/* Utility functions for reading gcda files into in-memory gcov_info structures and offline profile processing. */ /* Copyright (C) 2014 Free Software Foundation, Inc. Contributed by Rong Xu . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #define IN_GCOV_TOOL 1 #include "libgcov.h" #include "intl.h" #include "diagnostic.h" #include "version.h" #include "demangle.h" /* Borrowed from basic-block.h. */ #define RDIV(X,Y) (((X) + (Y) / 2) / (Y)) extern gcov_position_t gcov_position(); extern int gcov_is_error(); extern size_t gcov_max_filename; /* Verbose mode for debug. */ static int verbose; /* Set verbose flag. */ void gcov_set_verbose (void) { verbose = 1; } /* The following part is to read Gcda and reconstruct GCOV_INFO. */ #include "obstack.h" #include #if !defined (_WIN32) #include #else #include #endif static void tag_function (unsigned, unsigned); static void tag_blocks (unsigned, unsigned); static void tag_arcs (unsigned, unsigned); static void tag_lines (unsigned, unsigned); static void tag_counters (unsigned, unsigned); static void tag_summary (unsigned, unsigned); static void tag_module_info (unsigned, unsigned); /* The gcov_info for the first module. */ static struct gcov_info *curr_gcov_info; /* The gcov_info being processed. */ static struct gcov_info *gcov_info_head; /* This variable points to the module being processed. */ static struct gcov_module_info *curr_module_info; /* This variable contains all the functions in current module. */ static struct obstack fn_info; /* The function being processed. */ static struct gcov_fn_info *curr_fn_info; /* The number of functions seen so far. */ static unsigned num_fn_info; /* This variable contains all the counters for current module. */ static int k_ctrs_mask[GCOV_COUNTERS]; /* The kind of counters that have been seen. */ static struct gcov_ctr_info k_ctrs[GCOV_COUNTERS]; /* Number of kind of counters that have been seen. */ static int k_ctrs_types; /* The longest length of all the filenames. */ static int max_filename_len; /* Merge functions for counters. */ #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) __gcov_merge ## FN_TYPE, static gcov_merge_fn ctr_merge_functions[GCOV_COUNTERS] = { #include "gcov-counter.def" }; #undef DEF_GCOV_COUNTER /* Set the ctrs field in gcov_fn_info object FN_INFO. */ static void set_fn_ctrs (struct gcov_fn_info *fn_info) { int j = 0, i; for (i = 0; i < GCOV_COUNTERS; i++) { if (k_ctrs_mask[i] == 0) continue; fn_info->ctrs[j].num = k_ctrs[i].num; fn_info->ctrs[j].values = k_ctrs[i].values; j++; } if (k_ctrs_types == 0) k_ctrs_types = j; else gcc_assert (j == k_ctrs_types); } /* For each tag in gcda file, we have an entry here. TAG is the tag value; NAME is the tag name; and PROC is the handler function. */ typedef struct tag_format { unsigned tag; char const *name; void (*proc) (unsigned, unsigned); } tag_format_t; /* Handler table for various Tags. */ static const tag_format_t tag_table[] = { {0, "NOP", NULL}, {0, "UNKNOWN", NULL}, {0, "COUNTERS", tag_counters}, {GCOV_TAG_FUNCTION, "FUNCTION", tag_function}, {GCOV_TAG_BLOCKS, "BLOCKS", tag_blocks}, {GCOV_TAG_ARCS, "ARCS", tag_arcs}, {GCOV_TAG_LINES, "LINES", tag_lines}, {GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary}, {GCOV_TAG_PROGRAM_SUMMARY, "PROGRAM_SUMMARY", tag_summary}, {GCOV_TAG_MODULE_INFO, "MODULE INFO", tag_module_info}, {0, NULL, NULL} }; /* Handler for reading function tag. */ static void tag_function (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED) { int i; /* write out previous fn_info. */ if (num_fn_info) { set_fn_ctrs (curr_fn_info); obstack_ptr_grow (&fn_info, curr_fn_info); } /* Here we over allocate a bit, using GCOV_COUNTERS instead of the actual active counter types. */ curr_fn_info = (struct gcov_fn_info *) xcalloc (sizeof (struct gcov_fn_info) + GCOV_COUNTERS * sizeof (struct gcov_ctr_info), 1); for (i = 0; i < GCOV_COUNTERS; i++) k_ctrs[i].num = 0; k_ctrs_types = 0; curr_fn_info->key = curr_gcov_info; curr_fn_info->ident = gcov_read_unsigned (); curr_fn_info->lineno_checksum = gcov_read_unsigned (); curr_fn_info->cfg_checksum = gcov_read_unsigned (); num_fn_info++; if (verbose) fnotice (stdout, "tag one function id=%d\n", curr_fn_info->ident); } /* Handler for reading block tag. */ static void tag_blocks (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED) { /* TBD: gcov-tool currently does not handle gcno files. Assert here. */ gcc_unreachable (); } /* Handler for reading flow arc tag. */ static void tag_arcs (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED) { /* TBD: gcov-tool currently does not handle gcno files. Assert here. */ gcc_unreachable (); } /* Handler for reading line tag. */ static void tag_lines (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED) { /* TBD: gcov-tool currently does not handle gcno files. Assert here. */ gcc_unreachable (); } /* Handler for reading counters array tag with value as TAG and length of LENGTH. */ static void tag_counters (unsigned tag, unsigned length) { unsigned n_counts = GCOV_TAG_COUNTER_NUM (length); gcov_type *values; unsigned ix; unsigned tag_ix; tag_ix = GCOV_COUNTER_FOR_TAG (tag); gcc_assert (tag_ix < GCOV_COUNTERS); k_ctrs_mask [tag_ix] = 1; gcc_assert (k_ctrs[tag_ix].num == 0); k_ctrs[tag_ix].num = n_counts; k_ctrs[tag_ix].values = values = (gcov_type *) xmalloc (n_counts * sizeof (gcov_type)); gcc_assert (values); for (ix = 0; ix != n_counts; ix++) values[ix] = gcov_read_counter (); } /* Handler for reading summary tag. */ static void tag_summary (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED) { struct gcov_summary summary; gcov_read_summary (&summary); } /* This function is called at the end of reading a gcda file. It flushes the contents in curr_fn_info to gcov_info object OBJ_INFO. */ static void read_gcda_finalize (struct gcov_info *obj_info) { int i; set_fn_ctrs (curr_fn_info); obstack_ptr_grow (&fn_info, curr_fn_info); /* We set the following fields: merge, n_functions, and functions. */ obj_info->n_functions = num_fn_info; obj_info->functions = (const struct gcov_fn_info**) obstack_finish (&fn_info); /* wrap all the counter array. */ for (i=0; i< GCOV_COUNTERS; i++) { if (k_ctrs_mask[i]) obj_info->merge[i] = ctr_merge_functions[i]; } obj_info->mod_info = curr_module_info; } extern void gcov_read_module_info (struct gcov_module_info *mod_info, gcov_unsigned_t len); /* Substitute string is of this format: old_sub1:new_sub1[,old_sub2:new_sub2] Note that we only apply the substutution ONE time, for the first match. */ static const char *substitute_string; /* A global function to set the substitute string. */ void lipo_set_substitute_string (const char *str) { char *sub_dup = xstrdup (str); char *cur_sub = sub_dup; /* First check if the str is in the right form. Dup the string and split it into tokens with ',' and ':' as the delimiters. */ do { char *new_str; char *next = strchr (cur_sub, ','); if (next) *next++ = '\0'; new_str = strchr (cur_sub, ':'); if (!new_str) { fprintf (stderr, "Warning: Skip invalid substibution string:%s\n", str); free (sub_dup); return; } *new_str++ = '\0'; cur_sub = next; } while (cur_sub); free (sub_dup); substitute_string = str; } /* Replace the first occurance of CUT_STR to NEW_STR in INPUT_STR. */ static char * lipo_process_substitute_string_1 (char *input_str, const char *cur_str, const char *new_str) { char *p; if (!input_str || !cur_str || !new_str) return input_str; if ((p = strstr (input_str, cur_str)) != NULL) { char *t; if (verbose) printf ("Substitute: %s \n", input_str); t = (char*) xmalloc (strlen (input_str) + 1 + strlen (new_str) - strlen (cur_str)); *p = 0; strcpy (t, input_str); strcat (t, new_str); strcat (t, p + strlen (cur_str)); if (verbose) printf (" --> %s\n", t); return t; } return input_str; } /* Parse the substitute string and apply to the INPUT_STR. */ static char * lipo_process_substitute_string (char *input_str) { char *sub_dup, *cur_sub, *ret; if (substitute_string == NULL) return input_str; sub_dup = xstrdup (substitute_string); cur_sub = sub_dup; ret = input_str; /* Dup the string and split it into tokens with ',' and ':' as the delimiters. */ do { char *new_str, *new_input; char *next = strchr (cur_sub, ','); if (next) *next++ = '\0'; new_str = strchr (cur_sub, ':'); gcc_assert (new_str); *new_str++ = '\0'; new_input = ret; ret = lipo_process_substitute_string_1 (new_input, cur_sub, new_str); if (ret != new_input) free (new_input); cur_sub = next; } while (cur_sub); free (sub_dup); return ret; } /* This function reads module_info from a gcda file. */ static void tag_module_info (unsigned tag ATTRIBUTE_UNUSED, unsigned length) { struct gcov_module_info* mod_info; mod_info = (struct gcov_module_info *) xmalloc ((length + 2) * sizeof (gcov_unsigned_t)); gcov_read_module_info (mod_info, length); if (mod_info->is_primary) { mod_info->da_filename = lipo_process_substitute_string (mod_info->da_filename); curr_module_info = mod_info; } else free (mod_info); } /* Read the content of a gcda file FILENAME, and return a gcov_info data structure. Program level summary CURRENT_SUMMARY will also be updated. */ static struct gcov_info * read_gcda_file (const char *filename) { unsigned tags[4]; unsigned depth = 0; unsigned magic, version; struct gcov_info *obj_info; int i, len; char *str_dup; for (i=0; i< GCOV_COUNTERS; i++) k_ctrs_mask[i] = 0; k_ctrs_types = 0; if (!gcov_open (filename)) { fnotice (stderr, "%s:cannot open\n", filename); return NULL; } /* Read magic. */ magic = gcov_read_unsigned (); if (magic != GCOV_DATA_MAGIC) { fnotice (stderr, "%s:not a gcov data file\n", filename); gcov_close (); return NULL; } /* Read version. */ version = gcov_read_unsigned (); if (version != GCOV_VERSION) { fnotice (stderr, "%s:incorrect gcov version %d vs %d \n", filename, version, GCOV_VERSION); gcov_close (); return NULL; } /* Instantiate a gcov_info object. */ curr_gcov_info = obj_info = (struct gcov_info *) xcalloc (sizeof (struct gcov_info) + sizeof (struct gcov_ctr_info) * GCOV_COUNTERS, 1); obj_info->version = version; obstack_init (&fn_info); num_fn_info = 0; curr_fn_info = 0; curr_module_info = 0; str_dup = lipo_process_substitute_string (xstrdup (filename)); obj_info->filename = str_dup; if ((len = strlen (str_dup)) > max_filename_len) max_filename_len = len; /* Read stamp. */ obj_info->stamp = gcov_read_unsigned (); while (1) { gcov_position_t base; unsigned tag, length; tag_format_t const *format; unsigned tag_depth; int error; unsigned mask; tag = gcov_read_unsigned (); if (!tag) break; length = gcov_read_unsigned (); base = gcov_position (); mask = GCOV_TAG_MASK (tag) >> 1; for (tag_depth = 4; mask; mask >>= 8) { if (((mask & 0xff) != 0xff)) { warning (0, "%s:tag `%x' is invalid\n", filename, tag); break; } tag_depth--; } for (format = tag_table; format->name; format++) if (format->tag == tag) goto found; format = &tag_table[GCOV_TAG_IS_COUNTER (tag) ? 2 : 1]; found:; if (tag) { if (depth && depth < tag_depth) { if (!GCOV_TAG_IS_SUBTAG (tags[depth - 1], tag)) warning (0, "%s:tag `%x' is incorrectly nested\n", filename, tag); } depth = tag_depth; tags[depth - 1] = tag; } if (format->proc) { unsigned long actual_length; (*format->proc) (tag, length); actual_length = gcov_position () - base; if (actual_length > length) warning (0, "%s:record size mismatch %lu bytes overread\n", filename, actual_length - length); else if (length > actual_length) warning (0, "%s:record size mismatch %lu bytes unread\n", filename, length - actual_length); } gcov_sync (base, length); if ((error = gcov_is_error ())) { warning (0, error < 0 ? "%s:counter overflow at %lu\n" : "%s:read error at %lu\n", filename, (long unsigned) gcov_position ()); break; } } read_gcda_finalize (obj_info); gcov_close (); return obj_info; } extern int is_module_available (const char *, unsigned *, int); /* If only use the modules in the modu_list. */ static int flag_use_modu_list; /* Set to use only the modules in the modu_list file. */ void set_use_modu_list (void) { flag_use_modu_list = 1; } /* Handler to open and read a gcda file FILENAME. */ static int read_file_handler (const char *filename) { int filename_len; int suffix_len; struct gcov_info *obj_info; filename_len = strlen (filename); suffix_len = strlen (GCOV_DATA_SUFFIX); if (filename_len <= suffix_len) return 0; if (strcmp(filename + filename_len - suffix_len, GCOV_DATA_SUFFIX)) return 0; if (verbose) fnotice (stderr, "reading file: %s\n", filename); obj_info = read_gcda_file (filename); if (!obj_info) return 0; if (obj_info->mod_info) { unsigned mod_id = obj_info->mod_info->ident; int create = (flag_use_modu_list ? 0 : 1); if (!is_module_available (obj_info->mod_info->source_filename, &mod_id, create)) { if (verbose) fprintf (stderr, "warning: module %s (%d) is not avail\n", obj_info->mod_info->source_filename, mod_id); return 0; } } obj_info->next = gcov_info_head; gcov_info_head = obj_info; return 0; } #if !defined(_WIN32) /* This will be called by ftw(). It opens and reads a gcda file FILENAME. Return a non-zero value to stop the tree walk. */ static int ftw_read_file (const char *filename, const struct stat *status ATTRIBUTE_UNUSED, int type) { /* Only read regular files. */ if (type != FTW_F) return 0; return read_file_handler (filename); } #else /* _WIN32 */ /* Funtion to find all the gcda files recursively in DIR. */ static void myftw (char *dir, char* pattern, int (*handler)(const char *)) { char buffer[MAX_PATH]; WIN32_FIND_DATA filedata; HANDLE ret; /* Process the subdirectories. */ sprintf (buffer, "%s\\*", dir); ret = FindFirstFile (buffer, &filedata); if(ret != INVALID_HANDLE_VALUE) { do { if(filedata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) { if (filedata.cFileName[0] == '.') continue; sprintf (buffer, "%s\\%s", dir, filedata.cFileName); myftw (buffer, pattern, handler); } } while(FindNextFile (ret, &filedata)); FindClose(ret); } /* Find the matching files. */ sprintf (buffer, "%s\\%s", dir, pattern); ret = FindFirstFile (buffer, &filedata); if(ret != INVALID_HANDLE_VALUE) { do { if(!(filedata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) { /* Apply action. */ (*handler) (buffer); } } while(FindNextFile (ret, &filedata)); FindClose (ret); } } #endif /* Source profile directory name. */ static const char *source_profile_dir; /* Return Source profile directory name. */ const char * get_source_profile_dir (void) { return source_profile_dir; } /* Initializer for reading a profile dir. */ static inline void read_profile_dir_init (void) { gcov_info_head = 0; } /* Driver for read a profile directory and convert into gcov_info list in memory. Return NULL on error, Return the head of gcov_info list on success. Note the file static variable GCOV_MAX_FILENAME is also set. */ struct gcov_info * gcov_read_profile_dir (const char* dir_name, int recompute_summary ATTRIBUTE_UNUSED) { char *pwd; int ret; read_profile_dir_init (); if (access (dir_name, R_OK) != 0) { fnotice (stderr, "cannot access directory %s\n", dir_name); return NULL; } pwd = getcwd (NULL, 0); gcc_assert (pwd); ret = chdir (dir_name); if (ret !=0) { fnotice (stderr, "%s is not a directory\n", dir_name); return NULL; } source_profile_dir = getcwd (NULL, 0); #if !defined(_WIN32) ftw (".", ftw_read_file, 50); #else myftw (".", "*.gcda",read_file_handler); #endif ret = chdir (pwd); free (pwd); /* gcov_max_filename is defined in libgcov.c that records the max filename len. We need to set it here to allocate the array for dumping. */ gcov_max_filename = max_filename_len; return gcov_info_head;; } /* This part of the code is to merge profile counters. These variables are set in merge_wrapper and to be used by global function gcov_read_counter_mem() and gcov_get_merge_weight. */ /* We save the counter value address to this variable. */ static gcov_type *gcov_value_buf; /* The number of counter values to be read by current merging. */ static gcov_unsigned_t gcov_value_buf_size; /* The index of counter values being read. */ static gcov_unsigned_t gcov_value_buf_pos; /* The weight of current merging. */ static unsigned gcov_merge_weight; /* Read a counter value from gcov_value_buf array. */ gcov_type gcov_read_counter_mem (void) { gcov_type ret; gcc_assert (gcov_value_buf_pos < gcov_value_buf_size); ret = *(gcov_value_buf + gcov_value_buf_pos); ++gcov_value_buf_pos; return ret; } /* Return the recorded merge weight. */ unsigned gcov_get_merge_weight (void) { return gcov_merge_weight; } /* A wrapper function for merge functions. It sets up the value buffer and weights and then calls the merge function. */ static void merge_wrapper (gcov_merge_fn f, gcov_type *v1, gcov_unsigned_t n, gcov_type *v2, unsigned w) { gcov_value_buf = v2; gcov_value_buf_pos = 0; gcov_value_buf_size = n; gcov_merge_weight = w; (*f) (v1, n); } /* Offline tool to manipulate profile data. This tool targets on matched profiles. But it has some tolerance on unmatched profiles. When merging p1 to p2 (p2 is the dst), * m.gcda in p1 but not in p2: append m.gcda to p2 with specified weight; emit warning * m.gcda in p2 but not in p1: keep m.gcda in p2 and multiply by specified weight; emit warning. * m.gcda in both p1 and p2: ** p1->m.gcda->f checksum matches p2->m.gcda->f: simple merge. ** p1->m.gcda->f checksum does not matches p2->m.gcda->f: keep p2->m.gcda->f and drop p1->m.gcda->f. A warning is emitted. */ /* Add INFO2's counter to INFO1, multiplying by weight W. */ static int gcov_merge (struct gcov_info *info1, struct gcov_info *info2, int w) { unsigned f_ix; unsigned n_functions = info1->n_functions; int has_mismatch = 0; gcc_assert (info2->n_functions == n_functions); for (f_ix = 0; f_ix < n_functions; f_ix++) { unsigned t_ix; const struct gcov_fn_info *gfi_ptr1 = info1->functions[f_ix]; const struct gcov_fn_info *gfi_ptr2 = info2->functions[f_ix]; const struct gcov_ctr_info *ci_ptr1, *ci_ptr2; if (!gfi_ptr1 || gfi_ptr1->key != info1) continue; if (!gfi_ptr2 || gfi_ptr2->key != info2) continue; if (gfi_ptr1->cfg_checksum != gfi_ptr2->cfg_checksum) { fnotice (stderr, "in %s, cfg_checksum mismatch, skipping\n", info1->filename); has_mismatch = 1; continue; } ci_ptr1 = gfi_ptr1->ctrs; ci_ptr2 = gfi_ptr2->ctrs; for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++) { gcov_merge_fn merge1 = info1->merge[t_ix]; gcov_merge_fn merge2 = info2->merge[t_ix]; gcc_assert (merge1 == merge2); if (!merge1) continue; gcc_assert (ci_ptr1->num == ci_ptr2->num); merge_wrapper (merge1, ci_ptr1->values, ci_ptr1->num, ci_ptr2->values, w); ci_ptr1++; ci_ptr2++; } } return has_mismatch; } /* Find and return the match gcov_info object for INFO from ARRAY. SIZE is the length of ARRAY. Return NULL if there is no match. */ static struct gcov_info * find_match_gcov_info (struct gcov_info **array, int size, struct gcov_info *info) { struct gcov_info *gi_ptr; struct gcov_info *ret = NULL; int i; for (i = 0; i < size; i++) { gi_ptr = array[i]; if (gi_ptr == 0) continue; /* For LIPO, it's easy as we can just match the module_id. */ if (gi_ptr->mod_info && info->mod_info) { if (gi_ptr->mod_info->ident == info->mod_info->ident) { ret = gi_ptr; array[i] = 0; break; } } else /* For FDO, we have to match the name. This can be expensive. Maybe we should use hash here. */ if (!strcmp (gi_ptr->filename, info->filename)) { ret = gi_ptr; array[i] = 0; break; } } if (ret && ret->n_functions != info->n_functions) { fnotice (stderr, "mismatched profiles in %s (%d functions" " vs %d functions)\n", ret->filename, ret->n_functions, info->n_functions); ret = NULL; } return ret; } /* Merge the list of gcov_info objects from SRC_PROFILE to TGT_PROFILE. Return 0 on success: without mismatch. Reutrn 1 on error. */ int gcov_profile_merge (struct gcov_info *tgt_profile, struct gcov_info *src_profile, int w1, int w2) { struct gcov_info *gi_ptr; struct gcov_info **tgt_infos; struct gcov_info *tgt_tail; struct gcov_info **in_src_not_tgt; unsigned tgt_cnt = 0, src_cnt = 0; unsigned unmatch_info_cnt = 0; unsigned int i; for (gi_ptr = tgt_profile; gi_ptr; gi_ptr = gi_ptr->next) tgt_cnt++; for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next) src_cnt++; tgt_infos = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *) * tgt_cnt); gcc_assert (tgt_infos); in_src_not_tgt = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *) * src_cnt); gcc_assert (in_src_not_tgt); for (gi_ptr = tgt_profile, i = 0; gi_ptr; gi_ptr = gi_ptr->next, i++) tgt_infos[i] = gi_ptr; tgt_tail = tgt_infos[tgt_cnt - 1]; /* First pass on tgt_profile, we multiply w1 to all counters. */ if (w1 > 1) { for (i = 0; i < tgt_cnt; i++) gcov_merge (tgt_infos[i], tgt_infos[i], w1-1); } /* Second pass, add src_profile to the tgt_profile. */ for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next) { struct gcov_info *gi_ptr1; gi_ptr1 = find_match_gcov_info (tgt_infos, tgt_cnt, gi_ptr); if (gi_ptr1 == NULL) { in_src_not_tgt[unmatch_info_cnt++] = gi_ptr; continue; } gcov_merge (gi_ptr1, gi_ptr, w2); } /* For modules in src but not in tgt. We adjust the counter and append. */ for (i = 0; i < unmatch_info_cnt; i++) { gi_ptr = in_src_not_tgt[i]; gcov_merge (gi_ptr, gi_ptr, w2 - 1); tgt_tail->next = gi_ptr; tgt_tail = gi_ptr; } return 0; } typedef gcov_type (*counter_op_fn) (gcov_type, void*, void*); /* Performing FN upon arc counters. */ static void __gcov_add_counter_op (gcov_type *counters, unsigned n_counters, counter_op_fn fn, void *data1, void *data2) { for (; n_counters; counters++, n_counters--) { gcov_type val = *counters; *counters = fn(val, data1, data2); } } /* Performing FN upon ior counters. */ static void __gcov_ior_counter_op (gcov_type *counters ATTRIBUTE_UNUSED, unsigned n_counters ATTRIBUTE_UNUSED, counter_op_fn fn ATTRIBUTE_UNUSED, void *data1 ATTRIBUTE_UNUSED, void *data2 ATTRIBUTE_UNUSED) { /* Do nothing. */ } /* Performing FN upon time-profile counters. */ static void __gcov_time_profile_counter_op (gcov_type *counters ATTRIBUTE_UNUSED, unsigned n_counters ATTRIBUTE_UNUSED, counter_op_fn fn ATTRIBUTE_UNUSED, void *data1 ATTRIBUTE_UNUSED, void *data2 ATTRIBUTE_UNUSED) { /* Do nothing. */ } /* Performaing FN upon delta counters. */ static void __gcov_delta_counter_op (gcov_type *counters, unsigned n_counters, counter_op_fn fn, void *data1, void *data2) { unsigned i, n_measures; gcc_assert (!(n_counters % 4)); n_measures = n_counters / 4; for (i = 0; i < n_measures; i++, counters += 4) { counters[2] = fn (counters[2], data1, data2); counters[3] = fn (counters[3], data1, data2); } } /* Performing FN upon single counters. */ static void __gcov_single_counter_op (gcov_type *counters, unsigned n_counters, counter_op_fn fn, void *data1, void *data2) { unsigned i, n_measures; gcc_assert (!(n_counters % 3)); n_measures = n_counters / 3; for (i = 0; i < n_measures; i++, counters += 3) { counters[1] = fn (counters[1], data1, data2); counters[2] = fn (counters[2], data1, data2); } } /* Performing FN upon indirect-call profile counters. */ static void __gcov_icall_topn_counter_op (gcov_type *counters, unsigned n_counters, counter_op_fn fn, void *data1, void *data2) { unsigned i; gcc_assert (!(n_counters % GCOV_ICALL_TOPN_NCOUNTS)); for (i = 0; i < n_counters; i += GCOV_ICALL_TOPN_NCOUNTS) { unsigned j; gcov_type *value_array = &counters[i + 1]; for (j = 0; j < GCOV_ICALL_TOPN_NCOUNTS - 1; j += 2) value_array[j + 1] = fn (value_array[j + 1], data1, data2); } } /* Performing FN upon direct-call profile counters. */ static void __gcov_dc_counter_op (gcov_type *counters, unsigned n_counters, counter_op_fn fn, void *data1, void *data2) { unsigned i; gcc_assert (!(n_counters % 2)); for (i = 0; i < n_counters; i += 2) counters[i + 1] = fn (counters[i + 1], data1, data2); } /* Scaling the counter value V by multiplying *(float*) DATA1. */ static gcov_type fp_scale (gcov_type v, void *data1, void *data2 ATTRIBUTE_UNUSED) { float f = *(float *) data1; return (gcov_type) (v * f); } /* Scaling the counter value V by multiplying DATA2/DATA1. */ static gcov_type int_scale (gcov_type v, void *data1, void *data2) { int n = *(int *) data1; int d = *(int *) data2; return (gcov_type) ( RDIV (v,d) * n); } /* Type of function used to process counters. */ typedef void (*gcov_counter_fn) (gcov_type *, gcov_unsigned_t, counter_op_fn, void *, void *); /* Function array to process profile counters. */ #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) \ __gcov ## FN_TYPE ## _counter_op, static gcov_counter_fn ctr_functions[GCOV_COUNTERS] = { #include "gcov-counter.def" }; #undef DEF_GCOV_COUNTER /* Driver for scaling profile counters. */ int gcov_profile_scale (struct gcov_info *profile, float scale_factor, int n, int d) { struct gcov_info *gi_ptr; unsigned f_ix; if (verbose) fnotice (stdout, "scale_factor is %f or %d/%d\n", scale_factor, n, d); /* Scaling the counters. */ for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next) for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++) { unsigned t_ix; const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix]; const struct gcov_ctr_info *ci_ptr; if (!gfi_ptr || gfi_ptr->key != gi_ptr) continue; ci_ptr = gfi_ptr->ctrs; for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++) { gcov_merge_fn merge = gi_ptr->merge[t_ix]; if (!merge) continue; if (d == 0) (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num, fp_scale, &scale_factor, NULL); else (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num, int_scale, &n, &d); ci_ptr++; } } return 0; } /* Driver to normalize profile counters. */ int gcov_profile_normalize (struct gcov_info *profile, gcov_type max_val) { struct gcov_info *gi_ptr; gcov_type curr_max_val = 0; unsigned f_ix; unsigned int i; float scale_factor; /* Find the largest count value. */ for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next) for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++) { unsigned t_ix; const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix]; const struct gcov_ctr_info *ci_ptr; if (!gfi_ptr || gfi_ptr->key != gi_ptr) continue; ci_ptr = gfi_ptr->ctrs; for (t_ix = 0; t_ix < 1; t_ix++) { for (i = 0; i < ci_ptr->num; i++) if (ci_ptr->values[i] > curr_max_val) curr_max_val = ci_ptr->values[i]; ci_ptr++; } } scale_factor = (float)max_val / curr_max_val; #if !defined (_WIN32) if (verbose) fnotice (stdout, "max_val is %lld\n", (long long) curr_max_val); #endif return gcov_profile_scale (profile, scale_factor, 0, 0); }