/* Complex hyperbole tangent for __float128. Copyright (C) 1997-2012 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "quadmath-imp.h" #ifdef HAVE_FENV_H # include #endif __complex128 ctanhq (__complex128 x) { __complex128 res; if (__builtin_expect (!finiteq (__real__ x) || !finiteq (__imag__ x), 0)) { if (__quadmath_isinf_nsq (__real__ x)) { __real__ res = copysignq (1.0Q, __real__ x); __imag__ res = copysignq (0.0Q, __imag__ x); } else if (__imag__ x == 0.0Q) { res = x; } else { __real__ res = nanq (""); __imag__ res = nanq (""); #ifdef HAVE_FENV_H if (__quadmath_isinf_nsq (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { __float128 sinix, cosix; __float128 den; const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q / 2); int icls = fpclassifyq (__imag__ x); /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */ if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0Q; } if (fabsq (__real__ x) > t) { /* Avoid intermediate overflow when the imaginary part of the result may be subnormal. Ignoring negligible terms, the real part is +/- 1, the imaginary part is sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */ __float128 exp_2t = expq (2 * t); __real__ res = copysignq (1.0, __real__ x); __imag__ res = 4 * sinix * cosix; __real__ x = fabsq (__real__ x); __real__ x -= t; __imag__ res /= exp_2t; if (__real__ x > t) { /* Underflow (original real part of x has absolute value > 2t). */ __imag__ res /= exp_2t; } else __imag__ res /= expq (2 * __real__ x); } else { __float128 sinhrx, coshrx; if (fabsq (__real__ x) > FLT128_MIN) { sinhrx = sinhq (__real__ x); coshrx = coshq (__real__ x); } else { sinhrx = __real__ x; coshrx = 1.0Q; } if (fabsq (sinhrx) > fabsq (cosix) * FLT128_EPSILON) den = sinhrx * sinhrx + cosix * cosix; else den = cosix * cosix; __real__ res = sinhrx * coshrx / den; __imag__ res = sinix * cosix / den; } } return res; }