//===-- tsan_clock.cc -----------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // //===----------------------------------------------------------------------===// #include "tsan_clock.h" #include "tsan_rtl.h" // It's possible to optimize clock operations for some important cases // so that they are O(1). The cases include singletons, once's, local mutexes. // First, SyncClock must be re-implemented to allow indexing by tid. // It must not necessarily be a full vector clock, though. For example it may // be a multi-level table. // Then, each slot in SyncClock must contain a dirty bit (it's united with // the clock value, so no space increase). The acquire algorithm looks // as follows: // void acquire(thr, tid, thr_clock, sync_clock) { // if (!sync_clock[tid].dirty) // return; // No new info to acquire. // // This handles constant reads of singleton pointers and // // stop-flags. // acquire_impl(thr_clock, sync_clock); // As usual, O(N). // sync_clock[tid].dirty = false; // sync_clock.dirty_count--; // } // The release operation looks as follows: // void release(thr, tid, thr_clock, sync_clock) { // // thr->sync_cache is a simple fixed-size hash-based cache that holds // // several previous sync_clock's. // if (thr->sync_cache[sync_clock] >= thr->last_acquire_epoch) { // // The thread did no acquire operations since last release on this clock. // // So update only the thread's slot (other slots can't possibly change). // sync_clock[tid].clock = thr->epoch; // if (sync_clock.dirty_count == sync_clock.cnt // || (sync_clock.dirty_count == sync_clock.cnt - 1 // && sync_clock[tid].dirty == false)) // // All dirty flags are set, bail out. // return; // set all dirty bits, but preserve the thread's bit. // O(N) // update sync_clock.dirty_count; // return; // } // release_impl(thr_clock, sync_clock); // As usual, O(N). // set all dirty bits, but preserve the thread's bit. // // The previous step is combined with release_impl(), so that // // we scan the arrays only once. // update sync_clock.dirty_count; // } namespace __tsan { ThreadClock::ThreadClock() { nclk_ = 0; for (uptr i = 0; i < (uptr)kMaxTidInClock; i++) clk_[i] = 0; } void ThreadClock::acquire(const SyncClock *src) { DCHECK(nclk_ <= kMaxTid); DCHECK(src->clk_.Size() <= kMaxTid); const uptr nclk = src->clk_.Size(); if (nclk == 0) return; nclk_ = max(nclk_, nclk); for (uptr i = 0; i < nclk; i++) { if (clk_[i] < src->clk_[i]) clk_[i] = src->clk_[i]; } } void ThreadClock::release(SyncClock *dst) const { DCHECK(nclk_ <= kMaxTid); DCHECK(dst->clk_.Size() <= kMaxTid); if (dst->clk_.Size() < nclk_) dst->clk_.Resize(nclk_); for (uptr i = 0; i < nclk_; i++) { if (dst->clk_[i] < clk_[i]) dst->clk_[i] = clk_[i]; } } void ThreadClock::ReleaseStore(SyncClock *dst) const { DCHECK(nclk_ <= kMaxTid); DCHECK(dst->clk_.Size() <= kMaxTid); if (dst->clk_.Size() < nclk_) dst->clk_.Resize(nclk_); for (uptr i = 0; i < nclk_; i++) dst->clk_[i] = clk_[i]; for (uptr i = nclk_; i < dst->clk_.Size(); i++) dst->clk_[i] = 0; } void ThreadClock::acq_rel(SyncClock *dst) { acquire(dst); release(dst); } SyncClock::SyncClock() : clk_(MBlockClock) { } } // namespace __tsan