int res = REAL(getaddrinfo)(node, service, hints, rv); thr->in_rtl++; ThreadIgnoreEnd(thr, pc); return res; } // Linux kernel has a bug that leads to kernel deadlock if a process // maps TBs of memory and then calls mlock(). static void MlockIsUnsupported() { static atomic_uint8_t printed; if (atomic_exchange(&printed, 1, memory_order_relaxed)) return; if (flags()->verbosity > 0) Printf("INFO: ThreadSanitizer ignores mlock/mlockall/munlock/munlockall\n"); } TSAN_INTERCEPTOR(int, mlock, const void *addr, uptr len) { MlockIsUnsupported(); return 0; } TSAN_INTERCEPTOR(int, munlock, const void *addr, uptr len) { MlockIsUnsupported(); return 0; } TSAN_INTERCEPTOR(int, mlockall, int flags) { MlockIsUnsupported(); return 0; } TSAN_INTERCEPTOR(int, munlockall, void) { MlockIsUnsupported(); return 0; } TSAN_INTERCEPTOR(int, fork, int fake) { SCOPED_INTERCEPTOR_RAW(fork, fake); int pid = REAL(fork)(fake); if (pid == 0) { // child FdOnFork(thr, pc); } else if (pid > 0) { // parent } return pid; } static int OnExit(ThreadState *thr) { int status = Finalize(thr); REAL(fflush)(0); return status; } struct TsanInterceptorContext { ThreadState *thr; const uptr caller_pc; const uptr pc; }; static void HandleRecvmsg(ThreadState *thr, uptr pc, __sanitizer_msghdr *msg) { int fds[64]; int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds)); for (int i = 0; i < cnt; i++) FdEventCreate(thr, pc, fds[i]); } #include "sanitizer_common/sanitizer_platform_interceptors.h" // Causes interceptor recursion (getpwuid_r() calls fopen()) #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS // Causes interceptor recursion (getaddrinfo() and fopen()) #undef SANITIZER_INTERCEPT_GETADDRINFO #undef SANITIZER_INTERCEPT_GETNAMEINFO // Causes interceptor recursion (glob64() calls lstat64()) #undef SANITIZER_INTERCEPT_GLOB #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name) #define COMMON_INTERCEPTOR_UNPOISON_PARAM(ctx, count) \ do { \ } while (false) #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \ MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \ ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \ true) #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \ MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \ ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \ false) #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \ SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \ TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \ ctx = (void *)&_ctx; \ (void) ctx; #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \ FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd) #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \ FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd) #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \ FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd) #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \ FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd) #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \ ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name) #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \ CTX()->thread_registry->SetThreadNameByUserId(thread, name) #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name) #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \ OnExit(((TsanInterceptorContext *) ctx)->thr) #define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \ MutexLock(((TsanInterceptorContext *)ctx)->thr, \ ((TsanInterceptorContext *)ctx)->pc, (uptr)m) #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \ MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \ ((TsanInterceptorContext *)ctx)->pc, (uptr)m) #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \ MutexRepair(((TsanInterceptorContext *)ctx)->thr, \ ((TsanInterceptorContext *)ctx)->pc, (uptr)m) #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \ HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \ ((TsanInterceptorContext *)ctx)->pc, msg) #include "sanitizer_common/sanitizer_common_interceptors.inc" #define TSAN_SYSCALL() \ ThreadState *thr = cur_thread(); \ ScopedSyscall scoped_syscall(thr) \ /**/ struct ScopedSyscall { ThreadState *thr; explicit ScopedSyscall(ThreadState *thr) : thr(thr) { if (thr->in_rtl == 0) Initialize(thr); thr->in_rtl++; } ~ScopedSyscall() { thr->in_rtl--; if (thr->in_rtl == 0) ProcessPendingSignals(thr); } }; static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) { TSAN_SYSCALL(); MemoryAccessRange(thr, pc, p, s, write); } static void syscall_acquire(uptr pc, uptr addr) { TSAN_SYSCALL(); Acquire(thr, pc, addr); Printf("syscall_acquire(%p)\n", addr); } static void syscall_release(uptr pc, uptr addr) { TSAN_SYSCALL(); Printf("syscall_release(%p)\n", addr); Release(thr, pc, addr); } static void syscall_fd_close(uptr pc, int fd) { TSAN_SYSCALL(); FdClose(thr, pc, fd); } static USED void syscall_fd_acquire(uptr pc, int fd) { TSAN_SYSCALL(); FdAcquire(thr, pc, fd); Printf("syscall_fd_acquire(%p)\n", fd); } static USED void syscall_fd_release(uptr pc, int fd) { TSAN_SYSCALL(); Printf("syscall_fd_release(%p)\n", fd); FdRelease(thr, pc, fd); } static void syscall_pre_fork(uptr pc) { TSAN_SYSCALL(); } static void syscall_post_fork(uptr pc, int res) { TSAN_SYSCALL(); if (res == 0) { // child FdOnFork(thr, pc); } else if (res > 0) { // parent } } #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \ syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false) #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \ syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true) #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \ do { \ (void)(p); \ (void)(s); \ } while (false) #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \ do { \ (void)(p); \ (void)(s); \ } while (false) #define COMMON_SYSCALL_ACQUIRE(addr) \ syscall_acquire(GET_CALLER_PC(), (uptr)(addr)) #define COMMON_SYSCALL_RELEASE(addr) \ syscall_release(GET_CALLER_PC(), (uptr)(addr)) #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd) #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd) #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd) #define COMMON_SYSCALL_PRE_FORK() \ syscall_pre_fork(GET_CALLER_PC()) #define COMMON_SYSCALL_POST_FORK(res) \ syscall_post_fork(GET_CALLER_PC(), res) #include "sanitizer_common/sanitizer_common_syscalls.inc" namespace __tsan { static void finalize(void *arg) { ThreadState *thr = cur_thread(); uptr pc = 0; atexit_ctx->exit(thr, pc); int status = Finalize(thr); REAL(fflush)(0); if (status) REAL(_exit)(status); } void ProcessPendingSignals(ThreadState *thr) { CHECK_EQ(thr->in_rtl, 0); SignalContext *sctx = SigCtx(thr); if (sctx == 0 || sctx->pending_signal_count == 0 || thr->in_signal_handler) return; Context *ctx = CTX(); thr->in_signal_handler = true; sctx->pending_signal_count = 0; // These are too big for stack. static THREADLOCAL __sanitizer_sigset_t emptyset, oldset; REAL(sigfillset)(&emptyset); pthread_sigmask(SIG_SETMASK, &emptyset, &oldset); for (int sig = 0; sig < kSigCount; sig++) { SignalDesc *signal = &sctx->pending_signals[sig]; if (signal->armed) { signal->armed = false; if (sigactions[sig].sa_handler != SIG_DFL && sigactions[sig].sa_handler != SIG_IGN) { // Insure that the handler does not spoil errno. const int saved_errno = errno; errno = 0; if (signal->sigaction) sigactions[sig].sa_sigaction(sig, &signal->siginfo, &signal->ctx); else sigactions[sig].sa_handler(sig); if (flags()->report_bugs && errno != 0) { ScopedInRtl in_rtl; __tsan::StackTrace stack; uptr pc = signal->sigaction ? (uptr)sigactions[sig].sa_sigaction : (uptr)sigactions[sig].sa_handler; pc += 1; // return address is expected, OutputReport() will undo this stack.Init(&pc, 1); ThreadRegistryLock l(ctx->thread_registry); ScopedReport rep(ReportTypeErrnoInSignal); if (!IsFiredSuppression(ctx, rep, stack)) { rep.AddStack(&stack); OutputReport(ctx, rep, rep.GetReport()->stacks[0]); } } errno = saved_errno; } } } pthread_sigmask(SIG_SETMASK, &oldset, 0); CHECK_EQ(thr->in_signal_handler, true); thr->in_signal_handler = false; } static void unreachable() { Printf("FATAL: ThreadSanitizer: unreachable called\n"); Die(); } void InitializeInterceptors() { CHECK_GT(cur_thread()->in_rtl, 0); // We need to setup it early, because functions like dlsym() can call it. REAL(memset) = internal_memset; REAL(memcpy) = internal_memcpy; REAL(memcmp) = internal_memcmp; // Instruct libc malloc to consume less memory. mallopt(1, 0); // M_MXFAST mallopt(-3, 32*1024); // M_MMAP_THRESHOLD SANITIZER_COMMON_INTERCEPTORS_INIT; // We can not use TSAN_INTERCEPT to get setjmp addr, // because it does &setjmp and setjmp is not present in some versions of libc. using __interception::GetRealFunctionAddress; GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0); GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0); GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0); GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0); TSAN_INTERCEPT(longjmp); TSAN_INTERCEPT(siglongjmp); TSAN_INTERCEPT(malloc); TSAN_INTERCEPT(__libc_memalign); TSAN_INTERCEPT(calloc); TSAN_INTERCEPT(realloc); TSAN_INTERCEPT(free); TSAN_INTERCEPT(cfree); TSAN_INTERCEPT(mmap); TSAN_INTERCEPT(mmap64); TSAN_INTERCEPT(munmap); TSAN_INTERCEPT(memalign); TSAN_INTERCEPT(valloc); TSAN_INTERCEPT(pvalloc); TSAN_INTERCEPT(posix_memalign); TSAN_INTERCEPT(strlen); TSAN_INTERCEPT(memset); TSAN_INTERCEPT(memcpy); TSAN_INTERCEPT(memchr); TSAN_INTERCEPT(memrchr); TSAN_INTERCEPT(memmove); TSAN_INTERCEPT(memcmp); TSAN_INTERCEPT(strchr); TSAN_INTERCEPT(strchrnul); TSAN_INTERCEPT(strrchr); TSAN_INTERCEPT(strcpy); // NOLINT TSAN_INTERCEPT(strncpy); TSAN_INTERCEPT(strstr); TSAN_INTERCEPT(strdup); TSAN_INTERCEPT(pthread_create); TSAN_INTERCEPT(pthread_join); TSAN_INTERCEPT(pthread_detach); TSAN_INTERCEPT(pthread_mutex_init); TSAN_INTERCEPT(pthread_mutex_destroy); TSAN_INTERCEPT(pthread_mutex_trylock); TSAN_INTERCEPT(pthread_mutex_timedlock); TSAN_INTERCEPT(pthread_spin_init); TSAN_INTERCEPT(pthread_spin_destroy); TSAN_INTERCEPT(pthread_spin_lock); TSAN_INTERCEPT(pthread_spin_trylock); TSAN_INTERCEPT(pthread_spin_unlock); TSAN_INTERCEPT(pthread_rwlock_init); TSAN_INTERCEPT(pthread_rwlock_destroy); TSAN_INTERCEPT(pthread_rwlock_rdlock); TSAN_INTERCEPT(pthread_rwlock_tryrdlock); TSAN_INTERCEPT(pthread_rwlock_timedrdlock); TSAN_INTERCEPT(pthread_rwlock_wrlock); TSAN_INTERCEPT(pthread_rwlock_trywrlock); TSAN_INTERCEPT(pthread_rwlock_timedwrlock); TSAN_INTERCEPT(pthread_rwlock_unlock); INTERCEPT_FUNCTION_VER(pthread_cond_destroy, "GLIBC_2.3.2"); INTERCEPT_FUNCTION_VER(pthread_cond_timedwait, "GLIBC_2.3.2"); TSAN_INTERCEPT(pthread_barrier_init); TSAN_INTERCEPT(pthread_barrier_destroy); TSAN_INTERCEPT(pthread_barrier_wait); TSAN_INTERCEPT(pthread_once); TSAN_INTERCEPT(sem_init); TSAN_INTERCEPT(sem_destroy); TSAN_INTERCEPT(sem_wait); TSAN_INTERCEPT(sem_trywait); TSAN_INTERCEPT(sem_timedwait); TSAN_INTERCEPT(sem_post); TSAN_INTERCEPT(sem_getvalue); TSAN_INTERCEPT(stat); TSAN_INTERCEPT(__xstat); TSAN_INTERCEPT(stat64); TSAN_INTERCEPT(__xstat64); TSAN_INTERCEPT(lstat); TSAN_INTERCEPT(__lxstat); TSAN_INTERCEPT(lstat64); TSAN_INTERCEPT(__lxstat64); TSAN_INTERCEPT(fstat); TSAN_INTERCEPT(__fxstat); TSAN_INTERCEPT(fstat64); TSAN_INTERCEPT(__fxstat64); TSAN_INTERCEPT(open); TSAN_INTERCEPT(open64); TSAN_INTERCEPT(creat); TSAN_INTERCEPT(creat64); TSAN_INTERCEPT(dup); TSAN_INTERCEPT(dup2); TSAN_INTERCEPT(dup3); TSAN_INTERCEPT(eventfd); TSAN_INTERCEPT(signalfd); TSAN_INTERCEPT(inotify_init); TSAN_INTERCEPT(inotify_init1); TSAN_INTERCEPT(socket); TSAN_INTERCEPT(socketpair); TSAN_INTERCEPT(connect); TSAN_INTERCEPT(bind); TSAN_INTERCEPT(listen); TSAN_INTERCEPT(epoll_create); TSAN_INTERCEPT(epoll_create1); TSAN_INTERCEPT(close); TSAN_INTERCEPT(__close); TSAN_INTERCEPT(__res_iclose); TSAN_INTERCEPT(pipe); TSAN_INTERCEPT(pipe2); TSAN_INTERCEPT(send); TSAN_INTERCEPT(sendmsg); TSAN_INTERCEPT(recv); TSAN_INTERCEPT(unlink); TSAN_INTERCEPT(fopen); TSAN_INTERCEPT(freopen); TSAN_INTERCEPT(fclose); TSAN_INTERCEPT(fread); TSAN_INTERCEPT(fwrite); TSAN_INTERCEPT(fflush); TSAN_INTERCEPT(abort); TSAN_INTERCEPT(puts); TSAN_INTERCEPT(rmdir); TSAN_INTERCEPT(opendir); TSAN_INTERCEPT(epoll_ctl); TSAN_INTERCEPT(epoll_wait); TSAN_INTERCEPT(sigaction); TSAN_INTERCEPT(signal); TSAN_INTERCEPT(sigsuspend); TSAN_INTERCEPT(raise); TSAN_INTERCEPT(kill); TSAN_INTERCEPT(pthread_kill); TSAN_INTERCEPT(sleep); TSAN_INTERCEPT(usleep); TSAN_INTERCEPT(nanosleep); TSAN_INTERCEPT(gettimeofday); TSAN_INTERCEPT(getaddrinfo); TSAN_INTERCEPT(mlock); TSAN_INTERCEPT(munlock); TSAN_INTERCEPT(mlockall); TSAN_INTERCEPT(munlockall); TSAN_INTERCEPT(fork); TSAN_INTERCEPT(dlopen); TSAN_INTERCEPT(dlclose); TSAN_INTERCEPT(on_exit); TSAN_INTERCEPT(__cxa_atexit); TSAN_INTERCEPT(_exit); // Need to setup it, because interceptors check that the function is resolved. // But atexit is emitted directly into the module, so can't be resolved. REAL(atexit) = (int(*)(void(*)()))unreachable; atexit_ctx = new(internal_alloc(MBlockAtExit, sizeof(AtExitContext))) AtExitContext(); if (REAL(__cxa_atexit)(&finalize, 0, 0)) { Printf("ThreadSanitizer: failed to setup atexit callback\n"); Die(); } if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) { Printf("ThreadSanitizer: failed to create thread key\n"); Die(); } FdInit(); } void internal_start_thread(void(*func)(void *arg), void *arg) { // Start the thread with signals blocked, otherwise it can steal users // signals. __sanitizer_kernel_sigset_t set, old; internal_sigfillset(&set); internal_sigprocmask(SIG_SETMASK, &set, &old); void *th; REAL(pthread_create)(&th, 0, (void*(*)(void *arg))func, arg); REAL(pthread_detach)(th); internal_sigprocmask(SIG_SETMASK, &old, 0); } } // namespace __tsan