/* Complex cosine hyperbole function for complex __float128. Copyright (C) 1997-2012 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "quadmath-imp.h" #ifdef HAVE_FENV_H # include #endif __complex128 ccoshq (__complex128 x) { __complex128 retval; int rcls = fpclassifyq (__real__ x); int icls = fpclassifyq (__imag__ x); if (__builtin_expect (rcls >= QUADFP_ZERO, 1)) { /* Real part is finite. */ if (__builtin_expect (icls >= QUADFP_ZERO, 1)) { /* Imaginary part is finite. */ const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q); __float128 sinix, cosix; if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0Q; } if (fabsq (__real__ x) > t) { __float128 exp_t = expq (t); __float128 rx = fabsq (__real__ x); if (signbitq (__real__ x)) sinix = -sinix; rx -= t; sinix *= exp_t / 2.0Q; cosix *= exp_t / 2.0Q; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = FLT128_MAX * cosix; __imag__ retval = FLT128_MAX * sinix; } else { __float128 exp_val = expq (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = coshq (__real__ x) * cosix; __imag__ retval = sinhq (__real__ x) * sinix; } } else { __imag__ retval = __real__ x == 0.0Q ? 0.0Q : nanq (""); __real__ retval = nanq ("") + nanq (""); #ifdef HAVE_FENV_H if (icls == QUADFP_INFINITE) feraiseexcept (FE_INVALID); #endif } } else if (rcls == QUADFP_INFINITE) { /* Real part is infinite. */ if (__builtin_expect (icls > QUADFP_ZERO, 1)) { /* Imaginary part is finite. */ __float128 sinix, cosix; if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1)) { sincosq (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0Q; } __real__ retval = copysignq (HUGE_VALQ, cosix); __imag__ retval = (copysignq (HUGE_VALQ, sinix) * copysignq (1.0Q, __real__ x)); } else if (icls == QUADFP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = HUGE_VALQ; __imag__ retval = __imag__ x * copysignq (1.0Q, __real__ x); } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VALQ; __imag__ retval = nanq ("") + nanq (""); #ifdef HAVE_FENV_H if (icls == QUADFP_INFINITE) feraiseexcept (FE_INVALID); #endif } } else { __real__ retval = nanq (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : nanq (""); } return retval; }