// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package strings import "io" // A Replacer replaces a list of strings with replacements. type Replacer struct { r replacer } // replacer is the interface that a replacement algorithm needs to implement. type replacer interface { Replace(s string) string WriteString(w io.Writer, s string) (n int, err error) } // byteBitmap represents bytes which are sought for replacement. // byteBitmap is 256 bits wide, with a bit set for each old byte to be // replaced. type byteBitmap [256 / 32]uint32 func (m *byteBitmap) set(b byte) { m[b>>5] |= uint32(1 << (b & 31)) } // NewReplacer returns a new Replacer from a list of old, new string pairs. // Replacements are performed in order, without overlapping matches. func NewReplacer(oldnew ...string) *Replacer { if len(oldnew)%2 == 1 { panic("strings.NewReplacer: odd argument count") } if len(oldnew) == 2 && len(oldnew[0]) > 1 { return &Replacer{r: makeSingleStringReplacer(oldnew[0], oldnew[1])} } allNewBytes := true for i := 0; i < len(oldnew); i += 2 { if len(oldnew[i]) != 1 { return &Replacer{r: makeGenericReplacer(oldnew)} } if len(oldnew[i+1]) != 1 { allNewBytes = false } } if allNewBytes { bb := &byteReplacer{} for i := 0; i < len(oldnew); i += 2 { o, n := oldnew[i][0], oldnew[i+1][0] if bb.old[o>>5]&uint32(1<<(o&31)) != 0 { // Later old->new maps do not override previous ones with the same old string. continue } bb.old.set(o) bb.new[o] = n } return &Replacer{r: bb} } bs := &byteStringReplacer{} for i := 0; i < len(oldnew); i += 2 { o, new := oldnew[i][0], oldnew[i+1] if bs.old[o>>5]&uint32(1<<(o&31)) != 0 { // Later old->new maps do not override previous ones with the same old string. continue } bs.old.set(o) bs.new[o] = []byte(new) } return &Replacer{r: bs} } // Replace returns a copy of s with all replacements performed. func (r *Replacer) Replace(s string) string { return r.r.Replace(s) } // WriteString writes s to w with all replacements performed. func (r *Replacer) WriteString(w io.Writer, s string) (n int, err error) { return r.r.WriteString(w, s) } // trieNode is a node in a lookup trie for prioritized key/value pairs. Keys // and values may be empty. For example, the trie containing keys "ax", "ay", // "bcbc", "x" and "xy" could have eight nodes: // // n0 - // n1 a- // n2 .x+ // n3 .y+ // n4 b- // n5 .cbc+ // n6 x+ // n7 .y+ // // n0 is the root node, and its children are n1, n4 and n6; n1's children are // n2 and n3; n4's child is n5; n6's child is n7. Nodes n0, n1 and n4 (marked // with a trailing "-") are partial keys, and nodes n2, n3, n5, n6 and n7 // (marked with a trailing "+") are complete keys. type trieNode struct { // value is the value of the trie node's key/value pair. It is empty if // this node is not a complete key. value string // priority is the priority (higher is more important) of the trie node's // key/value pair; keys are not necessarily matched shortest- or longest- // first. Priority is positive if this node is a complete key, and zero // otherwise. In the example above, positive/zero priorities are marked // with a trailing "+" or "-". priority int // A trie node may have zero, one or more child nodes: // * if the remaining fields are zero, there are no children. // * if prefix and next are non-zero, there is one child in next. // * if table is non-zero, it defines all the children. // // Prefixes are preferred over tables when there is one child, but the // root node always uses a table for lookup efficiency. // prefix is the difference in keys between this trie node and the next. // In the example above, node n4 has prefix "cbc" and n4's next node is n5. // Node n5 has no children and so has zero prefix, next and table fields. prefix string next *trieNode // table is a lookup table indexed by the next byte in the key, after // remapping that byte through genericReplacer.mapping to create a dense // index. In the example above, the keys only use 'a', 'b', 'c', 'x' and // 'y', which remap to 0, 1, 2, 3 and 4. All other bytes remap to 5, and // genericReplacer.tableSize will be 5. Node n0's table will be // []*trieNode{ 0:n1, 1:n4, 3:n6 }, where the 0, 1 and 3 are the remapped // 'a', 'b' and 'x'. table []*trieNode } func (t *trieNode) add(key, val string, priority int, r *genericReplacer) { if key == "" { if t.priority == 0 { t.value = val t.priority = priority } return } if t.prefix != "" { // Need to split the prefix among multiple nodes. var n int // length of the longest common prefix for ; n < len(t.prefix) && n < len(key); n++ { if t.prefix[n] != key[n] { break } } if n == len(t.prefix) { t.next.add(key[n:], val, priority, r) } else if n == 0 { // First byte differs, start a new lookup table here. Looking up // what is currently t.prefix[0] will lead to prefixNode, and // looking up key[0] will lead to keyNode. var prefixNode *trieNode if len(t.prefix) == 1 { prefixNode = t.next } else { prefixNode = &trieNode{ prefix: t.prefix[1:], next: t.next, } } keyNode := new(trieNode) t.table = make([]*trieNode, r.tableSize) t.table[r.mapping[t.prefix[0]]] = prefixNode t.table[r.mapping[key[0]]] = keyNode t.prefix = "" t.next = nil keyNode.add(key[1:], val, priority, r) } else { // Insert new node after the common section of the prefix. next := &trieNode{ prefix: t.prefix[n:], next: t.next, } t.prefix = t.prefix[:n] t.next = next next.add(key[n:], val, priority, r) } } else if t.table != nil { // Insert into existing table. m := r.mapping[key[0]] if t.table[m] == nil { t.table[m] = new(trieNode) } t.table[m].add(key[1:], val, priority, r) } else { t.prefix = key t.next = new(trieNode) t.next.add("", val, priority, r) } } func (r *genericReplacer) lookup(s string, ignoreRoot bool) (val string, keylen int, found bool) { // Iterate down the trie to the end, and grab the value and keylen with // the highest priority. bestPriority := 0 node := &r.root n := 0 for node != nil { if node.priority > bestPriority && !(ignoreRoot && node == &r.root) { bestPriority = node.priority val = node.value keylen = n found = true } if s == "" { break } if node.table != nil { index := r.mapping[s[0]] if int(index) == r.tableSize { break } node = node.table[index] s = s[1:] n++ } else if node.prefix != "" && HasPrefix(s, node.prefix) { n += len(node.prefix) s = s[len(node.prefix):] node = node.next } else { break } } return } // genericReplacer is the fully generic algorithm. // It's used as a fallback when nothing faster can be used. type genericReplacer struct { root trieNode // tableSize is the size of a trie node's lookup table. It is the number // of unique key bytes. tableSize int // mapping maps from key bytes to a dense index for trieNode.table. mapping [256]byte } func makeGenericReplacer(oldnew []string) *genericReplacer { r := new(genericReplacer) // Find each byte used, then assign them each an index. for i := 0; i < len(oldnew); i += 2 { key := oldnew[i] for j := 0; j < len(key); j++ { r.mapping[key[j]] = 1 } } for _, b := range r.mapping { r.tableSize += int(b) } var index byte for i, b := range r.mapping { if b == 0 { r.mapping[i] = byte(r.tableSize) } else { r.mapping[i] = index index++ } } // Ensure root node uses a lookup table (for performance). r.root.table = make([]*trieNode, r.tableSize) for i := 0; i < len(oldnew); i += 2 { r.root.add(oldnew[i], oldnew[i+1], len(oldnew)-i, r) } return r } type appendSliceWriter []byte // Write writes to the buffer to satisfy io.Writer. func (w *appendSliceWriter) Write(p []byte) (int, error) { *w = append(*w, p...) return len(p), nil } // WriteString writes to the buffer without string->[]byte->string allocations. func (w *appendSliceWriter) WriteString(s string) (int, error) { *w = append(*w, s...) return len(s), nil } type stringWriterIface interface { WriteString(string) (int, error) } type stringWriter struct { w io.Writer } func (w stringWriter) WriteString(s string) (int, error) { return w.w.Write([]byte(s)) } func getStringWriter(w io.Writer) stringWriterIface { sw, ok := w.(stringWriterIface) if !ok { sw = stringWriter{w} } return sw } func (r *genericReplacer) Replace(s string) string { buf := make(appendSliceWriter, 0, len(s)) r.WriteString(&buf, s) return string(buf) } func (r *genericReplacer) WriteString(w io.Writer, s string) (n int, err error) { sw := getStringWriter(w) var last, wn int var prevMatchEmpty bool for i := 0; i <= len(s); { // Ignore the empty match iff the previous loop found the empty match. val, keylen, match := r.lookup(s[i:], prevMatchEmpty) prevMatchEmpty = match && keylen == 0 if match { wn, err = sw.WriteString(s[last:i]) n += wn if err != nil { return } wn, err = sw.WriteString(val) n += wn if err != nil { return } i += keylen last = i continue } i++ } if last != len(s) { wn, err = sw.WriteString(s[last:]) n += wn } return } // singleStringReplacer is the implementation that's used when there is only // one string to replace (and that string has more than one byte). type singleStringReplacer struct { finder *stringFinder // value is the new string that replaces that pattern when it's found. value string } func makeSingleStringReplacer(pattern string, value string) *singleStringReplacer { return &singleStringReplacer{finder: makeStringFinder(pattern), value: value} } func (r *singleStringReplacer) Replace(s string) string { var buf []byte i, matched := 0, false for { match := r.finder.next(s[i:]) if match == -1 { break } matched = true buf = append(buf, s[i:i+match]...) buf = append(buf, r.value...) i += match + len(r.finder.pattern) } if !matched { return s } buf = append(buf, s[i:]...) return string(buf) } func (r *singleStringReplacer) WriteString(w io.Writer, s string) (n int, err error) { sw := getStringWriter(w) var i, wn int for { match := r.finder.next(s[i:]) if match == -1 { break } wn, err = sw.WriteString(s[i : i+match]) n += wn if err != nil { return } wn, err = sw.WriteString(r.value) n += wn if err != nil { return } i += match + len(r.finder.pattern) } wn, err = sw.WriteString(s[i:]) n += wn return } // byteReplacer is the implementation that's used when all the "old" // and "new" values are single ASCII bytes. type byteReplacer struct { // old has a bit set for each old byte that should be replaced. old byteBitmap // replacement byte, indexed by old byte. only valid if // corresponding old bit is set. new [256]byte } func (r *byteReplacer) Replace(s string) string { var buf []byte // lazily allocated for i := 0; i < len(s); i++ { b := s[i] if r.old[b>>5]&uint32(1<<(b&31)) != 0 { if buf == nil { buf = []byte(s) } buf[i] = r.new[b] } } if buf == nil { return s } return string(buf) } func (r *byteReplacer) WriteString(w io.Writer, s string) (n int, err error) { // TODO(bradfitz): use io.WriteString with slices of s, avoiding allocation. bufsize := 32 << 10 if len(s) < bufsize { bufsize = len(s) } buf := make([]byte, bufsize) for len(s) > 0 { ncopy := copy(buf, s[:]) s = s[ncopy:] for i, b := range buf[:ncopy] { if r.old[b>>5]&uint32(1<<(b&31)) != 0 { buf[i] = r.new[b] } } wn, err := w.Write(buf[:ncopy]) n += wn if err != nil { return n, err } } return n, nil } // byteStringReplacer is the implementation that's used when all the // "old" values are single ASCII bytes but the "new" values vary in // size. type byteStringReplacer struct { // old has a bit set for each old byte that should be replaced. old byteBitmap // replacement string, indexed by old byte. only valid if // corresponding old bit is set. new [256][]byte } func (r *byteStringReplacer) Replace(s string) string { newSize := 0 anyChanges := false for i := 0; i < len(s); i++ { b := s[i] if r.old[b>>5]&uint32(1<<(b&31)) != 0 { anyChanges = true newSize += len(r.new[b]) } else { newSize++ } } if !anyChanges { return s } buf := make([]byte, newSize) bi := buf for i := 0; i < len(s); i++ { b := s[i] if r.old[b>>5]&uint32(1<<(b&31)) != 0 { n := copy(bi[:], r.new[b]) bi = bi[n:] } else { bi[0] = b bi = bi[1:] } } return string(buf) } // WriteString maintains one buffer that's at most 32KB. The bytes in // s are enumerated and the buffer is filled. If it reaches its // capacity or a byte has a replacement, the buffer is flushed to w. func (r *byteStringReplacer) WriteString(w io.Writer, s string) (n int, err error) { // TODO(bradfitz): use io.WriteString with slices of s instead. bufsize := 32 << 10 if len(s) < bufsize { bufsize = len(s) } buf := make([]byte, bufsize) bi := buf[:0] for i := 0; i < len(s); i++ { b := s[i] var new []byte if r.old[b>>5]&uint32(1<<(b&31)) != 0 { new = r.new[b] } else { bi = append(bi, b) } if len(bi) == cap(bi) || (len(bi) > 0 && len(new) > 0) { nw, err := w.Write(bi) n += nw if err != nil { return n, err } bi = buf[:0] } if len(new) > 0 { nw, err := w.Write(new) n += nw if err != nil { return n, err } } } if len(bi) > 0 { nw, err := w.Write(bi) n += nw if err != nil { return n, err } } return n, nil }