/* RTL reader for GCC. Copyright (C) 1987-2014 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "bconfig.h" /* Disable rtl checking; it conflicts with the iterator handling. */ #undef ENABLE_RTL_CHECKING #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "obstack.h" #include "hashtab.h" #include "read-md.h" #include "gensupport.h" /* One element in a singly-linked list of (integer, string) pairs. */ struct map_value { struct map_value *next; int number; const char *string; }; /* Maps an iterator or attribute name to a list of (integer, string) pairs. The integers are iterator values; the strings are either C conditions or attribute values. */ struct mapping { /* The name of the iterator or attribute. */ const char *name; /* The group (modes or codes) to which the iterator or attribute belongs. */ struct iterator_group *group; /* The list of (integer, string) pairs. */ struct map_value *values; /* For iterators, records the current value of the iterator. */ struct map_value *current_value; }; /* Vector definitions for the above. */ typedef struct mapping *mapping_ptr; /* A structure for abstracting the common parts of iterators. */ struct iterator_group { /* Tables of "mapping" structures, one for attributes and one for iterators. */ htab_t attrs, iterators; /* Treat the given string as the name of a standard mode, etc., and return its integer value. */ int (*find_builtin) (const char *); /* Make the given pointer use the given iterator value. */ void (*apply_iterator) (void *, int); }; /* Records one use of an iterator. */ struct iterator_use { /* The iterator itself. */ struct mapping *iterator; /* The location of the use, as passed to the apply_iterator callback. */ void *ptr; }; /* Vector definitions for the above. */ typedef struct iterator_use iterator_use; /* Records one use of an attribute (the "<[iterator:]attribute>" syntax) in a non-string rtx field. */ struct attribute_use { /* The group that describes the use site. */ struct iterator_group *group; /* The name of the attribute, possibly with an "iterator:" prefix. */ const char *value; /* The location of the use, as passed to GROUP's apply_iterator callback. */ void *ptr; }; /* Vector definitions for the above. */ typedef struct attribute_use attribute_use; /* This struct is used to link subst_attr named ATTR_NAME with corresponding define_subst named ITER_NAME. */ struct subst_attr_to_iter_mapping { char *attr_name; char *iter_name; }; /* Hash-table to store links between subst-attributes and define_substs. */ htab_t subst_attr_to_iter_map = NULL; /* This global stores name of subst-iterator which is currently being processed. */ const char *current_iterator_name; static void validate_const_int (const char *); static rtx read_rtx_code (const char *); static rtx read_nested_rtx (void); static rtx read_rtx_variadic (rtx); /* The mode and code iterator structures. */ static struct iterator_group modes, codes, ints, substs; /* All iterators used in the current rtx. */ static vec current_iterators; /* The list of all iterator uses in the current rtx. */ static vec iterator_uses; /* The list of all attribute uses in the current rtx. */ static vec attribute_uses; /* Implementations of the iterator_group callbacks for modes. */ static int find_mode (const char *name) { int i; for (i = 0; i < NUM_MACHINE_MODES; i++) if (strcmp (GET_MODE_NAME (i), name) == 0) return i; fatal_with_file_and_line ("unknown mode `%s'", name); } static void apply_mode_iterator (void *loc, int mode) { PUT_MODE ((rtx) loc, (enum machine_mode) mode); } /* Implementations of the iterator_group callbacks for codes. */ static int find_code (const char *name) { int i; for (i = 0; i < NUM_RTX_CODE; i++) if (strcmp (GET_RTX_NAME (i), name) == 0) return i; fatal_with_file_and_line ("unknown rtx code `%s'", name); } static void apply_code_iterator (void *loc, int code) { PUT_CODE ((rtx) loc, (enum rtx_code) code); } /* Implementations of the iterator_group callbacks for ints. */ /* Since GCC does not construct a table of valid constants, we have to accept any int as valid. No cross-checking can be done. */ static int find_int (const char *name) { validate_const_int (name); return atoi (name); } static void apply_int_iterator (void *loc, int value) { *(int *)loc = value; } /* This routine adds attribute or does nothing depending on VALUE. When VALUE is 1, it does nothing - the first duplicate of original template is kept untouched when it's subjected to a define_subst. When VALUE isn't 1, the routine modifies RTL-template LOC, adding attribute, named exactly as define_subst, which later will be applied. If such attribute has already been added, then no the routine has no effect. */ static void apply_subst_iterator (void *loc, int value) { rtx rt = (rtx)loc; rtx new_attr; rtvec attrs_vec, new_attrs_vec; int i; if (value == 1) return; gcc_assert (GET_CODE (rt) == DEFINE_INSN || GET_CODE (rt) == DEFINE_EXPAND); attrs_vec = XVEC (rt, 4); /* If we've already added attribute 'current_iterator_name', then we have nothing to do now. */ if (attrs_vec) { for (i = 0; i < GET_NUM_ELEM (attrs_vec); i++) { if (strcmp (XSTR (attrs_vec->elem[i], 0), current_iterator_name) == 0) return; } } /* Add attribute with subst name - it serves as a mark for define_subst which later would be applied to this pattern. */ new_attr = rtx_alloc (SET_ATTR); PUT_CODE (new_attr, SET_ATTR); XSTR (new_attr, 0) = xstrdup (current_iterator_name); XSTR (new_attr, 1) = xstrdup ("yes"); if (!attrs_vec) { new_attrs_vec = rtvec_alloc (1); new_attrs_vec->elem[0] = new_attr; } else { new_attrs_vec = rtvec_alloc (GET_NUM_ELEM (attrs_vec) + 1); memcpy (&new_attrs_vec->elem[0], &attrs_vec->elem[0], GET_NUM_ELEM (attrs_vec) * sizeof (rtx)); new_attrs_vec->elem[GET_NUM_ELEM (attrs_vec)] = new_attr; } XVEC (rt, 4) = new_attrs_vec; } /* Map subst-attribute ATTR to subst iterator ITER. */ static void bind_subst_iter_and_attr (const char *iter, const char *attr) { struct subst_attr_to_iter_mapping *value; void **slot; if (!subst_attr_to_iter_map) subst_attr_to_iter_map = htab_create (1, leading_string_hash, leading_string_eq_p, 0); value = XNEW (struct subst_attr_to_iter_mapping); value->attr_name = xstrdup (attr); value->iter_name = xstrdup (iter); slot = htab_find_slot (subst_attr_to_iter_map, value, INSERT); *slot = value; } /* Return name of a subst-iterator, corresponding to subst-attribute ATTR. */ static char* find_subst_iter_by_attr (const char *attr) { char *iter_name = NULL; struct subst_attr_to_iter_mapping *value; value = (struct subst_attr_to_iter_mapping*) htab_find (subst_attr_to_iter_map, &attr); if (value) iter_name = value->iter_name; return iter_name; } /* Map attribute string P to its current value. Return null if the attribute isn't known. */ static struct map_value * map_attr_string (const char *p) { const char *attr; struct mapping *iterator; unsigned int i; struct mapping *m; struct map_value *v; int iterator_name_len; /* Peel off any "iterator:" prefix. Set ATTR to the start of the attribute name. */ attr = strchr (p, ':'); if (attr == 0) { iterator_name_len = -1; attr = p; } else { iterator_name_len = attr - p; attr++; } FOR_EACH_VEC_ELT (current_iterators, i, iterator) { /* If an iterator name was specified, check that it matches. */ if (iterator_name_len >= 0 && (strncmp (p, iterator->name, iterator_name_len) != 0 || iterator->name[iterator_name_len] != 0)) continue; /* Find the attribute specification. */ m = (struct mapping *) htab_find (iterator->group->attrs, &attr); if (m) { /* In contrast to code/mode/int iterators, attributes of subst iterators are linked to one specific subst-iterator. So, if we are dealing with subst-iterator, we should check if it's the one which linked with the given attribute. */ if (iterator->group == &substs) { char *iter_name = find_subst_iter_by_attr (attr); if (strcmp (iter_name, iterator->name) != 0) continue; } /* Find the attribute value associated with the current iterator value. */ for (v = m->values; v; v = v->next) if (v->number == iterator->current_value->number) return v; } } return NULL; } /* Apply the current iterator values to STRING. Return the new string if any changes were needed, otherwise return STRING itself. */ static const char * apply_iterator_to_string (const char *string) { char *base, *copy, *p, *start, *end; struct map_value *v; if (string == 0) return string; base = p = copy = ASTRDUP (string); while ((start = strchr (p, '<')) && (end = strchr (start, '>'))) { p = start + 1; *end = 0; v = map_attr_string (p); *end = '>'; if (v == 0) continue; /* Add everything between the last copied byte and the '<', then add in the attribute value. */ obstack_grow (&string_obstack, base, start - base); obstack_grow (&string_obstack, v->string, strlen (v->string)); base = end + 1; } if (base != copy) { obstack_grow (&string_obstack, base, strlen (base) + 1); copy = XOBFINISH (&string_obstack, char *); copy_md_ptr_loc (copy, string); return copy; } return string; } /* Return a deep copy of X, substituting the current iterator values into any strings. */ static rtx copy_rtx_for_iterators (rtx original) { const char *format_ptr, *p; int i, j; rtx x; if (original == 0) return original; /* Create a shallow copy of ORIGINAL. */ x = rtx_alloc (GET_CODE (original)); memcpy (x, original, RTX_CODE_SIZE (GET_CODE (original))); /* Change each string and recursively change each rtx. */ format_ptr = GET_RTX_FORMAT (GET_CODE (original)); for (i = 0; format_ptr[i] != 0; i++) switch (format_ptr[i]) { case 'T': while (XTMPL (x, i) != (p = apply_iterator_to_string (XTMPL (x, i)))) XTMPL (x, i) = p; break; case 'S': case 's': while (XSTR (x, i) != (p = apply_iterator_to_string (XSTR (x, i)))) XSTR (x, i) = p; break; case 'e': XEXP (x, i) = copy_rtx_for_iterators (XEXP (x, i)); break; case 'V': case 'E': if (XVEC (original, i)) { XVEC (x, i) = rtvec_alloc (XVECLEN (original, i)); for (j = 0; j < XVECLEN (x, i); j++) XVECEXP (x, i, j) = copy_rtx_for_iterators (XVECEXP (original, i, j)); } break; default: break; } return x; } /* Return a condition that must satisfy both ORIGINAL and EXTRA. If ORIGINAL has the form "&& ..." (as used in define_insn_and_splits), assume that EXTRA is already satisfied. Empty strings are treated like "true". */ static const char * add_condition_to_string (const char *original, const char *extra) { if (original != 0 && original[0] == '&' && original[1] == '&') return original; return join_c_conditions (original, extra); } /* Like add_condition, but applied to all conditions in rtx X. */ static void add_condition_to_rtx (rtx x, const char *extra) { switch (GET_CODE (x)) { case DEFINE_INSN: case DEFINE_EXPAND: case DEFINE_SUBST: XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra); break; case DEFINE_SPLIT: case DEFINE_PEEPHOLE: case DEFINE_PEEPHOLE2: case DEFINE_COND_EXEC: XSTR (x, 1) = add_condition_to_string (XSTR (x, 1), extra); break; case DEFINE_INSN_AND_SPLIT: XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra); XSTR (x, 4) = add_condition_to_string (XSTR (x, 4), extra); break; default: break; } } /* Apply the current iterator values to all attribute_uses. */ static void apply_attribute_uses (void) { struct map_value *v; attribute_use *ause; unsigned int i; FOR_EACH_VEC_ELT (attribute_uses, i, ause) { v = map_attr_string (ause->value); if (!v) fatal_with_file_and_line ("unknown iterator value `%s'", ause->value); ause->group->apply_iterator (ause->ptr, ause->group->find_builtin (v->string)); } } /* A htab_traverse callback for iterators. Add all used iterators to current_iterators. */ static int add_current_iterators (void **slot, void *data ATTRIBUTE_UNUSED) { struct mapping *iterator; iterator = (struct mapping *) *slot; if (iterator->current_value) current_iterators.safe_push (iterator); return 1; } /* Expand all iterators in the current rtx, which is given as ORIGINAL. Build a list of expanded rtxes in the EXPR_LIST pointed to by QUEUE. */ static void apply_iterators (rtx original, rtx *queue) { unsigned int i; const char *condition; iterator_use *iuse; struct mapping *iterator; struct map_value *v; rtx x; if (iterator_uses.is_empty ()) { /* Raise an error if any attributes were used. */ apply_attribute_uses (); XEXP (*queue, 0) = original; XEXP (*queue, 1) = NULL_RTX; return; } /* Clear out the iterators from the previous run. */ FOR_EACH_VEC_ELT (current_iterators, i, iterator) iterator->current_value = NULL; current_iterators.truncate (0); /* Mark the iterators that we need this time. */ FOR_EACH_VEC_ELT (iterator_uses, i, iuse) iuse->iterator->current_value = iuse->iterator->values; /* Get the list of iterators that are in use, preserving the definition order within each group. */ htab_traverse (modes.iterators, add_current_iterators, NULL); htab_traverse (codes.iterators, add_current_iterators, NULL); htab_traverse (ints.iterators, add_current_iterators, NULL); htab_traverse (substs.iterators, add_current_iterators, NULL); gcc_assert (!current_iterators.is_empty ()); for (;;) { /* Apply the current iterator values. Accumulate a condition to say when the resulting rtx can be used. */ condition = ""; FOR_EACH_VEC_ELT (iterator_uses, i, iuse) { if (iuse->iterator->group == &substs) continue; v = iuse->iterator->current_value; iuse->iterator->group->apply_iterator (iuse->ptr, v->number); condition = join_c_conditions (condition, v->string); } apply_attribute_uses (); x = copy_rtx_for_iterators (original); add_condition_to_rtx (x, condition); /* We apply subst iterator after RTL-template is copied, as during subst-iterator processing, we could add an attribute to the RTL-template, and we don't want to do it in the original one. */ FOR_EACH_VEC_ELT (iterator_uses, i, iuse) { v = iuse->iterator->current_value; if (iuse->iterator->group == &substs) { iuse->ptr = x; current_iterator_name = iuse->iterator->name; iuse->iterator->group->apply_iterator (iuse->ptr, v->number); } } /* Add the new rtx to the end of the queue. */ XEXP (*queue, 0) = x; XEXP (*queue, 1) = NULL_RTX; /* Lexicographically increment the iterator value sequence. That is, cycle through iterator values, starting from the right, and stopping when one of them doesn't wrap around. */ i = current_iterators.length (); for (;;) { if (i == 0) return; i--; iterator = current_iterators[i]; iterator->current_value = iterator->current_value->next; if (iterator->current_value) break; iterator->current_value = iterator->values; } /* At least one more rtx to go. Allocate room for it. */ XEXP (*queue, 1) = rtx_alloc (EXPR_LIST); queue = &XEXP (*queue, 1); } } /* Add a new "mapping" structure to hashtable TABLE. NAME is the name of the mapping and GROUP is the group to which it belongs. */ static struct mapping * add_mapping (struct iterator_group *group, htab_t table, const char *name) { struct mapping *m; void **slot; m = XNEW (struct mapping); m->name = xstrdup (name); m->group = group; m->values = 0; m->current_value = NULL; slot = htab_find_slot (table, m, INSERT); if (*slot != 0) fatal_with_file_and_line ("`%s' already defined", name); *slot = m; return m; } /* Add the pair (NUMBER, STRING) to a list of map_value structures. END_PTR points to the current null terminator for the list; return a pointer the new null terminator. */ static struct map_value ** add_map_value (struct map_value **end_ptr, int number, const char *string) { struct map_value *value; value = XNEW (struct map_value); value->next = 0; value->number = number; value->string = string; *end_ptr = value; return &value->next; } /* Do one-time initialization of the mode and code attributes. */ static void initialize_iterators (void) { struct mapping *lower, *upper; struct map_value **lower_ptr, **upper_ptr; char *copy, *p; int i; modes.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0); modes.iterators = htab_create (13, leading_string_hash, leading_string_eq_p, 0); modes.find_builtin = find_mode; modes.apply_iterator = apply_mode_iterator; codes.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0); codes.iterators = htab_create (13, leading_string_hash, leading_string_eq_p, 0); codes.find_builtin = find_code; codes.apply_iterator = apply_code_iterator; ints.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0); ints.iterators = htab_create (13, leading_string_hash, leading_string_eq_p, 0); ints.find_builtin = find_int; ints.apply_iterator = apply_int_iterator; substs.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0); substs.iterators = htab_create (13, leading_string_hash, leading_string_eq_p, 0); substs.find_builtin = find_int; /* We don't use it, anyway. */ substs.apply_iterator = apply_subst_iterator; lower = add_mapping (&modes, modes.attrs, "mode"); upper = add_mapping (&modes, modes.attrs, "MODE"); lower_ptr = &lower->values; upper_ptr = &upper->values; for (i = 0; i < MAX_MACHINE_MODE; i++) { copy = xstrdup (GET_MODE_NAME (i)); for (p = copy; *p != 0; p++) *p = TOLOWER (*p); upper_ptr = add_map_value (upper_ptr, i, GET_MODE_NAME (i)); lower_ptr = add_map_value (lower_ptr, i, copy); } lower = add_mapping (&codes, codes.attrs, "code"); upper = add_mapping (&codes, codes.attrs, "CODE"); lower_ptr = &lower->values; upper_ptr = &upper->values; for (i = 0; i < NUM_RTX_CODE; i++) { copy = xstrdup (GET_RTX_NAME (i)); for (p = copy; *p != 0; p++) *p = TOUPPER (*p); lower_ptr = add_map_value (lower_ptr, i, GET_RTX_NAME (i)); upper_ptr = add_map_value (upper_ptr, i, copy); } } /* Provide a version of a function to read a long long if the system does not provide one. */ #if HOST_BITS_PER_WIDE_INT > HOST_BITS_PER_LONG && !defined(HAVE_ATOLL) && !defined(HAVE_ATOQ) HOST_WIDE_INT atoll (const char *); HOST_WIDE_INT atoll (const char *p) { int neg = 0; HOST_WIDE_INT tmp_wide; while (ISSPACE (*p)) p++; if (*p == '-') neg = 1, p++; else if (*p == '+') p++; tmp_wide = 0; while (ISDIGIT (*p)) { HOST_WIDE_INT new_wide = tmp_wide*10 + (*p - '0'); if (new_wide < tmp_wide) { /* Return INT_MAX equiv on overflow. */ tmp_wide = (~(unsigned HOST_WIDE_INT) 0) >> 1; break; } tmp_wide = new_wide; p++; } if (neg) tmp_wide = -tmp_wide; return tmp_wide; } #endif /* Process a define_conditions directive, starting with the optional space after the "define_conditions". The directive looks like this: (define_conditions [ (number "string") (number "string") ... ]) It's not intended to appear in machine descriptions. It is generated by (the program generated by) genconditions.c, and slipped in at the beginning of the sequence of MD files read by most of the other generators. */ static void read_conditions (void) { int c; c = read_skip_spaces (); if (c != '[') fatal_expected_char ('[', c); while ( (c = read_skip_spaces ()) != ']') { struct md_name name; char *expr; int value; if (c != '(') fatal_expected_char ('(', c); read_name (&name); validate_const_int (name.string); value = atoi (name.string); c = read_skip_spaces (); if (c != '"') fatal_expected_char ('"', c); expr = read_quoted_string (); c = read_skip_spaces (); if (c != ')') fatal_expected_char (')', c); add_c_test (expr, value); } } static void validate_const_int (const char *string) { const char *cp; int valid = 1; cp = string; while (*cp && ISSPACE (*cp)) cp++; if (*cp == '-' || *cp == '+') cp++; if (*cp == 0) valid = 0; for (; *cp; cp++) if (! ISDIGIT (*cp)) { valid = 0; break; } if (!valid) fatal_with_file_and_line ("invalid decimal constant \"%s\"\n", string); } /* Record that PTR uses iterator ITERATOR. */ static void record_iterator_use (struct mapping *iterator, void *ptr) { struct iterator_use iuse = {iterator, ptr}; iterator_uses.safe_push (iuse); } /* Record that PTR uses attribute VALUE, which must match a built-in value from group GROUP. */ static void record_attribute_use (struct iterator_group *group, void *ptr, const char *value) { struct attribute_use ause = {group, value, ptr}; attribute_uses.safe_push (ause); } /* Interpret NAME as either a built-in value, iterator or attribute for group GROUP. PTR is the value to pass to GROUP's apply_iterator callback. */ static void record_potential_iterator_use (struct iterator_group *group, void *ptr, const char *name) { struct mapping *m; size_t len; len = strlen (name); if (name[0] == '<' && name[len - 1] == '>') { /* Copy the attribute string into permanent storage, without the angle brackets around it. */ obstack_grow0 (&string_obstack, name + 1, len - 2); record_attribute_use (group, ptr, XOBFINISH (&string_obstack, char *)); } else { m = (struct mapping *) htab_find (group->iterators, &name); if (m != 0) record_iterator_use (m, ptr); else group->apply_iterator (ptr, group->find_builtin (name)); } } /* Finish reading a declaration of the form: (define... [ ... ]) from the MD file, where each is either a bare symbol name or a "( )" pair. The "(define..." part has already been read. Represent the declaration as a "mapping" structure; add it to TABLE (which belongs to GROUP) and return it. */ static struct mapping * read_mapping (struct iterator_group *group, htab_t table) { struct md_name name; struct mapping *m; struct map_value **end_ptr; const char *string; int number, c; /* Read the mapping name and create a structure for it. */ read_name (&name); m = add_mapping (group, table, name.string); c = read_skip_spaces (); if (c != '[') fatal_expected_char ('[', c); /* Read each value. */ end_ptr = &m->values; c = read_skip_spaces (); do { if (c != '(') { /* A bare symbol name that is implicitly paired to an empty string. */ unread_char (c); read_name (&name); string = ""; } else { /* A "(name string)" pair. */ read_name (&name); string = read_string (false); c = read_skip_spaces (); if (c != ')') fatal_expected_char (')', c); } number = group->find_builtin (name.string); end_ptr = add_map_value (end_ptr, number, string); c = read_skip_spaces (); } while (c != ']'); return m; } /* For iterator with name ATTR_NAME generate define_attr with values 'yes' and 'no'. This attribute is used to mark templates to which define_subst ATTR_NAME should be applied. This attribute is set and defined implicitly and automatically. */ static void add_define_attr_for_define_subst (const char *attr_name, rtx *queue) { rtx const_str, return_rtx; return_rtx = rtx_alloc (DEFINE_ATTR); PUT_CODE (return_rtx, DEFINE_ATTR); const_str = rtx_alloc (CONST_STRING); PUT_CODE (const_str, CONST_STRING); XSTR (const_str, 0) = xstrdup ("no"); XSTR (return_rtx, 0) = xstrdup (attr_name); XSTR (return_rtx, 1) = xstrdup ("no,yes"); XEXP (return_rtx, 2) = const_str; XEXP (*queue, 0) = return_rtx; XEXP (*queue, 1) = NULL_RTX; } /* This routine generates DEFINE_SUBST_ATTR expression with operands ATTR_OPERANDS and places it to QUEUE. */ static void add_define_subst_attr (const char **attr_operands, rtx *queue) { rtx return_rtx; int i; return_rtx = rtx_alloc (DEFINE_SUBST_ATTR); PUT_CODE (return_rtx, DEFINE_SUBST_ATTR); for (i = 0; i < 4; i++) XSTR (return_rtx, i) = xstrdup (attr_operands[i]); XEXP (*queue, 0) = return_rtx; XEXP (*queue, 1) = NULL_RTX; } /* Read define_subst_attribute construction. It has next form: (define_subst_attribute ) Attribute is substituted with value1 when no subst is applied and with value2 in the opposite case. Attributes are added to SUBST_ATTRS_TABLE. In case the iterator is encountered for the first time, it's added to SUBST_ITERS_TABLE. Also, implicit define_attr is generated. */ static void read_subst_mapping (htab_t subst_iters_table, htab_t subst_attrs_table, rtx *queue) { struct mapping *m; struct map_value **end_ptr; const char *attr_operands[4]; rtx * queue_elem = queue; int i; for (i = 0; i < 4; i++) attr_operands[i] = read_string (false); add_define_subst_attr (attr_operands, queue_elem); bind_subst_iter_and_attr (attr_operands[1], attr_operands[0]); m = (struct mapping *) htab_find (substs.iterators, &attr_operands[1]); if (!m) { m = add_mapping (&substs, subst_iters_table, attr_operands[1]); end_ptr = &m->values; end_ptr = add_map_value (end_ptr, 1, ""); end_ptr = add_map_value (end_ptr, 2, ""); /* Add element to the queue. */ XEXP (*queue, 1) = rtx_alloc (EXPR_LIST); queue_elem = &XEXP (*queue, 1); add_define_attr_for_define_subst (attr_operands[1], queue_elem); } m = add_mapping (&substs, subst_attrs_table, attr_operands[0]); end_ptr = &m->values; end_ptr = add_map_value (end_ptr, 1, attr_operands[2]); end_ptr = add_map_value (end_ptr, 2, attr_operands[3]); } /* Check newly-created code iterator ITERATOR to see whether every code has the same format. */ static void check_code_iterator (struct mapping *iterator) { struct map_value *v; enum rtx_code bellwether; bellwether = (enum rtx_code) iterator->values->number; for (v = iterator->values->next; v != 0; v = v->next) if (strcmp (GET_RTX_FORMAT (bellwether), GET_RTX_FORMAT (v->number)) != 0) fatal_with_file_and_line ("code iterator `%s' combines " "different rtx formats", iterator->name); } /* Read an rtx-related declaration from the MD file, given that it starts with directive name RTX_NAME. Return true if it expands to one or more rtxes (as defined by rtx.def). When returning true, store the list of rtxes as an EXPR_LIST in *X. */ bool read_rtx (const char *rtx_name, rtx *x) { static rtx queue_head; /* Do one-time initialization. */ if (queue_head == 0) { initialize_iterators (); queue_head = rtx_alloc (EXPR_LIST); } /* Handle various rtx-related declarations that aren't themselves encoded as rtxes. */ if (strcmp (rtx_name, "define_conditions") == 0) { read_conditions (); return false; } if (strcmp (rtx_name, "define_mode_attr") == 0) { read_mapping (&modes, modes.attrs); return false; } if (strcmp (rtx_name, "define_mode_iterator") == 0) { read_mapping (&modes, modes.iterators); return false; } if (strcmp (rtx_name, "define_code_attr") == 0) { read_mapping (&codes, codes.attrs); return false; } if (strcmp (rtx_name, "define_code_iterator") == 0) { check_code_iterator (read_mapping (&codes, codes.iterators)); return false; } if (strcmp (rtx_name, "define_int_attr") == 0) { read_mapping (&ints, ints.attrs); return false; } if (strcmp (rtx_name, "define_int_iterator") == 0) { read_mapping (&ints, ints.iterators); return false; } if (strcmp (rtx_name, "define_subst_attr") == 0) { read_subst_mapping (substs.iterators, substs.attrs, &queue_head); *x = queue_head; /* READ_SUBST_MAPPING could generate a new DEFINE_ATTR. Return TRUE to process it. */ return true; } apply_iterators (read_rtx_code (rtx_name), &queue_head); iterator_uses.truncate (0); attribute_uses.truncate (0); *x = queue_head; return true; } /* Subroutine of read_rtx and read_nested_rtx. CODE_NAME is the name of either an rtx code or a code iterator. Parse the rest of the rtx and return it. */ static rtx read_rtx_code (const char *code_name) { int i; RTX_CODE code; struct mapping *iterator, *m; const char *format_ptr; struct md_name name; rtx return_rtx; int c; HOST_WIDE_INT tmp_wide; char *str; char *start, *end, *ptr; char tmpstr[256]; /* Linked list structure for making RTXs: */ struct rtx_list { struct rtx_list *next; rtx value; /* Value of this node. */ }; /* If this code is an iterator, build the rtx using the iterator's first value. */ iterator = (struct mapping *) htab_find (codes.iterators, &code_name); if (iterator != 0) code = (enum rtx_code) iterator->values->number; else code = (enum rtx_code) codes.find_builtin (code_name); /* If we end up with an insn expression then we free this space below. */ return_rtx = rtx_alloc (code); format_ptr = GET_RTX_FORMAT (code); memset (return_rtx, 0, RTX_CODE_SIZE (code)); PUT_CODE (return_rtx, code); if (iterator) record_iterator_use (iterator, return_rtx); /* If what follows is `: mode ', read it and store the mode in the rtx. */ i = read_skip_spaces (); if (i == ':') { read_name (&name); record_potential_iterator_use (&modes, return_rtx, name.string); } else unread_char (i); for (i = 0; format_ptr[i] != 0; i++) switch (format_ptr[i]) { /* 0 means a field for internal use only. Don't expect it to be present in the input. */ case '0': if (code == REG) ORIGINAL_REGNO (return_rtx) = REGNO (return_rtx); break; case 'e': case 'u': XEXP (return_rtx, i) = read_nested_rtx (); break; case 'V': /* 'V' is an optional vector: if a closeparen follows, just store NULL for this element. */ c = read_skip_spaces (); unread_char (c); if (c == ')') { XVEC (return_rtx, i) = 0; break; } /* Now process the vector. */ case 'E': { /* Obstack to store scratch vector in. */ struct obstack vector_stack; int list_counter = 0; rtvec return_vec = NULL_RTVEC; c = read_skip_spaces (); if (c != '[') fatal_expected_char ('[', c); /* Add expressions to a list, while keeping a count. */ obstack_init (&vector_stack); while ((c = read_skip_spaces ()) && c != ']') { if (c == EOF) fatal_expected_char (']', c); unread_char (c); list_counter++; obstack_ptr_grow (&vector_stack, read_nested_rtx ()); } if (list_counter > 0) { return_vec = rtvec_alloc (list_counter); memcpy (&return_vec->elem[0], obstack_finish (&vector_stack), list_counter * sizeof (rtx)); } else if (format_ptr[i] == 'E') fatal_with_file_and_line ("vector must have at least one element"); XVEC (return_rtx, i) = return_vec; obstack_free (&vector_stack, NULL); /* close bracket gotten */ } break; case 'S': case 'T': case 's': { char *stringbuf; int star_if_braced; c = read_skip_spaces (); unread_char (c); if (c == ')') { /* 'S' fields are optional and should be NULL if no string was given. Also allow normal 's' and 'T' strings to be omitted, treating them in the same way as empty strings. */ XSTR (return_rtx, i) = (format_ptr[i] == 'S' ? NULL : ""); break; } /* The output template slot of a DEFINE_INSN, DEFINE_INSN_AND_SPLIT, or DEFINE_PEEPHOLE automatically gets a star inserted as its first character, if it is written with a brace block instead of a string constant. */ star_if_braced = (format_ptr[i] == 'T'); stringbuf = read_string (star_if_braced); /* For insn patterns, we want to provide a default name based on the file and line, like "*foo.md:12", if the given name is blank. These are only for define_insn and define_insn_and_split, to aid debugging. */ if (*stringbuf == '\0' && i == 0 && (GET_CODE (return_rtx) == DEFINE_INSN || GET_CODE (return_rtx) == DEFINE_INSN_AND_SPLIT)) { char line_name[20]; const char *fn = (read_md_filename ? read_md_filename : "rtx"); const char *slash; for (slash = fn; *slash; slash ++) if (*slash == '/' || *slash == '\\' || *slash == ':') fn = slash + 1; obstack_1grow (&string_obstack, '*'); obstack_grow (&string_obstack, fn, strlen (fn)); sprintf (line_name, ":%d", read_md_lineno); obstack_grow (&string_obstack, line_name, strlen (line_name)+1); stringbuf = XOBFINISH (&string_obstack, char *); } /* Find attr-names in the string. */ ptr = &tmpstr[0]; end = stringbuf; while ((start = strchr (end, '<')) && (end = strchr (start, '>'))) { if ((end - start - 1 > 0) && (end - start - 1 < (int)sizeof (tmpstr))) { strncpy (tmpstr, start+1, end-start-1); tmpstr[end-start-1] = 0; end++; } else break; m = (struct mapping *) htab_find (substs.attrs, &ptr); if (m != 0) { /* Here we should find linked subst-iter. */ str = find_subst_iter_by_attr (ptr); if (str) m = (struct mapping *) htab_find (substs.iterators, &str); else m = 0; } if (m != 0) record_iterator_use (m, return_rtx); } if (star_if_braced) XTMPL (return_rtx, i) = stringbuf; else XSTR (return_rtx, i) = stringbuf; } break; case 'w': read_name (&name); validate_const_int (name.string); #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT tmp_wide = atoi (name.string); #else #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG tmp_wide = atol (name.string); #else /* Prefer atoll over atoq, since the former is in the ISO C99 standard. But prefer not to use our hand-rolled function above either. */ #if defined(HAVE_ATOLL) || !defined(HAVE_ATOQ) tmp_wide = atoll (name.string); #else tmp_wide = atoq (name.string); #endif #endif #endif XWINT (return_rtx, i) = tmp_wide; break; case 'i': case 'n': /* Can be an iterator or an integer constant. */ read_name (&name); record_potential_iterator_use (&ints, &XINT (return_rtx, i), name.string); break; default: gcc_unreachable (); } c = read_skip_spaces (); /* Syntactic sugar for AND and IOR, allowing Lisp-like arbitrary number of arguments for them. */ if (c == '(' && (GET_CODE (return_rtx) == AND || GET_CODE (return_rtx) == IOR)) return read_rtx_variadic (return_rtx); unread_char (c); return return_rtx; } /* Read a nested rtx construct from the MD file and return it. */ static rtx read_nested_rtx (void) { struct md_name name; int c; rtx return_rtx; c = read_skip_spaces (); if (c != '(') fatal_expected_char ('(', c); read_name (&name); if (strcmp (name.string, "nil") == 0) return_rtx = NULL; else return_rtx = read_rtx_code (name.string); c = read_skip_spaces (); if (c != ')') fatal_expected_char (')', c); return return_rtx; } /* Mutually recursive subroutine of read_rtx which reads (thing x1 x2 x3 ...) and produces RTL as if (thing x1 (thing x2 (thing x3 ...))) had been written. When called, FORM is (thing x1 x2), and the file position is just past the leading parenthesis of x3. Only works for THINGs which are dyadic expressions, e.g. AND, IOR. */ static rtx read_rtx_variadic (rtx form) { char c = '('; rtx p = form, q; do { unread_char (c); q = rtx_alloc (GET_CODE (p)); PUT_MODE (q, GET_MODE (p)); XEXP (q, 0) = XEXP (p, 1); XEXP (q, 1) = read_nested_rtx (); XEXP (p, 1) = q; p = q; c = read_skip_spaces (); } while (c == '('); unread_char (c); return form; }