/* Setting LOGICAL_OP_NON_SHORT_CIRCUIT to 0 inhibits the setcc optimizations that expose the VRP opportunity. */ /* Skip on S/390. Lower values in BRANCH_COST lead to two conditional jumps when evaluating an && condition. VRP is not able to optimize this. */ /* { dg-do compile { target { ! { logical_op_short_circuit || { s390*-*-* mn10300-*-* hppa*-*-* } } } } } */ /* { dg-options "-O2 -fdump-tree-vrp1 -fdump-tree-dom1 -fdump-tree-vrp2" } */ /* { dg-additional-options "-march=i586" { target { { i?86-*-* x86_64-*-* } && ia32 } } } */ int h(int x, int y) { if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1)) return x && y; else return -1; } int g(int x, int y) { if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1)) return x || y; else return -1; } int f(int x) { if (x != 0 && x != 1) return -2; else return !x; } /* Test that x and y are never compared to 0 -- they're always known to be 0 or 1. */ /* { dg-final { scan-tree-dump-times "\[xy\]\[^ \]* !=" 0 "vrp1" } } */ /* These two are fully simplified by VRP1. */ /* { dg-final { scan-tree-dump-times "x\[^ \]* \[|\] y" 1 "vrp1" } } */ /* { dg-final { scan-tree-dump-times "x\[^ \]* \\^ 1" 1 "vrp1" } } */ /* VRP2 gets rid of the remaining & 1 operations, x and y are always either 0 or 1. */ /* { dg-final { scan-tree-dump-times " & 1;" 0 "vrp2" } } */ /* { dg-final { cleanup-tree-dump "vrp1" } } */ /* { dg-final { cleanup-tree-dump "dom1" } } */ /* { dg-final { cleanup-tree-dump "vrp2" } } */