/* Chains of recurrences. Copyright (C) 2003-2014 Free Software Foundation, Inc. Contributed by Sebastian Pop This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This file implements operations on chains of recurrences. Chains of recurrences are used for modeling evolution functions of scalar variables. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "tree-pretty-print.h" #include "cfgloop.h" #include "basic-block.h" #include "gimple-expr.h" #include "tree-ssa-loop-ivopts.h" #include "tree-ssa-loop-niter.h" #include "tree-chrec.h" #include "dumpfile.h" #include "params.h" #include "tree-scalar-evolution.h" /* Extended folder for chrecs. */ /* Determines whether CST is not a constant evolution. */ static inline bool is_not_constant_evolution (const_tree cst) { return (TREE_CODE (cst) == POLYNOMIAL_CHREC); } /* Fold CODE for a polynomial function and a constant. */ static inline tree chrec_fold_poly_cst (enum tree_code code, tree type, tree poly, tree cst) { gcc_assert (poly); gcc_assert (cst); gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC); gcc_assert (!is_not_constant_evolution (cst)); gcc_assert (type == chrec_type (poly)); switch (code) { case PLUS_EXPR: return build_polynomial_chrec (CHREC_VARIABLE (poly), chrec_fold_plus (type, CHREC_LEFT (poly), cst), CHREC_RIGHT (poly)); case MINUS_EXPR: return build_polynomial_chrec (CHREC_VARIABLE (poly), chrec_fold_minus (type, CHREC_LEFT (poly), cst), CHREC_RIGHT (poly)); case MULT_EXPR: return build_polynomial_chrec (CHREC_VARIABLE (poly), chrec_fold_multiply (type, CHREC_LEFT (poly), cst), chrec_fold_multiply (type, CHREC_RIGHT (poly), cst)); default: return chrec_dont_know; } } /* Fold the addition of two polynomial functions. */ static inline tree chrec_fold_plus_poly_poly (enum tree_code code, tree type, tree poly0, tree poly1) { tree left, right; struct loop *loop0 = get_chrec_loop (poly0); struct loop *loop1 = get_chrec_loop (poly1); tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type; gcc_assert (poly0); gcc_assert (poly1); gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC); gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC); if (POINTER_TYPE_P (chrec_type (poly0))) gcc_assert (ptrofftype_p (chrec_type (poly1))); else gcc_assert (chrec_type (poly0) == chrec_type (poly1)); gcc_assert (type == chrec_type (poly0)); /* {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2, {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2, {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */ if (flow_loop_nested_p (loop0, loop1)) { if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR) return build_polynomial_chrec (CHREC_VARIABLE (poly1), chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)), CHREC_RIGHT (poly1)); else return build_polynomial_chrec (CHREC_VARIABLE (poly1), chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)), chrec_fold_multiply (type, CHREC_RIGHT (poly1), SCALAR_FLOAT_TYPE_P (type) ? build_real (type, dconstm1) : build_int_cst_type (type, -1))); } if (flow_loop_nested_p (loop1, loop0)) { if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR) return build_polynomial_chrec (CHREC_VARIABLE (poly0), chrec_fold_plus (type, CHREC_LEFT (poly0), poly1), CHREC_RIGHT (poly0)); else return build_polynomial_chrec (CHREC_VARIABLE (poly0), chrec_fold_minus (type, CHREC_LEFT (poly0), poly1), CHREC_RIGHT (poly0)); } /* This function should never be called for chrecs of loops that do not belong to the same loop nest. */ gcc_assert (loop0 == loop1); if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR) { left = chrec_fold_plus (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1)); right = chrec_fold_plus (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1)); } else { left = chrec_fold_minus (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1)); right = chrec_fold_minus (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1)); } if (chrec_zerop (right)) return left; else return build_polynomial_chrec (CHREC_VARIABLE (poly0), left, right); } /* Fold the multiplication of two polynomial functions. */ static inline tree chrec_fold_multiply_poly_poly (tree type, tree poly0, tree poly1) { tree t0, t1, t2; int var; struct loop *loop0 = get_chrec_loop (poly0); struct loop *loop1 = get_chrec_loop (poly1); gcc_assert (poly0); gcc_assert (poly1); gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC); gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC); gcc_assert (chrec_type (poly0) == chrec_type (poly1)); gcc_assert (type == chrec_type (poly0)); /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2, {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2, {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */ if (flow_loop_nested_p (loop0, loop1)) /* poly0 is a constant wrt. poly1. */ return build_polynomial_chrec (CHREC_VARIABLE (poly1), chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0), CHREC_RIGHT (poly1)); if (flow_loop_nested_p (loop1, loop0)) /* poly1 is a constant wrt. poly0. */ return build_polynomial_chrec (CHREC_VARIABLE (poly0), chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1), CHREC_RIGHT (poly0)); gcc_assert (loop0 == loop1); /* poly0 and poly1 are two polynomials in the same variable, {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */ /* "a*c". */ t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1)); /* "a*d + b*c". */ t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1)); t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_LEFT (poly1))); /* "b*d". */ t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1)); /* "a*d + b*c + b*d". */ t1 = chrec_fold_plus (type, t1, t2); /* "2*b*d". */ t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type) ? build_real (type, dconst2) : build_int_cst (type, 2), t2); var = CHREC_VARIABLE (poly0); return build_polynomial_chrec (var, t0, build_polynomial_chrec (var, t1, t2)); } /* When the operands are automatically_generated_chrec_p, the fold has to respect the semantics of the operands. */ static inline tree chrec_fold_automatically_generated_operands (tree op0, tree op1) { if (op0 == chrec_dont_know || op1 == chrec_dont_know) return chrec_dont_know; if (op0 == chrec_known || op1 == chrec_known) return chrec_known; if (op0 == chrec_not_analyzed_yet || op1 == chrec_not_analyzed_yet) return chrec_not_analyzed_yet; /* The default case produces a safe result. */ return chrec_dont_know; } /* Fold the addition of two chrecs. */ static tree chrec_fold_plus_1 (enum tree_code code, tree type, tree op0, tree op1) { if (automatically_generated_chrec_p (op0) || automatically_generated_chrec_p (op1)) return chrec_fold_automatically_generated_operands (op0, op1); switch (TREE_CODE (op0)) { case POLYNOMIAL_CHREC: gcc_checking_assert (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0))); switch (TREE_CODE (op1)) { case POLYNOMIAL_CHREC: gcc_checking_assert (!chrec_contains_symbols_defined_in_loop (op1, CHREC_VARIABLE (op1))); return chrec_fold_plus_poly_poly (code, type, op0, op1); CASE_CONVERT: if (tree_contains_chrecs (op1, NULL)) return chrec_dont_know; default: if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR) return build_polynomial_chrec (CHREC_VARIABLE (op0), chrec_fold_plus (type, CHREC_LEFT (op0), op1), CHREC_RIGHT (op0)); else return build_polynomial_chrec (CHREC_VARIABLE (op0), chrec_fold_minus (type, CHREC_LEFT (op0), op1), CHREC_RIGHT (op0)); } CASE_CONVERT: if (tree_contains_chrecs (op0, NULL)) return chrec_dont_know; default: switch (TREE_CODE (op1)) { case POLYNOMIAL_CHREC: gcc_checking_assert (!chrec_contains_symbols_defined_in_loop (op1, CHREC_VARIABLE (op1))); if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR) return build_polynomial_chrec (CHREC_VARIABLE (op1), chrec_fold_plus (type, op0, CHREC_LEFT (op1)), CHREC_RIGHT (op1)); else return build_polynomial_chrec (CHREC_VARIABLE (op1), chrec_fold_minus (type, op0, CHREC_LEFT (op1)), chrec_fold_multiply (type, CHREC_RIGHT (op1), SCALAR_FLOAT_TYPE_P (type) ? build_real (type, dconstm1) : build_int_cst_type (type, -1))); CASE_CONVERT: if (tree_contains_chrecs (op1, NULL)) return chrec_dont_know; default: { int size = 0; if ((tree_contains_chrecs (op0, &size) || tree_contains_chrecs (op1, &size)) && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE)) return build2 (code, type, op0, op1); else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE)) { if (code == POINTER_PLUS_EXPR) return fold_build_pointer_plus (fold_convert (type, op0), op1); else return fold_build2 (code, type, fold_convert (type, op0), fold_convert (type, op1)); } else return chrec_dont_know; } } } } /* Fold the addition of two chrecs. */ tree chrec_fold_plus (tree type, tree op0, tree op1) { enum tree_code code; if (automatically_generated_chrec_p (op0) || automatically_generated_chrec_p (op1)) return chrec_fold_automatically_generated_operands (op0, op1); if (integer_zerop (op0)) return chrec_convert (type, op1, NULL); if (integer_zerop (op1)) return chrec_convert (type, op0, NULL); if (POINTER_TYPE_P (type)) code = POINTER_PLUS_EXPR; else code = PLUS_EXPR; return chrec_fold_plus_1 (code, type, op0, op1); } /* Fold the subtraction of two chrecs. */ tree chrec_fold_minus (tree type, tree op0, tree op1) { if (automatically_generated_chrec_p (op0) || automatically_generated_chrec_p (op1)) return chrec_fold_automatically_generated_operands (op0, op1); if (integer_zerop (op1)) return op0; return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1); } /* Fold the multiplication of two chrecs. */ tree chrec_fold_multiply (tree type, tree op0, tree op1) { if (automatically_generated_chrec_p (op0) || automatically_generated_chrec_p (op1)) return chrec_fold_automatically_generated_operands (op0, op1); switch (TREE_CODE (op0)) { case POLYNOMIAL_CHREC: gcc_checking_assert (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0))); switch (TREE_CODE (op1)) { case POLYNOMIAL_CHREC: gcc_checking_assert (!chrec_contains_symbols_defined_in_loop (op1, CHREC_VARIABLE (op1))); return chrec_fold_multiply_poly_poly (type, op0, op1); CASE_CONVERT: if (tree_contains_chrecs (op1, NULL)) return chrec_dont_know; default: if (integer_onep (op1)) return op0; if (integer_zerop (op1)) return build_int_cst (type, 0); return build_polynomial_chrec (CHREC_VARIABLE (op0), chrec_fold_multiply (type, CHREC_LEFT (op0), op1), chrec_fold_multiply (type, CHREC_RIGHT (op0), op1)); } CASE_CONVERT: if (tree_contains_chrecs (op0, NULL)) return chrec_dont_know; default: if (integer_onep (op0)) return op1; if (integer_zerop (op0)) return build_int_cst (type, 0); switch (TREE_CODE (op1)) { case POLYNOMIAL_CHREC: gcc_checking_assert (!chrec_contains_symbols_defined_in_loop (op1, CHREC_VARIABLE (op1))); return build_polynomial_chrec (CHREC_VARIABLE (op1), chrec_fold_multiply (type, CHREC_LEFT (op1), op0), chrec_fold_multiply (type, CHREC_RIGHT (op1), op0)); CASE_CONVERT: if (tree_contains_chrecs (op1, NULL)) return chrec_dont_know; default: if (integer_onep (op1)) return op0; if (integer_zerop (op1)) return build_int_cst (type, 0); return fold_build2 (MULT_EXPR, type, op0, op1); } } } /* Operations. */ /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate calculation overflows, otherwise return C(n,k) with type TYPE. */ static tree tree_fold_binomial (tree type, tree n, unsigned int k) { double_int num, denom, idx, di_res; bool overflow; unsigned int i; tree res; /* Handle the most frequent cases. */ if (k == 0) return build_int_cst (type, 1); if (k == 1) return fold_convert (type, n); /* Numerator = n. */ num = TREE_INT_CST (n); /* Check that k <= n. */ if (num.ult (double_int::from_uhwi (k))) return NULL_TREE; /* Denominator = 2. */ denom = double_int::from_uhwi (2); /* Index = Numerator-1. */ idx = num - double_int_one; /* Numerator = Numerator*Index = n*(n-1). */ num = num.mul_with_sign (idx, false, &overflow); if (overflow) return NULL_TREE; for (i = 3; i <= k; i++) { /* Index--. */ --idx; /* Numerator *= Index. */ num = num.mul_with_sign (idx, false, &overflow); if (overflow) return NULL_TREE; /* Denominator *= i. */ denom *= double_int::from_uhwi (i); } /* Result = Numerator / Denominator. */ di_res = num.div (denom, true, EXACT_DIV_EXPR); res = build_int_cst_wide (type, di_res.low, di_res.high); return int_fits_type_p (res, type) ? res : NULL_TREE; } /* Helper function. Use the Newton's interpolating formula for evaluating the value of the evolution function. */ static tree chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k) { tree arg0, arg1, binomial_n_k; tree type = TREE_TYPE (chrec); struct loop *var_loop = get_loop (cfun, var); while (TREE_CODE (chrec) == POLYNOMIAL_CHREC && flow_loop_nested_p (var_loop, get_chrec_loop (chrec))) chrec = CHREC_LEFT (chrec); if (TREE_CODE (chrec) == POLYNOMIAL_CHREC && CHREC_VARIABLE (chrec) == var) { arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1); if (arg1 == chrec_dont_know) return chrec_dont_know; binomial_n_k = tree_fold_binomial (type, n, k); if (!binomial_n_k) return chrec_dont_know; arg0 = fold_build2 (MULT_EXPR, type, CHREC_LEFT (chrec), binomial_n_k); return chrec_fold_plus (type, arg0, arg1); } binomial_n_k = tree_fold_binomial (type, n, k); if (!binomial_n_k) return chrec_dont_know; return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k); } /* Evaluates "CHREC (X)" when the varying variable is VAR. Example: Given the following parameters, var = 1 chrec = {3, +, 4}_1 x = 10 The result is given by the Newton's interpolating formula: 3 * \binom{10}{0} + 4 * \binom{10}{1}. */ tree chrec_apply (unsigned var, tree chrec, tree x) { tree type = chrec_type (chrec); tree res = chrec_dont_know; if (automatically_generated_chrec_p (chrec) || automatically_generated_chrec_p (x) /* When the symbols are defined in an outer loop, it is possible to symbolically compute the apply, since the symbols are constants with respect to the varying loop. */ || chrec_contains_symbols_defined_in_loop (chrec, var)) return chrec_dont_know; if (dump_file && (dump_flags & TDF_SCEV)) fprintf (dump_file, "(chrec_apply \n"); if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type)) x = build_real_from_int_cst (type, x); switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: if (evolution_function_is_affine_p (chrec)) { if (CHREC_VARIABLE (chrec) != var) return build_polynomial_chrec (CHREC_VARIABLE (chrec), chrec_apply (var, CHREC_LEFT (chrec), x), chrec_apply (var, CHREC_RIGHT (chrec), x)); /* "{a, +, b} (x)" -> "a + b*x". */ x = chrec_convert_rhs (type, x, NULL); res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x); res = chrec_fold_plus (type, CHREC_LEFT (chrec), res); } else if (TREE_CODE (x) == INTEGER_CST && tree_int_cst_sgn (x) == 1) /* testsuite/.../ssa-chrec-38.c. */ res = chrec_evaluate (var, chrec, x, 0); else res = chrec_dont_know; break; CASE_CONVERT: res = chrec_convert (TREE_TYPE (chrec), chrec_apply (var, TREE_OPERAND (chrec, 0), x), NULL); break; default: res = chrec; break; } if (dump_file && (dump_flags & TDF_SCEV)) { fprintf (dump_file, " (varying_loop = %d\n", var); fprintf (dump_file, ")\n (chrec = "); print_generic_expr (dump_file, chrec, 0); fprintf (dump_file, ")\n (x = "); print_generic_expr (dump_file, x, 0); fprintf (dump_file, ")\n (res = "); print_generic_expr (dump_file, res, 0); fprintf (dump_file, "))\n"); } return res; } /* For a given CHREC and an induction variable map IV_MAP that maps (loop->num, expr) for every loop number of the current_loops an expression, calls chrec_apply when the expression is not NULL. */ tree chrec_apply_map (tree chrec, vec iv_map) { int i; tree expr; FOR_EACH_VEC_ELT (iv_map, i, expr) if (expr) chrec = chrec_apply (i, chrec, expr); return chrec; } /* Replaces the initial condition in CHREC with INIT_COND. */ tree chrec_replace_initial_condition (tree chrec, tree init_cond) { if (automatically_generated_chrec_p (chrec)) return chrec; gcc_assert (chrec_type (chrec) == chrec_type (init_cond)); switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: return build_polynomial_chrec (CHREC_VARIABLE (chrec), chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond), CHREC_RIGHT (chrec)); default: return init_cond; } } /* Returns the initial condition of a given CHREC. */ tree initial_condition (tree chrec) { if (automatically_generated_chrec_p (chrec)) return chrec; if (TREE_CODE (chrec) == POLYNOMIAL_CHREC) return initial_condition (CHREC_LEFT (chrec)); else return chrec; } /* Returns a univariate function that represents the evolution in LOOP_NUM. Mask the evolution of any other loop. */ tree hide_evolution_in_other_loops_than_loop (tree chrec, unsigned loop_num) { struct loop *loop = get_loop (cfun, loop_num), *chloop; if (automatically_generated_chrec_p (chrec)) return chrec; switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: chloop = get_chrec_loop (chrec); if (chloop == loop) return build_polynomial_chrec (loop_num, hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec), loop_num), CHREC_RIGHT (chrec)); else if (flow_loop_nested_p (chloop, loop)) /* There is no evolution in this loop. */ return initial_condition (chrec); else { gcc_assert (flow_loop_nested_p (loop, chloop)); return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec), loop_num); } default: return chrec; } } /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is true, otherwise returns the initial condition in LOOP_NUM. */ static tree chrec_component_in_loop_num (tree chrec, unsigned loop_num, bool right) { tree component; struct loop *loop = get_loop (cfun, loop_num), *chloop; if (automatically_generated_chrec_p (chrec)) return chrec; switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: chloop = get_chrec_loop (chrec); if (chloop == loop) { if (right) component = CHREC_RIGHT (chrec); else component = CHREC_LEFT (chrec); if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)) return component; else return build_polynomial_chrec (loop_num, chrec_component_in_loop_num (CHREC_LEFT (chrec), loop_num, right), component); } else if (flow_loop_nested_p (chloop, loop)) /* There is no evolution part in this loop. */ return NULL_TREE; else { gcc_assert (flow_loop_nested_p (loop, chloop)); return chrec_component_in_loop_num (CHREC_LEFT (chrec), loop_num, right); } default: if (right) return NULL_TREE; else return chrec; } } /* Returns the evolution part in LOOP_NUM. Example: the call evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns {1, +, 2}_1 */ tree evolution_part_in_loop_num (tree chrec, unsigned loop_num) { return chrec_component_in_loop_num (chrec, loop_num, true); } /* Returns the initial condition in LOOP_NUM. Example: the call initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns {0, +, 1}_1 */ tree initial_condition_in_loop_num (tree chrec, unsigned loop_num) { return chrec_component_in_loop_num (chrec, loop_num, false); } /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM. This function is essentially used for setting the evolution to chrec_dont_know, for example after having determined that it is impossible to say how many times a loop will execute. */ tree reset_evolution_in_loop (unsigned loop_num, tree chrec, tree new_evol) { struct loop *loop = get_loop (cfun, loop_num); if (POINTER_TYPE_P (chrec_type (chrec))) gcc_assert (ptrofftype_p (chrec_type (new_evol))); else gcc_assert (chrec_type (chrec) == chrec_type (new_evol)); if (TREE_CODE (chrec) == POLYNOMIAL_CHREC && flow_loop_nested_p (loop, get_chrec_loop (chrec))) { tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec), new_evol); tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec), new_evol); return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left), CHREC_VAR (chrec), left, right); } while (TREE_CODE (chrec) == POLYNOMIAL_CHREC && CHREC_VARIABLE (chrec) == loop_num) chrec = CHREC_LEFT (chrec); return build_polynomial_chrec (loop_num, chrec, new_evol); } /* Merges two evolution functions that were found by following two alternate paths of a conditional expression. */ tree chrec_merge (tree chrec1, tree chrec2) { if (chrec1 == chrec_dont_know || chrec2 == chrec_dont_know) return chrec_dont_know; if (chrec1 == chrec_known || chrec2 == chrec_known) return chrec_known; if (chrec1 == chrec_not_analyzed_yet) return chrec2; if (chrec2 == chrec_not_analyzed_yet) return chrec1; if (eq_evolutions_p (chrec1, chrec2)) return chrec1; return chrec_dont_know; } /* Observers. */ /* Helper function for is_multivariate_chrec. */ static bool is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var) { if (chrec == NULL_TREE) return false; if (TREE_CODE (chrec) == POLYNOMIAL_CHREC) { if (CHREC_VARIABLE (chrec) != rec_var) return true; else return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var) || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var)); } else return false; } /* Determine whether the given chrec is multivariate or not. */ bool is_multivariate_chrec (const_tree chrec) { if (chrec == NULL_TREE) return false; if (TREE_CODE (chrec) == POLYNOMIAL_CHREC) return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), CHREC_VARIABLE (chrec)) || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), CHREC_VARIABLE (chrec))); else return false; } /* Determines whether the chrec contains symbolic names or not. */ bool chrec_contains_symbols (const_tree chrec) { int i, n; if (chrec == NULL_TREE) return false; if (TREE_CODE (chrec) == SSA_NAME || TREE_CODE (chrec) == VAR_DECL || TREE_CODE (chrec) == PARM_DECL || TREE_CODE (chrec) == FUNCTION_DECL || TREE_CODE (chrec) == LABEL_DECL || TREE_CODE (chrec) == RESULT_DECL || TREE_CODE (chrec) == FIELD_DECL) return true; n = TREE_OPERAND_LENGTH (chrec); for (i = 0; i < n; i++) if (chrec_contains_symbols (TREE_OPERAND (chrec, i))) return true; return false; } /* Determines whether the chrec contains undetermined coefficients. */ bool chrec_contains_undetermined (const_tree chrec) { int i, n; if (chrec == chrec_dont_know) return true; if (chrec == NULL_TREE) return false; n = TREE_OPERAND_LENGTH (chrec); for (i = 0; i < n; i++) if (chrec_contains_undetermined (TREE_OPERAND (chrec, i))) return true; return false; } /* Determines whether the tree EXPR contains chrecs, and increment SIZE if it is not a NULL pointer by an estimation of the depth of the tree. */ bool tree_contains_chrecs (const_tree expr, int *size) { int i, n; if (expr == NULL_TREE) return false; if (size) (*size)++; if (tree_is_chrec (expr)) return true; n = TREE_OPERAND_LENGTH (expr); for (i = 0; i < n; i++) if (tree_contains_chrecs (TREE_OPERAND (expr, i), size)) return true; return false; } /* Recursive helper function. */ static bool evolution_function_is_invariant_rec_p (tree chrec, int loopnum) { if (evolution_function_is_constant_p (chrec)) return true; if (TREE_CODE (chrec) == SSA_NAME && (loopnum == 0 || expr_invariant_in_loop_p (get_loop (cfun, loopnum), chrec))) return true; if (TREE_CODE (chrec) == POLYNOMIAL_CHREC) { if (CHREC_VARIABLE (chrec) == (unsigned) loopnum || flow_loop_nested_p (get_loop (cfun, loopnum), get_chrec_loop (chrec)) || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum) || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum)) return false; return true; } switch (TREE_OPERAND_LENGTH (chrec)) { case 2: if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1), loopnum)) return false; case 1: if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0), loopnum)) return false; return true; default: return false; } return false; } /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */ bool evolution_function_is_invariant_p (tree chrec, int loopnum) { return evolution_function_is_invariant_rec_p (chrec, loopnum); } /* Determine whether the given tree is an affine multivariate evolution. */ bool evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum) { if (chrec == NULL_TREE) return false; switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum)) { if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)) return true; else { if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC && CHREC_VARIABLE (CHREC_RIGHT (chrec)) != CHREC_VARIABLE (chrec) && evolution_function_is_affine_multivariate_p (CHREC_RIGHT (chrec), loopnum)) return true; else return false; } } else { if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum) && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec) && evolution_function_is_affine_multivariate_p (CHREC_LEFT (chrec), loopnum)) return true; else return false; } default: return false; } } /* Determine whether the given tree is a function in zero or one variables. */ bool evolution_function_is_univariate_p (const_tree chrec) { if (chrec == NULL_TREE) return true; switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: switch (TREE_CODE (CHREC_LEFT (chrec))) { case POLYNOMIAL_CHREC: if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec))) return false; if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec))) return false; break; default: if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL)) return false; break; } switch (TREE_CODE (CHREC_RIGHT (chrec))) { case POLYNOMIAL_CHREC: if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec))) return false; if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec))) return false; break; default: if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL)) return false; break; } default: return true; } } /* Returns the number of variables of CHREC. Example: the call nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */ unsigned nb_vars_in_chrec (tree chrec) { if (chrec == NULL_TREE) return 0; switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: return 1 + nb_vars_in_chrec (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec))); default: return 0; } } /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv the scev corresponds to. AT_STMT is the statement at that the scev is evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that the rules for overflow of the given language apply (e.g., that signed arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary tests, but also to enforce that the result follows them. Returns true if the conversion succeeded, false otherwise. */ bool convert_affine_scev (struct loop *loop, tree type, tree *base, tree *step, gimple at_stmt, bool use_overflow_semantics) { tree ct = TREE_TYPE (*step); bool enforce_overflow_semantics; bool must_check_src_overflow, must_check_rslt_overflow; tree new_base, new_step; tree step_type = POINTER_TYPE_P (type) ? sizetype : type; /* In general, (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i, but we must check some assumptions. 1) If [BASE, +, STEP] wraps, the equation is not valid when precision of CT is smaller than the precision of TYPE. For example, when we cast unsigned char [254, +, 1] to unsigned, the values on left side are 254, 255, 0, 1, ..., but those on the right side are 254, 255, 256, 257, ... 2) In case that we must also preserve the fact that signed ivs do not overflow, we must additionally check that the new iv does not wrap. For example, unsigned char [125, +, 1] casted to signed char could become a wrapping variable with values 125, 126, 127, -128, -127, ..., which would confuse optimizers that assume that this does not happen. */ must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type); enforce_overflow_semantics = (use_overflow_semantics && nowrap_type_p (type)); if (enforce_overflow_semantics) { /* We can avoid checking whether the result overflows in the following cases: -- must_check_src_overflow is true, and the range of TYPE is superset of the range of CT -- i.e., in all cases except if CT signed and TYPE unsigned. -- both CT and TYPE have the same precision and signedness, and we verify instead that the source does not overflow (this may be easier than verifying it for the result, as we may use the information about the semantics of overflow in CT). */ if (must_check_src_overflow) { if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct)) must_check_rslt_overflow = true; else must_check_rslt_overflow = false; } else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type) && TYPE_PRECISION (ct) == TYPE_PRECISION (type)) { must_check_rslt_overflow = false; must_check_src_overflow = true; } else must_check_rslt_overflow = true; } else must_check_rslt_overflow = false; if (must_check_src_overflow && scev_probably_wraps_p (*base, *step, at_stmt, loop, use_overflow_semantics)) return false; new_base = chrec_convert (type, *base, at_stmt, use_overflow_semantics); /* The step must be sign extended, regardless of the signedness of CT and TYPE. This only needs to be handled specially when CT is unsigned -- to avoid e.g. unsigned char [100, +, 255] (with values 100, 99, 98, ...) from becoming signed or unsigned [100, +, 255] with values 100, 355, ...; the sign-extension is performed by default when CT is signed. */ new_step = *step; if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct)) { tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0); new_step = chrec_convert (signed_ct, new_step, at_stmt, use_overflow_semantics); } new_step = chrec_convert (step_type, new_step, at_stmt, use_overflow_semantics); if (automatically_generated_chrec_p (new_base) || automatically_generated_chrec_p (new_step)) return false; if (must_check_rslt_overflow /* Note that in this case we cannot use the fact that signed variables do not overflow, as this is what we are verifying for the new iv. */ && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false)) return false; *base = new_base; *step = new_step; return true; } /* Convert CHREC for the right hand side of a CHREC. The increment for a pointer type is always sizetype. */ tree chrec_convert_rhs (tree type, tree chrec, gimple at_stmt) { if (POINTER_TYPE_P (type)) type = sizetype; return chrec_convert (type, chrec, at_stmt); } /* Convert CHREC to TYPE. When the analyzer knows the context in which the CHREC is built, it sets AT_STMT to the statement that contains the definition of the analyzed variable, otherwise the conversion is less accurate: the information is used for determining a more accurate estimation of the number of iterations. By default AT_STMT could be safely set to NULL_TREE. USE_OVERFLOW_SEMANTICS is true if this function should assume that the rules for overflow of the given language apply (e.g., that signed arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary tests, but also to enforce that the result follows them. */ static tree chrec_convert_1 (tree type, tree chrec, gimple at_stmt, bool use_overflow_semantics) { tree ct, res; tree base, step; struct loop *loop; if (automatically_generated_chrec_p (chrec)) return chrec; ct = chrec_type (chrec); if (ct == type) return chrec; if (!evolution_function_is_affine_p (chrec)) goto keep_cast; loop = get_chrec_loop (chrec); base = CHREC_LEFT (chrec); step = CHREC_RIGHT (chrec); if (convert_affine_scev (loop, type, &base, &step, at_stmt, use_overflow_semantics)) return build_polynomial_chrec (loop->num, base, step); /* If we cannot propagate the cast inside the chrec, just keep the cast. */ keep_cast: /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that may be more expensive. We do want to perform this optimization here though for canonicalization reasons. */ if (use_overflow_semantics && (TREE_CODE (chrec) == PLUS_EXPR || TREE_CODE (chrec) == MINUS_EXPR) && TREE_CODE (type) == INTEGER_TYPE && TREE_CODE (ct) == INTEGER_TYPE && TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_OVERFLOW_UNDEFINED (ct)) res = fold_build2 (TREE_CODE (chrec), type, fold_convert (type, TREE_OPERAND (chrec, 0)), fold_convert (type, TREE_OPERAND (chrec, 1))); /* Similar perform the trick that (signed char)((int)x + 2) can be narrowed to (signed char)((unsigned char)x + 2). */ else if (use_overflow_semantics && TREE_CODE (chrec) == POLYNOMIAL_CHREC && TREE_CODE (ct) == INTEGER_TYPE && TREE_CODE (type) == INTEGER_TYPE && TYPE_OVERFLOW_UNDEFINED (type) && TYPE_PRECISION (type) < TYPE_PRECISION (ct)) { tree utype = unsigned_type_for (type); res = build_polynomial_chrec (CHREC_VARIABLE (chrec), fold_convert (utype, CHREC_LEFT (chrec)), fold_convert (utype, CHREC_RIGHT (chrec))); res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics); } else res = fold_convert (type, chrec); /* Don't propagate overflows. */ if (CONSTANT_CLASS_P (res)) TREE_OVERFLOW (res) = 0; /* But reject constants that don't fit in their type after conversion. This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the natural values associated with TYPE_PRECISION and TYPE_UNSIGNED, and can cause problems later when computing niters of loops. Note that we don't do the check before converting because we don't want to reject conversions of negative chrecs to unsigned types. */ if (TREE_CODE (res) == INTEGER_CST && TREE_CODE (type) == INTEGER_TYPE && !int_fits_type_p (res, type)) res = chrec_dont_know; return res; } /* Convert CHREC to TYPE. When the analyzer knows the context in which the CHREC is built, it sets AT_STMT to the statement that contains the definition of the analyzed variable, otherwise the conversion is less accurate: the information is used for determining a more accurate estimation of the number of iterations. By default AT_STMT could be safely set to NULL_TREE. The following rule is always true: TREE_TYPE (chrec) == TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)). An example of what could happen when adding two chrecs and the type of the CHREC_RIGHT is different than CHREC_LEFT is: {(uint) 0, +, (uchar) 10} + {(uint) 0, +, (uchar) 250} that would produce a wrong result if CHREC_RIGHT is not (uint): {(uint) 0, +, (uchar) 4} instead of {(uint) 0, +, (uint) 260} USE_OVERFLOW_SEMANTICS is true if this function should assume that the rules for overflow of the given language apply (e.g., that signed arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary tests, but also to enforce that the result follows them. */ tree chrec_convert (tree type, tree chrec, gimple at_stmt, bool use_overflow_semantics) { return chrec_convert_1 (type, chrec, at_stmt, use_overflow_semantics); } /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new chrec if something else than what chrec_convert would do happens, NULL_TREE otherwise. This function set TRUE to variable pointed by FOLD_CONVERSIONS if the result chrec may overflow. */ tree chrec_convert_aggressive (tree type, tree chrec, bool *fold_conversions) { tree inner_type, left, right, lc, rc, rtype; gcc_assert (fold_conversions != NULL); if (automatically_generated_chrec_p (chrec) || TREE_CODE (chrec) != POLYNOMIAL_CHREC) return NULL_TREE; inner_type = TREE_TYPE (chrec); if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type)) return NULL_TREE; if (useless_type_conversion_p (type, inner_type)) return NULL_TREE; if (!*fold_conversions && evolution_function_is_affine_p (chrec)) { tree base, step; struct loop *loop; loop = get_chrec_loop (chrec); base = CHREC_LEFT (chrec); step = CHREC_RIGHT (chrec); if (convert_affine_scev (loop, type, &base, &step, NULL, true)) return build_polynomial_chrec (loop->num, base, step); } rtype = POINTER_TYPE_P (type) ? sizetype : type; left = CHREC_LEFT (chrec); right = CHREC_RIGHT (chrec); lc = chrec_convert_aggressive (type, left, fold_conversions); if (!lc) lc = chrec_convert (type, left, NULL); rc = chrec_convert_aggressive (rtype, right, fold_conversions); if (!rc) rc = chrec_convert (rtype, right, NULL); *fold_conversions = true; return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc); } /* Returns true when CHREC0 == CHREC1. */ bool eq_evolutions_p (const_tree chrec0, const_tree chrec1) { if (chrec0 == NULL_TREE || chrec1 == NULL_TREE || TREE_CODE (chrec0) != TREE_CODE (chrec1)) return false; if (chrec0 == chrec1) return true; switch (TREE_CODE (chrec0)) { case INTEGER_CST: return operand_equal_p (chrec0, chrec1, 0); case POLYNOMIAL_CHREC: return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1) && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1)) && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1))); case PLUS_EXPR: case MULT_EXPR: case MINUS_EXPR: case POINTER_PLUS_EXPR: return eq_evolutions_p (TREE_OPERAND (chrec0, 0), TREE_OPERAND (chrec1, 0)) && eq_evolutions_p (TREE_OPERAND (chrec0, 1), TREE_OPERAND (chrec1, 1)); default: return false; } } /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow), EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine which of these cases happens. */ enum ev_direction scev_direction (const_tree chrec) { const_tree step; if (!evolution_function_is_affine_p (chrec)) return EV_DIR_UNKNOWN; step = CHREC_RIGHT (chrec); if (TREE_CODE (step) != INTEGER_CST) return EV_DIR_UNKNOWN; if (tree_int_cst_sign_bit (step)) return EV_DIR_DECREASES; else return EV_DIR_GROWS; } /* Iterates over all the components of SCEV, and calls CBCK. */ void for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data) { switch (TREE_CODE_LENGTH (TREE_CODE (*scev))) { case 3: for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data); case 2: for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data); case 1: for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data); default: cbck (scev, data); break; } } /* Returns true when the operation can be part of a linear expression. */ static inline bool operator_is_linear (tree scev) { switch (TREE_CODE (scev)) { case INTEGER_CST: case POLYNOMIAL_CHREC: case PLUS_EXPR: case POINTER_PLUS_EXPR: case MULT_EXPR: case MINUS_EXPR: case NEGATE_EXPR: case SSA_NAME: case NON_LVALUE_EXPR: case BIT_NOT_EXPR: CASE_CONVERT: return true; default: return false; } } /* Return true when SCEV is a linear expression. Linear expressions can contain additions, substractions and multiplications. Multiplications are restricted to constant scaling: "cst * x". */ bool scev_is_linear_expression (tree scev) { if (scev == NULL || !operator_is_linear (scev)) return false; if (TREE_CODE (scev) == MULT_EXPR) return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL) && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL)); if (TREE_CODE (scev) == POLYNOMIAL_CHREC && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev))) return false; switch (TREE_CODE_LENGTH (TREE_CODE (scev))) { case 3: return scev_is_linear_expression (TREE_OPERAND (scev, 0)) && scev_is_linear_expression (TREE_OPERAND (scev, 1)) && scev_is_linear_expression (TREE_OPERAND (scev, 2)); case 2: return scev_is_linear_expression (TREE_OPERAND (scev, 0)) && scev_is_linear_expression (TREE_OPERAND (scev, 1)); case 1: return scev_is_linear_expression (TREE_OPERAND (scev, 0)); case 0: return true; default: return false; } } /* Determines whether the expression CHREC contains only interger consts in the right parts. */ bool evolution_function_right_is_integer_cst (const_tree chrec) { if (chrec == NULL_TREE) return false; switch (TREE_CODE (chrec)) { case INTEGER_CST: return true; case POLYNOMIAL_CHREC: return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec))); CASE_CONVERT: return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0)); default: return false; } }