/* Code for RTL register eliminations. Copyright (C) 2010-2014 Free Software Foundation, Inc. Contributed by Vladimir Makarov . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Eliminable registers (like a soft argument or frame pointer) are widely used in RTL. These eliminable registers should be replaced by real hard registers (like the stack pointer or hard frame pointer) plus some offset. The offsets usually change whenever the stack is expanded. We know the final offsets only at the very end of LRA. Within LRA, we usually keep the RTL in such a state that the eliminable registers can be replaced by just the corresponding hard register (without any offset). To achieve this we should add the initial elimination offset at the beginning of LRA and update the offsets whenever the stack is expanded. We need to do this before every constraint pass because the choice of offset often affects whether a particular address or memory constraint is satisfied. We keep RTL code at most time in such state that the virtual registers can be changed by just the corresponding hard registers (with zero offsets) and we have the right RTL code. To achieve this we should add initial offset at the beginning of LRA work and update offsets after each stack expanding. But actually we update virtual registers to the same virtual registers + corresponding offsets before every constraint pass because it affects constraint satisfaction (e.g. an address displacement became too big for some target). The final change of eliminable registers to the corresponding hard registers are done at the very end of LRA when there were no change in offsets anymore: fp + 42 => sp + 42 */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "hard-reg-set.h" #include "rtl.h" #include "tm_p.h" #include "regs.h" #include "insn-config.h" #include "insn-codes.h" #include "recog.h" #include "output.h" #include "addresses.h" #include "target.h" #include "function.h" #include "expr.h" #include "basic-block.h" #include "except.h" #include "optabs.h" #include "df.h" #include "ira.h" #include "rtl-error.h" #include "lra-int.h" /* This structure is used to record information about hard register eliminations. */ struct elim_table { /* Hard register number to be eliminated. */ int from; /* Hard register number used as replacement. */ int to; /* Difference between values of the two hard registers above on previous iteration. */ HOST_WIDE_INT previous_offset; /* Difference between the values on the current iteration. */ HOST_WIDE_INT offset; /* Nonzero if this elimination can be done. */ bool can_eliminate; /* CAN_ELIMINATE since the last check. */ bool prev_can_eliminate; /* REG rtx for the register to be eliminated. We cannot simply compare the number since we might then spuriously replace a hard register corresponding to a pseudo assigned to the reg to be eliminated. */ rtx from_rtx; /* REG rtx for the replacement. */ rtx to_rtx; }; /* The elimination table. Each array entry describes one possible way of eliminating a register in favor of another. If there is more than one way of eliminating a particular register, the most preferred should be specified first. */ static struct elim_table *reg_eliminate = 0; /* This is an intermediate structure to initialize the table. It has exactly the members provided by ELIMINABLE_REGS. */ static const struct elim_table_1 { const int from; const int to; } reg_eliminate_1[] = /* If a set of eliminable hard registers was specified, define the table from it. Otherwise, default to the normal case of the frame pointer being replaced by the stack pointer. */ #ifdef ELIMINABLE_REGS ELIMINABLE_REGS; #else {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}; #endif #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1) /* Print info about elimination table to file F. */ static void print_elim_table (FILE *f) { struct elim_table *ep; for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) fprintf (f, "%s eliminate %d to %d (offset=" HOST_WIDE_INT_PRINT_DEC ", prev_offset=" HOST_WIDE_INT_PRINT_DEC ")\n", ep->can_eliminate ? "Can" : "Can't", ep->from, ep->to, ep->offset, ep->previous_offset); } /* Print info about elimination table to stderr. */ void lra_debug_elim_table (void) { print_elim_table (stderr); } /* Setup possibility of elimination in elimination table element EP to VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame pointer to stack pointer is not possible anymore. */ static void setup_can_eliminate (struct elim_table *ep, bool value) { ep->can_eliminate = ep->prev_can_eliminate = value; if (! value && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM) frame_pointer_needed = 1; } /* Map: eliminable "from" register -> its current elimination, or NULL if none. The elimination table may contain more than one elimination for the same hard register, but this map specifies the one that we are currently using. */ static struct elim_table *elimination_map[FIRST_PSEUDO_REGISTER]; /* When an eliminable hard register becomes not eliminable, we use the following special structure to restore original offsets for the register. */ static struct elim_table self_elim_table; /* Offsets should be used to restore original offsets for eliminable hard register which just became not eliminable. Zero, otherwise. */ static HOST_WIDE_INT self_elim_offsets[FIRST_PSEUDO_REGISTER]; /* Map: hard regno -> RTL presentation. RTL presentations of all potentially eliminable hard registers are stored in the map. */ static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER]; /* Set up ELIMINATION_MAP of the currently used eliminations. */ static void setup_elimination_map (void) { int i; struct elim_table *ep; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) elimination_map[i] = NULL; for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->can_eliminate && elimination_map[ep->from] == NULL) elimination_map[ep->from] = ep; } /* Compute the sum of X and Y, making canonicalizations assumed in an address, namely: sum constant integers, surround the sum of two constants with a CONST, put the constant as the second operand, and group the constant on the outermost sum. This routine assumes both inputs are already in canonical form. */ static rtx form_sum (rtx x, rtx y) { rtx tem; enum machine_mode mode = GET_MODE (x); if (mode == VOIDmode) mode = GET_MODE (y); if (mode == VOIDmode) mode = Pmode; if (CONST_INT_P (x)) return plus_constant (mode, y, INTVAL (x)); else if (CONST_INT_P (y)) return plus_constant (mode, x, INTVAL (y)); else if (CONSTANT_P (x)) tem = x, x = y, y = tem; if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1))) return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y)); /* Note that if the operands of Y are specified in the opposite order in the recursive calls below, infinite recursion will occur. */ if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1))) return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1)); /* If both constant, encapsulate sum. Otherwise, just form sum. A constant will have been placed second. */ if (CONSTANT_P (x) && CONSTANT_P (y)) { if (GET_CODE (x) == CONST) x = XEXP (x, 0); if (GET_CODE (y) == CONST) y = XEXP (y, 0); return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y)); } return gen_rtx_PLUS (mode, x, y); } /* Return the current substitution hard register of the elimination of HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */ int lra_get_elimination_hard_regno (int hard_regno) { struct elim_table *ep; if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER) return hard_regno; if ((ep = elimination_map[hard_regno]) == NULL) return hard_regno; return ep->to; } /* Return elimination which will be used for hard reg REG, NULL otherwise. */ static struct elim_table * get_elimination (rtx reg) { int hard_regno; struct elim_table *ep; HOST_WIDE_INT offset; lra_assert (REG_P (reg)); if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER) return NULL; if ((ep = elimination_map[hard_regno]) != NULL) return ep->from_rtx != reg ? NULL : ep; if ((offset = self_elim_offsets[hard_regno]) == 0) return NULL; /* This is an iteration to restore offsets just after HARD_REGNO stopped to be eliminable. */ self_elim_table.from = self_elim_table.to = hard_regno; self_elim_table.from_rtx = self_elim_table.to_rtx = eliminable_reg_rtx[hard_regno]; lra_assert (self_elim_table.from_rtx != NULL); self_elim_table.offset = offset; return &self_elim_table; } /* Scan X and replace any eliminable registers (such as fp) with a replacement (such as sp) if SUBST_P, plus an offset. The offset is a change in the offset between the eliminable register and its substitution if UPDATE_P, or the full offset if FULL_P, or otherwise zero. If FULL_P, we also use the SP offsets for elimination to SP. MEM_MODE is the mode of an enclosing MEM. We need this to know how much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a MEM, we are allowed to replace a sum of a hard register and the constant zero with the hard register, which we cannot do outside a MEM. In addition, we need to record the fact that a hard register is referenced outside a MEM. If we make full substitution to SP for non-null INSN, add the insn sp offset. */ rtx lra_eliminate_regs_1 (rtx insn, rtx x, enum machine_mode mem_mode, bool subst_p, bool update_p, bool full_p) { enum rtx_code code = GET_CODE (x); struct elim_table *ep; rtx new_rtx; int i, j; const char *fmt; int copied = 0; gcc_assert (!update_p || !full_p); if (! current_function_decl) return x; switch (code) { CASE_CONST_ANY: case CONST: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: case ASM_INPUT: case ADDR_VEC: case ADDR_DIFF_VEC: case RETURN: return x; case REG: /* First handle the case where we encounter a bare hard register that is eliminable. Replace it with a PLUS. */ if ((ep = get_elimination (x)) != NULL) { rtx to = subst_p ? ep->to_rtx : ep->from_rtx; if (update_p) return plus_constant (Pmode, to, ep->offset - ep->previous_offset); else if (full_p) return plus_constant (Pmode, to, ep->offset - (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx ? lra_get_insn_recog_data (insn)->sp_offset : 0)); else return to; } return x; case PLUS: /* If this is the sum of an eliminable register and a constant, rework the sum. */ if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1))) { if ((ep = get_elimination (XEXP (x, 0))) != NULL) { HOST_WIDE_INT offset; rtx to = subst_p ? ep->to_rtx : ep->from_rtx; if (! update_p && ! full_p) return gen_rtx_PLUS (Pmode, to, XEXP (x, 1)); offset = (update_p ? ep->offset - ep->previous_offset : ep->offset); if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx) offset -= lra_get_insn_recog_data (insn)->sp_offset; if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == -offset) return to; else return gen_rtx_PLUS (Pmode, to, plus_constant (Pmode, XEXP (x, 1), offset)); } /* If the hard register is not eliminable, we are done since the other operand is a constant. */ return x; } /* If this is part of an address, we want to bring any constant to the outermost PLUS. We will do this by doing hard register replacement in our operands and seeing if a constant shows up in one of them. Note that there is no risk of modifying the structure of the insn, since we only get called for its operands, thus we are either modifying the address inside a MEM, or something like an address operand of a load-address insn. */ { rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode, subst_p, update_p, full_p); rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode, subst_p, update_p, full_p); if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) return form_sum (new0, new1); } return x; case MULT: /* If this is the product of an eliminable hard register and a constant, apply the distribute law and move the constant out so that we have (plus (mult ..) ..). This is needed in order to keep load-address insns valid. This case is pathological. We ignore the possibility of overflow here. */ if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1)) && (ep = get_elimination (XEXP (x, 0))) != NULL) { rtx to = subst_p ? ep->to_rtx : ep->from_rtx; if (update_p) return plus_constant (Pmode, gen_rtx_MULT (Pmode, to, XEXP (x, 1)), (ep->offset - ep->previous_offset) * INTVAL (XEXP (x, 1))); else if (full_p) { HOST_WIDE_INT offset = ep->offset; if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx) offset -= lra_get_insn_recog_data (insn)->sp_offset; return plus_constant (Pmode, gen_rtx_MULT (Pmode, to, XEXP (x, 1)), offset * INTVAL (XEXP (x, 1))); } else return gen_rtx_MULT (Pmode, to, XEXP (x, 1)); } /* ... fall through ... */ case CALL: case COMPARE: /* See comments before PLUS about handling MINUS. */ case MINUS: case DIV: case UDIV: case MOD: case UMOD: case AND: case IOR: case XOR: case ROTATERT: case ROTATE: case ASHIFTRT: case LSHIFTRT: case ASHIFT: case NE: case EQ: case GE: case GT: case GEU: case GTU: case LE: case LT: case LEU: case LTU: { rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode, subst_p, update_p, full_p); rtx new1 = XEXP (x, 1) ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode, subst_p, update_p, full_p) : 0; if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1); } return x; case EXPR_LIST: /* If we have something in XEXP (x, 0), the usual case, eliminate it. */ if (XEXP (x, 0)) { new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode, subst_p, update_p, full_p); if (new_rtx != XEXP (x, 0)) { /* If this is a REG_DEAD note, it is not valid anymore. Using the eliminated version could result in creating a REG_DEAD note for the stack or frame pointer. */ if (REG_NOTE_KIND (x) == REG_DEAD) return (XEXP (x, 1) ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode, subst_p, update_p, full_p) : NULL_RTX); x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1)); } } /* ... fall through ... */ case INSN_LIST: case INT_LIST: /* Now do eliminations in the rest of the chain. If this was an EXPR_LIST, this might result in allocating more memory than is strictly needed, but it simplifies the code. */ if (XEXP (x, 1)) { new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode, subst_p, update_p, full_p); if (new_rtx != XEXP (x, 1)) return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx); } return x; case PRE_INC: case POST_INC: case PRE_DEC: case POST_DEC: /* We do not support elimination of a register that is modified. elimination_effects has already make sure that this does not happen. */ return x; case PRE_MODIFY: case POST_MODIFY: /* We do not support elimination of a hard register that is modified. LRA has already make sure that this does not happen. The only remaining case we need to consider here is that the increment value may be an eliminable register. */ if (GET_CODE (XEXP (x, 1)) == PLUS && XEXP (XEXP (x, 1), 0) == XEXP (x, 0)) { rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1), mem_mode, subst_p, update_p, full_p); if (new_rtx != XEXP (XEXP (x, 1), 1)) return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0), gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), new_rtx)); } return x; case STRICT_LOW_PART: case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND: case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT: case FIX: case UNSIGNED_FIX: case UNSIGNED_FLOAT: case ABS: case SQRT: case FFS: case CLZ: case CTZ: case POPCOUNT: case PARITY: case BSWAP: new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode, subst_p, update_p, full_p); if (new_rtx != XEXP (x, 0)) return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx); return x; case SUBREG: new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode, subst_p, update_p, full_p); if (new_rtx != SUBREG_REG (x)) { int x_size = GET_MODE_SIZE (GET_MODE (x)); int new_size = GET_MODE_SIZE (GET_MODE (new_rtx)); if (MEM_P (new_rtx) && x_size <= new_size) { SUBREG_REG (x) = new_rtx; alter_subreg (&x, false); return x; } else if (! subst_p) { /* LRA can transform subregs itself. So don't call simplify_gen_subreg until LRA transformations are finished. Function simplify_gen_subreg can do non-trivial transformations (like truncation) which might make LRA work to fail. */ SUBREG_REG (x) = new_rtx; return x; } else return simplify_gen_subreg (GET_MODE (x), new_rtx, GET_MODE (new_rtx), SUBREG_BYTE (x)); } return x; case MEM: /* Our only special processing is to pass the mode of the MEM to our recursive call and copy the flags. While we are here, handle this case more efficiently. */ return replace_equiv_address_nv (x, lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x), subst_p, update_p, full_p)); case USE: /* Handle insn_list USE that a call to a pure function may generate. */ new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode, subst_p, update_p, full_p); if (new_rtx != XEXP (x, 0)) return gen_rtx_USE (GET_MODE (x), new_rtx); return x; case CLOBBER: case SET: gcc_unreachable (); default: break; } /* Process each of our operands recursively. If any have changed, make a copy of the rtx. */ fmt = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) { if (*fmt == 'e') { new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode, subst_p, update_p, full_p); if (new_rtx != XEXP (x, i) && ! copied) { x = shallow_copy_rtx (x); copied = 1; } XEXP (x, i) = new_rtx; } else if (*fmt == 'E') { int copied_vec = 0; for (j = 0; j < XVECLEN (x, i); j++) { new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode, subst_p, update_p, full_p); if (new_rtx != XVECEXP (x, i, j) && ! copied_vec) { rtvec new_v = gen_rtvec_v (XVECLEN (x, i), XVEC (x, i)->elem); if (! copied) { x = shallow_copy_rtx (x); copied = 1; } XVEC (x, i) = new_v; copied_vec = 1; } XVECEXP (x, i, j) = new_rtx; } } } return x; } /* This function is used externally in subsequent passes of GCC. It always does a full elimination of X. */ rtx lra_eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn ATTRIBUTE_UNUSED) { return lra_eliminate_regs_1 (NULL_RTX, x, mem_mode, true, false, true); } /* Stack pointer offset before the current insn relative to one at the func start. RTL insns can change SP explicitly. We keep the changes from one insn to another through this variable. */ static HOST_WIDE_INT curr_sp_change; /* Scan rtx X for references to elimination source or target registers in contexts that would prevent the elimination from happening. Update the table of eliminables to reflect the changed state. MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */ static void mark_not_eliminable (rtx x, enum machine_mode mem_mode) { enum rtx_code code = GET_CODE (x); struct elim_table *ep; int i, j; const char *fmt; switch (code) { case PRE_INC: case POST_INC: case PRE_DEC: case POST_DEC: case POST_MODIFY: case PRE_MODIFY: if (XEXP (x, 0) == stack_pointer_rtx && ((code != PRE_MODIFY && code != POST_MODIFY) || (GET_CODE (XEXP (x, 1)) == PLUS && XEXP (x, 0) == XEXP (XEXP (x, 1), 0) && CONST_INT_P (XEXP (XEXP (x, 1), 1))))) { int size = GET_MODE_SIZE (mem_mode); #ifdef PUSH_ROUNDING /* If more bytes than MEM_MODE are pushed, account for them. */ size = PUSH_ROUNDING (size); #endif if (code == PRE_DEC || code == POST_DEC) curr_sp_change -= size; else if (code == PRE_INC || code == POST_INC) curr_sp_change += size; else if (code == PRE_MODIFY || code == POST_MODIFY) curr_sp_change += INTVAL (XEXP (XEXP (x, 1), 1)); } else if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER) { /* If we modify the source of an elimination rule, disable it. Do the same if it is the destination and not the hard frame register. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == XEXP (x, 0) || (ep->to_rtx == XEXP (x, 0) && ep->to_rtx != hard_frame_pointer_rtx)) setup_can_eliminate (ep, false); } return; case USE: if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER) /* If using a hard register that is the source of an eliminate we still think can be performed, note it cannot be performed since we don't know how this hard register is used. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == XEXP (x, 0) && ep->to_rtx != hard_frame_pointer_rtx) setup_can_eliminate (ep, false); return; case CLOBBER: if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER) /* If clobbering a hard register that is the replacement register for an elimination we still think can be performed, note that it cannot be performed. Otherwise, we need not be concerned about it. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->to_rtx == XEXP (x, 0) && ep->to_rtx != hard_frame_pointer_rtx) setup_can_eliminate (ep, false); return; case SET: if (SET_DEST (x) == stack_pointer_rtx && GET_CODE (SET_SRC (x)) == PLUS && XEXP (SET_SRC (x), 0) == SET_DEST (x) && CONST_INT_P (XEXP (SET_SRC (x), 1))) { curr_sp_change += INTVAL (XEXP (SET_SRC (x), 1)); return; } if (! REG_P (SET_DEST (x)) || REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER) mark_not_eliminable (SET_DEST (x), mem_mode); else { /* See if this is setting the replacement hard register for an elimination. If DEST is the hard frame pointer, we do nothing because we assume that all assignments to the frame pointer are for non-local gotos and are being done at a time when they are valid and do not disturb anything else. Some machines want to eliminate a fake argument pointer (or even a fake frame pointer) with either the real frame pointer or the stack pointer. Assignments to the hard frame pointer must not prevent this elimination. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->to_rtx == SET_DEST (x) && SET_DEST (x) != hard_frame_pointer_rtx) setup_can_eliminate (ep, false); } mark_not_eliminable (SET_SRC (x), mem_mode); return; case MEM: /* Our only special processing is to pass the mode of the MEM to our recursive call. */ mark_not_eliminable (XEXP (x, 0), GET_MODE (x)); return; default: break; } fmt = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) { if (*fmt == 'e') mark_not_eliminable (XEXP (x, i), mem_mode); else if (*fmt == 'E') for (j = 0; j < XVECLEN (x, i); j++) mark_not_eliminable (XVECEXP (x, i, j), mem_mode); } } #ifdef HARD_FRAME_POINTER_REGNUM /* Find offset equivalence note for reg WHAT in INSN and return the found elmination offset. If the note is not found, return NULL. Remove the found note. */ static rtx remove_reg_equal_offset_note (rtx insn, rtx what) { rtx link, *link_loc; for (link_loc = ®_NOTES (insn); (link = *link_loc) != NULL_RTX; link_loc = &XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_EQUAL && GET_CODE (XEXP (link, 0)) == PLUS && XEXP (XEXP (link, 0), 0) == what && CONST_INT_P (XEXP (XEXP (link, 0), 1))) { *link_loc = XEXP (link, 1); return XEXP (XEXP (link, 0), 1); } return NULL_RTX; } #endif /* Scan INSN and eliminate all eliminable hard registers in it. If REPLACE_P is true, do the replacement destructively. Also delete the insn as dead it if it is setting an eliminable register. If REPLACE_P is false, just update the offsets while keeping the base register the same. If FIRST_P, use the sp offset for elimination to sp. Attach the note about used elimination for insns setting frame pointer to update elimination easy (without parsing already generated elimination insns to find offset previously used) in future. */ static void eliminate_regs_in_insn (rtx insn, bool replace_p, bool first_p) { int icode = recog_memoized (insn); rtx old_set = single_set (insn); bool validate_p; int i; rtx substed_operand[MAX_RECOG_OPERANDS]; rtx orig_operand[MAX_RECOG_OPERANDS]; struct elim_table *ep; rtx plus_src, plus_cst_src; lra_insn_recog_data_t id; struct lra_static_insn_data *static_id; if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn)) { lra_assert (GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == ASM_INPUT); return; } /* Check for setting an eliminable register. */ if (old_set != 0 && REG_P (SET_DEST (old_set)) && (ep = get_elimination (SET_DEST (old_set))) != NULL) { for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate) { bool delete_p = replace_p; #ifdef HARD_FRAME_POINTER_REGNUM if (ep->from == FRAME_POINTER_REGNUM && ep->to == HARD_FRAME_POINTER_REGNUM) /* If this is setting the frame pointer register to the hardware frame pointer register and this is an elimination that will be done (tested above), this insn is really adjusting the frame pointer downward to compensate for the adjustment done before a nonlocal goto. */ { rtx src = SET_SRC (old_set); rtx off = remove_reg_equal_offset_note (insn, ep->to_rtx); if (off != NULL_RTX || src == ep->to_rtx || (GET_CODE (src) == PLUS && XEXP (src, 0) == ep->to_rtx && CONST_INT_P (XEXP (src, 1)))) { HOST_WIDE_INT offset; if (replace_p) { SET_DEST (old_set) = ep->to_rtx; lra_update_insn_recog_data (insn); return; } offset = (off != NULL_RTX ? INTVAL (off) : src == ep->to_rtx ? 0 : INTVAL (XEXP (src, 1))); offset -= (ep->offset - ep->previous_offset); src = plus_constant (Pmode, ep->to_rtx, offset); /* First see if this insn remains valid when we make the change. If not, keep the INSN_CODE the same and let the constraint pass fit it up. */ validate_change (insn, &SET_SRC (old_set), src, 1); validate_change (insn, &SET_DEST (old_set), ep->from_rtx, 1); if (! apply_change_group ()) { SET_SRC (old_set) = src; SET_DEST (old_set) = ep->from_rtx; } lra_update_insn_recog_data (insn); /* Add offset note for future updates. */ add_reg_note (insn, REG_EQUAL, src); return; } } #endif /* This insn isn't serving a useful purpose. We delete it when REPLACE is set. */ if (delete_p) lra_delete_dead_insn (insn); return; } } /* We allow one special case which happens to work on all machines we currently support: a single set with the source or a REG_EQUAL note being a PLUS of an eliminable register and a constant. */ plus_src = plus_cst_src = 0; if (old_set && REG_P (SET_DEST (old_set))) { if (GET_CODE (SET_SRC (old_set)) == PLUS) plus_src = SET_SRC (old_set); /* First see if the source is of the form (plus (...) CST). */ if (plus_src && CONST_INT_P (XEXP (plus_src, 1))) plus_cst_src = plus_src; /* Check that the first operand of the PLUS is a hard reg or the lowpart subreg of one. */ if (plus_cst_src) { rtx reg = XEXP (plus_cst_src, 0); if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg)) reg = SUBREG_REG (reg); if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER) plus_cst_src = 0; } } if (plus_cst_src) { rtx reg = XEXP (plus_cst_src, 0); HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1)); if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (REG_P (reg) && (ep = get_elimination (reg)) != NULL) { rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx; if (! replace_p) { offset += (ep->offset - ep->previous_offset); if (first_p && ep->to_rtx == stack_pointer_rtx) offset -= lra_get_insn_recog_data (insn)->sp_offset; offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src)); } if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG) to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx); /* If we have a nonzero offset, and the source is already a simple REG, the following transformation would increase the cost of the insn by replacing a simple REG with (plus (reg sp) CST). So try only when we already had a PLUS before. */ if (offset == 0 || plus_src) { rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset); old_set = single_set (insn); /* First see if this insn remains valid when we make the change. If not, try to replace the whole pattern with a simple set (this may help if the original insn was a PARALLEL that was only recognized as single_set due to REG_UNUSED notes). If this isn't valid either, keep the INSN_CODE the same and let the constraint pass fix it up. */ if (! validate_change (insn, &SET_SRC (old_set), new_src, 0)) { rtx new_pat = gen_rtx_SET (VOIDmode, SET_DEST (old_set), new_src); if (! validate_change (insn, &PATTERN (insn), new_pat, 0)) SET_SRC (old_set) = new_src; } lra_update_insn_recog_data (insn); /* This can't have an effect on elimination offsets, so skip right to the end. */ return; } } } /* Eliminate all eliminable registers occurring in operands that can be handled by the constraint pass. */ id = lra_get_insn_recog_data (insn); static_id = id->insn_static_data; validate_p = false; for (i = 0; i < static_id->n_operands; i++) { orig_operand[i] = *id->operand_loc[i]; substed_operand[i] = *id->operand_loc[i]; /* For an asm statement, every operand is eliminable. */ if (icode < 0 || insn_data[icode].operand[i].eliminable) { /* Check for setting a hard register that we know about. */ if (static_id->operand[i].type != OP_IN && REG_P (orig_operand[i])) { /* If we are assigning to a hard register that can be eliminated, it must be as part of a PARALLEL, since the code above handles single SETs. This reg can not be longer eliminated -- it is forced by mark_not_eliminable. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) lra_assert (ep->from_rtx != orig_operand[i] || ! ep->can_eliminate); } /* Companion to the above plus substitution, we can allow invariants as the source of a plain move. */ substed_operand[i] = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode, replace_p, ! replace_p && ! first_p, first_p); if (substed_operand[i] != orig_operand[i]) validate_p = true; } } if (! validate_p) return; /* Substitute the operands; the new values are in the substed_operand array. */ for (i = 0; i < static_id->n_operands; i++) *id->operand_loc[i] = substed_operand[i]; for (i = 0; i < static_id->n_dups; i++) *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]]; /* If we had a move insn but now we don't, re-recognize it. This will cause spurious re-recognition if the old move had a PARALLEL since the new one still will, but we can't call single_set without having put new body into the insn and the re-recognition won't hurt in this rare case. */ id = lra_update_insn_recog_data (insn); static_id = id->insn_static_data; } /* Spill pseudos which are assigned to hard registers in SET. Add affected insns for processing in the subsequent constraint pass. */ static void spill_pseudos (HARD_REG_SET set) { int i; bitmap_head to_process; rtx insn; if (hard_reg_set_empty_p (set)) return; if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Spilling non-eliminable hard regs:"); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (set, i)) fprintf (lra_dump_file, " %d", i); fprintf (lra_dump_file, "\n"); } bitmap_initialize (&to_process, ®_obstack); for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++) if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0 && overlaps_hard_reg_set_p (set, PSEUDO_REGNO_MODE (i), reg_renumber[i])) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " Spilling r%d(%d)\n", i, reg_renumber[i]); reg_renumber[i] = -1; bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap); } IOR_HARD_REG_SET (lra_no_alloc_regs, set); for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn)) if (bitmap_bit_p (&to_process, INSN_UID (insn))) { lra_push_insn (insn); lra_set_used_insn_alternative (insn, -1); } bitmap_clear (&to_process); } /* Update all offsets and possibility for elimination on eliminable registers. Spill pseudos assigned to registers which are uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard registers whose offsets should be changed. Return true if any elimination offset changed. */ static bool update_reg_eliminate (bitmap insns_with_changed_offsets) { bool prev, result; struct elim_table *ep, *ep1; HARD_REG_SET temp_hard_reg_set; /* Clear self elimination offsets. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) self_elim_offsets[ep->from] = 0; for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { /* If it is a currently used elimination: update the previous offset. */ if (elimination_map[ep->from] == ep) ep->previous_offset = ep->offset; prev = ep->prev_can_eliminate; setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to)); if (ep->can_eliminate && ! prev) { /* It is possible that not eliminable register becomes eliminable because we took other reasons into account to set up eliminable regs in the initial set up. Just ignore new eliminable registers. */ setup_can_eliminate (ep, false); continue; } if (ep->can_eliminate != prev && elimination_map[ep->from] == ep) { /* We cannot use this elimination anymore -- find another one. */ if (lra_dump_file != NULL) fprintf (lra_dump_file, " Elimination %d to %d is not possible anymore\n", ep->from, ep->to); /* If after processing RTL we decides that SP can be used as a result of elimination, it can not be changed. */ gcc_assert (ep->to_rtx != stack_pointer_rtx); /* Mark that is not eliminable anymore. */ elimination_map[ep->from] = NULL; for (ep1 = ep + 1; ep1 < ®_eliminate[NUM_ELIMINABLE_REGS]; ep1++) if (ep1->can_eliminate && ep1->from == ep->from) break; if (ep1 < ®_eliminate[NUM_ELIMINABLE_REGS]) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " Using elimination %d to %d now\n", ep1->from, ep1->to); lra_assert (ep1->previous_offset == 0); ep1->previous_offset = ep->offset; } else { /* There is no elimination anymore just use the hard register `from' itself. Setup self elimination offset to restore the original offset values. */ if (lra_dump_file != NULL) fprintf (lra_dump_file, " %d is not eliminable at all\n", ep->from); self_elim_offsets[ep->from] = -ep->offset; if (ep->offset != 0) bitmap_ior_into (insns_with_changed_offsets, &lra_reg_info[ep->from].insn_bitmap); } } #ifdef ELIMINABLE_REGS INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset); #else INITIAL_FRAME_POINTER_OFFSET (ep->offset); #endif } setup_elimination_map (); result = false; CLEAR_HARD_REG_SET (temp_hard_reg_set); for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (elimination_map[ep->from] == NULL) SET_HARD_REG_BIT (temp_hard_reg_set, ep->from); else if (elimination_map[ep->from] == ep) { /* Prevent the hard register into which we eliminate from the usage for pseudos. */ if (ep->from != ep->to) SET_HARD_REG_BIT (temp_hard_reg_set, ep->to); if (ep->previous_offset != ep->offset) { bitmap_ior_into (insns_with_changed_offsets, &lra_reg_info[ep->from].insn_bitmap); /* Update offset when the eliminate offset have been changed. */ lra_update_reg_val_offset (lra_reg_info[ep->from].val, ep->offset - ep->previous_offset); result = true; } } IOR_HARD_REG_SET (lra_no_alloc_regs, temp_hard_reg_set); AND_COMPL_HARD_REG_SET (eliminable_regset, temp_hard_reg_set); spill_pseudos (temp_hard_reg_set); return result; } /* Initialize the table of hard registers to eliminate. Pre-condition: global flag frame_pointer_needed has been set before calling this function. */ static void init_elim_table (void) { struct elim_table *ep; #ifdef ELIMINABLE_REGS bool value_p; const struct elim_table_1 *ep1; #endif if (!reg_eliminate) reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS); memset (self_elim_offsets, 0, sizeof (self_elim_offsets)); /* Initiate member values which will be never changed. */ self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true; self_elim_table.previous_offset = 0; #ifdef ELIMINABLE_REGS for (ep = reg_eliminate, ep1 = reg_eliminate_1; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++) { ep->offset = ep->previous_offset = 0; ep->from = ep1->from; ep->to = ep1->to; value_p = (targetm.can_eliminate (ep->from, ep->to) && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed && (! SUPPORTS_STACK_ALIGNMENT || ! stack_realign_fp))); setup_can_eliminate (ep, value_p); } #else reg_eliminate[0].offset = reg_eliminate[0].previous_offset = 0; reg_eliminate[0].from = reg_eliminate_1[0].from; reg_eliminate[0].to = reg_eliminate_1[0].to; setup_can_eliminate (®_eliminate[0], ! frame_pointer_needed); #endif /* Build the FROM and TO REG rtx's. Note that code in gen_rtx_REG will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx. We depend on this. Threfore we switch off that we are in LRA temporarily. */ lra_in_progress = 0; for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { ep->from_rtx = gen_rtx_REG (Pmode, ep->from); ep->to_rtx = gen_rtx_REG (Pmode, ep->to); eliminable_reg_rtx[ep->from] = ep->from_rtx; } lra_in_progress = 1; } /* Function for initialization of elimination once per function. It sets up sp offset for each insn. */ static void init_elimination (void) { bool stop_to_sp_elimination_p; basic_block bb; rtx insn; struct elim_table *ep; init_elim_table (); FOR_EACH_BB_FN (bb, cfun) { curr_sp_change = 0; stop_to_sp_elimination_p = false; FOR_BB_INSNS (bb, insn) if (INSN_P (insn)) { lra_get_insn_recog_data (insn)->sp_offset = curr_sp_change; if (NONDEBUG_INSN_P (insn)) { mark_not_eliminable (PATTERN (insn), VOIDmode); if (curr_sp_change != 0 && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) stop_to_sp_elimination_p = true; } } if (! frame_pointer_needed && (curr_sp_change != 0 || stop_to_sp_elimination_p) && bb->succs && bb->succs->length () != 0) for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->to == STACK_POINTER_REGNUM) setup_can_eliminate (ep, false); } setup_elimination_map (); } /* Eliminate hard reg given by its location LOC. */ void lra_eliminate_reg_if_possible (rtx *loc) { int regno; struct elim_table *ep; lra_assert (REG_P (*loc)); if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)) return; if ((ep = get_elimination (*loc)) != NULL) *loc = ep->to_rtx; } /* Do (final if FINAL_P or first if FIRST_P) elimination in INSN. Add the insn for subsequent processing in the constraint pass, update the insn info. */ static void process_insn_for_elimination (rtx insn, bool final_p, bool first_p) { eliminate_regs_in_insn (insn, final_p, first_p); if (! final_p) { /* Check that insn changed its code. This is a case when a move insn becomes an add insn and we do not want to process the insn as a move anymore. */ int icode = recog (PATTERN (insn), insn, 0); if (icode >= 0 && icode != INSN_CODE (insn)) { INSN_CODE (insn) = icode; lra_update_insn_recog_data (insn); } lra_update_insn_regno_info (insn); lra_push_insn (insn); lra_set_used_insn_alternative (insn, -1); } } /* Entry function to do final elimination if FINAL_P or to update elimination register offsets (FIRST_P if we are doing it the first time). */ void lra_eliminate (bool final_p, bool first_p) { unsigned int uid; bitmap_head insns_with_changed_offsets; bitmap_iterator bi; struct elim_table *ep; gcc_assert (! final_p || ! first_p); timevar_push (TV_LRA_ELIMINATE); if (first_p) init_elimination (); bitmap_initialize (&insns_with_changed_offsets, ®_obstack); if (final_p) { #ifdef ENABLE_CHECKING update_reg_eliminate (&insns_with_changed_offsets); if (! bitmap_empty_p (&insns_with_changed_offsets)) gcc_unreachable (); #endif /* We change eliminable hard registers in insns so we should do this for all insns containing any eliminable hard register. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (elimination_map[ep->from] != NULL) bitmap_ior_into (&insns_with_changed_offsets, &lra_reg_info[ep->from].insn_bitmap); } else if (! update_reg_eliminate (&insns_with_changed_offsets)) goto lra_eliminate_done; if (lra_dump_file != NULL) { fprintf (lra_dump_file, "New elimination table:\n"); print_elim_table (lra_dump_file); } EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi) /* A dead insn can be deleted in process_insn_for_elimination. */ if (lra_insn_recog_data[uid] != NULL) process_insn_for_elimination (lra_insn_recog_data[uid]->insn, final_p, first_p); bitmap_clear (&insns_with_changed_offsets); lra_eliminate_done: timevar_pop (TV_LRA_ELIMINATE); }