/* -*- Mode: Asm -*- */ ;; Copyright (C) 2012-2014 Free Software Foundation, Inc. ;; Contributed by Sean D'Epagnier (sean@depagnier.com) ;; Georg-Johann Lay (avr@gjlay.de) ;; This file is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by the ;; Free Software Foundation; either version 3, or (at your option) any ;; later version. ;; In addition to the permissions in the GNU General Public License, the ;; Free Software Foundation gives you unlimited permission to link the ;; compiled version of this file into combinations with other programs, ;; and to distribute those combinations without any restriction coming ;; from the use of this file. (The General Public License restrictions ;; do apply in other respects; for example, they cover modification of ;; the file, and distribution when not linked into a combine ;; executable.) ;; This file is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with this program; see the file COPYING. If not, write to ;; the Free Software Foundation, 51 Franklin Street, Fifth Floor, ;; Boston, MA 02110-1301, USA. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Fixed point library routines for AVR ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; .section .text.libgcc.fixed, "ax", @progbits ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Conversions to float ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #if defined (L_fractqqsf) DEFUN __fractqqsf ;; Move in place for SA -> SF conversion clr r22 mov r23, r24 ;; Sign-extend lsl r24 sbc r24, r24 mov r25, r24 XJMP __fractsasf ENDF __fractqqsf #endif /* L_fractqqsf */ #if defined (L_fractuqqsf) DEFUN __fractuqqsf ;; Move in place for USA -> SF conversion clr r22 mov r23, r24 ;; Zero-extend clr r24 clr r25 XJMP __fractusasf ENDF __fractuqqsf #endif /* L_fractuqqsf */ #if defined (L_fracthqsf) DEFUN __fracthqsf ;; Move in place for SA -> SF conversion wmov 22, 24 ;; Sign-extend lsl r25 sbc r24, r24 mov r25, r24 XJMP __fractsasf ENDF __fracthqsf #endif /* L_fracthqsf */ #if defined (L_fractuhqsf) DEFUN __fractuhqsf ;; Move in place for USA -> SF conversion wmov 22, 24 ;; Zero-extend clr r24 clr r25 XJMP __fractusasf ENDF __fractuhqsf #endif /* L_fractuhqsf */ #if defined (L_fracthasf) DEFUN __fracthasf ;; Move in place for SA -> SF conversion clr r22 mov r23, r24 mov r24, r25 ;; Sign-extend lsl r25 sbc r25, r25 XJMP __fractsasf ENDF __fracthasf #endif /* L_fracthasf */ #if defined (L_fractuhasf) DEFUN __fractuhasf ;; Move in place for USA -> SF conversion clr r22 mov r23, r24 mov r24, r25 ;; Zero-extend clr r25 XJMP __fractusasf ENDF __fractuhasf #endif /* L_fractuhasf */ #if defined (L_fractsqsf) DEFUN __fractsqsf XCALL __floatsisf ;; Divide non-zero results by 2^31 to move the ;; decimal point into place tst r25 breq 0f subi r24, exp_lo (31) sbci r25, exp_hi (31) 0: ret ENDF __fractsqsf #endif /* L_fractsqsf */ #if defined (L_fractusqsf) DEFUN __fractusqsf XCALL __floatunsisf ;; Divide non-zero results by 2^32 to move the ;; decimal point into place cpse r25, __zero_reg__ subi r25, exp_hi (32) ret ENDF __fractusqsf #endif /* L_fractusqsf */ #if defined (L_fractsasf) DEFUN __fractsasf XCALL __floatsisf ;; Divide non-zero results by 2^15 to move the ;; decimal point into place tst r25 breq 0f subi r24, exp_lo (15) sbci r25, exp_hi (15) 0: ret ENDF __fractsasf #endif /* L_fractsasf */ #if defined (L_fractusasf) DEFUN __fractusasf XCALL __floatunsisf ;; Divide non-zero results by 2^16 to move the ;; decimal point into place cpse r25, __zero_reg__ subi r25, exp_hi (16) ret ENDF __fractusasf #endif /* L_fractusasf */ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Conversions from float ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #if defined (L_fractsfqq) DEFUN __fractsfqq ;; Multiply with 2^{24+7} to get a QQ result in r25 subi r24, exp_lo (-31) sbci r25, exp_hi (-31) XCALL __fixsfsi mov r24, r25 ret ENDF __fractsfqq #endif /* L_fractsfqq */ #if defined (L_fractsfuqq) DEFUN __fractsfuqq ;; Multiply with 2^{24+8} to get a UQQ result in r25 subi r25, exp_hi (-32) XCALL __fixunssfsi mov r24, r25 ret ENDF __fractsfuqq #endif /* L_fractsfuqq */ #if defined (L_fractsfha) DEFUN __fractsfha ;; Multiply with 2^{16+7} to get a HA result in r25:r24 subi r24, exp_lo (-23) sbci r25, exp_hi (-23) XJMP __fixsfsi ENDF __fractsfha #endif /* L_fractsfha */ #if defined (L_fractsfuha) DEFUN __fractsfuha ;; Multiply with 2^24 to get a UHA result in r25:r24 subi r25, exp_hi (-24) XJMP __fixunssfsi ENDF __fractsfuha #endif /* L_fractsfuha */ #if defined (L_fractsfhq) FALIAS __fractsfsq DEFUN __fractsfhq ;; Multiply with 2^{16+15} to get a HQ result in r25:r24 ;; resp. with 2^31 to get a SQ result in r25:r22 subi r24, exp_lo (-31) sbci r25, exp_hi (-31) XJMP __fixsfsi ENDF __fractsfhq #endif /* L_fractsfhq */ #if defined (L_fractsfuhq) FALIAS __fractsfusq DEFUN __fractsfuhq ;; Multiply with 2^{16+16} to get a UHQ result in r25:r24 ;; resp. with 2^32 to get a USQ result in r25:r22 subi r25, exp_hi (-32) XJMP __fixunssfsi ENDF __fractsfuhq #endif /* L_fractsfuhq */ #if defined (L_fractsfsa) DEFUN __fractsfsa ;; Multiply with 2^15 to get a SA result in r25:r22 subi r24, exp_lo (-15) sbci r25, exp_hi (-15) XJMP __fixsfsi ENDF __fractsfsa #endif /* L_fractsfsa */ #if defined (L_fractsfusa) DEFUN __fractsfusa ;; Multiply with 2^16 to get a USA result in r25:r22 subi r25, exp_hi (-16) XJMP __fixunssfsi ENDF __fractsfusa #endif /* L_fractsfusa */ ;; For multiplication the functions here are called directly from ;; avr-fixed.md instead of using the standard libcall mechanisms. ;; This can make better code because GCC knows exactly which ;; of the call-used registers (not all of them) are clobbered. */ /******************************************************* Fractional Multiplication 8 x 8 without MUL *******************************************************/ #if defined (L_mulqq3) && !defined (__AVR_HAVE_MUL__) ;;; R23 = R24 * R25 ;;; Clobbers: __tmp_reg__, R22, R24, R25 ;;; Rounding: ??? DEFUN __mulqq3 XCALL __fmuls ;; TR 18037 requires that (-1) * (-1) does not overflow ;; The only input that can produce -1 is (-1)^2. dec r23 brvs 0f inc r23 0: ret ENDF __mulqq3 #endif /* L_mulqq3 && ! HAVE_MUL */ /******************************************************* Fractional Multiply .16 x .16 with and without MUL *******************************************************/ #if defined (L_mulhq3) ;;; Same code with and without MUL, but the interfaces differ: ;;; no MUL: (R25:R24) = (R22:R23) * (R24:R25) ;;; Clobbers: ABI, called by optabs ;;; MUL: (R25:R24) = (R19:R18) * (R27:R26) ;;; Clobbers: __tmp_reg__, R22, R23 ;;; Rounding: -0.5 LSB <= error <= 0.5 LSB DEFUN __mulhq3 XCALL __mulhisi3 ;; Shift result into place lsl r23 rol r24 rol r25 brvs 1f ;; Round sbrc r23, 7 adiw r24, 1 ret 1: ;; Overflow. TR 18037 requires (-1)^2 not to overflow ldi r24, lo8 (0x7fff) ldi r25, hi8 (0x7fff) ret ENDF __mulhq3 #endif /* defined (L_mulhq3) */ #if defined (L_muluhq3) ;;; Same code with and without MUL, but the interfaces differ: ;;; no MUL: (R25:R24) *= (R23:R22) ;;; Clobbers: ABI, called by optabs ;;; MUL: (R25:R24) = (R19:R18) * (R27:R26) ;;; Clobbers: __tmp_reg__, R22, R23 ;;; Rounding: -0.5 LSB < error <= 0.5 LSB DEFUN __muluhq3 XCALL __umulhisi3 ;; Round sbrc r23, 7 adiw r24, 1 ret ENDF __muluhq3 #endif /* L_muluhq3 */ /******************************************************* Fixed Multiply 8.8 x 8.8 with and without MUL *******************************************************/ #if defined (L_mulha3) ;;; Same code with and without MUL, but the interfaces differ: ;;; no MUL: (R25:R24) = (R22:R23) * (R24:R25) ;;; Clobbers: ABI, called by optabs ;;; MUL: (R25:R24) = (R19:R18) * (R27:R26) ;;; Clobbers: __tmp_reg__, R22, R23 ;;; Rounding: -0.5 LSB <= error <= 0.5 LSB DEFUN __mulha3 XCALL __mulhisi3 lsl r22 rol r23 rol r24 XJMP __muluha3_round ENDF __mulha3 #endif /* L_mulha3 */ #if defined (L_muluha3) ;;; Same code with and without MUL, but the interfaces differ: ;;; no MUL: (R25:R24) *= (R23:R22) ;;; Clobbers: ABI, called by optabs ;;; MUL: (R25:R24) = (R19:R18) * (R27:R26) ;;; Clobbers: __tmp_reg__, R22, R23 ;;; Rounding: -0.5 LSB < error <= 0.5 LSB DEFUN __muluha3 XCALL __umulhisi3 XJMP __muluha3_round ENDF __muluha3 #endif /* L_muluha3 */ #if defined (L_muluha3_round) DEFUN __muluha3_round ;; Shift result into place mov r25, r24 mov r24, r23 ;; Round sbrc r22, 7 adiw r24, 1 ret ENDF __muluha3_round #endif /* L_muluha3_round */ /******************************************************* Fixed Multiplication 16.16 x 16.16 *******************************************************/ ;; Bits outside the result (below LSB), used in the signed version #define GUARD __tmp_reg__ #if defined (__AVR_HAVE_MUL__) ;; Multiplier #define A0 16 #define A1 A0+1 #define A2 A1+1 #define A3 A2+1 ;; Multiplicand #define B0 20 #define B1 B0+1 #define B2 B1+1 #define B3 B2+1 ;; Result #define C0 24 #define C1 C0+1 #define C2 C1+1 #define C3 C2+1 #if defined (L_mulusa3) ;;; (C3:C0) = (A3:A0) * (B3:B0) DEFUN __mulusa3 set ;; Fallthru ENDF __mulusa3 ;;; Round for last digit iff T = 1 ;;; Return guard bits in GUARD (__tmp_reg__). ;;; Rounding, T = 0: -1.0 LSB < error <= 0 LSB ;;; Rounding, T = 1: -0.5 LSB < error <= 0.5 LSB DEFUN __mulusa3_round ;; Some of the MUL instructions have LSBs outside the result. ;; Don't ignore these LSBs in order to tame rounding error. ;; Use C2/C3 for these LSBs. clr C0 clr C1 mul A0, B0 $ movw C2, r0 mul A1, B0 $ add C3, r0 $ adc C0, r1 mul A0, B1 $ add C3, r0 $ adc C0, r1 $ rol C1 ;; Round if T = 1. Store guarding bits outside the result for rounding ;; and left-shift by the signed version (function below). brtc 0f sbrc C3, 7 adiw C0, 1 0: push C3 ;; The following MULs don't have LSBs outside the result. ;; C2/C3 is the high part. mul A0, B2 $ add C0, r0 $ adc C1, r1 $ sbc C2, C2 mul A1, B1 $ add C0, r0 $ adc C1, r1 $ sbci C2, 0 mul A2, B0 $ add C0, r0 $ adc C1, r1 $ sbci C2, 0 neg C2 mul A0, B3 $ add C1, r0 $ adc C2, r1 $ sbc C3, C3 mul A1, B2 $ add C1, r0 $ adc C2, r1 $ sbci C3, 0 mul A2, B1 $ add C1, r0 $ adc C2, r1 $ sbci C3, 0 mul A3, B0 $ add C1, r0 $ adc C2, r1 $ sbci C3, 0 neg C3 mul A1, B3 $ add C2, r0 $ adc C3, r1 mul A2, B2 $ add C2, r0 $ adc C3, r1 mul A3, B1 $ add C2, r0 $ adc C3, r1 mul A2, B3 $ add C3, r0 mul A3, B2 $ add C3, r0 ;; Guard bits used in the signed version below. pop GUARD clr __zero_reg__ ret ENDF __mulusa3_round #endif /* L_mulusa3 */ #if defined (L_mulsa3) ;;; (C3:C0) = (A3:A0) * (B3:B0) ;;; Clobbers: __tmp_reg__, T ;;; Rounding: -0.5 LSB <= error <= 0.5 LSB DEFUN __mulsa3 clt XCALL __mulusa3_round ;; A posteriori sign extension of the operands tst B3 brpl 1f sub C2, A0 sbc C3, A1 1: sbrs A3, 7 rjmp 2f sub C2, B0 sbc C3, B1 2: ;; Shift 1 bit left to adjust for 15 fractional bits lsl GUARD rol C0 rol C1 rol C2 rol C3 ;; Round last digit lsl GUARD adc C0, __zero_reg__ adc C1, __zero_reg__ adc C2, __zero_reg__ adc C3, __zero_reg__ ret ENDF __mulsa3 #endif /* L_mulsa3 */ #undef A0 #undef A1 #undef A2 #undef A3 #undef B0 #undef B1 #undef B2 #undef B3 #undef C0 #undef C1 #undef C2 #undef C3 #else /* __AVR_HAVE_MUL__ */ #define A0 18 #define A1 A0+1 #define A2 A0+2 #define A3 A0+3 #define B0 22 #define B1 B0+1 #define B2 B0+2 #define B3 B0+3 #define C0 22 #define C1 C0+1 #define C2 C0+2 #define C3 C0+3 ;; __tmp_reg__ #define CC0 0 ;; __zero_reg__ #define CC1 1 #define CC2 16 #define CC3 17 #define AA0 26 #define AA1 AA0+1 #define AA2 30 #define AA3 AA2+1 #if defined (L_mulsa3) ;;; (R25:R22) *= (R21:R18) ;;; Clobbers: ABI, called by optabs ;;; Rounding: -1 LSB <= error <= 1 LSB DEFUN __mulsa3 push B0 push B1 push B3 clt XCALL __mulusa3_round pop r30 ;; sign-extend B bst r30, 7 brtc 1f ;; A1, A0 survived in R27:R26 sub C2, AA0 sbc C3, AA1 1: pop AA1 ;; B1 pop AA0 ;; B0 ;; sign-extend A. A3 survived in R31 bst AA3, 7 brtc 2f sub C2, AA0 sbc C3, AA1 2: ;; Shift 1 bit left to adjust for 15 fractional bits lsl GUARD rol C0 rol C1 rol C2 rol C3 ;; Round last digit lsl GUARD adc C0, __zero_reg__ adc C1, __zero_reg__ adc C2, __zero_reg__ adc C3, __zero_reg__ ret ENDF __mulsa3 #endif /* L_mulsa3 */ #if defined (L_mulusa3) ;;; (R25:R22) *= (R21:R18) ;;; Clobbers: ABI, called by optabs ;;; Rounding: -1 LSB <= error <= 1 LSB DEFUN __mulusa3 set ;; Fallthru ENDF __mulusa3 ;;; A[] survives in 26, 27, 30, 31 ;;; Also used by __mulsa3 with T = 0 ;;; Round if T = 1 ;;; Return Guard bits in GUARD (__tmp_reg__), used by signed version. DEFUN __mulusa3_round push CC2 push CC3 ; clear result clr __tmp_reg__ wmov CC2, CC0 ; save multiplicand wmov AA0, A0 wmov AA2, A2 rjmp 3f ;; Loop the integral part 1: ;; CC += A * 2^n; n >= 0 add CC0,A0 $ adc CC1,A1 $ adc CC2,A2 $ adc CC3,A3 2: ;; A <<= 1 lsl A0 $ rol A1 $ rol A2 $ rol A3 3: ;; IBIT(B) >>= 1 ;; Carry = n-th bit of B; n >= 0 lsr B3 ror B2 brcs 1b sbci B3, 0 brne 2b ;; Loop the fractional part ;; B2/B3 is 0 now, use as guard bits for rounding ;; Restore multiplicand wmov A0, AA0 wmov A2, AA2 rjmp 5f 4: ;; CC += A:Guard * 2^n; n < 0 add B3,B2 $ adc CC0,A0 $ adc CC1,A1 $ adc CC2,A2 $ adc CC3,A3 5: ;; A:Guard >>= 1 lsr A3 $ ror A2 $ ror A1 $ ror A0 $ ror B2 ;; FBIT(B) <<= 1 ;; Carry = n-th bit of B; n < 0 lsl B0 rol B1 brcs 4b sbci B0, 0 brne 5b ;; Save guard bits and set carry for rounding push B3 lsl B3 ;; Move result into place wmov C2, CC2 wmov C0, CC0 clr __zero_reg__ brtc 6f ;; Round iff T = 1 adc C0, __zero_reg__ adc C1, __zero_reg__ adc C2, __zero_reg__ adc C3, __zero_reg__ 6: pop GUARD ;; Epilogue pop CC3 pop CC2 ret ENDF __mulusa3_round #endif /* L_mulusa3 */ #undef A0 #undef A1 #undef A2 #undef A3 #undef B0 #undef B1 #undef B2 #undef B3 #undef C0 #undef C1 #undef C2 #undef C3 #undef AA0 #undef AA1 #undef AA2 #undef AA3 #undef CC0 #undef CC1 #undef CC2 #undef CC3 #endif /* __AVR_HAVE_MUL__ */ #undef GUARD /*********************************************************** Fixed unsigned saturated Multiplication 8.8 x 8.8 ***********************************************************/ #define C0 22 #define C1 C0+1 #define C2 C0+2 #define C3 C0+3 #define SS __tmp_reg__ #if defined (L_usmuluha3) DEFUN __usmuluha3 ;; Widening multiply #ifdef __AVR_HAVE_MUL__ ;; Adjust interface movw R26, R22 movw R18, R24 #endif /* HAVE MUL */ XCALL __umulhisi3 tst C3 brne .Lmax ;; Round, target is in C1..C2 lsl C0 adc C1, __zero_reg__ adc C2, __zero_reg__ brcs .Lmax ;; Move result into place mov C3, C2 mov C2, C1 ret .Lmax: ;; Saturate ldi C2, 0xff ldi C3, 0xff ret ENDF __usmuluha3 #endif /* L_usmuluha3 */ /*********************************************************** Fixed signed saturated Multiplication s8.7 x s8.7 ***********************************************************/ #if defined (L_ssmulha3) DEFUN __ssmulha3 ;; Widening multiply #ifdef __AVR_HAVE_MUL__ ;; Adjust interface movw R26, R22 movw R18, R24 #endif /* HAVE MUL */ XCALL __mulhisi3 ;; Adjust decimal point lsl C0 rol C1 rol C2 brvs .LsatC3.3 ;; The 9 MSBs must be the same rol C3 sbc SS, SS cp C3, SS brne .LsatSS ;; Round lsl C0 adc C1, __zero_reg__ adc C2, __zero_reg__ brvs .Lmax ;; Move result into place mov C3, C2 mov C2, C1 ret .Lmax: ;; Load 0x7fff clr C3 .LsatC3.3: ;; C3 < 0 --> 0x8000 ;; C3 >= 0 --> 0x7fff mov SS, C3 .LsatSS: ;; Load min / max value: ;; SS = -1 --> 0x8000 ;; SS = 0 --> 0x7fff ldi C3, 0x7f ldi C2, 0xff sbrc SS, 7 adiw C2, 1 ret ENDF __ssmulha3 #endif /* L_ssmulha3 */ #undef C0 #undef C1 #undef C2 #undef C3 #undef SS /*********************************************************** Fixed unsigned saturated Multiplication 16.16 x 16.16 ***********************************************************/ #define C0 18 #define C1 C0+1 #define C2 C0+2 #define C3 C0+3 #define C4 C0+4 #define C5 C0+5 #define C6 C0+6 #define C7 C0+7 #define SS __tmp_reg__ #if defined (L_usmulusa3) ;; R22[4] = R22[4] *{ssat} R18[4] ;; Ordinary ABI function DEFUN __usmulusa3 ;; Widening multiply XCALL __umulsidi3 or C7, C6 brne .Lmax ;; Round, target is in C2..C5 lsl C1 adc C2, __zero_reg__ adc C3, __zero_reg__ adc C4, __zero_reg__ adc C5, __zero_reg__ brcs .Lmax ;; Move result into place wmov C6, C4 wmov C4, C2 ret .Lmax: ;; Saturate ldi C7, 0xff ldi C6, 0xff wmov C4, C6 ret ENDF __usmulusa3 #endif /* L_usmulusa3 */ /*********************************************************** Fixed signed saturated Multiplication s16.15 x s16.15 ***********************************************************/ #if defined (L_ssmulsa3) ;; R22[4] = R22[4] *{ssat} R18[4] ;; Ordinary ABI function DEFUN __ssmulsa3 ;; Widening multiply XCALL __mulsidi3 ;; Adjust decimal point lsl C1 rol C2 rol C3 rol C4 rol C5 brvs .LsatC7.7 ;; The 17 MSBs must be the same rol C6 rol C7 sbc SS, SS cp C6, SS cpc C7, SS brne .LsatSS ;; Round lsl C1 adc C2, __zero_reg__ adc C3, __zero_reg__ adc C4, __zero_reg__ adc C5, __zero_reg__ brvs .Lmax ;; Move result into place wmov C6, C4 wmov C4, C2 ret .Lmax: ;; Load 0x7fffffff clr C7 .LsatC7.7: ;; C7 < 0 --> 0x80000000 ;; C7 >= 0 --> 0x7fffffff lsl C7 sbc SS, SS .LsatSS: ;; Load min / max value: ;; SS = -1 --> 0x80000000 ;; SS = 0 --> 0x7fffffff com SS mov C4, SS mov C5, C4 wmov C6, C4 subi C7, 0x80 ret ENDF __ssmulsa3 #endif /* L_ssmulsa3 */ #undef C0 #undef C1 #undef C2 #undef C3 #undef C4 #undef C5 #undef C6 #undef C7 #undef SS /******************************************************* Fractional Division 8 / 8 *******************************************************/ #define r_divd r25 /* dividend */ #define r_quo r24 /* quotient */ #define r_div r22 /* divisor */ #define r_sign __tmp_reg__ #if defined (L_divqq3) DEFUN __divqq3 mov r_sign, r_divd eor r_sign, r_div sbrc r_div, 7 neg r_div sbrc r_divd, 7 neg r_divd XCALL __divqq_helper lsr r_quo sbrc r_sign, 7 ; negate result if needed neg r_quo ret ENDF __divqq3 #endif /* L_divqq3 */ #if defined (L_udivuqq3) DEFUN __udivuqq3 cp r_divd, r_div brsh 0f XJMP __divqq_helper ;; Result is out of [0, 1) ==> Return 1 - eps. 0: ldi r_quo, 0xff ret ENDF __udivuqq3 #endif /* L_udivuqq3 */ #if defined (L_divqq_helper) DEFUN __divqq_helper clr r_quo ; clear quotient inc __zero_reg__ ; init loop counter, used per shift __udivuqq3_loop: lsl r_divd ; shift dividend brcs 0f ; dividend overflow cp r_divd,r_div ; compare dividend & divisor brcc 0f ; dividend >= divisor rol r_quo ; shift quotient (with CARRY) rjmp __udivuqq3_cont 0: sub r_divd,r_div ; restore dividend lsl r_quo ; shift quotient (without CARRY) __udivuqq3_cont: lsl __zero_reg__ ; shift loop-counter bit brne __udivuqq3_loop com r_quo ; complement result ; because C flag was complemented in loop ret ENDF __divqq_helper #endif /* L_divqq_helper */ #undef r_divd #undef r_quo #undef r_div #undef r_sign /******************************************************* Fractional Division 16 / 16 *******************************************************/ #define r_divdL 26 /* dividend Low */ #define r_divdH 27 /* dividend Hig */ #define r_quoL 24 /* quotient Low */ #define r_quoH 25 /* quotient High */ #define r_divL 22 /* divisor */ #define r_divH 23 /* divisor */ #define r_cnt 21 #if defined (L_divhq3) DEFUN __divhq3 mov r0, r_divdH eor r0, r_divH sbrs r_divH, 7 rjmp 1f NEG2 r_divL 1: sbrs r_divdH, 7 rjmp 2f NEG2 r_divdL 2: cp r_divdL, r_divL cpc r_divdH, r_divH breq __divhq3_minus1 ; if equal return -1 XCALL __udivuhq3 lsr r_quoH ror r_quoL brpl 9f ;; negate result if needed NEG2 r_quoL 9: ret __divhq3_minus1: ldi r_quoH, 0x80 clr r_quoL ret ENDF __divhq3 #endif /* defined (L_divhq3) */ #if defined (L_udivuhq3) DEFUN __udivuhq3 sub r_quoH,r_quoH ; clear quotient and carry ;; FALLTHRU ENDF __udivuhq3 DEFUN __udivuha3_common clr r_quoL ; clear quotient ldi r_cnt,16 ; init loop counter __udivuhq3_loop: rol r_divdL ; shift dividend (with CARRY) rol r_divdH brcs __udivuhq3_ep ; dividend overflow cp r_divdL,r_divL ; compare dividend & divisor cpc r_divdH,r_divH brcc __udivuhq3_ep ; dividend >= divisor rol r_quoL ; shift quotient (with CARRY) rjmp __udivuhq3_cont __udivuhq3_ep: sub r_divdL,r_divL ; restore dividend sbc r_divdH,r_divH lsl r_quoL ; shift quotient (without CARRY) __udivuhq3_cont: rol r_quoH ; shift quotient dec r_cnt ; decrement loop counter brne __udivuhq3_loop com r_quoL ; complement result com r_quoH ; because C flag was complemented in loop ret ENDF __udivuha3_common #endif /* defined (L_udivuhq3) */ /******************************************************* Fixed Division 8.8 / 8.8 *******************************************************/ #if defined (L_divha3) DEFUN __divha3 mov r0, r_divdH eor r0, r_divH sbrs r_divH, 7 rjmp 1f NEG2 r_divL 1: sbrs r_divdH, 7 rjmp 2f NEG2 r_divdL 2: XCALL __udivuha3 lsr r_quoH ; adjust to 7 fractional bits ror r_quoL sbrs r0, 7 ; negate result if needed ret NEG2 r_quoL ret ENDF __divha3 #endif /* defined (L_divha3) */ #if defined (L_udivuha3) DEFUN __udivuha3 mov r_quoH, r_divdL mov r_divdL, r_divdH clr r_divdH lsl r_quoH ; shift quotient into carry XJMP __udivuha3_common ; same as fractional after rearrange ENDF __udivuha3 #endif /* defined (L_udivuha3) */ #undef r_divdL #undef r_divdH #undef r_quoL #undef r_quoH #undef r_divL #undef r_divH #undef r_cnt /******************************************************* Fixed Division 16.16 / 16.16 *******************************************************/ #define r_arg1L 24 /* arg1 gets passed already in place */ #define r_arg1H 25 #define r_arg1HL 26 #define r_arg1HH 27 #define r_divdL 26 /* dividend Low */ #define r_divdH 27 #define r_divdHL 30 #define r_divdHH 31 /* dividend High */ #define r_quoL 22 /* quotient Low */ #define r_quoH 23 #define r_quoHL 24 #define r_quoHH 25 /* quotient High */ #define r_divL 18 /* divisor Low */ #define r_divH 19 #define r_divHL 20 #define r_divHH 21 /* divisor High */ #define r_cnt __zero_reg__ /* loop count (0 after the loop!) */ #if defined (L_divsa3) DEFUN __divsa3 mov r0, r_arg1HH eor r0, r_divHH sbrs r_divHH, 7 rjmp 1f NEG4 r_divL 1: sbrs r_arg1HH, 7 rjmp 2f NEG4 r_arg1L 2: XCALL __udivusa3 lsr r_quoHH ; adjust to 15 fractional bits ror r_quoHL ror r_quoH ror r_quoL sbrs r0, 7 ; negate result if needed ret ;; negate r_quoL XJMP __negsi2 ENDF __divsa3 #endif /* defined (L_divsa3) */ #if defined (L_udivusa3) DEFUN __udivusa3 ldi r_divdHL, 32 ; init loop counter mov r_cnt, r_divdHL clr r_divdHL clr r_divdHH wmov r_quoL, r_divdHL lsl r_quoHL ; shift quotient into carry rol r_quoHH __udivusa3_loop: rol r_divdL ; shift dividend (with CARRY) rol r_divdH rol r_divdHL rol r_divdHH brcs __udivusa3_ep ; dividend overflow cp r_divdL,r_divL ; compare dividend & divisor cpc r_divdH,r_divH cpc r_divdHL,r_divHL cpc r_divdHH,r_divHH brcc __udivusa3_ep ; dividend >= divisor rol r_quoL ; shift quotient (with CARRY) rjmp __udivusa3_cont __udivusa3_ep: sub r_divdL,r_divL ; restore dividend sbc r_divdH,r_divH sbc r_divdHL,r_divHL sbc r_divdHH,r_divHH lsl r_quoL ; shift quotient (without CARRY) __udivusa3_cont: rol r_quoH ; shift quotient rol r_quoHL rol r_quoHH dec r_cnt ; decrement loop counter brne __udivusa3_loop com r_quoL ; complement result com r_quoH ; because C flag was complemented in loop com r_quoHL com r_quoHH ret ENDF __udivusa3 #endif /* defined (L_udivusa3) */ #undef r_arg1L #undef r_arg1H #undef r_arg1HL #undef r_arg1HH #undef r_divdL #undef r_divdH #undef r_divdHL #undef r_divdHH #undef r_quoL #undef r_quoH #undef r_quoHL #undef r_quoHH #undef r_divL #undef r_divH #undef r_divHL #undef r_divHH #undef r_cnt ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Saturation, 1 Byte ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; First Argument and Return Register #define A0 24 #if defined (L_ssabs_1) DEFUN __ssabs_1 sbrs A0, 7 ret neg A0 sbrc A0,7 dec A0 ret ENDF __ssabs_1 #endif /* L_ssabs_1 */ #undef A0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Saturation, 2 Bytes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; First Argument and Return Register #define A0 24 #define A1 A0+1 #if defined (L_ssneg_2) DEFUN __ssneg_2 NEG2 A0 brvc 0f sbiw A0, 1 0: ret ENDF __ssneg_2 #endif /* L_ssneg_2 */ #if defined (L_ssabs_2) DEFUN __ssabs_2 sbrs A1, 7 ret XJMP __ssneg_2 ENDF __ssabs_2 #endif /* L_ssabs_2 */ #undef A0 #undef A1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Saturation, 4 Bytes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; First Argument and Return Register #define A0 22 #define A1 A0+1 #define A2 A0+2 #define A3 A0+3 #if defined (L_ssneg_4) DEFUN __ssneg_4 XCALL __negsi2 brvc 0f ldi A3, 0x7f ldi A2, 0xff ldi A1, 0xff ldi A0, 0xff 0: ret ENDF __ssneg_4 #endif /* L_ssneg_4 */ #if defined (L_ssabs_4) DEFUN __ssabs_4 sbrs A3, 7 ret XJMP __ssneg_4 ENDF __ssabs_4 #endif /* L_ssabs_4 */ #undef A0 #undef A1 #undef A2 #undef A3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Saturation, 8 Bytes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; First Argument and Return Register #define A0 18 #define A1 A0+1 #define A2 A0+2 #define A3 A0+3 #define A4 A0+4 #define A5 A0+5 #define A6 A0+6 #define A7 A0+7 #if defined (L_clr_8) FALIAS __usneguta2 FALIAS __usneguda2 FALIAS __usnegudq2 ;; Clear Carry and all Bytes DEFUN __clr_8 ;; Clear Carry and set Z sub A7, A7 ;; FALLTHRU ENDF __clr_8 ;; Propagate Carry to all Bytes, Carry unaltered DEFUN __sbc_8 sbc A7, A7 sbc A6, A6 wmov A4, A6 wmov A2, A6 wmov A0, A6 ret ENDF __sbc_8 #endif /* L_clr_8 */ #if defined (L_ssneg_8) FALIAS __ssnegta2 FALIAS __ssnegda2 FALIAS __ssnegdq2 DEFUN __ssneg_8 XCALL __negdi2 brvc 0f ;; A[] = 0x7fffffff sec XCALL __sbc_8 ldi A7, 0x7f 0: ret ENDF __ssneg_8 #endif /* L_ssneg_8 */ #if defined (L_ssabs_8) FALIAS __ssabsta2 FALIAS __ssabsda2 FALIAS __ssabsdq2 DEFUN __ssabs_8 sbrs A7, 7 ret XJMP __ssneg_8 ENDF __ssabs_8 #endif /* L_ssabs_8 */ ;; Second Argument #define B0 10 #define B1 B0+1 #define B2 B0+2 #define B3 B0+3 #define B4 B0+4 #define B5 B0+5 #define B6 B0+6 #define B7 B0+7 #if defined (L_usadd_8) FALIAS __usadduta3 FALIAS __usadduda3 FALIAS __usaddudq3 DEFUN __usadd_8 XCALL __adddi3 brcs 0f ret 0: ;; A[] = 0xffffffff XJMP __sbc_8 ENDF __usadd_8 #endif /* L_usadd_8 */ #if defined (L_ussub_8) FALIAS __ussubuta3 FALIAS __ussubuda3 FALIAS __ussubudq3 DEFUN __ussub_8 XCALL __subdi3 brcs 0f ret 0: ;; A[] = 0 XJMP __clr_8 ENDF __ussub_8 #endif /* L_ussub_8 */ #if defined (L_ssadd_8) FALIAS __ssaddta3 FALIAS __ssaddda3 FALIAS __ssadddq3 DEFUN __ssadd_8 XCALL __adddi3 brvc 0f ;; A = (B >= 0) ? INT64_MAX : INT64_MIN cpi B7, 0x80 XCALL __sbc_8 subi A7, 0x80 0: ret ENDF __ssadd_8 #endif /* L_ssadd_8 */ #if defined (L_sssub_8) FALIAS __sssubta3 FALIAS __sssubda3 FALIAS __sssubdq3 DEFUN __sssub_8 XCALL __subdi3 brvc 0f ;; A = (B < 0) ? INT64_MAX : INT64_MIN ldi A7, 0x7f cp A7, B7 XCALL __sbc_8 subi A7, 0x80 0: ret ENDF __sssub_8 #endif /* L_sssub_8 */ #undef A0 #undef A1 #undef A2 #undef A3 #undef A4 #undef A5 #undef A6 #undef A7 #undef B0 #undef B1 #undef B2 #undef B3 #undef B4 #undef B5 #undef B6 #undef B7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Rounding Helpers ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #ifdef L_mask1 #define AA 24 #define CC 25 ;; R25 = 1 << (R24 & 7) ;; CC = 1 << (AA & 7) ;; Clobbers: None DEFUN __mask1 ;; CC = 2 ^ AA.1 ldi CC, 1 << 2 sbrs AA, 1 ldi CC, 1 << 0 ;; CC *= 2 ^ AA.0 sbrc AA, 0 lsl CC ;; CC *= 2 ^ AA.2 sbrc AA, 2 swap CC ret ENDF __mask1 #undef AA #undef CC #endif /* L_mask1 */ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; The rounding point. Any bits smaller than ;; 2^{-RP} will be cleared. #define RP R24 #define A0 22 #define A1 A0 + 1 #define C0 24 #define C1 C0 + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Rounding, 1 Byte ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #ifdef L_roundqq3 ;; R24 = round (R22, R24) ;; Clobbers: R22, __tmp_reg__ DEFUN __roundqq3 mov __tmp_reg__, C1 subi RP, __QQ_FBIT__ - 1 neg RP ;; R25 = 1 << RP (Total offset is FBIT-1 - RP) XCALL __mask1 mov C0, C1 ;; Add-Saturate 2^{-RP-1} add A0, C0 brvc 0f ldi C0, 0x7f rjmp 9f 0: ;; Mask out bits beyond RP lsl C0 neg C0 and C0, A0 9: mov C1, __tmp_reg__ ret ENDF __roundqq3 #endif /* L_roundqq3 */ #ifdef L_rounduqq3 ;; R24 = round (R22, R24) ;; Clobbers: R22, __tmp_reg__ DEFUN __rounduqq3 mov __tmp_reg__, C1 subi RP, __UQQ_FBIT__ - 1 neg RP ;; R25 = 1 << RP (Total offset is FBIT-1 - RP) XCALL __mask1 mov C0, C1 ;; Add-Saturate 2^{-RP-1} add A0, C0 brcc 0f ldi C0, 0xff rjmp 9f 0: ;; Mask out bits beyond RP lsl C0 neg C0 and C0, A0 9: mov C1, __tmp_reg__ ret ENDF __rounduqq3 #endif /* L_rounduqq3 */ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Rounding, 2 Bytes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #ifdef L_addmask_2 ;; [ R25:R24 = 1 << (R24 & 15) ;; R23:R22 += 1 << (R24 & 15) ] ;; SREG is set according to the addition DEFUN __addmask_2 ;; R25 = 1 << (R24 & 7) XCALL __mask1 cpi RP, 1 << 3 sbc C0, C0 ;; Swap C0 and C1 if RP.3 was set and C0, C1 eor C1, C0 ;; Finally, add the power-of-two: A[] += C[] add A0, C0 adc A1, C1 ret ENDF __addmask_2 #endif /* L_addmask_2 */ #ifdef L_round_s2 ;; R25:R24 = round (R23:R22, R24) ;; Clobbers: R23, R22 DEFUN __roundhq3 subi RP, __HQ_FBIT__ - __HA_FBIT__ ENDF __roundhq3 DEFUN __roundha3 subi RP, __HA_FBIT__ - 1 neg RP ;; [ R25:R24 = 1 << (FBIT-1 - RP) ;; R23:R22 += 1 << (FBIT-1 - RP) ] XCALL __addmask_2 XJMP __round_s2_const ENDF __roundha3 #endif /* L_round_s2 */ #ifdef L_round_u2 ;; R25:R24 = round (R23:R22, R24) ;; Clobbers: R23, R22 DEFUN __rounduhq3 subi RP, __UHQ_FBIT__ - __UHA_FBIT__ ENDF __rounduhq3 DEFUN __rounduha3 subi RP, __UHA_FBIT__ - 1 neg RP ;; [ R25:R24 = 1 << (FBIT-1 - RP) ;; R23:R22 += 1 << (FBIT-1 - RP) ] XCALL __addmask_2 XJMP __round_u2_const ENDF __rounduha3 #endif /* L_round_u2 */ #ifdef L_round_2_const ;; Helpers for 2 byte wide rounding DEFUN __round_s2_const brvc 2f ldi C1, 0x7f rjmp 1f ;; FALLTHRU (Barrier) ENDF __round_s2_const DEFUN __round_u2_const brcc 2f ldi C1, 0xff 1: ldi C0, 0xff rjmp 9f 2: ;; Saturation is performed now. ;; Currently, we have C[] = 2^{-RP-1} ;; C[] = 2^{-RP} lsl C0 rol C1 ;; NEG2 C0 ;; Clear the bits beyond the rounding point. and C0, A0 and C1, A1 9: ret ENDF __round_u2_const #endif /* L_round_2_const */ #undef A0 #undef A1 #undef C0 #undef C1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Rounding, 4 Bytes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #define A0 18 #define A1 A0 + 1 #define A2 A0 + 2 #define A3 A0 + 3 #define C0 22 #define C1 C0 + 1 #define C2 C0 + 2 #define C3 C0 + 3 #ifdef L_addmask_4 ;; [ R25:R22 = 1 << (R24 & 31) ;; R21:R18 += 1 << (R24 & 31) ] ;; SREG is set according to the addition DEFUN __addmask_4 ;; R25 = 1 << (R24 & 7) XCALL __mask1 cpi RP, 1 << 4 sbc C0, C0 sbc C1, C1 ;; Swap C2 with C3 if RP.3 is not set cpi RP, 1 << 3 sbc C2, C2 and C2, C3 eor C3, C2 ;; Swap C3:C2 with C1:C0 if RP.4 is not set and C0, C2 $ eor C2, C0 and C1, C3 $ eor C3, C1 ;; Finally, add the power-of-two: A[] += C[] add A0, C0 adc A1, C1 adc A2, C2 adc A3, C3 ret ENDF __addmask_4 #endif /* L_addmask_4 */ #ifdef L_round_s4 ;; R25:R22 = round (R21:R18, R24) ;; Clobbers: R18...R21 DEFUN __roundsq3 subi RP, __SQ_FBIT__ - __SA_FBIT__ ENDF __roundsq3 DEFUN __roundsa3 subi RP, __SA_FBIT__ - 1 neg RP ;; [ R25:R22 = 1 << (FBIT-1 - RP) ;; R21:R18 += 1 << (FBIT-1 - RP) ] XCALL __addmask_4 XJMP __round_s4_const ENDF __roundsa3 #endif /* L_round_s4 */ #ifdef L_round_u4 ;; R25:R22 = round (R21:R18, R24) ;; Clobbers: R18...R21 DEFUN __roundusq3 subi RP, __USQ_FBIT__ - __USA_FBIT__ ENDF __roundusq3 DEFUN __roundusa3 subi RP, __USA_FBIT__ - 1 neg RP ;; [ R25:R22 = 1 << (FBIT-1 - RP) ;; R21:R18 += 1 << (FBIT-1 - RP) ] XCALL __addmask_4 XJMP __round_u4_const ENDF __roundusa3 #endif /* L_round_u4 */ #ifdef L_round_4_const ;; Helpers for 4 byte wide rounding DEFUN __round_s4_const brvc 2f ldi C3, 0x7f rjmp 1f ;; FALLTHRU (Barrier) ENDF __round_s4_const DEFUN __round_u4_const brcc 2f ldi C3, 0xff 1: ldi C2, 0xff ldi C1, 0xff ldi C0, 0xff rjmp 9f 2: ;; Saturation is performed now. ;; Currently, we have C[] = 2^{-RP-1} ;; C[] = 2^{-RP} lsl C0 rol C1 rol C2 rol C3 XCALL __negsi2 ;; Clear the bits beyond the rounding point. and C0, A0 and C1, A1 and C2, A2 and C3, A3 9: ret ENDF __round_u4_const #endif /* L_round_4_const */ #undef A0 #undef A1 #undef A2 #undef A3 #undef C0 #undef C1 #undef C2 #undef C3 #undef RP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Rounding, 8 Bytes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #define RP 16 #define FBITm1 31 #define C0 18 #define C1 C0 + 1 #define C2 C0 + 2 #define C3 C0 + 3 #define C4 C0 + 4 #define C5 C0 + 5 #define C6 C0 + 6 #define C7 C0 + 7 #define A0 16 #define A1 17 #define A2 26 #define A3 27 #define A4 28 #define A5 29 #define A6 30 #define A7 31 #ifdef L_rounddq3 ;; R25:R18 = round (R25:R18, R16) ;; Clobbers: ABI DEFUN __rounddq3 ldi FBITm1, __DQ_FBIT__ - 1 clt XJMP __round_x8 ENDF __rounddq3 #endif /* L_rounddq3 */ #ifdef L_roundudq3 ;; R25:R18 = round (R25:R18, R16) ;; Clobbers: ABI DEFUN __roundudq3 ldi FBITm1, __UDQ_FBIT__ - 1 set XJMP __round_x8 ENDF __roundudq3 #endif /* L_roundudq3 */ #ifdef L_roundda3 ;; R25:R18 = round (R25:R18, R16) ;; Clobbers: ABI DEFUN __roundda3 ldi FBITm1, __DA_FBIT__ - 1 clt XJMP __round_x8 ENDF __roundda3 #endif /* L_roundda3 */ #ifdef L_rounduda3 ;; R25:R18 = round (R25:R18, R16) ;; Clobbers: ABI DEFUN __rounduda3 ldi FBITm1, __UDA_FBIT__ - 1 set XJMP __round_x8 ENDF __rounduda3 #endif /* L_rounduda3 */ #ifdef L_roundta3 ;; R25:R18 = round (R25:R18, R16) ;; Clobbers: ABI DEFUN __roundta3 ldi FBITm1, __TA_FBIT__ - 1 clt XJMP __round_x8 ENDF __roundta3 #endif /* L_roundta3 */ #ifdef L_rounduta3 ;; R25:R18 = round (R25:R18, R16) ;; Clobbers: ABI DEFUN __rounduta3 ldi FBITm1, __UTA_FBIT__ - 1 set XJMP __round_x8 ENDF __rounduta3 #endif /* L_rounduta3 */ #ifdef L_round_x8 DEFUN __round_x8 push r16 push r17 push r28 push r29 ;; Compute log2 of addend from rounding point sub RP, FBITm1 neg RP ;; Move input to work register A[] push C0 mov A1, C1 wmov A2, C2 wmov A4, C4 wmov A6, C6 ;; C[] = 1 << (FBIT-1 - RP) XCALL __clr_8 inc C0 XCALL __ashldi3 pop A0 ;; A[] += C[] add A0, C0 adc A1, C1 adc A2, C2 adc A3, C3 adc A4, C4 adc A5, C5 adc A6, C6 adc A7, C7 brts 1f ;; Signed brvc 3f ;; Signed overflow: A[] = 0x7f... brvs 2f 1: ;; Unsigned brcc 3f ;; Unsigned overflow: A[] = 0xff... 2: ldi C7, 0xff ldi C6, 0xff wmov C0, C6 wmov C2, C6 wmov C4, C6 bld C7, 7 rjmp 9f 3: ;; C[] = -C[] - C[] push A0 ldi r16, 1 XCALL __ashldi3 pop A0 XCALL __negdi2 ;; Clear the bits beyond the rounding point. and C0, A0 and C1, A1 and C2, A2 and C3, A3 and C4, A4 and C5, A5 and C6, A6 and C7, A7 9: ;; Epilogue pop r29 pop r28 pop r17 pop r16 ret ENDF __round_x8 #endif /* L_round_x8 */ #undef A0 #undef A1 #undef A2 #undef A3 #undef A4 #undef A5 #undef A6 #undef A7 #undef C0 #undef C1 #undef C2 #undef C3 #undef C4 #undef C5 #undef C6 #undef C7 #undef RP #undef FBITm1 ;; Supply implementations / symbols for the bit-banging functions ;; __builtin_avr_bitsfx and __builtin_avr_fxbits #ifdef L_ret DEFUN __ret ret ENDF __ret #endif /* L_ret */