//===-- sanitizer_common.h --------------------------------------*- C++ -*-===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries. // It declares common functions and classes that are used in both runtimes. // Implementation of some functions are provided in sanitizer_common, while // others must be defined by run-time library itself. //===----------------------------------------------------------------------===// #ifndef SANITIZER_COMMON_H #define SANITIZER_COMMON_H #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_mutex.h" namespace __sanitizer { struct StackTrace; // Constants. const uptr kWordSize = SANITIZER_WORDSIZE / 8; const uptr kWordSizeInBits = 8 * kWordSize; #if defined(__powerpc__) || defined(__powerpc64__) const uptr kCacheLineSize = 128; #else const uptr kCacheLineSize = 64; #endif const uptr kMaxPathLength = 512; extern const char *SanitizerToolName; // Can be changed by the tool. uptr GetPageSize(); uptr GetPageSizeCached(); uptr GetMmapGranularity(); uptr GetMaxVirtualAddress(); // Threads uptr GetTid(); uptr GetThreadSelf(); void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom); void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size); // Memory management void *MmapOrDie(uptr size, const char *mem_type); void UnmapOrDie(void *addr, uptr size); void *MmapFixedNoReserve(uptr fixed_addr, uptr size); void *MmapFixedOrDie(uptr fixed_addr, uptr size); void *Mprotect(uptr fixed_addr, uptr size); // Map aligned chunk of address space; size and alignment are powers of two. void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type); // Used to check if we can map shadow memory to a fixed location. bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); void FlushUnneededShadowMemory(uptr addr, uptr size); // InternalScopedBuffer can be used instead of large stack arrays to // keep frame size low. // FIXME: use InternalAlloc instead of MmapOrDie once // InternalAlloc is made libc-free. template class InternalScopedBuffer { public: explicit InternalScopedBuffer(uptr cnt) { cnt_ = cnt; ptr_ = (T*)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer"); } ~InternalScopedBuffer() { UnmapOrDie(ptr_, cnt_ * sizeof(T)); } T &operator[](uptr i) { return ptr_[i]; } T *data() { return ptr_; } uptr size() { return cnt_ * sizeof(T); } private: T *ptr_; uptr cnt_; // Disallow evil constructors. InternalScopedBuffer(const InternalScopedBuffer&); void operator=(const InternalScopedBuffer&); }; class InternalScopedString : public InternalScopedBuffer { public: explicit InternalScopedString(uptr max_length) : InternalScopedBuffer(max_length), length_(0) { (*this)[0] = '\0'; } uptr length() { return length_; } void clear() { (*this)[0] = '\0'; length_ = 0; } void append(const char *format, ...); private: uptr length_; }; // Simple low-level (mmap-based) allocator for internal use. Doesn't have // constructor, so all instances of LowLevelAllocator should be // linker initialized. class LowLevelAllocator { public: // Requires an external lock. void *Allocate(uptr size); private: char *allocated_end_; char *allocated_current_; }; typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); // Allows to register tool-specific callbacks for LowLevelAllocator. // Passing NULL removes the callback. void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); // IO void RawWrite(const char *buffer); bool PrintsToTty(); // Caching version of PrintsToTty(). Not thread-safe. bool PrintsToTtyCached(); void Printf(const char *format, ...); void Report(const char *format, ...); void SetPrintfAndReportCallback(void (*callback)(const char *)); // Can be used to prevent mixing error reports from different sanitizers. extern StaticSpinMutex CommonSanitizerReportMutex; void MaybeOpenReportFile(); extern fd_t report_fd; extern bool log_to_file; extern char report_path_prefix[4096]; extern uptr report_fd_pid; extern uptr stoptheworld_tracer_pid; extern uptr stoptheworld_tracer_ppid; uptr OpenFile(const char *filename, bool write); // Opens the file 'file_name" and reads up to 'max_len' bytes. // The resulting buffer is mmaped and stored in '*buff'. // The size of the mmaped region is stored in '*buff_size', // Returns the number of read bytes or 0 if file can not be opened. uptr ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, uptr max_len); // Maps given file to virtual memory, and returns pointer to it // (or NULL if the mapping failes). Stores the size of mmaped region // in '*buff_size'. void *MapFileToMemory(const char *file_name, uptr *buff_size); // Error report formatting. const char *StripPathPrefix(const char *filepath, const char *strip_file_prefix); void PrintSourceLocation(InternalScopedString *buffer, const char *file, int line, int column); void PrintModuleAndOffset(InternalScopedString *buffer, const char *module, uptr offset); // OS void DisableCoreDumper(); void DumpProcessMap(); bool FileExists(const char *filename); const char *GetEnv(const char *name); bool SetEnv(const char *name, const char *value); const char *GetPwd(); char *FindPathToBinary(const char *name); u32 GetUid(); void ReExec(); bool StackSizeIsUnlimited(); void SetStackSizeLimitInBytes(uptr limit); void PrepareForSandboxing(); void InitTlsSize(); uptr GetTlsSize(); // Other void SleepForSeconds(int seconds); void SleepForMillis(int millis); u64 NanoTime(); int Atexit(void (*function)(void)); void SortArray(uptr *array, uptr size); // Strip the directories from the module name, return a new string allocated // with internal_strdup. char *StripModuleName(const char *module); // Exit void NORETURN Abort(); void NORETURN Die(); void NORETURN CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); // Set the name of the current thread to 'name', return true on succees. // The name may be truncated to a system-dependent limit. bool SanitizerSetThreadName(const char *name); // Get the name of the current thread (no more than max_len bytes), // return true on succees. name should have space for at least max_len+1 bytes. bool SanitizerGetThreadName(char *name, int max_len); // Specific tools may override behavior of "Die" and "CheckFailed" functions // to do tool-specific job. typedef void (*DieCallbackType)(void); void SetDieCallback(DieCallbackType); DieCallbackType GetDieCallback(); typedef void (*CheckFailedCallbackType)(const char *, int, const char *, u64, u64); void SetCheckFailedCallback(CheckFailedCallbackType callback); // We don't want a summary too long. const int kMaxSummaryLength = 1024; // Construct a one-line string: // SUMMARY: SanitizerToolName: error_message // and pass it to __sanitizer_report_error_summary. void ReportErrorSummary(const char *error_message); // Same as above, but construct error_message as: // error_type: file:line function void ReportErrorSummary(const char *error_type, const char *file, int line, const char *function); void ReportErrorSummary(const char *error_type, StackTrace *trace); // Math #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) extern "C" { unsigned char _BitScanForward(unsigned long *index, unsigned long mask); // NOLINT unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); // NOLINT #if defined(_WIN64) unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); // NOLINT unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); // NOLINT #endif } #endif INLINE uptr MostSignificantSetBitIndex(uptr x) { CHECK_NE(x, 0U); unsigned long up; // NOLINT #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); #elif defined(_WIN64) _BitScanReverse64(&up, x); #else _BitScanReverse(&up, x); #endif return up; } INLINE bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } INLINE uptr RoundUpToPowerOfTwo(uptr size) { CHECK(size); if (IsPowerOfTwo(size)) return size; uptr up = MostSignificantSetBitIndex(size); CHECK(size < (1ULL << (up + 1))); CHECK(size > (1ULL << up)); return 1UL << (up + 1); } INLINE uptr RoundUpTo(uptr size, uptr boundary) { CHECK(IsPowerOfTwo(boundary)); return (size + boundary - 1) & ~(boundary - 1); } INLINE uptr RoundDownTo(uptr x, uptr boundary) { return x & ~(boundary - 1); } INLINE bool IsAligned(uptr a, uptr alignment) { return (a & (alignment - 1)) == 0; } INLINE uptr Log2(uptr x) { CHECK(IsPowerOfTwo(x)); #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) return __builtin_ctzl(x); #elif defined(_WIN64) unsigned long ret; // NOLINT _BitScanForward64(&ret, x); return ret; #else unsigned long ret; // NOLINT _BitScanForward(&ret, x); return ret; #endif } // Don't use std::min, std::max or std::swap, to minimize dependency // on libstdc++. template T Min(T a, T b) { return a < b ? a : b; } template T Max(T a, T b) { return a > b ? a : b; } template void Swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } // Char handling INLINE bool IsSpace(int c) { return (c == ' ') || (c == '\n') || (c == '\t') || (c == '\f') || (c == '\r') || (c == '\v'); } INLINE bool IsDigit(int c) { return (c >= '0') && (c <= '9'); } INLINE int ToLower(int c) { return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; } #if SANITIZER_WORDSIZE == 64 # define FIRST_32_SECOND_64(a, b) (b) #else # define FIRST_32_SECOND_64(a, b) (a) #endif // A low-level vector based on mmap. May incur a significant memory overhead for // small vectors. // WARNING: The current implementation supports only POD types. template class InternalMmapVector { public: explicit InternalMmapVector(uptr initial_capacity) { capacity_ = Max(initial_capacity, (uptr)1); size_ = 0; data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVector"); } ~InternalMmapVector() { UnmapOrDie(data_, capacity_ * sizeof(T)); } T &operator[](uptr i) { CHECK_LT(i, size_); return data_[i]; } const T &operator[](uptr i) const { CHECK_LT(i, size_); return data_[i]; } void push_back(const T &element) { CHECK_LE(size_, capacity_); if (size_ == capacity_) { uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); Resize(new_capacity); } data_[size_++] = element; } T &back() { CHECK_GT(size_, 0); return data_[size_ - 1]; } void pop_back() { CHECK_GT(size_, 0); size_--; } uptr size() const { return size_; } const T *data() const { return data_; } uptr capacity() const { return capacity_; } void clear() { size_ = 0; } private: void Resize(uptr new_capacity) { CHECK_GT(new_capacity, 0); CHECK_LE(size_, new_capacity); T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T), "InternalMmapVector"); internal_memcpy(new_data, data_, size_ * sizeof(T)); T *old_data = data_; data_ = new_data; UnmapOrDie(old_data, capacity_ * sizeof(T)); capacity_ = new_capacity; } // Disallow evil constructors. InternalMmapVector(const InternalMmapVector&); void operator=(const InternalMmapVector&); T *data_; uptr capacity_; uptr size_; }; // HeapSort for arrays and InternalMmapVector. template void InternalSort(Container *v, uptr size, Compare comp) { if (size < 2) return; // Stage 1: insert elements to the heap. for (uptr i = 1; i < size; i++) { uptr j, p; for (j = i; j > 0; j = p) { p = (j - 1) / 2; if (comp((*v)[p], (*v)[j])) Swap((*v)[j], (*v)[p]); else break; } } // Stage 2: swap largest element with the last one, // and sink the new top. for (uptr i = size - 1; i > 0; i--) { Swap((*v)[0], (*v)[i]); uptr j, max_ind; for (j = 0; j < i; j = max_ind) { uptr left = 2 * j + 1; uptr right = 2 * j + 2; max_ind = j; if (left < i && comp((*v)[max_ind], (*v)[left])) max_ind = left; if (right < i && comp((*v)[max_ind], (*v)[right])) max_ind = right; if (max_ind != j) Swap((*v)[j], (*v)[max_ind]); else break; } } } template uptr InternalBinarySearch(const Container &v, uptr first, uptr last, const Value &val, Compare comp) { uptr not_found = last + 1; while (last >= first) { uptr mid = (first + last) / 2; if (comp(v[mid], val)) first = mid + 1; else if (comp(val, v[mid])) last = mid - 1; else return mid; } return not_found; } // Represents a binary loaded into virtual memory (e.g. this can be an // executable or a shared object). class LoadedModule { public: LoadedModule(const char *module_name, uptr base_address); void addAddressRange(uptr beg, uptr end); bool containsAddress(uptr address) const; const char *full_name() const { return full_name_; } uptr base_address() const { return base_address_; } private: struct AddressRange { uptr beg; uptr end; }; char *full_name_; uptr base_address_; static const uptr kMaxNumberOfAddressRanges = 6; AddressRange ranges_[kMaxNumberOfAddressRanges]; uptr n_ranges_; }; // OS-dependent function that fills array with descriptions of at most // "max_modules" currently loaded modules. Returns the number of // initialized modules. If filter is nonzero, ignores modules for which // filter(full_name) is false. typedef bool (*string_predicate_t)(const char *); uptr GetListOfModules(LoadedModule *modules, uptr max_modules, string_predicate_t filter); #if SANITIZER_POSIX const uptr kPthreadDestructorIterations = 4; #else // Unused on Windows. const uptr kPthreadDestructorIterations = 0; #endif // Callback type for iterating over a set of memory ranges. typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); } // namespace __sanitizer inline void *operator new(__sanitizer::operator_new_size_type size, __sanitizer::LowLevelAllocator &alloc) { return alloc.Allocate(size); } #endif // SANITIZER_COMMON_H