/* Complex square root of __float128 value. Copyright (C) 1997-2012 Free Software Foundation, Inc. This file is part of the GNU C Library. Based on an algorithm by Stephen L. Moshier . Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "quadmath-imp.h" #ifdef HAVE_FENV_H # include #endif __complex128 csqrtq (__complex128 x) { __complex128 res; int rcls = fpclassifyq (__real__ x); int icls = fpclassifyq (__imag__ x); if (__builtin_expect (rcls <= QUADFP_INFINITE || icls <= QUADFP_INFINITE, 0)) { if (icls == QUADFP_INFINITE) { __real__ res = HUGE_VALQ; __imag__ res = __imag__ x; } else if (rcls == QUADFP_INFINITE) { if (__real__ x < 0.0Q) { __real__ res = icls == QUADFP_NAN ? nanq ("") : 0; __imag__ res = copysignq (HUGE_VALQ, __imag__ x); } else { __real__ res = __real__ x; __imag__ res = (icls == QUADFP_NAN ? nanq ("") : copysignq (0.0Q, __imag__ x)); } } else { __real__ res = nanq (""); __imag__ res = nanq (""); } } else { if (__builtin_expect (icls == QUADFP_ZERO, 0)) { if (__real__ x < 0.0Q) { __real__ res = 0.0Q; __imag__ res = copysignq (sqrtq (-__real__ x), __imag__ x); } else { __real__ res = fabsq (sqrtq (__real__ x)); __imag__ res = copysignq (0.0Q, __imag__ x); } } else if (__builtin_expect (rcls == QUADFP_ZERO, 0)) { __float128 r; if (fabsq (__imag__ x) >= 2.0Q * FLT128_MIN) r = sqrtq (0.5Q * fabsq (__imag__ x)); else r = 0.5Q * sqrtq (2.0Q * fabsq (__imag__ x)); __real__ res = r; __imag__ res = copysignq (r, __imag__ x); } else { __float128 d, r, s; int scale = 0; if (fabsq (__real__ x) > FLT128_MAX / 4.0Q) { scale = 1; __real__ x = scalbnq (__real__ x, -2 * scale); __imag__ x = scalbnq (__imag__ x, -2 * scale); } else if (fabsq (__imag__ x) > FLT128_MAX / 4.0Q) { scale = 1; if (fabsq (__real__ x) >= 4.0Q * FLT128_MIN) __real__ x = scalbnq (__real__ x, -2 * scale); else __real__ x = 0.0Q; __imag__ x = scalbnq (__imag__ x, -2 * scale); } else if (fabsq (__real__ x) < FLT128_MIN && fabsq (__imag__ x) < FLT128_MIN) { scale = -(FLT128_MANT_DIG / 2); __real__ x = scalbnq (__real__ x, -2 * scale); __imag__ x = scalbnq (__imag__ x, -2 * scale); } d = hypotq (__real__ x, __imag__ x); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (__real__ x > 0) { r = sqrtq (0.5Q * (d + __real__ x)); s = 0.5Q * (__imag__ x / r); } else { s = sqrtq (0.5Q * (d - __real__ x)); r = fabsq (0.5Q * (__imag__ x / s)); } if (scale) { r = scalbnq (r, scale); s = scalbnq (s, scale); } __real__ res = r; __imag__ res = copysignq (s, __imag__ x); } } return res; }