//===-- asan_report.cc ----------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // This file contains error reporting code. //===----------------------------------------------------------------------===// #include "asan_flags.h" #include "asan_internal.h" #include "asan_mapping.h" #include "asan_report.h" #include "asan_stack.h" #include "asan_thread.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_report_decorator.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_symbolizer.h" namespace __asan { // -------------------- User-specified callbacks ----------------- {{{1 static void (*error_report_callback)(const char*); static char *error_message_buffer = 0; static uptr error_message_buffer_pos = 0; static uptr error_message_buffer_size = 0; void AppendToErrorMessageBuffer(const char *buffer) { if (error_message_buffer) { uptr length = internal_strlen(buffer); CHECK_GE(error_message_buffer_size, error_message_buffer_pos); uptr remaining = error_message_buffer_size - error_message_buffer_pos; internal_strncpy(error_message_buffer + error_message_buffer_pos, buffer, remaining); error_message_buffer[error_message_buffer_size - 1] = '\0'; // FIXME: reallocate the buffer instead of truncating the message. error_message_buffer_pos += remaining > length ? length : remaining; } } // ---------------------- Decorator ------------------------------ {{{1 class Decorator: private __sanitizer::AnsiColorDecorator { public: Decorator() : __sanitizer::AnsiColorDecorator(PrintsToTtyCached()) { } const char *Warning() { return Red(); } const char *EndWarning() { return Default(); } const char *Access() { return Blue(); } const char *EndAccess() { return Default(); } const char *Location() { return Green(); } const char *EndLocation() { return Default(); } const char *Allocation() { return Magenta(); } const char *EndAllocation() { return Default(); } const char *ShadowByte(u8 byte) { switch (byte) { case kAsanHeapLeftRedzoneMagic: case kAsanHeapRightRedzoneMagic: return Red(); case kAsanHeapFreeMagic: return Magenta(); case kAsanStackLeftRedzoneMagic: case kAsanStackMidRedzoneMagic: case kAsanStackRightRedzoneMagic: case kAsanStackPartialRedzoneMagic: return Red(); case kAsanStackAfterReturnMagic: return Magenta(); case kAsanInitializationOrderMagic: return Cyan(); case kAsanUserPoisonedMemoryMagic: case kAsanContiguousContainerOOBMagic: return Blue(); case kAsanStackUseAfterScopeMagic: return Magenta(); case kAsanGlobalRedzoneMagic: return Red(); case kAsanInternalHeapMagic: return Yellow(); default: return Default(); } } const char *EndShadowByte() { return Default(); } }; // ---------------------- Helper functions ----------------------- {{{1 static void PrintShadowByte(const char *before, u8 byte, const char *after = "\n") { Decorator d; Printf("%s%s%x%x%s%s", before, d.ShadowByte(byte), byte >> 4, byte & 15, d.EndShadowByte(), after); } static void PrintShadowBytes(const char *before, u8 *bytes, u8 *guilty, uptr n) { Decorator d; if (before) Printf("%s%p:", before, bytes); for (uptr i = 0; i < n; i++) { u8 *p = bytes + i; const char *before = p == guilty ? "[" : (p - 1 == guilty && i != 0) ? "" : " "; const char *after = p == guilty ? "]" : ""; PrintShadowByte(before, *p, after); } Printf("\n"); } static void PrintLegend() { Printf("Shadow byte legend (one shadow byte represents %d " "application bytes):\n", (int)SHADOW_GRANULARITY); PrintShadowByte(" Addressable: ", 0); Printf(" Partially addressable: "); for (u8 i = 1; i < SHADOW_GRANULARITY; i++) PrintShadowByte("", i, " "); Printf("\n"); PrintShadowByte(" Heap left redzone: ", kAsanHeapLeftRedzoneMagic); PrintShadowByte(" Heap right redzone: ", kAsanHeapRightRedzoneMagic); PrintShadowByte(" Freed heap region: ", kAsanHeapFreeMagic); PrintShadowByte(" Stack left redzone: ", kAsanStackLeftRedzoneMagic); PrintShadowByte(" Stack mid redzone: ", kAsanStackMidRedzoneMagic); PrintShadowByte(" Stack right redzone: ", kAsanStackRightRedzoneMagic); PrintShadowByte(" Stack partial redzone: ", kAsanStackPartialRedzoneMagic); PrintShadowByte(" Stack after return: ", kAsanStackAfterReturnMagic); PrintShadowByte(" Stack use after scope: ", kAsanStackUseAfterScopeMagic); PrintShadowByte(" Global redzone: ", kAsanGlobalRedzoneMagic); PrintShadowByte(" Global init order: ", kAsanInitializationOrderMagic); PrintShadowByte(" Poisoned by user: ", kAsanUserPoisonedMemoryMagic); PrintShadowByte(" Contiguous container OOB:", kAsanContiguousContainerOOBMagic); PrintShadowByte(" ASan internal: ", kAsanInternalHeapMagic); } static void PrintShadowMemoryForAddress(uptr addr) { if (!AddrIsInMem(addr)) return; uptr shadow_addr = MemToShadow(addr); const uptr n_bytes_per_row = 16; uptr aligned_shadow = shadow_addr & ~(n_bytes_per_row - 1); Printf("Shadow bytes around the buggy address:\n"); for (int i = -5; i <= 5; i++) { const char *prefix = (i == 0) ? "=>" : " "; PrintShadowBytes(prefix, (u8*)(aligned_shadow + i * n_bytes_per_row), (u8*)shadow_addr, n_bytes_per_row); } if (flags()->print_legend) PrintLegend(); } static void PrintZoneForPointer(uptr ptr, uptr zone_ptr, const char *zone_name) { if (zone_ptr) { if (zone_name) { Printf("malloc_zone_from_ptr(%p) = %p, which is %s\n", ptr, zone_ptr, zone_name); } else { Printf("malloc_zone_from_ptr(%p) = %p, which doesn't have a name\n", ptr, zone_ptr); } } else { Printf("malloc_zone_from_ptr(%p) = 0\n", ptr); } } static void DescribeThread(AsanThread *t) { if (t) DescribeThread(t->context()); } // ---------------------- Address Descriptions ------------------- {{{1 static bool IsASCII(unsigned char c) { return /*0x00 <= c &&*/ c <= 0x7F; } static const char *MaybeDemangleGlobalName(const char *name) { // We can spoil names of globals with C linkage, so use an heuristic // approach to check if the name should be demangled. return (name[0] == '_' && name[1] == 'Z') ? Symbolizer::Get()->Demangle(name) : name; } // Check if the global is a zero-terminated ASCII string. If so, print it. static void PrintGlobalNameIfASCII(const __asan_global &g) { for (uptr p = g.beg; p < g.beg + g.size - 1; p++) { unsigned char c = *(unsigned char*)p; if (c == '\0' || !IsASCII(c)) return; } if (*(char*)(g.beg + g.size - 1) != '\0') return; Printf(" '%s' is ascii string '%s'\n", MaybeDemangleGlobalName(g.name), (char*)g.beg); } bool DescribeAddressRelativeToGlobal(uptr addr, uptr size, const __asan_global &g) { static const uptr kMinimalDistanceFromAnotherGlobal = 64; if (addr <= g.beg - kMinimalDistanceFromAnotherGlobal) return false; if (addr >= g.beg + g.size_with_redzone) return false; Decorator d; Printf("%s", d.Location()); if (addr < g.beg) { Printf("%p is located %zd bytes to the left", (void*)addr, g.beg - addr); } else if (addr + size > g.beg + g.size) { if (addr < g.beg + g.size) addr = g.beg + g.size; Printf("%p is located %zd bytes to the right", (void*)addr, addr - (g.beg + g.size)); } else { // Can it happen? Printf("%p is located %zd bytes inside", (void*)addr, addr - g.beg); } Printf(" of global variable '%s' from '%s' (0x%zx) of size %zu\n", MaybeDemangleGlobalName(g.name), g.module_name, g.beg, g.size); Printf("%s", d.EndLocation()); PrintGlobalNameIfASCII(g); return true; } bool DescribeAddressIfShadow(uptr addr) { if (AddrIsInMem(addr)) return false; static const char kAddrInShadowReport[] = "Address %p is located in the %s.\n"; if (AddrIsInShadowGap(addr)) { Printf(kAddrInShadowReport, addr, "shadow gap area"); return true; } if (AddrIsInHighShadow(addr)) { Printf(kAddrInShadowReport, addr, "high shadow area"); return true; } if (AddrIsInLowShadow(addr)) { Printf(kAddrInShadowReport, addr, "low shadow area"); return true; } CHECK(0 && "Address is not in memory and not in shadow?"); return false; } // Return " (thread_name) " or an empty string if the name is empty. const char *ThreadNameWithParenthesis(AsanThreadContext *t, char buff[], uptr buff_len) { const char *name = t->name; if (name[0] == '\0') return ""; buff[0] = 0; internal_strncat(buff, " (", 3); internal_strncat(buff, name, buff_len - 4); internal_strncat(buff, ")", 2); return buff; } const char *ThreadNameWithParenthesis(u32 tid, char buff[], uptr buff_len) { if (tid == kInvalidTid) return ""; asanThreadRegistry().CheckLocked(); AsanThreadContext *t = GetThreadContextByTidLocked(tid); return ThreadNameWithParenthesis(t, buff, buff_len); } void PrintAccessAndVarIntersection(const char *var_name, uptr var_beg, uptr var_size, uptr addr, uptr access_size, uptr prev_var_end, uptr next_var_beg) { uptr var_end = var_beg + var_size; uptr addr_end = addr + access_size; const char *pos_descr = 0; // If the variable [var_beg, var_end) is the nearest variable to the // current memory access, indicate it in the log. if (addr >= var_beg) { if (addr_end <= var_end) pos_descr = "is inside"; // May happen if this is a use-after-return. else if (addr < var_end) pos_descr = "partially overflows"; else if (addr_end <= next_var_beg && next_var_beg - addr_end >= addr - var_end) pos_descr = "overflows"; } else { if (addr_end > var_beg) pos_descr = "partially underflows"; else if (addr >= prev_var_end && addr - prev_var_end >= var_beg - addr_end) pos_descr = "underflows"; } Printf(" [%zd, %zd) '%s'", var_beg, var_beg + var_size, var_name); if (pos_descr) { Decorator d; // FIXME: we may want to also print the size of the access here, // but in case of accesses generated by memset it may be confusing. Printf("%s <== Memory access at offset %zd %s this variable%s\n", d.Location(), addr, pos_descr, d.EndLocation()); } else { Printf("\n"); } } struct StackVarDescr { uptr beg; uptr size; const char *name_pos; uptr name_len; }; bool DescribeAddressIfStack(uptr addr, uptr access_size) { AsanThread *t = FindThreadByStackAddress(addr); if (!t) return false; const uptr kBufSize = 4095; char buf[kBufSize]; uptr offset = 0; uptr frame_pc = 0; char tname[128]; const char *frame_descr = t->GetFrameNameByAddr(addr, &offset, &frame_pc); #ifdef __powerpc64__ // On PowerPC64, the address of a function actually points to a // three-doubleword data structure with the first field containing // the address of the function's code. frame_pc = *reinterpret_cast(frame_pc); #endif // This string is created by the compiler and has the following form: // "n alloc_1 alloc_2 ... alloc_n" // where alloc_i looks like "offset size len ObjectName ". CHECK(frame_descr); Decorator d; Printf("%s", d.Location()); Printf("Address %p is located in stack of thread T%d%s " "at offset %zu in frame\n", addr, t->tid(), ThreadNameWithParenthesis(t->tid(), tname, sizeof(tname)), offset); // Now we print the frame where the alloca has happened. // We print this frame as a stack trace with one element. // The symbolizer may print more than one frame if inlining was involved. // The frame numbers may be different than those in the stack trace printed // previously. That's unfortunate, but I have no better solution, // especially given that the alloca may be from entirely different place // (e.g. use-after-scope, or different thread's stack). StackTrace alloca_stack; alloca_stack.trace[0] = frame_pc + 16; alloca_stack.size = 1; Printf("%s", d.EndLocation()); PrintStack(&alloca_stack); // Report the number of stack objects. char *p; uptr n_objects = (uptr)internal_simple_strtoll(frame_descr, &p, 10); CHECK_GT(n_objects, 0); Printf(" This frame has %zu object(s):\n", n_objects); // Report all objects in this frame. InternalScopedBuffer vars(n_objects); for (uptr i = 0; i < n_objects; i++) { uptr beg, size; uptr len; beg = (uptr)internal_simple_strtoll(p, &p, 10); size = (uptr)internal_simple_strtoll(p, &p, 10); len = (uptr)internal_simple_strtoll(p, &p, 10); if (beg == 0 || size == 0 || *p != ' ') { Printf("AddressSanitizer can't parse the stack frame " "descriptor: |%s|\n", frame_descr); break; } p++; vars[i].beg = beg; vars[i].size = size; vars[i].name_pos = p; vars[i].name_len = len; p += len; } for (uptr i = 0; i < n_objects; i++) { buf[0] = 0; internal_strncat(buf, vars[i].name_pos, static_cast(Min(kBufSize, vars[i].name_len))); uptr prev_var_end = i ? vars[i - 1].beg + vars[i - 1].size : 0; uptr next_var_beg = i + 1 < n_objects ? vars[i + 1].beg : ~(0UL); PrintAccessAndVarIntersection(buf, vars[i].beg, vars[i].size, offset, access_size, prev_var_end, next_var_beg); } Printf("HINT: this may be a false positive if your program uses " "some custom stack unwind mechanism or swapcontext\n" " (longjmp and C++ exceptions *are* supported)\n"); DescribeThread(t); return true; } static void DescribeAccessToHeapChunk(AsanChunkView chunk, uptr addr, uptr access_size) { sptr offset; Decorator d; Printf("%s", d.Location()); if (chunk.AddrIsAtLeft(addr, access_size, &offset)) { Printf("%p is located %zd bytes to the left of", (void*)addr, offset); } else if (chunk.AddrIsAtRight(addr, access_size, &offset)) { if (offset < 0) { addr -= offset; offset = 0; } Printf("%p is located %zd bytes to the right of", (void*)addr, offset); } else if (chunk.AddrIsInside(addr, access_size, &offset)) { Printf("%p is located %zd bytes inside of", (void*)addr, offset); } else { Printf("%p is located somewhere around (this is AddressSanitizer bug!)", (void*)addr); } Printf(" %zu-byte region [%p,%p)\n", chunk.UsedSize(), (void*)(chunk.Beg()), (void*)(chunk.End())); Printf("%s", d.EndLocation()); } void DescribeHeapAddress(uptr addr, uptr access_size) { AsanChunkView chunk = FindHeapChunkByAddress(addr); if (!chunk.IsValid()) { Printf("AddressSanitizer can not describe address in more detail " "(wild memory access suspected).\n"); return; } DescribeAccessToHeapChunk(chunk, addr, access_size); CHECK(chunk.AllocTid() != kInvalidTid); asanThreadRegistry().CheckLocked(); AsanThreadContext *alloc_thread = GetThreadContextByTidLocked(chunk.AllocTid()); StackTrace alloc_stack; chunk.GetAllocStack(&alloc_stack); char tname[128]; Decorator d; AsanThreadContext *free_thread = 0; if (chunk.FreeTid() != kInvalidTid) { free_thread = GetThreadContextByTidLocked(chunk.FreeTid()); Printf("%sfreed by thread T%d%s here:%s\n", d.Allocation(), free_thread->tid, ThreadNameWithParenthesis(free_thread, tname, sizeof(tname)), d.EndAllocation()); StackTrace free_stack; chunk.GetFreeStack(&free_stack); PrintStack(&free_stack); Printf("%spreviously allocated by thread T%d%s here:%s\n", d.Allocation(), alloc_thread->tid, ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)), d.EndAllocation()); } else { Printf("%sallocated by thread T%d%s here:%s\n", d.Allocation(), alloc_thread->tid, ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)), d.EndAllocation()); } PrintStack(&alloc_stack); DescribeThread(GetCurrentThread()); if (free_thread) DescribeThread(free_thread); DescribeThread(alloc_thread); } void DescribeAddress(uptr addr, uptr access_size) { // Check if this is shadow or shadow gap. if (DescribeAddressIfShadow(addr)) return; CHECK(AddrIsInMem(addr)); if (DescribeAddressIfGlobal(addr, access_size)) return; if (DescribeAddressIfStack(addr, access_size)) return; // Assume it is a heap address. DescribeHeapAddress(addr, access_size); } // ------------------- Thread description -------------------- {{{1 void DescribeThread(AsanThreadContext *context) { CHECK(context); asanThreadRegistry().CheckLocked(); // No need to announce the main thread. if (context->tid == 0 || context->announced) { return; } context->announced = true; char tname[128]; Printf("Thread T%d%s", context->tid, ThreadNameWithParenthesis(context->tid, tname, sizeof(tname))); Printf(" created by T%d%s here:\n", context->parent_tid, ThreadNameWithParenthesis(context->parent_tid, tname, sizeof(tname))); uptr stack_size; const uptr *stack_trace = StackDepotGet(context->stack_id, &stack_size); PrintStack(stack_trace, stack_size); // Recursively described parent thread if needed. if (flags()->print_full_thread_history) { AsanThreadContext *parent_context = GetThreadContextByTidLocked(context->parent_tid); DescribeThread(parent_context); } } // -------------------- Different kinds of reports ----------------- {{{1 // Use ScopedInErrorReport to run common actions just before and // immediately after printing error report. class ScopedInErrorReport { public: ScopedInErrorReport() { static atomic_uint32_t num_calls; static u32 reporting_thread_tid; if (atomic_fetch_add(&num_calls, 1, memory_order_relaxed) != 0) { // Do not print more than one report, otherwise they will mix up. // Error reporting functions shouldn't return at this situation, as // they are defined as no-return. Report("AddressSanitizer: while reporting a bug found another one." "Ignoring.\n"); u32 current_tid = GetCurrentTidOrInvalid(); if (current_tid != reporting_thread_tid) { // ASan found two bugs in different threads simultaneously. Sleep // long enough to make sure that the thread which started to print // an error report will finish doing it. SleepForSeconds(Max(100, flags()->sleep_before_dying + 1)); } // If we're still not dead for some reason, use raw _exit() instead of // Die() to bypass any additional checks. internal__exit(flags()->exitcode); } ASAN_ON_ERROR(); // Make sure the registry and sanitizer report mutexes are locked while // we're printing an error report. // We can lock them only here to avoid self-deadlock in case of // recursive reports. asanThreadRegistry().Lock(); CommonSanitizerReportMutex.Lock(); reporting_thread_tid = GetCurrentTidOrInvalid(); Printf("====================================================" "=============\n"); } // Destructor is NORETURN, as functions that report errors are. NORETURN ~ScopedInErrorReport() { // Make sure the current thread is announced. DescribeThread(GetCurrentThread()); // Print memory stats. if (flags()->print_stats) __asan_print_accumulated_stats(); if (error_report_callback) { error_report_callback(error_message_buffer); } Report("ABORTING\n"); Die(); } }; void ReportSIGSEGV(uptr pc, uptr sp, uptr bp, uptr addr) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: SEGV on unknown address %p" " (pc %p sp %p bp %p T%d)\n", (void*)addr, (void*)pc, (void*)sp, (void*)bp, GetCurrentTidOrInvalid()); Printf("%s", d.EndWarning()); GET_STACK_TRACE_FATAL(pc, bp); PrintStack(&stack); Printf("AddressSanitizer can not provide additional info.\n"); ReportErrorSummary("SEGV", &stack); } void ReportDoubleFree(uptr addr, StackTrace *free_stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); char tname[128]; u32 curr_tid = GetCurrentTidOrInvalid(); Report("ERROR: AddressSanitizer: attempting double-free on %p in " "thread T%d%s:\n", addr, curr_tid, ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname))); Printf("%s", d.EndWarning()); CHECK_GT(free_stack->size, 0); GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp); PrintStack(&stack); DescribeHeapAddress(addr, 1); ReportErrorSummary("double-free", &stack); } void ReportFreeNotMalloced(uptr addr, StackTrace *free_stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); char tname[128]; u32 curr_tid = GetCurrentTidOrInvalid(); Report("ERROR: AddressSanitizer: attempting free on address " "which was not malloc()-ed: %p in thread T%d%s\n", addr, curr_tid, ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname))); Printf("%s", d.EndWarning()); CHECK_GT(free_stack->size, 0); GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp); PrintStack(&stack); DescribeHeapAddress(addr, 1); ReportErrorSummary("bad-free", &stack); } void ReportAllocTypeMismatch(uptr addr, StackTrace *free_stack, AllocType alloc_type, AllocType dealloc_type) { static const char *alloc_names[] = {"INVALID", "malloc", "operator new", "operator new []"}; static const char *dealloc_names[] = {"INVALID", "free", "operator delete", "operator delete []"}; CHECK_NE(alloc_type, dealloc_type); ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: alloc-dealloc-mismatch (%s vs %s) on %p\n", alloc_names[alloc_type], dealloc_names[dealloc_type], addr); Printf("%s", d.EndWarning()); CHECK_GT(free_stack->size, 0); GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp); PrintStack(&stack); DescribeHeapAddress(addr, 1); ReportErrorSummary("alloc-dealloc-mismatch", &stack); Report("HINT: if you don't care about these warnings you may set " "ASAN_OPTIONS=alloc_dealloc_mismatch=0\n"); } void ReportMallocUsableSizeNotOwned(uptr addr, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: attempting to call " "malloc_usable_size() for pointer which is " "not owned: %p\n", addr); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeHeapAddress(addr, 1); ReportErrorSummary("bad-malloc_usable_size", stack); } void ReportAsanGetAllocatedSizeNotOwned(uptr addr, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: attempting to call " "__asan_get_allocated_size() for pointer which is " "not owned: %p\n", addr); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeHeapAddress(addr, 1); ReportErrorSummary("bad-__asan_get_allocated_size", stack); } void ReportStringFunctionMemoryRangesOverlap( const char *function, const char *offset1, uptr length1, const char *offset2, uptr length2, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; char bug_type[100]; internal_snprintf(bug_type, sizeof(bug_type), "%s-param-overlap", function); Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: %s: " "memory ranges [%p,%p) and [%p, %p) overlap\n", \ bug_type, offset1, offset1 + length1, offset2, offset2 + length2); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeAddress((uptr)offset1, length1); DescribeAddress((uptr)offset2, length2); ReportErrorSummary(bug_type, stack); } // ----------------------- Mac-specific reports ----------------- {{{1 void WarnMacFreeUnallocated( uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) { // Just print a warning here. Printf("free_common(%p) -- attempting to free unallocated memory.\n" "AddressSanitizer is ignoring this error on Mac OS now.\n", addr); PrintZoneForPointer(addr, zone_ptr, zone_name); PrintStack(stack); DescribeHeapAddress(addr, 1); } void ReportMacMzReallocUnknown( uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) { ScopedInErrorReport in_report; Printf("mz_realloc(%p) -- attempting to realloc unallocated memory.\n" "This is an unrecoverable problem, exiting now.\n", addr); PrintZoneForPointer(addr, zone_ptr, zone_name); PrintStack(stack); DescribeHeapAddress(addr, 1); } void ReportMacCfReallocUnknown( uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) { ScopedInErrorReport in_report; Printf("cf_realloc(%p) -- attempting to realloc unallocated memory.\n" "This is an unrecoverable problem, exiting now.\n", addr); PrintZoneForPointer(addr, zone_ptr, zone_name); PrintStack(stack); DescribeHeapAddress(addr, 1); } } // namespace __asan // --------------------------- Interface --------------------- {{{1 using namespace __asan; // NOLINT void __asan_report_error(uptr pc, uptr bp, uptr sp, uptr addr, bool is_write, uptr access_size) { ScopedInErrorReport in_report; // Determine the error type. const char *bug_descr = "unknown-crash"; if (AddrIsInMem(addr)) { u8 *shadow_addr = (u8*)MemToShadow(addr); // If we are accessing 16 bytes, look at the second shadow byte. if (*shadow_addr == 0 && access_size > SHADOW_GRANULARITY) shadow_addr++; // If we are in the partial right redzone, look at the next shadow byte. if (*shadow_addr > 0 && *shadow_addr < 128) shadow_addr++; switch (*shadow_addr) { case kAsanHeapLeftRedzoneMagic: case kAsanHeapRightRedzoneMagic: bug_descr = "heap-buffer-overflow"; break; case kAsanHeapFreeMagic: bug_descr = "heap-use-after-free"; break; case kAsanStackLeftRedzoneMagic: bug_descr = "stack-buffer-underflow"; break; case kAsanInitializationOrderMagic: bug_descr = "initialization-order-fiasco"; break; case kAsanStackMidRedzoneMagic: case kAsanStackRightRedzoneMagic: case kAsanStackPartialRedzoneMagic: bug_descr = "stack-buffer-overflow"; break; case kAsanStackAfterReturnMagic: bug_descr = "stack-use-after-return"; break; case kAsanUserPoisonedMemoryMagic: bug_descr = "use-after-poison"; break; case kAsanContiguousContainerOOBMagic: bug_descr = "container-overflow"; break; case kAsanStackUseAfterScopeMagic: bug_descr = "stack-use-after-scope"; break; case kAsanGlobalRedzoneMagic: bug_descr = "global-buffer-overflow"; break; } } Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: %s on address " "%p at pc 0x%zx bp 0x%zx sp 0x%zx\n", bug_descr, (void*)addr, pc, bp, sp); Printf("%s", d.EndWarning()); u32 curr_tid = GetCurrentTidOrInvalid(); char tname[128]; Printf("%s%s of size %zu at %p thread T%d%s%s\n", d.Access(), access_size ? (is_write ? "WRITE" : "READ") : "ACCESS", access_size, (void*)addr, curr_tid, ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)), d.EndAccess()); GET_STACK_TRACE_FATAL(pc, bp); PrintStack(&stack); DescribeAddress(addr, access_size); ReportErrorSummary(bug_descr, &stack); PrintShadowMemoryForAddress(addr); } void NOINLINE __asan_set_error_report_callback(void (*callback)(const char*)) { error_report_callback = callback; if (callback) { error_message_buffer_size = 1 << 16; error_message_buffer = (char*)MmapOrDie(error_message_buffer_size, __FUNCTION__); error_message_buffer_pos = 0; } } void __asan_describe_address(uptr addr) { DescribeAddress(addr, 1); } #if !SANITIZER_SUPPORTS_WEAK_HOOKS // Provide default implementation of __asan_on_error that does nothing // and may be overriden by user. SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE NOINLINE void __asan_on_error() {} #endif