// types.cc -- Go frontend types. // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go-system.h" #include "toplev.h" #include "intl.h" #include "tree.h" #include "real.h" #include "convert.h" #include "go-c.h" #include "gogo.h" #include "operator.h" #include "expressions.h" #include "statements.h" #include "export.h" #include "import.h" #include "backend.h" #include "types.h" // Forward declarations so that we don't have to make types.h #include // backend.h. static void get_backend_struct_fields(Gogo* gogo, const Struct_field_list* fields, bool use_placeholder, std::vector* bfields); static void get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder, std::vector* bfields); static void get_backend_interface_fields(Gogo* gogo, Interface_type* type, bool use_placeholder, std::vector* bfields); // Class Type. Type::Type(Type_classification classification) : classification_(classification), btype_(NULL), type_descriptor_var_(NULL) { } Type::~Type() { } // Get the base type for a type--skip names and forward declarations. Type* Type::base() { switch (this->classification_) { case TYPE_NAMED: return this->named_type()->named_base(); case TYPE_FORWARD: return this->forward_declaration_type()->real_type()->base(); default: return this; } } const Type* Type::base() const { switch (this->classification_) { case TYPE_NAMED: return this->named_type()->named_base(); case TYPE_FORWARD: return this->forward_declaration_type()->real_type()->base(); default: return this; } } // Skip defined forward declarations. Type* Type::forwarded() { Type* t = this; Forward_declaration_type* ftype = t->forward_declaration_type(); while (ftype != NULL && ftype->is_defined()) { t = ftype->real_type(); ftype = t->forward_declaration_type(); } return t; } const Type* Type::forwarded() const { const Type* t = this; const Forward_declaration_type* ftype = t->forward_declaration_type(); while (ftype != NULL && ftype->is_defined()) { t = ftype->real_type(); ftype = t->forward_declaration_type(); } return t; } // If this is a named type, return it. Otherwise, return NULL. Named_type* Type::named_type() { return this->forwarded()->convert_no_base(); } const Named_type* Type::named_type() const { return this->forwarded()->convert_no_base(); } // Return true if this type is not defined. bool Type::is_undefined() const { return this->forwarded()->forward_declaration_type() != NULL; } // Return true if this is a basic type: a type which is not composed // of other types, and is not void. bool Type::is_basic_type() const { switch (this->classification_) { case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_BOOLEAN: case TYPE_STRING: case TYPE_NIL: return true; case TYPE_ERROR: case TYPE_VOID: case TYPE_FUNCTION: case TYPE_POINTER: case TYPE_STRUCT: case TYPE_ARRAY: case TYPE_MAP: case TYPE_CHANNEL: case TYPE_INTERFACE: return false; case TYPE_NAMED: case TYPE_FORWARD: return this->base()->is_basic_type(); default: go_unreachable(); } } // Return true if this is an abstract type. bool Type::is_abstract() const { switch (this->classification()) { case TYPE_INTEGER: return this->integer_type()->is_abstract(); case TYPE_FLOAT: return this->float_type()->is_abstract(); case TYPE_COMPLEX: return this->complex_type()->is_abstract(); case TYPE_STRING: return this->is_abstract_string_type(); case TYPE_BOOLEAN: return this->is_abstract_boolean_type(); default: return false; } } // Return a non-abstract version of an abstract type. Type* Type::make_non_abstract_type() { go_assert(this->is_abstract()); switch (this->classification()) { case TYPE_INTEGER: if (this->integer_type()->is_rune()) return Type::lookup_integer_type("int32"); else return Type::lookup_integer_type("int"); case TYPE_FLOAT: return Type::lookup_float_type("float64"); case TYPE_COMPLEX: return Type::lookup_complex_type("complex128"); case TYPE_STRING: return Type::lookup_string_type(); case TYPE_BOOLEAN: return Type::lookup_bool_type(); default: go_unreachable(); } } // Return true if this is an error type. Don't give an error if we // try to dereference an undefined forwarding type, as this is called // in the parser when the type may legitimately be undefined. bool Type::is_error_type() const { const Type* t = this->forwarded(); // Note that we return false for an undefined forward type. switch (t->classification_) { case TYPE_ERROR: return true; case TYPE_NAMED: return t->named_type()->is_named_error_type(); default: return false; } } // If this is a pointer type, return the type to which it points. // Otherwise, return NULL. Type* Type::points_to() const { const Pointer_type* ptype = this->convert(); return ptype == NULL ? NULL : ptype->points_to(); } // Return whether this is an open array type. bool Type::is_slice_type() const { return this->array_type() != NULL && this->array_type()->length() == NULL; } // Return whether this is the predeclared constant nil being used as a // type. bool Type::is_nil_constant_as_type() const { const Type* t = this->forwarded(); if (t->forward_declaration_type() != NULL) { const Named_object* no = t->forward_declaration_type()->named_object(); if (no->is_unknown()) no = no->unknown_value()->real_named_object(); if (no != NULL && no->is_const() && no->const_value()->expr()->is_nil_expression()) return true; } return false; } // Traverse a type. int Type::traverse(Type* type, Traverse* traverse) { go_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0 || (traverse->traverse_mask() & Traverse::traverse_expressions) != 0); if (traverse->remember_type(type)) { // We have already traversed this type. return TRAVERSE_CONTINUE; } if ((traverse->traverse_mask() & Traverse::traverse_types) != 0) { int t = traverse->type(type); if (t == TRAVERSE_EXIT) return TRAVERSE_EXIT; else if (t == TRAVERSE_SKIP_COMPONENTS) return TRAVERSE_CONTINUE; } // An array type has an expression which we need to traverse if // traverse_expressions is set. if (type->do_traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Default implementation for do_traverse for child class. int Type::do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } // Return whether two types are identical. If ERRORS_ARE_IDENTICAL, // then return true for all erroneous types; this is used to avoid // cascading errors. If REASON is not NULL, optionally set *REASON to // the reason the types are not identical. bool Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical, std::string* reason) { if (t1 == NULL || t2 == NULL) { // Something is wrong. return errors_are_identical ? true : t1 == t2; } // Skip defined forward declarations. t1 = t1->forwarded(); t2 = t2->forwarded(); // Ignore aliases for purposes of type identity. if (t1->named_type() != NULL && t1->named_type()->is_alias()) t1 = t1->named_type()->real_type(); if (t2->named_type() != NULL && t2->named_type()->is_alias()) t2 = t2->named_type()->real_type(); if (t1 == t2) return true; // An undefined forward declaration is an error. if (t1->forward_declaration_type() != NULL || t2->forward_declaration_type() != NULL) return errors_are_identical; // Avoid cascading errors with error types. if (t1->is_error_type() || t2->is_error_type()) { if (errors_are_identical) return true; return t1->is_error_type() && t2->is_error_type(); } // Get a good reason for the sink type. Note that the sink type on // the left hand side of an assignment is handled in are_assignable. if (t1->is_sink_type() || t2->is_sink_type()) { if (reason != NULL) *reason = "invalid use of _"; return false; } // A named type is only identical to itself. if (t1->named_type() != NULL || t2->named_type() != NULL) return false; // Check type shapes. if (t1->classification() != t2->classification()) return false; switch (t1->classification()) { case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_STRING: case TYPE_NIL: // These types are always identical. return true; case TYPE_INTEGER: return t1->integer_type()->is_identical(t2->integer_type()); case TYPE_FLOAT: return t1->float_type()->is_identical(t2->float_type()); case TYPE_COMPLEX: return t1->complex_type()->is_identical(t2->complex_type()); case TYPE_FUNCTION: return t1->function_type()->is_identical(t2->function_type(), false, errors_are_identical, reason); case TYPE_POINTER: return Type::are_identical(t1->points_to(), t2->points_to(), errors_are_identical, reason); case TYPE_STRUCT: return t1->struct_type()->is_identical(t2->struct_type(), errors_are_identical); case TYPE_ARRAY: return t1->array_type()->is_identical(t2->array_type(), errors_are_identical); case TYPE_MAP: return t1->map_type()->is_identical(t2->map_type(), errors_are_identical); case TYPE_CHANNEL: return t1->channel_type()->is_identical(t2->channel_type(), errors_are_identical); case TYPE_INTERFACE: return t1->interface_type()->is_identical(t2->interface_type(), errors_are_identical); case TYPE_CALL_MULTIPLE_RESULT: if (reason != NULL) *reason = "invalid use of multiple-value function call"; return false; default: go_unreachable(); } } // Return true if it's OK to have a binary operation with types LHS // and RHS. This is not used for shifts or comparisons. bool Type::are_compatible_for_binop(const Type* lhs, const Type* rhs) { if (Type::are_identical(lhs, rhs, true, NULL)) return true; // A constant of abstract bool type may be mixed with any bool type. if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type()) || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type())) return true; // A constant of abstract string type may be mixed with any string // type. if ((rhs->is_abstract_string_type() && lhs->is_string_type()) || (lhs->is_abstract_string_type() && rhs->is_string_type())) return true; lhs = lhs->base(); rhs = rhs->base(); // A constant of abstract integer, float, or complex type may be // mixed with an integer, float, or complex type. if ((rhs->is_abstract() && (rhs->integer_type() != NULL || rhs->float_type() != NULL || rhs->complex_type() != NULL) && (lhs->integer_type() != NULL || lhs->float_type() != NULL || lhs->complex_type() != NULL)) || (lhs->is_abstract() && (lhs->integer_type() != NULL || lhs->float_type() != NULL || lhs->complex_type() != NULL) && (rhs->integer_type() != NULL || rhs->float_type() != NULL || rhs->complex_type() != NULL))) return true; // The nil type may be compared to a pointer, an interface type, a // slice type, a channel type, a map type, or a function type. if (lhs->is_nil_type() && (rhs->points_to() != NULL || rhs->interface_type() != NULL || rhs->is_slice_type() || rhs->map_type() != NULL || rhs->channel_type() != NULL || rhs->function_type() != NULL)) return true; if (rhs->is_nil_type() && (lhs->points_to() != NULL || lhs->interface_type() != NULL || lhs->is_slice_type() || lhs->map_type() != NULL || lhs->channel_type() != NULL || lhs->function_type() != NULL)) return true; return false; } // Return true if a value with type T1 may be compared with a value of // type T2. IS_EQUALITY_OP is true for == or !=, false for <, etc. bool Type::are_compatible_for_comparison(bool is_equality_op, const Type *t1, const Type *t2, std::string *reason) { if (t1 != t2 && !Type::are_assignable(t1, t2, NULL) && !Type::are_assignable(t2, t1, NULL)) { if (reason != NULL) *reason = "incompatible types in binary expression"; return false; } if (!is_equality_op) { if (t1->integer_type() == NULL && t1->float_type() == NULL && !t1->is_string_type()) { if (reason != NULL) *reason = _("invalid comparison of non-ordered type"); return false; } } else if (t1->is_slice_type() || t1->map_type() != NULL || t1->function_type() != NULL || t2->is_slice_type() || t2->map_type() != NULL || t2->function_type() != NULL) { if (!t1->is_nil_type() && !t2->is_nil_type()) { if (reason != NULL) { if (t1->is_slice_type() || t2->is_slice_type()) *reason = _("slice can only be compared to nil"); else if (t1->map_type() != NULL || t2->map_type() != NULL) *reason = _("map can only be compared to nil"); else *reason = _("func can only be compared to nil"); // Match 6g error messages. if (t1->interface_type() != NULL || t2->interface_type() != NULL) { char buf[200]; snprintf(buf, sizeof buf, _("invalid operation (%s)"), reason->c_str()); *reason = buf; } } return false; } } else { if (!t1->is_boolean_type() && t1->integer_type() == NULL && t1->float_type() == NULL && t1->complex_type() == NULL && !t1->is_string_type() && t1->points_to() == NULL && t1->channel_type() == NULL && t1->interface_type() == NULL && t1->struct_type() == NULL && t1->array_type() == NULL && !t1->is_nil_type()) { if (reason != NULL) *reason = _("invalid comparison of non-comparable type"); return false; } if (t1->named_type() != NULL) return t1->named_type()->named_type_is_comparable(reason); else if (t2->named_type() != NULL) return t2->named_type()->named_type_is_comparable(reason); else if (t1->struct_type() != NULL) { const Struct_field_list* fields = t1->struct_type()->fields(); for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) { if (!p->type()->is_comparable()) { if (reason != NULL) *reason = _("invalid comparison of non-comparable struct"); return false; } } } else if (t1->array_type() != NULL) { if (t1->array_type()->length()->is_nil_expression() || !t1->array_type()->element_type()->is_comparable()) { if (reason != NULL) *reason = _("invalid comparison of non-comparable array"); return false; } } } return true; } // Return true if a value with type RHS may be assigned to a variable // with type LHS. If CHECK_HIDDEN_FIELDS is true, check whether any // hidden fields are modified. If REASON is not NULL, set *REASON to // the reason the types are not assignable. bool Type::are_assignable_check_hidden(const Type* lhs, const Type* rhs, bool check_hidden_fields, std::string* reason) { // Do some checks first. Make sure the types are defined. if (rhs != NULL && !rhs->is_undefined()) { if (rhs->is_void_type()) { if (reason != NULL) *reason = "non-value used as value"; return false; } if (rhs->is_call_multiple_result_type()) { if (reason != NULL) reason->assign(_("multiple-value function call in " "single-value context")); return false; } } if (lhs != NULL && !lhs->is_undefined()) { // Any value may be assigned to the blank identifier. if (lhs->is_sink_type()) return true; // All fields of a struct must be exported, or the assignment // must be in the same package. if (check_hidden_fields && rhs != NULL && !rhs->is_undefined()) { if (lhs->has_hidden_fields(NULL, reason) || rhs->has_hidden_fields(NULL, reason)) return false; } } // Identical types are assignable. if (Type::are_identical(lhs, rhs, true, reason)) return true; // The types are assignable if they have identical underlying types // and either LHS or RHS is not a named type. if (((lhs->named_type() != NULL && rhs->named_type() == NULL) || (rhs->named_type() != NULL && lhs->named_type() == NULL)) && Type::are_identical(lhs->base(), rhs->base(), true, reason)) return true; // The types are assignable if LHS is an interface type and RHS // implements the required methods. const Interface_type* lhs_interface_type = lhs->interface_type(); if (lhs_interface_type != NULL) { if (lhs_interface_type->implements_interface(rhs, reason)) return true; const Interface_type* rhs_interface_type = rhs->interface_type(); if (rhs_interface_type != NULL && lhs_interface_type->is_compatible_for_assign(rhs_interface_type, reason)) return true; } // The type are assignable if RHS is a bidirectional channel type, // LHS is a channel type, they have identical element types, and // either LHS or RHS is not a named type. if (lhs->channel_type() != NULL && rhs->channel_type() != NULL && rhs->channel_type()->may_send() && rhs->channel_type()->may_receive() && (lhs->named_type() == NULL || rhs->named_type() == NULL) && Type::are_identical(lhs->channel_type()->element_type(), rhs->channel_type()->element_type(), true, reason)) return true; // The nil type may be assigned to a pointer, function, slice, map, // channel, or interface type. if (rhs->is_nil_type() && (lhs->points_to() != NULL || lhs->function_type() != NULL || lhs->is_slice_type() || lhs->map_type() != NULL || lhs->channel_type() != NULL || lhs->interface_type() != NULL)) return true; // An untyped numeric constant may be assigned to a numeric type if // it is representable in that type. if ((rhs->is_abstract() && (rhs->integer_type() != NULL || rhs->float_type() != NULL || rhs->complex_type() != NULL)) && (lhs->integer_type() != NULL || lhs->float_type() != NULL || lhs->complex_type() != NULL)) return true; // Give some better error messages. if (reason != NULL && reason->empty()) { if (rhs->interface_type() != NULL) reason->assign(_("need explicit conversion")); else if (lhs->named_type() != NULL && rhs->named_type() != NULL) { size_t len = (lhs->named_type()->name().length() + rhs->named_type()->name().length() + 100); char* buf = new char[len]; snprintf(buf, len, _("cannot use type %s as type %s"), rhs->named_type()->message_name().c_str(), lhs->named_type()->message_name().c_str()); reason->assign(buf); delete[] buf; } } return false; } // Return true if a value with type RHS may be assigned to a variable // with type LHS. If REASON is not NULL, set *REASON to the reason // the types are not assignable. bool Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason) { return Type::are_assignable_check_hidden(lhs, rhs, false, reason); } // Like are_assignable but don't check for hidden fields. bool Type::are_assignable_hidden_ok(const Type* lhs, const Type* rhs, std::string* reason) { return Type::are_assignable_check_hidden(lhs, rhs, false, reason); } // Return true if a value with type RHS may be converted to type LHS. // If REASON is not NULL, set *REASON to the reason the types are not // convertible. bool Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason) { // The types are convertible if they are assignable. if (Type::are_assignable(lhs, rhs, reason)) return true; // The types are convertible if they have identical underlying // types. if ((lhs->named_type() != NULL || rhs->named_type() != NULL) && Type::are_identical(lhs->base(), rhs->base(), true, reason)) return true; // The types are convertible if they are both unnamed pointer types // and their pointer base types have identical underlying types. if (lhs->named_type() == NULL && rhs->named_type() == NULL && lhs->points_to() != NULL && rhs->points_to() != NULL && (lhs->points_to()->named_type() != NULL || rhs->points_to()->named_type() != NULL) && Type::are_identical(lhs->points_to()->base(), rhs->points_to()->base(), true, reason)) return true; // Integer and floating point types are convertible to each other. if ((lhs->integer_type() != NULL || lhs->float_type() != NULL) && (rhs->integer_type() != NULL || rhs->float_type() != NULL)) return true; // Complex types are convertible to each other. if (lhs->complex_type() != NULL && rhs->complex_type() != NULL) return true; // An integer, or []byte, or []rune, may be converted to a string. if (lhs->is_string_type()) { if (rhs->integer_type() != NULL) return true; if (rhs->is_slice_type()) { const Type* e = rhs->array_type()->element_type()->forwarded(); if (e->integer_type() != NULL && (e->integer_type()->is_byte() || e->integer_type()->is_rune())) return true; } } // A string may be converted to []byte or []rune. if (rhs->is_string_type() && lhs->is_slice_type()) { const Type* e = lhs->array_type()->element_type()->forwarded(); if (e->integer_type() != NULL && (e->integer_type()->is_byte() || e->integer_type()->is_rune())) return true; } // An unsafe.Pointer type may be converted to any pointer type or to // uintptr, and vice-versa. if (lhs->is_unsafe_pointer_type() && (rhs->points_to() != NULL || (rhs->integer_type() != NULL && rhs->forwarded() == Type::lookup_integer_type("uintptr")))) return true; if (rhs->is_unsafe_pointer_type() && (lhs->points_to() != NULL || (lhs->integer_type() != NULL && lhs->forwarded() == Type::lookup_integer_type("uintptr")))) return true; // Give a better error message. if (reason != NULL) { if (reason->empty()) *reason = "invalid type conversion"; else { std::string s = "invalid type conversion ("; s += *reason; s += ')'; *reason = s; } } return false; } // Return whether this type has any hidden fields. This is only a // possibility for a few types. bool Type::has_hidden_fields(const Named_type* within, std::string* reason) const { switch (this->forwarded()->classification_) { case TYPE_NAMED: return this->named_type()->named_type_has_hidden_fields(reason); case TYPE_STRUCT: return this->struct_type()->struct_has_hidden_fields(within, reason); case TYPE_ARRAY: return this->array_type()->array_has_hidden_fields(within, reason); default: return false; } } // Return a hash code for the type to be used for method lookup. unsigned int Type::hash_for_method(Gogo* gogo) const { unsigned int ret = 0; if (this->classification_ != TYPE_FORWARD) ret += this->classification_; return ret + this->do_hash_for_method(gogo); } // Default implementation of do_hash_for_method. This is appropriate // for types with no subfields. unsigned int Type::do_hash_for_method(Gogo*) const { return 0; } // Return a hash code for a string, given a starting hash. unsigned int Type::hash_string(const std::string& s, unsigned int h) { const char* p = s.data(); size_t len = s.length(); for (; len > 0; --len) { h ^= *p++; h*= 16777619; } return h; } // A hash table mapping unnamed types to the backend representation of // those types. Type::Type_btypes Type::type_btypes; // Return a tree representing this type. Btype* Type::get_backend(Gogo* gogo) { if (this->btype_ != NULL) return this->btype_; if (this->forward_declaration_type() != NULL || this->named_type() != NULL) return this->get_btype_without_hash(gogo); if (this->is_error_type()) return gogo->backend()->error_type(); // To avoid confusing the backend, translate all identical Go types // to the same backend representation. We use a hash table to do // that. There is no need to use the hash table for named types, as // named types are only identical to themselves. std::pair val; val.first = this; val.second.btype = NULL; val.second.is_placeholder = false; std::pair ins = Type::type_btypes.insert(val); if (!ins.second && ins.first->second.btype != NULL) { // Note that GOGO can be NULL here, but only when the GCC // middle-end is asking for a frontend type. That will only // happen for simple types, which should never require // placeholders. if (!ins.first->second.is_placeholder) this->btype_ = ins.first->second.btype; else if (gogo->named_types_are_converted()) { this->finish_backend(gogo, ins.first->second.btype); ins.first->second.is_placeholder = false; } return ins.first->second.btype; } Btype* bt = this->get_btype_without_hash(gogo); if (ins.first->second.btype == NULL) { ins.first->second.btype = bt; ins.first->second.is_placeholder = false; } else { // We have already created a backend representation for this // type. This can happen when an unnamed type is defined using // a named type which in turns uses an identical unnamed type. // Use the tree we created earlier and ignore the one we just // built. if (this->btype_ == bt) this->btype_ = ins.first->second.btype; bt = ins.first->second.btype; } return bt; } // Return the backend representation for a type without looking in the // hash table for identical types. This is used for named types, // since a named type is never identical to any other type. Btype* Type::get_btype_without_hash(Gogo* gogo) { if (this->btype_ == NULL) { Btype* bt = this->do_get_backend(gogo); // For a recursive function or pointer type, we will temporarily // return a circular pointer type during the recursion. We // don't want to record that for a forwarding type, as it may // confuse us later. if (this->forward_declaration_type() != NULL && gogo->backend()->is_circular_pointer_type(bt)) return bt; if (gogo == NULL || !gogo->named_types_are_converted()) return bt; this->btype_ = bt; } return this->btype_; } // Get the backend representation of a type without forcing the // creation of the backend representation of all supporting types. // This will return a backend type that has the correct size but may // be incomplete. E.g., a pointer will just be a placeholder pointer, // and will not contain the final representation of the type to which // it points. This is used while converting all named types to the // backend representation, to avoid problems with indirect references // to types which are not yet complete. When this is called, the // sizes of all direct references (e.g., a struct field) should be // known, but the sizes of indirect references (e.g., the type to // which a pointer points) may not. Btype* Type::get_backend_placeholder(Gogo* gogo) { if (gogo->named_types_are_converted()) return this->get_backend(gogo); if (this->btype_ != NULL) return this->btype_; Btype* bt; switch (this->classification_) { case TYPE_ERROR: case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: // These are simple types that can just be created directly. return this->get_backend(gogo); case TYPE_MAP: case TYPE_CHANNEL: // All maps and channels have the same backend representation. return this->get_backend(gogo); case TYPE_NAMED: case TYPE_FORWARD: // Named types keep track of their own dependencies and manage // their own placeholders. return this->get_backend(gogo); case TYPE_INTERFACE: if (this->interface_type()->is_empty()) return Interface_type::get_backend_empty_interface_type(gogo); break; default: break; } std::pair val; val.first = this; val.second.btype = NULL; val.second.is_placeholder = false; std::pair ins = Type::type_btypes.insert(val); if (!ins.second && ins.first->second.btype != NULL) return ins.first->second.btype; switch (this->classification_) { case TYPE_FUNCTION: { // A Go function type is a pointer to a struct type. Location loc = this->function_type()->location(); bt = gogo->backend()->placeholder_pointer_type("", loc, false); } break; case TYPE_POINTER: { Location loc = Linemap::unknown_location(); bt = gogo->backend()->placeholder_pointer_type("", loc, false); } break; case TYPE_STRUCT: // We don't have to make the struct itself be a placeholder. We // are promised that we know the sizes of the struct fields. // But we may have to use a placeholder for any particular // struct field. { std::vector bfields; get_backend_struct_fields(gogo, this->struct_type()->fields(), true, &bfields); bt = gogo->backend()->struct_type(bfields); } break; case TYPE_ARRAY: if (this->is_slice_type()) { std::vector bfields; get_backend_slice_fields(gogo, this->array_type(), true, &bfields); bt = gogo->backend()->struct_type(bfields); } else { Btype* element = this->array_type()->get_backend_element(gogo, true); Bexpression* len = this->array_type()->get_backend_length(gogo); bt = gogo->backend()->array_type(element, len); } break; case TYPE_INTERFACE: { go_assert(!this->interface_type()->is_empty()); std::vector bfields; get_backend_interface_fields(gogo, this->interface_type(), true, &bfields); bt = gogo->backend()->struct_type(bfields); } break; case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: /* Note that various classifications were handled in the earlier switch. */ default: go_unreachable(); } if (ins.first->second.btype == NULL) { ins.first->second.btype = bt; ins.first->second.is_placeholder = true; } else { // A placeholder for this type got created along the way. Use // that one and ignore the one we just built. bt = ins.first->second.btype; } return bt; } // Complete the backend representation. This is called for a type // using a placeholder type. void Type::finish_backend(Gogo* gogo, Btype *placeholder) { switch (this->classification_) { case TYPE_ERROR: case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: go_unreachable(); case TYPE_FUNCTION: { Btype* bt = this->do_get_backend(gogo); if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt)) go_assert(saw_errors()); } break; case TYPE_POINTER: { Btype* bt = this->do_get_backend(gogo); if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt)) go_assert(saw_errors()); } break; case TYPE_STRUCT: // The struct type itself is done, but we have to make sure that // all the field types are converted. this->struct_type()->finish_backend_fields(gogo); break; case TYPE_ARRAY: // The array type itself is done, but make sure the element type // is converted. this->array_type()->finish_backend_element(gogo); break; case TYPE_MAP: case TYPE_CHANNEL: go_unreachable(); case TYPE_INTERFACE: // The interface type itself is done, but make sure the method // types are converted. this->interface_type()->finish_backend_methods(gogo); break; case TYPE_NAMED: case TYPE_FORWARD: go_unreachable(); case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: default: go_unreachable(); } this->btype_ = placeholder; } // Return a pointer to the type descriptor for this type. Bexpression* Type::type_descriptor_pointer(Gogo* gogo, Location location) { Type* t = this->forwarded(); if (t->named_type() != NULL && t->named_type()->is_alias()) t = t->named_type()->real_type(); if (t->type_descriptor_var_ == NULL) { t->make_type_descriptor_var(gogo); go_assert(t->type_descriptor_var_ != NULL); } Bexpression* var_expr = gogo->backend()->var_expression(t->type_descriptor_var_, location); return gogo->backend()->address_expression(var_expr, location); } // A mapping from unnamed types to type descriptor variables. Type::Type_descriptor_vars Type::type_descriptor_vars; // Build the type descriptor for this type. void Type::make_type_descriptor_var(Gogo* gogo) { go_assert(this->type_descriptor_var_ == NULL); Named_type* nt = this->named_type(); // We can have multiple instances of unnamed types, but we only want // to emit the type descriptor once. We use a hash table. This is // not necessary for named types, as they are unique, and we store // the type descriptor in the type itself. Bvariable** phash = NULL; if (nt == NULL) { Bvariable* bvnull = NULL; std::pair ins = Type::type_descriptor_vars.insert(std::make_pair(this, bvnull)); if (!ins.second) { // We've already build a type descriptor for this type. this->type_descriptor_var_ = ins.first->second; return; } phash = &ins.first->second; } std::string var_name = this->type_descriptor_var_name(gogo, nt); // Build the contents of the type descriptor. Expression* initializer = this->do_type_descriptor(gogo, NULL); Btype* initializer_btype = initializer->type()->get_backend(gogo); Location loc = nt == NULL ? Linemap::predeclared_location() : nt->location(); const Package* dummy; if (this->type_descriptor_defined_elsewhere(nt, &dummy)) { this->type_descriptor_var_ = gogo->backend()->immutable_struct_reference(var_name, initializer_btype, loc); if (phash != NULL) *phash = this->type_descriptor_var_; return; } // See if this type descriptor can appear in multiple packages. bool is_common = false; if (nt != NULL) { // We create the descriptor for a builtin type whenever we need // it. is_common = nt->is_builtin(); } else { // This is an unnamed type. The descriptor could be defined in // any package where it is needed, and the linker will pick one // descriptor to keep. is_common = true; } // We are going to build the type descriptor in this package. We // must create the variable before we convert the initializer to the // backend representation, because the initializer may refer to the // type descriptor of this type. By setting type_descriptor_var_ we // ensure that type_descriptor_pointer will work if called while // converting INITIALIZER. this->type_descriptor_var_ = gogo->backend()->immutable_struct(var_name, false, is_common, initializer_btype, loc); if (phash != NULL) *phash = this->type_descriptor_var_; Translate_context context(gogo, NULL, NULL, NULL); context.set_is_const(); Bexpression* binitializer = tree_to_expr(initializer->get_tree(&context)); gogo->backend()->immutable_struct_set_init(this->type_descriptor_var_, var_name, false, is_common, initializer_btype, loc, binitializer); } // Return the name of the type descriptor variable. If NT is not // NULL, use it to get the name. Otherwise this is an unnamed type. std::string Type::type_descriptor_var_name(Gogo* gogo, Named_type* nt) { if (nt == NULL) return "__go_td_" + this->mangled_name(gogo); Named_object* no = nt->named_object(); unsigned int index; const Named_object* in_function = nt->in_function(&index); std::string ret = "__go_tdn_"; if (nt->is_builtin()) go_assert(in_function == NULL); else { const std::string& pkgpath(no->package() == NULL ? gogo->pkgpath_symbol() : no->package()->pkgpath_symbol()); ret.append(pkgpath); ret.append(1, '.'); if (in_function != NULL) { ret.append(Gogo::unpack_hidden_name(in_function->name())); ret.append(1, '.'); if (index > 0) { char buf[30]; snprintf(buf, sizeof buf, "%u", index); ret.append(buf); ret.append(1, '.'); } } } // FIXME: This adds in pkgpath twice for hidden symbols, which is // pointless. const std::string& name(no->name()); if (!Gogo::is_hidden_name(name)) ret.append(name); else { ret.append(1, '.'); ret.append(Gogo::pkgpath_for_symbol(Gogo::hidden_name_pkgpath(name))); ret.append(1, '.'); ret.append(Gogo::unpack_hidden_name(name)); } return ret; } // Return true if this type descriptor is defined in a different // package. If this returns true it sets *PACKAGE to the package. bool Type::type_descriptor_defined_elsewhere(Named_type* nt, const Package** package) { if (nt != NULL) { if (nt->named_object()->package() != NULL) { // This is a named type defined in a different package. The // type descriptor should be defined in that package. *package = nt->named_object()->package(); return true; } } else { if (this->points_to() != NULL && this->points_to()->named_type() != NULL && this->points_to()->named_type()->named_object()->package() != NULL) { // This is an unnamed pointer to a named type defined in a // different package. The descriptor should be defined in // that package. *package = this->points_to()->named_type()->named_object()->package(); return true; } } return false; } // Return a composite literal for a type descriptor. Expression* Type::type_descriptor(Gogo* gogo, Type* type) { return type->do_type_descriptor(gogo, NULL); } // Return a composite literal for a type descriptor with a name. Expression* Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name) { go_assert(name != NULL && type->named_type() != name); return type->do_type_descriptor(gogo, name); } // Make a builtin struct type from a list of fields. The fields are // pairs of a name and a type. Struct_type* Type::make_builtin_struct_type(int nfields, ...) { va_list ap; va_start(ap, nfields); Location bloc = Linemap::predeclared_location(); Struct_field_list* sfl = new Struct_field_list(); for (int i = 0; i < nfields; i++) { const char* field_name = va_arg(ap, const char *); Type* type = va_arg(ap, Type*); sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc))); } va_end(ap); return Type::make_struct_type(sfl, bloc); } // A list of builtin named types. std::vector Type::named_builtin_types; // Make a builtin named type. Named_type* Type::make_builtin_named_type(const char* name, Type* type) { Location bloc = Linemap::predeclared_location(); Named_object* no = Named_object::make_type(name, NULL, type, bloc); Named_type* ret = no->type_value(); Type::named_builtin_types.push_back(ret); return ret; } // Convert the named builtin types. void Type::convert_builtin_named_types(Gogo* gogo) { for (std::vector::const_iterator p = Type::named_builtin_types.begin(); p != Type::named_builtin_types.end(); ++p) { bool r = (*p)->verify(); go_assert(r); (*p)->convert(gogo); } } // Return the type of a type descriptor. We should really tie this to // runtime.Type rather than copying it. This must match commonType in // libgo/go/runtime/type.go. Type* Type::make_type_descriptor_type() { static Type* ret; if (ret == NULL) { Location bloc = Linemap::predeclared_location(); Type* uint8_type = Type::lookup_integer_type("uint8"); Type* uint32_type = Type::lookup_integer_type("uint32"); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Type* string_type = Type::lookup_string_type(); Type* pointer_string_type = Type::make_pointer_type(string_type); // This is an unnamed version of unsafe.Pointer. Perhaps we // should use the named version instead, although that would // require us to create the unsafe package if it has not been // imported. It probably doesn't matter. Type* void_type = Type::make_void_type(); Type* unsafe_pointer_type = Type::make_pointer_type(void_type); // Forward declaration for the type descriptor type. Named_object* named_type_descriptor_type = Named_object::make_type_declaration("commonType", NULL, bloc); Type* ft = Type::make_forward_declaration(named_type_descriptor_type); Type* pointer_type_descriptor_type = Type::make_pointer_type(ft); // The type of a method on a concrete type. Struct_type* method_type = Type::make_builtin_struct_type(5, "name", pointer_string_type, "pkgPath", pointer_string_type, "mtyp", pointer_type_descriptor_type, "typ", pointer_type_descriptor_type, "tfn", unsafe_pointer_type); Named_type* named_method_type = Type::make_builtin_named_type("method", method_type); // Information for types with a name or methods. Type* slice_named_method_type = Type::make_array_type(named_method_type, NULL); Struct_type* uncommon_type = Type::make_builtin_struct_type(3, "name", pointer_string_type, "pkgPath", pointer_string_type, "methods", slice_named_method_type); Named_type* named_uncommon_type = Type::make_builtin_named_type("uncommonType", uncommon_type); Type* pointer_uncommon_type = Type::make_pointer_type(named_uncommon_type); // The type descriptor type. Struct_type* type_descriptor_type = Type::make_builtin_struct_type(10, "Kind", uint8_type, "align", uint8_type, "fieldAlign", uint8_type, "size", uintptr_type, "hash", uint32_type, "hashfn", uintptr_type, "equalfn", uintptr_type, "string", pointer_string_type, "", pointer_uncommon_type, "ptrToThis", pointer_type_descriptor_type); Named_type* named = Type::make_builtin_named_type("commonType", type_descriptor_type); named_type_descriptor_type->set_type_value(named); ret = named; } return ret; } // Make the type of a pointer to a type descriptor as represented in // Go. Type* Type::make_type_descriptor_ptr_type() { static Type* ret; if (ret == NULL) ret = Type::make_pointer_type(Type::make_type_descriptor_type()); return ret; } // Set *HASH_FN and *EQUAL_FN to the runtime functions which compute a // hash code for this type and which compare whether two values of // this type are equal. If NAME is not NULL it is the name of this // type. HASH_FNTYPE and EQUAL_FNTYPE are the types of these // functions, for convenience; they may be NULL. void Type::type_functions(Gogo* gogo, Named_type* name, Function_type* hash_fntype, Function_type* equal_fntype, Named_object** hash_fn, Named_object** equal_fn) { if (hash_fntype == NULL || equal_fntype == NULL) { Location bloc = Linemap::predeclared_location(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Type* void_type = Type::make_void_type(); Type* unsafe_pointer_type = Type::make_pointer_type(void_type); if (hash_fntype == NULL) { Typed_identifier_list* params = new Typed_identifier_list(); params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc)); params->push_back(Typed_identifier("key_size", uintptr_type, bloc)); Typed_identifier_list* results = new Typed_identifier_list(); results->push_back(Typed_identifier("", uintptr_type, bloc)); hash_fntype = Type::make_function_type(NULL, params, results, bloc); } if (equal_fntype == NULL) { Typed_identifier_list* params = new Typed_identifier_list(); params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc)); params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc)); params->push_back(Typed_identifier("key_size", uintptr_type, bloc)); Typed_identifier_list* results = new Typed_identifier_list(); results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc)); equal_fntype = Type::make_function_type(NULL, params, results, bloc); } } const char* hash_fnname; const char* equal_fnname; if (this->compare_is_identity(gogo)) { hash_fnname = "__go_type_hash_identity"; equal_fnname = "__go_type_equal_identity"; } else if (!this->is_comparable()) { hash_fnname = "__go_type_hash_error"; equal_fnname = "__go_type_equal_error"; } else { switch (this->base()->classification()) { case Type::TYPE_ERROR: case Type::TYPE_VOID: case Type::TYPE_NIL: case Type::TYPE_FUNCTION: case Type::TYPE_MAP: // For these types is_comparable should have returned false. go_unreachable(); case Type::TYPE_BOOLEAN: case Type::TYPE_INTEGER: case Type::TYPE_POINTER: case Type::TYPE_CHANNEL: // For these types compare_is_identity should have returned true. go_unreachable(); case Type::TYPE_FLOAT: hash_fnname = "__go_type_hash_float"; equal_fnname = "__go_type_equal_float"; break; case Type::TYPE_COMPLEX: hash_fnname = "__go_type_hash_complex"; equal_fnname = "__go_type_equal_complex"; break; case Type::TYPE_STRING: hash_fnname = "__go_type_hash_string"; equal_fnname = "__go_type_equal_string"; break; case Type::TYPE_STRUCT: { // This is a struct which can not be compared using a // simple identity function. We need to build a function // for comparison. this->specific_type_functions(gogo, name, hash_fntype, equal_fntype, hash_fn, equal_fn); return; } case Type::TYPE_ARRAY: if (this->is_slice_type()) { // Type::is_compatible_for_comparison should have // returned false. go_unreachable(); } else { // This is an array which can not be compared using a // simple identity function. We need to build a // function for comparison. this->specific_type_functions(gogo, name, hash_fntype, equal_fntype, hash_fn, equal_fn); return; } break; case Type::TYPE_INTERFACE: if (this->interface_type()->is_empty()) { hash_fnname = "__go_type_hash_empty_interface"; equal_fnname = "__go_type_equal_empty_interface"; } else { hash_fnname = "__go_type_hash_interface"; equal_fnname = "__go_type_equal_interface"; } break; case Type::TYPE_NAMED: case Type::TYPE_FORWARD: go_unreachable(); default: go_unreachable(); } } Location bloc = Linemap::predeclared_location(); *hash_fn = Named_object::make_function_declaration(hash_fnname, NULL, hash_fntype, bloc); (*hash_fn)->func_declaration_value()->set_asm_name(hash_fnname); *equal_fn = Named_object::make_function_declaration(equal_fnname, NULL, equal_fntype, bloc); (*equal_fn)->func_declaration_value()->set_asm_name(equal_fnname); } // A hash table mapping types to the specific hash functions. Type::Type_functions Type::type_functions_table; // Handle a type function which is specific to a type: a struct or // array which can not use an identity comparison. void Type::specific_type_functions(Gogo* gogo, Named_type* name, Function_type* hash_fntype, Function_type* equal_fntype, Named_object** hash_fn, Named_object** equal_fn) { Hash_equal_fn fnull(NULL, NULL); std::pair val(name != NULL ? name : this, fnull); std::pair ins = Type::type_functions_table.insert(val); if (!ins.second) { // We already have functions for this type *hash_fn = ins.first->second.first; *equal_fn = ins.first->second.second; return; } std::string base_name; if (name == NULL) { // Mangled names can have '.' if they happen to refer to named // types in some way. That's fine if this is simply a named // type, but otherwise it will confuse the code that builds // function identifiers. Remove '.' when necessary. base_name = this->mangled_name(gogo); size_t i; while ((i = base_name.find('.')) != std::string::npos) base_name[i] = '$'; base_name = gogo->pack_hidden_name(base_name, false); } else { // This name is already hidden or not as appropriate. base_name = name->name(); unsigned int index; const Named_object* in_function = name->in_function(&index); if (in_function != NULL) { base_name += '$' + Gogo::unpack_hidden_name(in_function->name()); if (index > 0) { char buf[30]; snprintf(buf, sizeof buf, "%u", index); base_name += '$'; base_name += buf; } } } std::string hash_name = base_name + "$hash"; std::string equal_name = base_name + "$equal"; Location bloc = Linemap::predeclared_location(); const Package* package = NULL; bool is_defined_elsewhere = this->type_descriptor_defined_elsewhere(name, &package); if (is_defined_elsewhere) { *hash_fn = Named_object::make_function_declaration(hash_name, package, hash_fntype, bloc); *equal_fn = Named_object::make_function_declaration(equal_name, package, equal_fntype, bloc); } else { *hash_fn = gogo->declare_package_function(hash_name, hash_fntype, bloc); *equal_fn = gogo->declare_package_function(equal_name, equal_fntype, bloc); } ins.first->second.first = *hash_fn; ins.first->second.second = *equal_fn; if (!is_defined_elsewhere) { if (gogo->in_global_scope()) this->write_specific_type_functions(gogo, name, hash_name, hash_fntype, equal_name, equal_fntype); else gogo->queue_specific_type_function(this, name, hash_name, hash_fntype, equal_name, equal_fntype); } } // Write the hash and equality functions for a type which needs to be // written specially. void Type::write_specific_type_functions(Gogo* gogo, Named_type* name, const std::string& hash_name, Function_type* hash_fntype, const std::string& equal_name, Function_type* equal_fntype) { Location bloc = Linemap::predeclared_location(); if (gogo->specific_type_functions_are_written()) { go_assert(saw_errors()); return; } Named_object* hash_fn = gogo->start_function(hash_name, hash_fntype, false, bloc); gogo->start_block(bloc); if (name != NULL && name->real_type()->named_type() != NULL) this->write_named_hash(gogo, name, hash_fntype, equal_fntype); else if (this->struct_type() != NULL) this->struct_type()->write_hash_function(gogo, name, hash_fntype, equal_fntype); else if (this->array_type() != NULL) this->array_type()->write_hash_function(gogo, name, hash_fntype, equal_fntype); else go_unreachable(); Block* b = gogo->finish_block(bloc); gogo->add_block(b, bloc); gogo->lower_block(hash_fn, b); gogo->finish_function(bloc); Named_object *equal_fn = gogo->start_function(equal_name, equal_fntype, false, bloc); gogo->start_block(bloc); if (name != NULL && name->real_type()->named_type() != NULL) this->write_named_equal(gogo, name); else if (this->struct_type() != NULL) this->struct_type()->write_equal_function(gogo, name); else if (this->array_type() != NULL) this->array_type()->write_equal_function(gogo, name); else go_unreachable(); b = gogo->finish_block(bloc); gogo->add_block(b, bloc); gogo->lower_block(equal_fn, b); gogo->finish_function(bloc); } // Write a hash function that simply calls the hash function for a // named type. This is used when one named type is defined as // another. This ensures that this case works when the other named // type is defined in another package and relies on calling hash // functions defined only in that package. void Type::write_named_hash(Gogo* gogo, Named_type* name, Function_type* hash_fntype, Function_type* equal_fntype) { Location bloc = Linemap::predeclared_location(); Named_type* base_type = name->real_type()->named_type(); go_assert(base_type != NULL); // The pointer to the type we are going to hash. This is an // unsafe.Pointer. Named_object* key_arg = gogo->lookup("key", NULL); go_assert(key_arg != NULL); // The size of the type we are going to hash. Named_object* keysz_arg = gogo->lookup("key_size", NULL); go_assert(keysz_arg != NULL); Named_object* hash_fn; Named_object* equal_fn; name->real_type()->type_functions(gogo, base_type, hash_fntype, equal_fntype, &hash_fn, &equal_fn); // Call the hash function for the base type. Expression* key_ref = Expression::make_var_reference(key_arg, bloc); Expression* keysz_ref = Expression::make_var_reference(keysz_arg, bloc); Expression_list* args = new Expression_list(); args->push_back(key_ref); args->push_back(keysz_ref); Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc); Expression* call = Expression::make_call(func, args, false, bloc); // Return the hash of the base type. Expression_list* vals = new Expression_list(); vals->push_back(call); Statement* s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); } // Write an equality function that simply calls the equality function // for a named type. This is used when one named type is defined as // another. This ensures that this case works when the other named // type is defined in another package and relies on calling equality // functions defined only in that package. void Type::write_named_equal(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); // The pointers to the types we are going to compare. These have // type unsafe.Pointer. Named_object* key1_arg = gogo->lookup("key1", NULL); Named_object* key2_arg = gogo->lookup("key2", NULL); go_assert(key1_arg != NULL && key2_arg != NULL); Named_type* base_type = name->real_type()->named_type(); go_assert(base_type != NULL); // Build temporaries with the base type. Type* pt = Type::make_pointer_type(base_type); Expression* ref = Expression::make_var_reference(key1_arg, bloc); ref = Expression::make_cast(pt, ref, bloc); Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc); gogo->add_statement(p1); ref = Expression::make_var_reference(key2_arg, bloc); ref = Expression::make_cast(pt, ref, bloc); Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc); gogo->add_statement(p2); // Compare the values for equality. Expression* t1 = Expression::make_temporary_reference(p1, bloc); t1 = Expression::make_unary(OPERATOR_MULT, t1, bloc); Expression* t2 = Expression::make_temporary_reference(p2, bloc); t2 = Expression::make_unary(OPERATOR_MULT, t2, bloc); Expression* cond = Expression::make_binary(OPERATOR_EQEQ, t1, t2, bloc); // Return the equality comparison. Expression_list* vals = new Expression_list(); vals->push_back(cond); Statement* s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); } // Return a composite literal for the type descriptor for a plain type // of kind RUNTIME_TYPE_KIND named NAME. Expression* Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind, Named_type* name, const Methods* methods, bool only_value_methods) { Location bloc = Linemap::predeclared_location(); Type* td_type = Type::make_type_descriptor_type(); const Struct_field_list* fields = td_type->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(9); if (!this->has_pointer()) runtime_type_kind |= RUNTIME_TYPE_KIND_NO_POINTERS; Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("Kind")); mpz_t iv; mpz_init_set_ui(iv, runtime_type_kind); vals->push_back(Expression::make_integer(&iv, p->type(), bloc)); ++p; go_assert(p->is_field_name("align")); Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT; vals->push_back(Expression::make_type_info(this, type_info)); ++p; go_assert(p->is_field_name("fieldAlign")); type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT; vals->push_back(Expression::make_type_info(this, type_info)); ++p; go_assert(p->is_field_name("size")); type_info = Expression::TYPE_INFO_SIZE; vals->push_back(Expression::make_type_info(this, type_info)); ++p; go_assert(p->is_field_name("hash")); unsigned int h; if (name != NULL) h = name->hash_for_method(gogo); else h = this->hash_for_method(gogo); mpz_set_ui(iv, h); vals->push_back(Expression::make_integer(&iv, p->type(), bloc)); ++p; go_assert(p->is_field_name("hashfn")); Function_type* hash_fntype = p->type()->function_type(); ++p; go_assert(p->is_field_name("equalfn")); Function_type* equal_fntype = p->type()->function_type(); Named_object* hash_fn; Named_object* equal_fn; this->type_functions(gogo, name, hash_fntype, equal_fntype, &hash_fn, &equal_fn); vals->push_back(Expression::make_func_code_reference(hash_fn, bloc)); vals->push_back(Expression::make_func_code_reference(equal_fn, bloc)); ++p; go_assert(p->is_field_name("string")); Expression* s = Expression::make_string((name != NULL ? name->reflection(gogo) : this->reflection(gogo)), bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); ++p; go_assert(p->is_field_name("uncommonType")); if (name == NULL && methods == NULL) vals->push_back(Expression::make_nil(bloc)); else { if (methods == NULL) methods = name->methods(); vals->push_back(this->uncommon_type_constructor(gogo, p->type()->deref(), name, methods, only_value_methods)); } ++p; go_assert(p->is_field_name("ptrToThis")); if (name == NULL) vals->push_back(Expression::make_nil(bloc)); else { Type* pt = Type::make_pointer_type(name); vals->push_back(Expression::make_type_descriptor(pt, bloc)); } ++p; go_assert(p == fields->end()); mpz_clear(iv); return Expression::make_struct_composite_literal(td_type, vals, bloc); } // Return a composite literal for the uncommon type information for // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type // struct. If name is not NULL, it is the name of the type. If // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS // is true if only value methods should be included. At least one of // NAME and METHODS must not be NULL. Expression* Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type, Named_type* name, const Methods* methods, bool only_value_methods) const { Location bloc = Linemap::predeclared_location(); const Struct_field_list* fields = uncommon_type->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("name")); ++p; go_assert(p->is_field_name("pkgPath")); if (name == NULL) { vals->push_back(Expression::make_nil(bloc)); vals->push_back(Expression::make_nil(bloc)); } else { Named_object* no = name->named_object(); std::string n = Gogo::unpack_hidden_name(no->name()); Expression* s = Expression::make_string(n, bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); if (name->is_builtin()) vals->push_back(Expression::make_nil(bloc)); else { const Package* package = no->package(); const std::string& pkgpath(package == NULL ? gogo->pkgpath() : package->pkgpath()); n.assign(pkgpath); unsigned int index; const Named_object* in_function = name->in_function(&index); if (in_function != NULL) { n.append(1, '.'); n.append(Gogo::unpack_hidden_name(in_function->name())); if (index > 0) { char buf[30]; snprintf(buf, sizeof buf, "%u", index); n.append(1, '.'); n.append(buf); } } s = Expression::make_string(n, bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } } ++p; go_assert(p->is_field_name("methods")); vals->push_back(this->methods_constructor(gogo, p->type(), methods, only_value_methods)); ++p; go_assert(p == fields->end()); Expression* r = Expression::make_struct_composite_literal(uncommon_type, vals, bloc); return Expression::make_unary(OPERATOR_AND, r, bloc); } // Sort methods by name. class Sort_methods { public: bool operator()(const std::pair& m1, const std::pair& m2) const { return m1.first < m2.first; } }; // Return a composite literal for the type method table for this type. // METHODS_TYPE is the type of the table, and is a slice type. // METHODS is the list of methods. If ONLY_VALUE_METHODS is true, // then only value methods are used. Expression* Type::methods_constructor(Gogo* gogo, Type* methods_type, const Methods* methods, bool only_value_methods) const { Location bloc = Linemap::predeclared_location(); std::vector > smethods; if (methods != NULL) { smethods.reserve(methods->count()); for (Methods::const_iterator p = methods->begin(); p != methods->end(); ++p) { if (p->second->is_ambiguous()) continue; if (only_value_methods && !p->second->is_value_method()) continue; // This is where we implement the magic //go:nointerface // comment. If we saw that comment, we don't add this // method to the type descriptor. if (p->second->nointerface()) continue; smethods.push_back(std::make_pair(p->first, p->second)); } } if (smethods.empty()) return Expression::make_slice_composite_literal(methods_type, NULL, bloc); std::sort(smethods.begin(), smethods.end(), Sort_methods()); Type* method_type = methods_type->array_type()->element_type(); Expression_list* vals = new Expression_list(); vals->reserve(smethods.size()); for (std::vector >::const_iterator p = smethods.begin(); p != smethods.end(); ++p) vals->push_back(this->method_constructor(gogo, method_type, p->first, p->second, only_value_methods)); return Expression::make_slice_composite_literal(methods_type, vals, bloc); } // Return a composite literal for a single method. METHOD_TYPE is the // type of the entry. METHOD_NAME is the name of the method and M is // the method information. Expression* Type::method_constructor(Gogo*, Type* method_type, const std::string& method_name, const Method* m, bool only_value_methods) const { Location bloc = Linemap::predeclared_location(); const Struct_field_list* fields = method_type->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(5); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("name")); const std::string n = Gogo::unpack_hidden_name(method_name); Expression* s = Expression::make_string(n, bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); ++p; go_assert(p->is_field_name("pkgPath")); if (!Gogo::is_hidden_name(method_name)) vals->push_back(Expression::make_nil(bloc)); else { s = Expression::make_string(Gogo::hidden_name_pkgpath(method_name), bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } Named_object* no = (m->needs_stub_method() ? m->stub_object() : m->named_object()); Function_type* mtype; if (no->is_function()) mtype = no->func_value()->type(); else mtype = no->func_declaration_value()->type(); go_assert(mtype->is_method()); Type* nonmethod_type = mtype->copy_without_receiver(); ++p; go_assert(p->is_field_name("mtyp")); vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc)); ++p; go_assert(p->is_field_name("typ")); bool want_pointer_receiver = !only_value_methods && m->is_value_method(); nonmethod_type = mtype->copy_with_receiver_as_param(want_pointer_receiver); vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc)); ++p; go_assert(p->is_field_name("tfn")); vals->push_back(Expression::make_func_code_reference(no, bloc)); ++p; go_assert(p == fields->end()); return Expression::make_struct_composite_literal(method_type, vals, bloc); } // Return a composite literal for the type descriptor of a plain type. // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not // NULL, it is the name to use as well as the list of methods. Expression* Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind, Named_type* name) { return this->type_descriptor_constructor(gogo, runtime_type_kind, name, NULL, true); } // Return the type reflection string for this type. std::string Type::reflection(Gogo* gogo) const { std::string ret; // The do_reflection virtual function should set RET to the // reflection string. this->do_reflection(gogo, &ret); return ret; } // Return a mangled name for the type. std::string Type::mangled_name(Gogo* gogo) const { std::string ret; // The do_mangled_name virtual function should set RET to the // mangled name. For a composite type it should append a code for // the composition and then call do_mangled_name on the components. this->do_mangled_name(gogo, &ret); return ret; } // Return whether the backend size of the type is known. bool Type::is_backend_type_size_known(Gogo* gogo) { switch (this->classification_) { case TYPE_ERROR: case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_FUNCTION: case TYPE_POINTER: case TYPE_NIL: case TYPE_MAP: case TYPE_CHANNEL: case TYPE_INTERFACE: return true; case TYPE_STRUCT: { const Struct_field_list* fields = this->struct_type()->fields(); for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) if (!pf->type()->is_backend_type_size_known(gogo)) return false; return true; } case TYPE_ARRAY: { const Array_type* at = this->array_type(); if (at->length() == NULL) return true; else { Numeric_constant nc; if (!at->length()->numeric_constant_value(&nc)) return false; mpz_t ival; if (!nc.to_int(&ival)) return false; mpz_clear(ival); return at->element_type()->is_backend_type_size_known(gogo); } } case TYPE_NAMED: this->named_type()->convert(gogo); return this->named_type()->is_named_backend_type_size_known(); case TYPE_FORWARD: { Forward_declaration_type* fdt = this->forward_declaration_type(); return fdt->real_type()->is_backend_type_size_known(gogo); } case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: go_unreachable(); default: go_unreachable(); } } // If the size of the type can be determined, set *PSIZE to the size // in bytes and return true. Otherwise, return false. This queries // the backend. bool Type::backend_type_size(Gogo* gogo, unsigned int *psize) { if (!this->is_backend_type_size_known(gogo)) return false; Btype* bt = this->get_backend_placeholder(gogo); size_t size = gogo->backend()->type_size(bt); *psize = static_cast(size); if (*psize != size) return false; return true; } // If the alignment of the type can be determined, set *PALIGN to // the alignment in bytes and return true. Otherwise, return false. bool Type::backend_type_align(Gogo* gogo, unsigned int *palign) { if (!this->is_backend_type_size_known(gogo)) return false; Btype* bt = this->get_backend_placeholder(gogo); size_t align = gogo->backend()->type_alignment(bt); *palign = static_cast(align); if (*palign != align) return false; return true; } // Like backend_type_align, but return the alignment when used as a // field. bool Type::backend_type_field_align(Gogo* gogo, unsigned int *palign) { if (!this->is_backend_type_size_known(gogo)) return false; Btype* bt = this->get_backend_placeholder(gogo); size_t a = gogo->backend()->type_field_alignment(bt); *palign = static_cast(a); if (*palign != a) return false; return true; } // Default function to export a type. void Type::do_export(Export*) const { go_unreachable(); } // Import a type. Type* Type::import_type(Import* imp) { if (imp->match_c_string("(")) return Function_type::do_import(imp); else if (imp->match_c_string("*")) return Pointer_type::do_import(imp); else if (imp->match_c_string("struct ")) return Struct_type::do_import(imp); else if (imp->match_c_string("[")) return Array_type::do_import(imp); else if (imp->match_c_string("map ")) return Map_type::do_import(imp); else if (imp->match_c_string("chan ")) return Channel_type::do_import(imp); else if (imp->match_c_string("interface")) return Interface_type::do_import(imp); else { error_at(imp->location(), "import error: expected type"); return Type::make_error_type(); } } // A type used to indicate a parsing error. This exists to simplify // later error detection. class Error_type : public Type { public: Error_type() : Type(TYPE_ERROR) { } protected: bool do_compare_is_identity(Gogo*) { return false; } Btype* do_get_backend(Gogo* gogo) { return gogo->backend()->error_type(); } Expression* do_type_descriptor(Gogo*, Named_type*) { return Expression::make_error(Linemap::predeclared_location()); } void do_reflection(Gogo*, std::string*) const { go_assert(saw_errors()); } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('E'); } }; Type* Type::make_error_type() { static Error_type singleton_error_type; return &singleton_error_type; } // The void type. class Void_type : public Type { public: Void_type() : Type(TYPE_VOID) { } protected: bool do_compare_is_identity(Gogo*) { return false; } Btype* do_get_backend(Gogo* gogo) { return gogo->backend()->void_type(); } Expression* do_type_descriptor(Gogo*, Named_type*) { go_unreachable(); } void do_reflection(Gogo*, std::string*) const { } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('v'); } }; Type* Type::make_void_type() { static Void_type singleton_void_type; return &singleton_void_type; } // The boolean type. class Boolean_type : public Type { public: Boolean_type() : Type(TYPE_BOOLEAN) { } protected: bool do_compare_is_identity(Gogo*) { return true; } Btype* do_get_backend(Gogo* gogo) { return gogo->backend()->bool_type(); } Expression* do_type_descriptor(Gogo*, Named_type* name); // We should not be asked for the reflection string of a basic type. void do_reflection(Gogo*, std::string* ret) const { ret->append("bool"); } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('b'); } }; // Make the type descriptor. Expression* Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (name != NULL) return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name); else { Named_object* no = gogo->lookup_global("bool"); go_assert(no != NULL); return Type::type_descriptor(gogo, no->type_value()); } } Type* Type::make_boolean_type() { static Boolean_type boolean_type; return &boolean_type; } // The named type "bool". static Named_type* named_bool_type; // Get the named type "bool". Named_type* Type::lookup_bool_type() { return named_bool_type; } // Make the named type "bool". Named_type* Type::make_named_bool_type() { Type* bool_type = Type::make_boolean_type(); Named_object* named_object = Named_object::make_type("bool", NULL, bool_type, Linemap::predeclared_location()); Named_type* named_type = named_object->type_value(); named_bool_type = named_type; return named_type; } // Class Integer_type. Integer_type::Named_integer_types Integer_type::named_integer_types; // Create a new integer type. Non-abstract integer types always have // names. Named_type* Integer_type::create_integer_type(const char* name, bool is_unsigned, int bits, int runtime_type_kind) { Integer_type* integer_type = new Integer_type(false, is_unsigned, bits, runtime_type_kind); std::string sname(name); Named_object* named_object = Named_object::make_type(sname, NULL, integer_type, Linemap::predeclared_location()); Named_type* named_type = named_object->type_value(); std::pair ins = Integer_type::named_integer_types.insert(std::make_pair(sname, named_type)); go_assert(ins.second); return named_type; } // Look up an existing integer type. Named_type* Integer_type::lookup_integer_type(const char* name) { Named_integer_types::const_iterator p = Integer_type::named_integer_types.find(name); go_assert(p != Integer_type::named_integer_types.end()); return p->second; } // Create a new abstract integer type. Integer_type* Integer_type::create_abstract_integer_type() { static Integer_type* abstract_type; if (abstract_type == NULL) { Type* int_type = Type::lookup_integer_type("int"); abstract_type = new Integer_type(true, false, int_type->integer_type()->bits(), RUNTIME_TYPE_KIND_INT); } return abstract_type; } // Create a new abstract character type. Integer_type* Integer_type::create_abstract_character_type() { static Integer_type* abstract_type; if (abstract_type == NULL) { abstract_type = new Integer_type(true, false, 32, RUNTIME_TYPE_KIND_INT32); abstract_type->set_is_rune(); } return abstract_type; } // Integer type compatibility. bool Integer_type::is_identical(const Integer_type* t) const { if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_) return false; return this->is_abstract_ == t->is_abstract_; } // Hash code. unsigned int Integer_type::do_hash_for_method(Gogo*) const { return ((this->bits_ << 4) + ((this->is_unsigned_ ? 1 : 0) << 8) + ((this->is_abstract_ ? 1 : 0) << 9)); } // Convert an Integer_type to the backend representation. Btype* Integer_type::do_get_backend(Gogo* gogo) { if (this->is_abstract_) { go_assert(saw_errors()); return gogo->backend()->error_type(); } return gogo->backend()->integer_type(this->is_unsigned_, this->bits_); } // The type descriptor for an integer type. Integer types are always // named. Expression* Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name) { go_assert(name != NULL || saw_errors()); return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); } // We should not be asked for the reflection string of a basic type. void Integer_type::do_reflection(Gogo*, std::string*) const { go_assert(saw_errors()); } // Mangled name. void Integer_type::do_mangled_name(Gogo*, std::string* ret) const { char buf[100]; snprintf(buf, sizeof buf, "i%s%s%de", this->is_abstract_ ? "a" : "", this->is_unsigned_ ? "u" : "", this->bits_); ret->append(buf); } // Make an integer type. Named_type* Type::make_integer_type(const char* name, bool is_unsigned, int bits, int runtime_type_kind) { return Integer_type::create_integer_type(name, is_unsigned, bits, runtime_type_kind); } // Make an abstract integer type. Integer_type* Type::make_abstract_integer_type() { return Integer_type::create_abstract_integer_type(); } // Make an abstract character type. Integer_type* Type::make_abstract_character_type() { return Integer_type::create_abstract_character_type(); } // Look up an integer type. Named_type* Type::lookup_integer_type(const char* name) { return Integer_type::lookup_integer_type(name); } // Class Float_type. Float_type::Named_float_types Float_type::named_float_types; // Create a new float type. Non-abstract float types always have // names. Named_type* Float_type::create_float_type(const char* name, int bits, int runtime_type_kind) { Float_type* float_type = new Float_type(false, bits, runtime_type_kind); std::string sname(name); Named_object* named_object = Named_object::make_type(sname, NULL, float_type, Linemap::predeclared_location()); Named_type* named_type = named_object->type_value(); std::pair ins = Float_type::named_float_types.insert(std::make_pair(sname, named_type)); go_assert(ins.second); return named_type; } // Look up an existing float type. Named_type* Float_type::lookup_float_type(const char* name) { Named_float_types::const_iterator p = Float_type::named_float_types.find(name); go_assert(p != Float_type::named_float_types.end()); return p->second; } // Create a new abstract float type. Float_type* Float_type::create_abstract_float_type() { static Float_type* abstract_type; if (abstract_type == NULL) abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64); return abstract_type; } // Whether this type is identical with T. bool Float_type::is_identical(const Float_type* t) const { if (this->bits_ != t->bits_) return false; return this->is_abstract_ == t->is_abstract_; } // Hash code. unsigned int Float_type::do_hash_for_method(Gogo*) const { return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8); } // Convert to the backend representation. Btype* Float_type::do_get_backend(Gogo* gogo) { return gogo->backend()->float_type(this->bits_); } // The type descriptor for a float type. Float types are always named. Expression* Float_type::do_type_descriptor(Gogo* gogo, Named_type* name) { go_assert(name != NULL || saw_errors()); return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); } // We should not be asked for the reflection string of a basic type. void Float_type::do_reflection(Gogo*, std::string*) const { go_assert(saw_errors()); } // Mangled name. void Float_type::do_mangled_name(Gogo*, std::string* ret) const { char buf[100]; snprintf(buf, sizeof buf, "f%s%de", this->is_abstract_ ? "a" : "", this->bits_); ret->append(buf); } // Make a floating point type. Named_type* Type::make_float_type(const char* name, int bits, int runtime_type_kind) { return Float_type::create_float_type(name, bits, runtime_type_kind); } // Make an abstract float type. Float_type* Type::make_abstract_float_type() { return Float_type::create_abstract_float_type(); } // Look up a float type. Named_type* Type::lookup_float_type(const char* name) { return Float_type::lookup_float_type(name); } // Class Complex_type. Complex_type::Named_complex_types Complex_type::named_complex_types; // Create a new complex type. Non-abstract complex types always have // names. Named_type* Complex_type::create_complex_type(const char* name, int bits, int runtime_type_kind) { Complex_type* complex_type = new Complex_type(false, bits, runtime_type_kind); std::string sname(name); Named_object* named_object = Named_object::make_type(sname, NULL, complex_type, Linemap::predeclared_location()); Named_type* named_type = named_object->type_value(); std::pair ins = Complex_type::named_complex_types.insert(std::make_pair(sname, named_type)); go_assert(ins.second); return named_type; } // Look up an existing complex type. Named_type* Complex_type::lookup_complex_type(const char* name) { Named_complex_types::const_iterator p = Complex_type::named_complex_types.find(name); go_assert(p != Complex_type::named_complex_types.end()); return p->second; } // Create a new abstract complex type. Complex_type* Complex_type::create_abstract_complex_type() { static Complex_type* abstract_type; if (abstract_type == NULL) abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128); return abstract_type; } // Whether this type is identical with T. bool Complex_type::is_identical(const Complex_type *t) const { if (this->bits_ != t->bits_) return false; return this->is_abstract_ == t->is_abstract_; } // Hash code. unsigned int Complex_type::do_hash_for_method(Gogo*) const { return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8); } // Convert to the backend representation. Btype* Complex_type::do_get_backend(Gogo* gogo) { return gogo->backend()->complex_type(this->bits_); } // The type descriptor for a complex type. Complex types are always // named. Expression* Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name) { go_assert(name != NULL || saw_errors()); return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); } // We should not be asked for the reflection string of a basic type. void Complex_type::do_reflection(Gogo*, std::string*) const { go_assert(saw_errors()); } // Mangled name. void Complex_type::do_mangled_name(Gogo*, std::string* ret) const { char buf[100]; snprintf(buf, sizeof buf, "c%s%de", this->is_abstract_ ? "a" : "", this->bits_); ret->append(buf); } // Make a complex type. Named_type* Type::make_complex_type(const char* name, int bits, int runtime_type_kind) { return Complex_type::create_complex_type(name, bits, runtime_type_kind); } // Make an abstract complex type. Complex_type* Type::make_abstract_complex_type() { return Complex_type::create_abstract_complex_type(); } // Look up a complex type. Named_type* Type::lookup_complex_type(const char* name) { return Complex_type::lookup_complex_type(name); } // Class String_type. // Convert String_type to the backend representation. A string is a // struct with two fields: a pointer to the characters and a length. Btype* String_type::do_get_backend(Gogo* gogo) { static Btype* backend_string_type; if (backend_string_type == NULL) { std::vector fields(2); Type* b = gogo->lookup_global("byte")->type_value(); Type* pb = Type::make_pointer_type(b); // We aren't going to get back to this field to finish the // backend representation, so force it to be finished now. if (!gogo->named_types_are_converted()) { Btype* bt = pb->get_backend_placeholder(gogo); pb->finish_backend(gogo, bt); } fields[0].name = "__data"; fields[0].btype = pb->get_backend(gogo); fields[0].location = Linemap::predeclared_location(); Type* int_type = Type::lookup_integer_type("int"); fields[1].name = "__length"; fields[1].btype = int_type->get_backend(gogo); fields[1].location = fields[0].location; backend_string_type = gogo->backend()->struct_type(fields); } return backend_string_type; } // Return a tree for the length of STRING. tree String_type::length_tree(Gogo*, tree string) { tree string_type = TREE_TYPE(string); go_assert(TREE_CODE(string_type) == RECORD_TYPE); tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type)); go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)), "__length") == 0); return fold_build3(COMPONENT_REF, TREE_TYPE(length_field), string, length_field, NULL_TREE); } // Return a tree for a pointer to the bytes of STRING. tree String_type::bytes_tree(Gogo*, tree string) { tree string_type = TREE_TYPE(string); go_assert(TREE_CODE(string_type) == RECORD_TYPE); tree bytes_field = TYPE_FIELDS(string_type); go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)), "__data") == 0); return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string, bytes_field, NULL_TREE); } // The type descriptor for the string type. Expression* String_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (name != NULL) return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name); else { Named_object* no = gogo->lookup_global("string"); go_assert(no != NULL); return Type::type_descriptor(gogo, no->type_value()); } } // We should not be asked for the reflection string of a basic type. void String_type::do_reflection(Gogo*, std::string* ret) const { ret->append("string"); } // Mangled name of a string type. void String_type::do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('z'); } // Make a string type. Type* Type::make_string_type() { static String_type string_type; return &string_type; } // The named type "string". static Named_type* named_string_type; // Get the named type "string". Named_type* Type::lookup_string_type() { return named_string_type; } // Make the named type string. Named_type* Type::make_named_string_type() { Type* string_type = Type::make_string_type(); Named_object* named_object = Named_object::make_type("string", NULL, string_type, Linemap::predeclared_location()); Named_type* named_type = named_object->type_value(); named_string_type = named_type; return named_type; } // The sink type. This is the type of the blank identifier _. Any // type may be assigned to it. class Sink_type : public Type { public: Sink_type() : Type(TYPE_SINK) { } protected: bool do_compare_is_identity(Gogo*) { return false; } Btype* do_get_backend(Gogo*) { go_unreachable(); } Expression* do_type_descriptor(Gogo*, Named_type*) { go_unreachable(); } void do_reflection(Gogo*, std::string*) const { go_unreachable(); } void do_mangled_name(Gogo*, std::string*) const { go_unreachable(); } }; // Make the sink type. Type* Type::make_sink_type() { static Sink_type sink_type; return &sink_type; } // Class Function_type. // Traversal. int Function_type::do_traverse(Traverse* traverse) { if (this->receiver_ != NULL && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->parameters_ != NULL && this->parameters_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->results_ != NULL && this->results_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Returns whether T is a valid redeclaration of this type. If this // returns false, and REASON is not NULL, *REASON may be set to a // brief explanation of why it returned false. bool Function_type::is_valid_redeclaration(const Function_type* t, std::string* reason) const { if (!this->is_identical(t, false, true, reason)) return false; // A redeclaration of a function is required to use the same names // for the receiver and parameters. if (this->receiver() != NULL && this->receiver()->name() != t->receiver()->name()) { if (reason != NULL) *reason = "receiver name changed"; return false; } const Typed_identifier_list* parms1 = this->parameters(); const Typed_identifier_list* parms2 = t->parameters(); if (parms1 != NULL) { Typed_identifier_list::const_iterator p1 = parms1->begin(); for (Typed_identifier_list::const_iterator p2 = parms2->begin(); p2 != parms2->end(); ++p2, ++p1) { if (p1->name() != p2->name()) { if (reason != NULL) *reason = "parameter name changed"; return false; } // This is called at parse time, so we may have unknown // types. Type* t1 = p1->type()->forwarded(); Type* t2 = p2->type()->forwarded(); if (t1 != t2 && t1->forward_declaration_type() != NULL && (t2->forward_declaration_type() == NULL || (t1->forward_declaration_type()->named_object() != t2->forward_declaration_type()->named_object()))) return false; } } const Typed_identifier_list* results1 = this->results(); const Typed_identifier_list* results2 = t->results(); if (results1 != NULL) { Typed_identifier_list::const_iterator res1 = results1->begin(); for (Typed_identifier_list::const_iterator res2 = results2->begin(); res2 != results2->end(); ++res2, ++res1) { if (res1->name() != res2->name()) { if (reason != NULL) *reason = "result name changed"; return false; } // This is called at parse time, so we may have unknown // types. Type* t1 = res1->type()->forwarded(); Type* t2 = res2->type()->forwarded(); if (t1 != t2 && t1->forward_declaration_type() != NULL && (t2->forward_declaration_type() == NULL || (t1->forward_declaration_type()->named_object() != t2->forward_declaration_type()->named_object()))) return false; } } return true; } // Check whether T is the same as this type. bool Function_type::is_identical(const Function_type* t, bool ignore_receiver, bool errors_are_identical, std::string* reason) const { if (!ignore_receiver) { const Typed_identifier* r1 = this->receiver(); const Typed_identifier* r2 = t->receiver(); if ((r1 != NULL) != (r2 != NULL)) { if (reason != NULL) *reason = _("different receiver types"); return false; } if (r1 != NULL) { if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical, reason)) { if (reason != NULL && !reason->empty()) *reason = "receiver: " + *reason; return false; } } } const Typed_identifier_list* parms1 = this->parameters(); const Typed_identifier_list* parms2 = t->parameters(); if ((parms1 != NULL) != (parms2 != NULL)) { if (reason != NULL) *reason = _("different number of parameters"); return false; } if (parms1 != NULL) { Typed_identifier_list::const_iterator p1 = parms1->begin(); for (Typed_identifier_list::const_iterator p2 = parms2->begin(); p2 != parms2->end(); ++p2, ++p1) { if (p1 == parms1->end()) { if (reason != NULL) *reason = _("different number of parameters"); return false; } if (!Type::are_identical(p1->type(), p2->type(), errors_are_identical, NULL)) { if (reason != NULL) *reason = _("different parameter types"); return false; } } if (p1 != parms1->end()) { if (reason != NULL) *reason = _("different number of parameters"); return false; } } if (this->is_varargs() != t->is_varargs()) { if (reason != NULL) *reason = _("different varargs"); return false; } const Typed_identifier_list* results1 = this->results(); const Typed_identifier_list* results2 = t->results(); if ((results1 != NULL) != (results2 != NULL)) { if (reason != NULL) *reason = _("different number of results"); return false; } if (results1 != NULL) { Typed_identifier_list::const_iterator res1 = results1->begin(); for (Typed_identifier_list::const_iterator res2 = results2->begin(); res2 != results2->end(); ++res2, ++res1) { if (res1 == results1->end()) { if (reason != NULL) *reason = _("different number of results"); return false; } if (!Type::are_identical(res1->type(), res2->type(), errors_are_identical, NULL)) { if (reason != NULL) *reason = _("different result types"); return false; } } if (res1 != results1->end()) { if (reason != NULL) *reason = _("different number of results"); return false; } } return true; } // Hash code. unsigned int Function_type::do_hash_for_method(Gogo* gogo) const { unsigned int ret = 0; // We ignore the receiver type for hash codes, because we need to // get the same hash code for a method in an interface and a method // declared for a type. The former will not have a receiver. if (this->parameters_ != NULL) { int shift = 1; for (Typed_identifier_list::const_iterator p = this->parameters_->begin(); p != this->parameters_->end(); ++p, ++shift) ret += p->type()->hash_for_method(gogo) << shift; } if (this->results_ != NULL) { int shift = 2; for (Typed_identifier_list::const_iterator p = this->results_->begin(); p != this->results_->end(); ++p, ++shift) ret += p->type()->hash_for_method(gogo) << shift; } if (this->is_varargs_) ret += 1; ret <<= 4; return ret; } // Hash result parameters. unsigned int Function_type::Results_hash::operator()(const Typed_identifier_list* t) const { unsigned int hash = 0; for (Typed_identifier_list::const_iterator p = t->begin(); p != t->end(); ++p) { hash <<= 2; hash = Type::hash_string(p->name(), hash); hash += p->type()->hash_for_method(NULL); } return hash; } // Compare result parameters so that can map identical result // parameters to a single struct type. bool Function_type::Results_equal::operator()(const Typed_identifier_list* a, const Typed_identifier_list* b) const { if (a->size() != b->size()) return false; Typed_identifier_list::const_iterator pa = a->begin(); for (Typed_identifier_list::const_iterator pb = b->begin(); pb != b->end(); ++pa, ++pb) { if (pa->name() != pb->name() || !Type::are_identical(pa->type(), pb->type(), true, NULL)) return false; } return true; } // Hash from results to a backend struct type. Function_type::Results_structs Function_type::results_structs; // Get the backend representation for a function type. Btype* Function_type::get_backend_fntype(Gogo* gogo) { if (this->fnbtype_ == NULL) { Backend::Btyped_identifier breceiver; if (this->receiver_ != NULL) { breceiver.name = Gogo::unpack_hidden_name(this->receiver_->name()); // We always pass the address of the receiver parameter, in // order to make interface calls work with unknown types. Type* rtype = this->receiver_->type(); if (rtype->points_to() == NULL) rtype = Type::make_pointer_type(rtype); breceiver.btype = rtype->get_backend(gogo); breceiver.location = this->receiver_->location(); } std::vector bparameters; if (this->parameters_ != NULL) { bparameters.resize(this->parameters_->size()); size_t i = 0; for (Typed_identifier_list::const_iterator p = this->parameters_->begin(); p != this->parameters_->end(); ++p, ++i) { bparameters[i].name = Gogo::unpack_hidden_name(p->name()); bparameters[i].btype = p->type()->get_backend(gogo); bparameters[i].location = p->location(); } go_assert(i == bparameters.size()); } std::vector bresults; Btype* bresult_struct = NULL; if (this->results_ != NULL) { bresults.resize(this->results_->size()); size_t i = 0; for (Typed_identifier_list::const_iterator p = this->results_->begin(); p != this->results_->end(); ++p, ++i) { bresults[i].name = Gogo::unpack_hidden_name(p->name()); bresults[i].btype = p->type()->get_backend(gogo); bresults[i].location = p->location(); } go_assert(i == bresults.size()); if (this->results_->size() > 1) { // Use the same results struct for all functions that // return the same set of results. This is useful to // unify calls to interface methods with other calls. std::pair val; val.first = this->results_; val.second = NULL; std::pair ins = Function_type::results_structs.insert(val); if (ins.second) { // Build a new struct type. Struct_field_list* sfl = new Struct_field_list; for (Typed_identifier_list::const_iterator p = this->results_->begin(); p != this->results_->end(); ++p) { Typed_identifier tid = *p; if (tid.name().empty()) tid = Typed_identifier("UNNAMED", tid.type(), tid.location()); sfl->push_back(Struct_field(tid)); } Struct_type* st = Type::make_struct_type(sfl, this->location()); ins.first->second = st->get_backend(gogo); } bresult_struct = ins.first->second; } } this->fnbtype_ = gogo->backend()->function_type(breceiver, bparameters, bresults, bresult_struct, this->location()); } return this->fnbtype_; } // Get the backend representation for a Go function type. Btype* Function_type::do_get_backend(Gogo* gogo) { // When we do anything with a function value other than call it, it // is represented as a pointer to a struct whose first field is the // actual function. So that is what we return as the type of a Go // function. Location loc = this->location(); Btype* struct_type = gogo->backend()->placeholder_struct_type("__go_descriptor", loc); Btype* ptr_struct_type = gogo->backend()->pointer_type(struct_type); std::vector fields(1); fields[0].name = "code"; fields[0].btype = this->get_backend_fntype(gogo); fields[0].location = loc; if (!gogo->backend()->set_placeholder_struct_type(struct_type, fields)) return gogo->backend()->error_type(); return ptr_struct_type; } // The type of a function type descriptor. Type* Function_type::make_function_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* bool_type = Type::lookup_bool_type(); Type* slice_type = Type::make_array_type(ptdt, NULL); Struct_type* s = Type::make_builtin_struct_type(4, "", tdt, "dotdotdot", bool_type, "in", slice_type, "out", slice_type); ret = Type::make_builtin_named_type("FuncType", s); } return ret; } // The type descriptor for a function type. Expression* Function_type::do_type_descriptor(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); Type* ftdt = Function_type::make_function_type_descriptor_type(); const Struct_field_list* fields = ftdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(4); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("commonType")); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_FUNC, name, NULL, true)); ++p; go_assert(p->is_field_name("dotdotdot")); vals->push_back(Expression::make_boolean(this->is_varargs(), bloc)); ++p; go_assert(p->is_field_name("in")); vals->push_back(this->type_descriptor_params(p->type(), this->receiver(), this->parameters())); ++p; go_assert(p->is_field_name("out")); vals->push_back(this->type_descriptor_params(p->type(), NULL, this->results())); ++p; go_assert(p == fields->end()); return Expression::make_struct_composite_literal(ftdt, vals, bloc); } // Return a composite literal for the parameters or results of a type // descriptor. Expression* Function_type::type_descriptor_params(Type* params_type, const Typed_identifier* receiver, const Typed_identifier_list* params) { Location bloc = Linemap::predeclared_location(); if (receiver == NULL && params == NULL) return Expression::make_slice_composite_literal(params_type, NULL, bloc); Expression_list* vals = new Expression_list(); vals->reserve((params == NULL ? 0 : params->size()) + (receiver != NULL ? 1 : 0)); if (receiver != NULL) vals->push_back(Expression::make_type_descriptor(receiver->type(), bloc)); if (params != NULL) { for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) vals->push_back(Expression::make_type_descriptor(p->type(), bloc)); } return Expression::make_slice_composite_literal(params_type, vals, bloc); } // The reflection string. void Function_type::do_reflection(Gogo* gogo, std::string* ret) const { // FIXME: Turn this off until we straighten out the type of the // struct field used in a go statement which calls a method. // go_assert(this->receiver_ == NULL); ret->append("func"); if (this->receiver_ != NULL) { ret->push_back('('); this->append_reflection(this->receiver_->type(), gogo, ret); ret->push_back(')'); } ret->push_back('('); const Typed_identifier_list* params = this->parameters(); if (params != NULL) { bool is_varargs = this->is_varargs_; for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) { if (p != params->begin()) ret->append(", "); if (!is_varargs || p + 1 != params->end()) this->append_reflection(p->type(), gogo, ret); else { ret->append("..."); this->append_reflection(p->type()->array_type()->element_type(), gogo, ret); } } } ret->push_back(')'); const Typed_identifier_list* results = this->results(); if (results != NULL && !results->empty()) { if (results->size() == 1) ret->push_back(' '); else ret->append(" ("); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) { if (p != results->begin()) ret->append(", "); this->append_reflection(p->type(), gogo, ret); } if (results->size() > 1) ret->push_back(')'); } } // Mangled name. void Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('F'); if (this->receiver_ != NULL) { ret->push_back('m'); this->append_mangled_name(this->receiver_->type(), gogo, ret); } const Typed_identifier_list* params = this->parameters(); if (params != NULL) { ret->push_back('p'); for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) this->append_mangled_name(p->type(), gogo, ret); if (this->is_varargs_) ret->push_back('V'); ret->push_back('e'); } const Typed_identifier_list* results = this->results(); if (results != NULL) { ret->push_back('r'); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) this->append_mangled_name(p->type(), gogo, ret); ret->push_back('e'); } ret->push_back('e'); } // Export a function type. void Function_type::do_export(Export* exp) const { // We don't write out the receiver. The only function types which // should have a receiver are the ones associated with explicitly // defined methods. For those the receiver type is written out by // Function::export_func. exp->write_c_string("("); bool first = true; if (this->parameters_ != NULL) { bool is_varargs = this->is_varargs_; for (Typed_identifier_list::const_iterator p = this->parameters_->begin(); p != this->parameters_->end(); ++p) { if (first) first = false; else exp->write_c_string(", "); exp->write_name(p->name()); exp->write_c_string(" "); if (!is_varargs || p + 1 != this->parameters_->end()) exp->write_type(p->type()); else { exp->write_c_string("..."); exp->write_type(p->type()->array_type()->element_type()); } } } exp->write_c_string(")"); const Typed_identifier_list* results = this->results_; if (results != NULL) { exp->write_c_string(" "); if (results->size() == 1 && results->begin()->name().empty()) exp->write_type(results->begin()->type()); else { first = true; exp->write_c_string("("); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) { if (first) first = false; else exp->write_c_string(", "); exp->write_name(p->name()); exp->write_c_string(" "); exp->write_type(p->type()); } exp->write_c_string(")"); } } } // Import a function type. Function_type* Function_type::do_import(Import* imp) { imp->require_c_string("("); Typed_identifier_list* parameters; bool is_varargs = false; if (imp->peek_char() == ')') parameters = NULL; else { parameters = new Typed_identifier_list(); while (true) { std::string name = imp->read_name(); imp->require_c_string(" "); if (imp->match_c_string("...")) { imp->advance(3); is_varargs = true; } Type* ptype = imp->read_type(); if (is_varargs) ptype = Type::make_array_type(ptype, NULL); parameters->push_back(Typed_identifier(name, ptype, imp->location())); if (imp->peek_char() != ',') break; go_assert(!is_varargs); imp->require_c_string(", "); } } imp->require_c_string(")"); Typed_identifier_list* results; if (imp->peek_char() != ' ') results = NULL; else { imp->advance(1); results = new Typed_identifier_list; if (imp->peek_char() != '(') { Type* rtype = imp->read_type(); results->push_back(Typed_identifier("", rtype, imp->location())); } else { imp->advance(1); while (true) { std::string name = imp->read_name(); imp->require_c_string(" "); Type* rtype = imp->read_type(); results->push_back(Typed_identifier(name, rtype, imp->location())); if (imp->peek_char() != ',') break; imp->require_c_string(", "); } imp->require_c_string(")"); } } Function_type* ret = Type::make_function_type(NULL, parameters, results, imp->location()); if (is_varargs) ret->set_is_varargs(); return ret; } // Make a copy of a function type without a receiver. Function_type* Function_type::copy_without_receiver() const { go_assert(this->is_method()); Function_type *ret = Type::make_function_type(NULL, this->parameters_, this->results_, this->location_); if (this->is_varargs()) ret->set_is_varargs(); if (this->is_builtin()) ret->set_is_builtin(); return ret; } // Make a copy of a function type with a receiver. Function_type* Function_type::copy_with_receiver(Type* receiver_type) const { go_assert(!this->is_method()); Typed_identifier* receiver = new Typed_identifier("", receiver_type, this->location_); Function_type* ret = Type::make_function_type(receiver, this->parameters_, this->results_, this->location_); if (this->is_varargs_) ret->set_is_varargs(); return ret; } // Make a copy of a function type with the receiver as the first // parameter. Function_type* Function_type::copy_with_receiver_as_param(bool want_pointer_receiver) const { go_assert(this->is_method()); Typed_identifier_list* new_params = new Typed_identifier_list(); Type* rtype = this->receiver_->type(); if (want_pointer_receiver) rtype = Type::make_pointer_type(rtype); Typed_identifier receiver(this->receiver_->name(), rtype, this->receiver_->location()); new_params->push_back(receiver); const Typed_identifier_list* orig_params = this->parameters_; if (orig_params != NULL && !orig_params->empty()) { for (Typed_identifier_list::const_iterator p = orig_params->begin(); p != orig_params->end(); ++p) new_params->push_back(*p); } return Type::make_function_type(NULL, new_params, this->results_, this->location_); } // Make a copy of a function type ignoring any receiver and adding a // closure parameter. Function_type* Function_type::copy_with_names() const { Typed_identifier_list* new_params = new Typed_identifier_list(); const Typed_identifier_list* orig_params = this->parameters_; if (orig_params != NULL && !orig_params->empty()) { static int count; char buf[50]; for (Typed_identifier_list::const_iterator p = orig_params->begin(); p != orig_params->end(); ++p) { snprintf(buf, sizeof buf, "pt.%u", count); ++count; new_params->push_back(Typed_identifier(buf, p->type(), p->location())); } } const Typed_identifier_list* orig_results = this->results_; Typed_identifier_list* new_results; if (orig_results == NULL || orig_results->empty()) new_results = NULL; else { new_results = new Typed_identifier_list(); for (Typed_identifier_list::const_iterator p = orig_results->begin(); p != orig_results->end(); ++p) new_results->push_back(Typed_identifier("", p->type(), p->location())); } return Type::make_function_type(NULL, new_params, new_results, this->location()); } // Make a function type. Function_type* Type::make_function_type(Typed_identifier* receiver, Typed_identifier_list* parameters, Typed_identifier_list* results, Location location) { return new Function_type(receiver, parameters, results, location); } // Make a backend function type. Backend_function_type* Type::make_backend_function_type(Typed_identifier* receiver, Typed_identifier_list* parameters, Typed_identifier_list* results, Location location) { return new Backend_function_type(receiver, parameters, results, location); } // Class Pointer_type. // Traversal. int Pointer_type::do_traverse(Traverse* traverse) { return Type::traverse(this->to_type_, traverse); } // Hash code. unsigned int Pointer_type::do_hash_for_method(Gogo* gogo) const { return this->to_type_->hash_for_method(gogo) << 4; } // Get the backend representation for a pointer type. Btype* Pointer_type::do_get_backend(Gogo* gogo) { Btype* to_btype = this->to_type_->get_backend(gogo); return gogo->backend()->pointer_type(to_btype); } // The type of a pointer type descriptor. Type* Pointer_type::make_pointer_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Struct_type* s = Type::make_builtin_struct_type(2, "", tdt, "elem", ptdt); ret = Type::make_builtin_named_type("PtrType", s); } return ret; } // The type descriptor for a pointer type. Expression* Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (this->is_unsafe_pointer_type()) { go_assert(name != NULL); return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_UNSAFE_POINTER, name); } else { Location bloc = Linemap::predeclared_location(); const Methods* methods; Type* deref = this->points_to(); if (deref->named_type() != NULL) methods = deref->named_type()->methods(); else if (deref->struct_type() != NULL) methods = deref->struct_type()->methods(); else methods = NULL; Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type(); const Struct_field_list* fields = ptr_tdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(2); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("commonType")); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_PTR, name, methods, false)); ++p; go_assert(p->is_field_name("elem")); vals->push_back(Expression::make_type_descriptor(deref, bloc)); return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc); } } // Reflection string. void Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->push_back('*'); this->append_reflection(this->to_type_, gogo, ret); } // Mangled name. void Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('p'); this->append_mangled_name(this->to_type_, gogo, ret); } // Export. void Pointer_type::do_export(Export* exp) const { exp->write_c_string("*"); if (this->is_unsafe_pointer_type()) exp->write_c_string("any"); else exp->write_type(this->to_type_); } // Import. Pointer_type* Pointer_type::do_import(Import* imp) { imp->require_c_string("*"); if (imp->match_c_string("any")) { imp->advance(3); return Type::make_pointer_type(Type::make_void_type()); } Type* to = imp->read_type(); return Type::make_pointer_type(to); } // Make a pointer type. Pointer_type* Type::make_pointer_type(Type* to_type) { typedef Unordered_map(Type*, Pointer_type*) Hashtable; static Hashtable pointer_types; Hashtable::const_iterator p = pointer_types.find(to_type); if (p != pointer_types.end()) return p->second; Pointer_type* ret = new Pointer_type(to_type); pointer_types[to_type] = ret; return ret; } // The nil type. We use a special type for nil because it is not the // same as any other type. In C term nil has type void*, but there is // no such type in Go. class Nil_type : public Type { public: Nil_type() : Type(TYPE_NIL) { } protected: bool do_compare_is_identity(Gogo*) { return false; } Btype* do_get_backend(Gogo* gogo) { return gogo->backend()->pointer_type(gogo->backend()->void_type()); } Expression* do_type_descriptor(Gogo*, Named_type*) { go_unreachable(); } void do_reflection(Gogo*, std::string*) const { go_unreachable(); } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('n'); } }; // Make the nil type. Type* Type::make_nil_type() { static Nil_type singleton_nil_type; return &singleton_nil_type; } // The type of a function call which returns multiple values. This is // really a struct, but we don't want to confuse a function call which // returns a struct with a function call which returns multiple // values. class Call_multiple_result_type : public Type { public: Call_multiple_result_type(Call_expression* call) : Type(TYPE_CALL_MULTIPLE_RESULT), call_(call) { } protected: bool do_has_pointer() const { go_assert(saw_errors()); return false; } bool do_compare_is_identity(Gogo*) { return false; } Btype* do_get_backend(Gogo* gogo) { go_assert(saw_errors()); return gogo->backend()->error_type(); } Expression* do_type_descriptor(Gogo*, Named_type*) { go_assert(saw_errors()); return Expression::make_error(Linemap::unknown_location()); } void do_reflection(Gogo*, std::string*) const { go_assert(saw_errors()); } void do_mangled_name(Gogo*, std::string*) const { go_assert(saw_errors()); } private: // The expression being called. Call_expression* call_; }; // Make a call result type. Type* Type::make_call_multiple_result_type(Call_expression* call) { return new Call_multiple_result_type(call); } // Class Struct_field. // Get the name of a field. const std::string& Struct_field::field_name() const { const std::string& name(this->typed_identifier_.name()); if (!name.empty()) return name; else { // This is called during parsing, before anything is lowered, so // we have to be pretty careful to avoid dereferencing an // unknown type name. Type* t = this->typed_identifier_.type(); Type* dt = t; if (t->classification() == Type::TYPE_POINTER) { // Very ugly. Pointer_type* ptype = static_cast(t); dt = ptype->points_to(); } if (dt->forward_declaration_type() != NULL) return dt->forward_declaration_type()->name(); else if (dt->named_type() != NULL) return dt->named_type()->name(); else if (t->is_error_type() || dt->is_error_type()) { static const std::string error_string = "*error*"; return error_string; } else { // Avoid crashing in the erroneous case where T is named but // DT is not. go_assert(t != dt); if (t->forward_declaration_type() != NULL) return t->forward_declaration_type()->name(); else if (t->named_type() != NULL) return t->named_type()->name(); else go_unreachable(); } } } // Return whether this field is named NAME. bool Struct_field::is_field_name(const std::string& name) const { const std::string& me(this->typed_identifier_.name()); if (!me.empty()) return me == name; else { Type* t = this->typed_identifier_.type(); if (t->points_to() != NULL) t = t->points_to(); Named_type* nt = t->named_type(); if (nt != NULL && nt->name() == name) return true; // This is a horrible hack caused by the fact that we don't pack // the names of builtin types. FIXME. if (!this->is_imported_ && nt != NULL && nt->is_builtin() && nt->name() == Gogo::unpack_hidden_name(name)) return true; return false; } } // Return whether this field is an unexported field named NAME. bool Struct_field::is_unexported_field_name(Gogo* gogo, const std::string& name) const { const std::string& field_name(this->field_name()); if (Gogo::is_hidden_name(field_name) && name == Gogo::unpack_hidden_name(field_name) && gogo->pack_hidden_name(name, false) != field_name) return true; // Check for the name of a builtin type. This is like the test in // is_field_name, only there we return false if this->is_imported_, // and here we return true. if (this->is_imported_ && this->is_anonymous()) { Type* t = this->typed_identifier_.type(); if (t->points_to() != NULL) t = t->points_to(); Named_type* nt = t->named_type(); if (nt != NULL && nt->is_builtin() && nt->name() == Gogo::unpack_hidden_name(name)) return true; } return false; } // Return whether this field is an embedded built-in type. bool Struct_field::is_embedded_builtin(Gogo* gogo) const { const std::string& name(this->field_name()); // We know that a field is an embedded type if it is anonymous. // We can decide if it is a built-in type by checking to see if it is // registered globally under the field's name. // This allows us to distinguish between embedded built-in types and // embedded types that are aliases to built-in types. return (this->is_anonymous() && !Gogo::is_hidden_name(name) && gogo->lookup_global(name.c_str()) != NULL); } // Class Struct_type. // A hash table used to find identical unnamed structs so that they // share method tables. Struct_type::Identical_structs Struct_type::identical_structs; // A hash table used to merge method sets for identical unnamed // structs. Struct_type::Struct_method_tables Struct_type::struct_method_tables; // Traversal. int Struct_type::do_traverse(Traverse* traverse) { Struct_field_list* fields = this->fields_; if (fields != NULL) { for (Struct_field_list::iterator p = fields->begin(); p != fields->end(); ++p) { if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } } return TRAVERSE_CONTINUE; } // Verify that the struct type is complete and valid. bool Struct_type::do_verify() { Struct_field_list* fields = this->fields_; if (fields == NULL) return true; for (Struct_field_list::iterator p = fields->begin(); p != fields->end(); ++p) { Type* t = p->type(); if (p->is_anonymous()) { if (t->named_type() != NULL && t->points_to() != NULL) { error_at(p->location(), "embedded type may not be a pointer"); p->set_type(Type::make_error_type()); } else if (t->points_to() != NULL && t->points_to()->interface_type() != NULL) { error_at(p->location(), "embedded type may not be pointer to interface"); p->set_type(Type::make_error_type()); } } } return true; } // Whether this contains a pointer. bool Struct_type::do_has_pointer() const { const Struct_field_list* fields = this->fields(); if (fields == NULL) return false; for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) { if (p->type()->has_pointer()) return true; } return false; } // Whether this type is identical to T. bool Struct_type::is_identical(const Struct_type* t, bool errors_are_identical) const { const Struct_field_list* fields1 = this->fields(); const Struct_field_list* fields2 = t->fields(); if (fields1 == NULL || fields2 == NULL) return fields1 == fields2; Struct_field_list::const_iterator pf2 = fields2->begin(); for (Struct_field_list::const_iterator pf1 = fields1->begin(); pf1 != fields1->end(); ++pf1, ++pf2) { if (pf2 == fields2->end()) return false; if (pf1->field_name() != pf2->field_name()) return false; if (pf1->is_anonymous() != pf2->is_anonymous() || !Type::are_identical(pf1->type(), pf2->type(), errors_are_identical, NULL)) return false; if (!pf1->has_tag()) { if (pf2->has_tag()) return false; } else { if (!pf2->has_tag()) return false; if (pf1->tag() != pf2->tag()) return false; } } if (pf2 != fields2->end()) return false; return true; } // Whether this struct type has any hidden fields. bool Struct_type::struct_has_hidden_fields(const Named_type* within, std::string* reason) const { const Struct_field_list* fields = this->fields(); if (fields == NULL) return false; const Package* within_package = (within == NULL ? NULL : within->named_object()->package()); for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (within_package != NULL && !pf->is_anonymous() && Gogo::is_hidden_name(pf->field_name())) { if (reason != NULL) { std::string within_name = within->named_object()->message_name(); std::string name = Gogo::message_name(pf->field_name()); size_t bufsize = 200 + within_name.length() + name.length(); char* buf = new char[bufsize]; snprintf(buf, bufsize, _("implicit assignment of %s%s%s hidden field %s%s%s"), open_quote, within_name.c_str(), close_quote, open_quote, name.c_str(), close_quote); reason->assign(buf); delete[] buf; } return true; } if (pf->type()->has_hidden_fields(within, reason)) return true; } return false; } // Whether comparisons of this struct type are simple identity // comparisons. bool Struct_type::do_compare_is_identity(Gogo* gogo) { const Struct_field_list* fields = this->fields_; if (fields == NULL) return true; unsigned int offset = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (Gogo::is_sink_name(pf->field_name())) return false; if (!pf->type()->compare_is_identity(gogo)) return false; unsigned int field_align; if (!pf->type()->backend_type_align(gogo, &field_align)) return false; if ((offset & (field_align - 1)) != 0) { // This struct has padding. We don't guarantee that that // padding is zero-initialized for a stack variable, so we // can't use memcmp to compare struct values. return false; } unsigned int field_size; if (!pf->type()->backend_type_size(gogo, &field_size)) return false; offset += field_size; } unsigned int struct_size; if (!this->backend_type_size(gogo, &struct_size)) return false; if (offset != struct_size) { // Trailing padding may not be zero when on the stack. return false; } return true; } // Build identity and hash functions for this struct. // Hash code. unsigned int Struct_type::do_hash_for_method(Gogo* gogo) const { unsigned int ret = 0; if (this->fields() != NULL) { for (Struct_field_list::const_iterator pf = this->fields()->begin(); pf != this->fields()->end(); ++pf) ret = (ret << 1) + pf->type()->hash_for_method(gogo); } return ret <<= 2; } // Find the local field NAME. const Struct_field* Struct_type::find_local_field(const std::string& name, unsigned int *pindex) const { const Struct_field_list* fields = this->fields_; if (fields == NULL) return NULL; unsigned int i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (pf->is_field_name(name)) { if (pindex != NULL) *pindex = i; return &*pf; } } return NULL; } // Return an expression for field NAME in STRUCT_EXPR, or NULL. Field_reference_expression* Struct_type::field_reference(Expression* struct_expr, const std::string& name, Location location) const { unsigned int depth; return this->field_reference_depth(struct_expr, name, location, NULL, &depth); } // Return an expression for a field, along with the depth at which it // was found. Field_reference_expression* Struct_type::field_reference_depth(Expression* struct_expr, const std::string& name, Location location, Saw_named_type* saw, unsigned int* depth) const { const Struct_field_list* fields = this->fields_; if (fields == NULL) return NULL; // Look for a field with this name. unsigned int i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (pf->is_field_name(name)) { *depth = 0; return Expression::make_field_reference(struct_expr, i, location); } } // Look for an anonymous field which contains a field with this // name. unsigned int found_depth = 0; Field_reference_expression* ret = NULL; i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (!pf->is_anonymous()) continue; Struct_type* st = pf->type()->deref()->struct_type(); if (st == NULL) continue; Saw_named_type* hold_saw = saw; Saw_named_type saw_here; Named_type* nt = pf->type()->named_type(); if (nt == NULL) nt = pf->type()->deref()->named_type(); if (nt != NULL) { Saw_named_type* q; for (q = saw; q != NULL; q = q->next) { if (q->nt == nt) { // If this is an error, it will be reported // elsewhere. break; } } if (q != NULL) continue; saw_here.next = saw; saw_here.nt = nt; saw = &saw_here; } // Look for a reference using a NULL struct expression. If we // find one, fill in the struct expression with a reference to // this field. unsigned int subdepth; Field_reference_expression* sub = st->field_reference_depth(NULL, name, location, saw, &subdepth); saw = hold_saw; if (sub == NULL) continue; if (ret == NULL || subdepth < found_depth) { if (ret != NULL) delete ret; ret = sub; found_depth = subdepth; Expression* here = Expression::make_field_reference(struct_expr, i, location); if (pf->type()->points_to() != NULL) here = Expression::make_unary(OPERATOR_MULT, here, location); while (sub->expr() != NULL) { sub = sub->expr()->deref()->field_reference_expression(); go_assert(sub != NULL); } sub->set_struct_expression(here); sub->set_implicit(true); } else if (subdepth > found_depth) delete sub; else { // We do not handle ambiguity here--it should be handled by // Type::bind_field_or_method. delete sub; found_depth = 0; ret = NULL; } } if (ret != NULL) *depth = found_depth + 1; return ret; } // Return the total number of fields, including embedded fields. unsigned int Struct_type::total_field_count() const { if (this->fields_ == NULL) return 0; unsigned int ret = 0; for (Struct_field_list::const_iterator pf = this->fields_->begin(); pf != this->fields_->end(); ++pf) { if (!pf->is_anonymous() || pf->type()->struct_type() == NULL) ++ret; else ret += pf->type()->struct_type()->total_field_count(); } return ret; } // Return whether NAME is an unexported field, for better error reporting. bool Struct_type::is_unexported_local_field(Gogo* gogo, const std::string& name) const { const Struct_field_list* fields = this->fields_; if (fields != NULL) { for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) if (pf->is_unexported_field_name(gogo, name)) return true; } return false; } // Finalize the methods of an unnamed struct. void Struct_type::finalize_methods(Gogo* gogo) { if (this->all_methods_ != NULL) return; // It is possible to have multiple identical structs that have // methods. We want them to share method tables. Otherwise we will // emit identical methods more than once, which is bad since they // will even have the same names. std::pair ins = Struct_type::identical_structs.insert(std::make_pair(this, this)); if (!ins.second) { // An identical struct was already entered into the hash table. // Note that finalize_methods is, fortunately, not recursive. this->all_methods_ = ins.first->second->all_methods_; return; } Type::finalize_methods(gogo, this, this->location_, &this->all_methods_); } // Return the method NAME, or NULL if there isn't one or if it is // ambiguous. Set *IS_AMBIGUOUS if the method exists but is // ambiguous. Method* Struct_type::method_function(const std::string& name, bool* is_ambiguous) const { return Type::method_function(this->all_methods_, name, is_ambiguous); } // Return a pointer to the interface method table for this type for // the interface INTERFACE. IS_POINTER is true if this is for a // pointer to THIS. tree Struct_type::interface_method_table(Gogo* gogo, const Interface_type* interface, bool is_pointer) { std::pair val(this, NULL); std::pair ins = Struct_type::struct_method_tables.insert(val); Struct_method_table_pair* smtp; if (!ins.second) smtp = ins.first->second; else { smtp = new Struct_method_table_pair(); smtp->first = NULL; smtp->second = NULL; ins.first->second = smtp; } return Type::interface_method_table(gogo, this, interface, is_pointer, &smtp->first, &smtp->second); } // Convert struct fields to the backend representation. This is not // declared in types.h so that types.h doesn't have to #include // backend.h. static void get_backend_struct_fields(Gogo* gogo, const Struct_field_list* fields, bool use_placeholder, std::vector* bfields) { bfields->resize(fields->size()); size_t i = 0; for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p, ++i) { (*bfields)[i].name = Gogo::unpack_hidden_name(p->field_name()); (*bfields)[i].btype = (use_placeholder ? p->type()->get_backend_placeholder(gogo) : p->type()->get_backend(gogo)); (*bfields)[i].location = p->location(); } go_assert(i == fields->size()); } // Get the tree for a struct type. Btype* Struct_type::do_get_backend(Gogo* gogo) { std::vector bfields; get_backend_struct_fields(gogo, this->fields_, false, &bfields); return gogo->backend()->struct_type(bfields); } // Finish the backend representation of the fields of a struct. void Struct_type::finish_backend_fields(Gogo* gogo) { const Struct_field_list* fields = this->fields_; if (fields != NULL) { for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) p->type()->get_backend(gogo); } } // The type of a struct type descriptor. Type* Struct_type::make_struct_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Type* string_type = Type::lookup_string_type(); Type* pointer_string_type = Type::make_pointer_type(string_type); Struct_type* sf = Type::make_builtin_struct_type(5, "name", pointer_string_type, "pkgPath", pointer_string_type, "typ", ptdt, "tag", pointer_string_type, "offset", uintptr_type); Type* nsf = Type::make_builtin_named_type("structField", sf); Type* slice_type = Type::make_array_type(nsf, NULL); Struct_type* s = Type::make_builtin_struct_type(2, "", tdt, "fields", slice_type); ret = Type::make_builtin_named_type("StructType", s); } return ret; } // Build a type descriptor for a struct type. Expression* Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); Type* stdt = Struct_type::make_struct_type_descriptor_type(); const Struct_field_list* fields = stdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(2); const Methods* methods = this->methods(); // A named struct should not have methods--the methods should attach // to the named type. go_assert(methods == NULL || name == NULL); Struct_field_list::const_iterator ps = fields->begin(); go_assert(ps->is_field_name("commonType")); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_STRUCT, name, methods, true)); ++ps; go_assert(ps->is_field_name("fields")); Expression_list* elements = new Expression_list(); elements->reserve(this->fields_->size()); Type* element_type = ps->type()->array_type()->element_type(); for (Struct_field_list::const_iterator pf = this->fields_->begin(); pf != this->fields_->end(); ++pf) { const Struct_field_list* f = element_type->struct_type()->fields(); Expression_list* fvals = new Expression_list(); fvals->reserve(5); Struct_field_list::const_iterator q = f->begin(); go_assert(q->is_field_name("name")); if (pf->is_anonymous()) fvals->push_back(Expression::make_nil(bloc)); else { std::string n = Gogo::unpack_hidden_name(pf->field_name()); Expression* s = Expression::make_string(n, bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } ++q; go_assert(q->is_field_name("pkgPath")); bool is_embedded_builtin = pf->is_embedded_builtin(gogo); if (!Gogo::is_hidden_name(pf->field_name()) && !is_embedded_builtin) fvals->push_back(Expression::make_nil(bloc)); else { std::string n; if (is_embedded_builtin) n = gogo->package_name(); else n = Gogo::hidden_name_pkgpath(pf->field_name()); Expression* s = Expression::make_string(n, bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } ++q; go_assert(q->is_field_name("typ")); fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc)); ++q; go_assert(q->is_field_name("tag")); if (!pf->has_tag()) fvals->push_back(Expression::make_nil(bloc)); else { Expression* s = Expression::make_string(pf->tag(), bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } ++q; go_assert(q->is_field_name("offset")); fvals->push_back(Expression::make_struct_field_offset(this, &*pf)); Expression* v = Expression::make_struct_composite_literal(element_type, fvals, bloc); elements->push_back(v); } vals->push_back(Expression::make_slice_composite_literal(ps->type(), elements, bloc)); return Expression::make_struct_composite_literal(stdt, vals, bloc); } // Write the hash function for a struct which can not use the identity // function. void Struct_type::write_hash_function(Gogo* gogo, Named_type*, Function_type* hash_fntype, Function_type* equal_fntype) { Location bloc = Linemap::predeclared_location(); // The pointer to the struct that we are going to hash. This is an // argument to the hash function we are implementing here. Named_object* key_arg = gogo->lookup("key", NULL); go_assert(key_arg != NULL); Type* key_arg_type = key_arg->var_value()->type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); // Get a 0. mpz_t ival; mpz_init_set_ui(ival, 0); Expression* zero = Expression::make_integer(&ival, uintptr_type, bloc); mpz_clear(ival); // Make a temporary to hold the return value, initialized to 0. Temporary_statement* retval = Statement::make_temporary(uintptr_type, zero, bloc); gogo->add_statement(retval); // Make a temporary to hold the key as a uintptr. Expression* ref = Expression::make_var_reference(key_arg, bloc); ref = Expression::make_cast(uintptr_type, ref, bloc); Temporary_statement* key = Statement::make_temporary(uintptr_type, ref, bloc); gogo->add_statement(key); // Loop over the struct fields. bool first = true; const Struct_field_list* fields = this->fields_; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (Gogo::is_sink_name(pf->field_name())) continue; if (first) first = false; else { // Multiply retval by 33. mpz_init_set_ui(ival, 33); Expression* i33 = Expression::make_integer(&ival, uintptr_type, bloc); mpz_clear(ival); ref = Expression::make_temporary_reference(retval, bloc); Statement* s = Statement::make_assignment_operation(OPERATOR_MULTEQ, ref, i33, bloc); gogo->add_statement(s); } // Get a pointer to the value of this field. Expression* offset = Expression::make_struct_field_offset(this, &*pf); ref = Expression::make_temporary_reference(key, bloc); Expression* subkey = Expression::make_binary(OPERATOR_PLUS, ref, offset, bloc); subkey = Expression::make_cast(key_arg_type, subkey, bloc); // Get the size of this field. Expression* size = Expression::make_type_info(pf->type(), Expression::TYPE_INFO_SIZE); // Get the hash function to use for the type of this field. Named_object* hash_fn; Named_object* equal_fn; pf->type()->type_functions(gogo, pf->type()->named_type(), hash_fntype, equal_fntype, &hash_fn, &equal_fn); // Call the hash function for the field. Expression_list* args = new Expression_list(); args->push_back(subkey); args->push_back(size); Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc); Expression* call = Expression::make_call(func, args, false, bloc); // Add the field's hash value to retval. Temporary_reference_expression* tref = Expression::make_temporary_reference(retval, bloc); tref->set_is_lvalue(); Statement* s = Statement::make_assignment_operation(OPERATOR_PLUSEQ, tref, call, bloc); gogo->add_statement(s); } // Return retval to the caller of the hash function. Expression_list* vals = new Expression_list(); ref = Expression::make_temporary_reference(retval, bloc); vals->push_back(ref); Statement* s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); } // Write the equality function for a struct which can not use the // identity function. void Struct_type::write_equal_function(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); // The pointers to the structs we are going to compare. Named_object* key1_arg = gogo->lookup("key1", NULL); Named_object* key2_arg = gogo->lookup("key2", NULL); go_assert(key1_arg != NULL && key2_arg != NULL); // Build temporaries with the right types. Type* pt = Type::make_pointer_type(name != NULL ? static_cast(name) : static_cast(this)); Expression* ref = Expression::make_var_reference(key1_arg, bloc); ref = Expression::make_unsafe_cast(pt, ref, bloc); Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc); gogo->add_statement(p1); ref = Expression::make_var_reference(key2_arg, bloc); ref = Expression::make_unsafe_cast(pt, ref, bloc); Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc); gogo->add_statement(p2); const Struct_field_list* fields = this->fields_; unsigned int field_index = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++field_index) { if (Gogo::is_sink_name(pf->field_name())) continue; // Compare one field in both P1 and P2. Expression* f1 = Expression::make_temporary_reference(p1, bloc); f1 = Expression::make_unary(OPERATOR_MULT, f1, bloc); f1 = Expression::make_field_reference(f1, field_index, bloc); Expression* f2 = Expression::make_temporary_reference(p2, bloc); f2 = Expression::make_unary(OPERATOR_MULT, f2, bloc); f2 = Expression::make_field_reference(f2, field_index, bloc); Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, f1, f2, bloc); // If the values are not equal, return false. gogo->start_block(bloc); Expression_list* vals = new Expression_list(); vals->push_back(Expression::make_boolean(false, bloc)); Statement* s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); Block* then_block = gogo->finish_block(bloc); s = Statement::make_if_statement(cond, then_block, NULL, bloc); gogo->add_statement(s); } // All the fields are equal, so return true. Expression_list* vals = new Expression_list(); vals->push_back(Expression::make_boolean(true, bloc)); Statement* s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); } // Reflection string. void Struct_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->append("struct {"); for (Struct_field_list::const_iterator p = this->fields_->begin(); p != this->fields_->end(); ++p) { if (p != this->fields_->begin()) ret->push_back(';'); ret->push_back(' '); if (p->is_anonymous()) ret->push_back('?'); else ret->append(Gogo::unpack_hidden_name(p->field_name())); ret->push_back(' '); this->append_reflection(p->type(), gogo, ret); if (p->has_tag()) { const std::string& tag(p->tag()); ret->append(" \""); for (std::string::const_iterator p = tag.begin(); p != tag.end(); ++p) { if (*p == '\0') ret->append("\\x00"); else if (*p == '\n') ret->append("\\n"); else if (*p == '\t') ret->append("\\t"); else if (*p == '"') ret->append("\\\""); else if (*p == '\\') ret->append("\\\\"); else ret->push_back(*p); } ret->push_back('"'); } } if (!this->fields_->empty()) ret->push_back(' '); ret->push_back('}'); } // Mangled name. void Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('S'); const Struct_field_list* fields = this->fields_; if (fields != NULL) { for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) { if (p->is_anonymous()) ret->append("0_"); else { std::string n = Gogo::unpack_hidden_name(p->field_name()); char buf[20]; snprintf(buf, sizeof buf, "%u_", static_cast(n.length())); ret->append(buf); ret->append(n); } this->append_mangled_name(p->type(), gogo, ret); if (p->has_tag()) { const std::string& tag(p->tag()); std::string out; for (std::string::const_iterator p = tag.begin(); p != tag.end(); ++p) { if (ISALNUM(*p) || *p == '_') out.push_back(*p); else { char buf[20]; snprintf(buf, sizeof buf, ".%x.", static_cast(*p)); out.append(buf); } } char buf[20]; snprintf(buf, sizeof buf, "T%u_", static_cast(out.length())); ret->append(buf); ret->append(out); } } } ret->push_back('e'); } // If the offset of field INDEX in the backend implementation can be // determined, set *POFFSET to the offset in bytes and return true. // Otherwise, return false. bool Struct_type::backend_field_offset(Gogo* gogo, unsigned int index, unsigned int* poffset) { if (!this->is_backend_type_size_known(gogo)) return false; Btype* bt = this->get_backend_placeholder(gogo); size_t offset = gogo->backend()->type_field_offset(bt, index); *poffset = static_cast(offset); if (*poffset != offset) return false; return true; } // Export. void Struct_type::do_export(Export* exp) const { exp->write_c_string("struct { "); const Struct_field_list* fields = this->fields_; go_assert(fields != NULL); for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) { if (p->is_anonymous()) exp->write_string("? "); else { exp->write_string(p->field_name()); exp->write_c_string(" "); } exp->write_type(p->type()); if (p->has_tag()) { exp->write_c_string(" "); Expression* expr = Expression::make_string(p->tag(), Linemap::predeclared_location()); expr->export_expression(exp); delete expr; } exp->write_c_string("; "); } exp->write_c_string("}"); } // Import. Struct_type* Struct_type::do_import(Import* imp) { imp->require_c_string("struct { "); Struct_field_list* fields = new Struct_field_list; if (imp->peek_char() != '}') { while (true) { std::string name; if (imp->match_c_string("? ")) imp->advance(2); else { name = imp->read_identifier(); imp->require_c_string(" "); } Type* ftype = imp->read_type(); Struct_field sf(Typed_identifier(name, ftype, imp->location())); sf.set_is_imported(); if (imp->peek_char() == ' ') { imp->advance(1); Expression* expr = Expression::import_expression(imp); String_expression* sexpr = expr->string_expression(); go_assert(sexpr != NULL); sf.set_tag(sexpr->val()); delete sexpr; } imp->require_c_string("; "); fields->push_back(sf); if (imp->peek_char() == '}') break; } } imp->require_c_string("}"); return Type::make_struct_type(fields, imp->location()); } // Make a struct type. Struct_type* Type::make_struct_type(Struct_field_list* fields, Location location) { return new Struct_type(fields, location); } // Class Array_type. // Whether two array types are identical. bool Array_type::is_identical(const Array_type* t, bool errors_are_identical) const { if (!Type::are_identical(this->element_type(), t->element_type(), errors_are_identical, NULL)) return false; Expression* l1 = this->length(); Expression* l2 = t->length(); // Slices of the same element type are identical. if (l1 == NULL && l2 == NULL) return true; // Arrays of the same element type are identical if they have the // same length. if (l1 != NULL && l2 != NULL) { if (l1 == l2) return true; // Try to determine the lengths. If we can't, assume the arrays // are not identical. bool ret = false; Numeric_constant nc1, nc2; if (l1->numeric_constant_value(&nc1) && l2->numeric_constant_value(&nc2)) { mpz_t v1; if (nc1.to_int(&v1)) { mpz_t v2; if (nc2.to_int(&v2)) { ret = mpz_cmp(v1, v2) == 0; mpz_clear(v2); } mpz_clear(v1); } } return ret; } // Otherwise the arrays are not identical. return false; } // Traversal. int Array_type::do_traverse(Traverse* traverse) { if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->length_ != NULL && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Check that the length is valid. bool Array_type::verify_length() { if (this->length_ == NULL) return true; Type_context context(Type::lookup_integer_type("int"), false); this->length_->determine_type(&context); if (!this->length_->is_constant()) { error_at(this->length_->location(), "array bound is not constant"); return false; } Numeric_constant nc; if (!this->length_->numeric_constant_value(&nc)) { if (this->length_->type()->integer_type() != NULL || this->length_->type()->float_type() != NULL) error_at(this->length_->location(), "array bound is not constant"); else error_at(this->length_->location(), "array bound is not numeric"); return false; } unsigned long val; switch (nc.to_unsigned_long(&val)) { case Numeric_constant::NC_UL_VALID: break; case Numeric_constant::NC_UL_NOTINT: error_at(this->length_->location(), "array bound truncated to integer"); return false; case Numeric_constant::NC_UL_NEGATIVE: error_at(this->length_->location(), "negative array bound"); return false; case Numeric_constant::NC_UL_BIG: error_at(this->length_->location(), "array bound overflows"); return false; default: go_unreachable(); } Type* int_type = Type::lookup_integer_type("int"); unsigned int tbits = int_type->integer_type()->bits(); if (sizeof(val) <= tbits * 8 && val >> (tbits - 1) != 0) { error_at(this->length_->location(), "array bound overflows"); return false; } return true; } // Verify the type. bool Array_type::do_verify() { if (!this->verify_length()) this->length_ = Expression::make_error(this->length_->location()); return true; } // Whether we can use memcmp to compare this array. bool Array_type::do_compare_is_identity(Gogo* gogo) { if (this->length_ == NULL) return false; // Check for [...], which indicates that this is not a real type. if (this->length_->is_nil_expression()) return false; if (!this->element_type_->compare_is_identity(gogo)) return false; // If there is any padding, then we can't use memcmp. unsigned int size; unsigned int align; if (!this->element_type_->backend_type_size(gogo, &size) || !this->element_type_->backend_type_align(gogo, &align)) return false; if ((size & (align - 1)) != 0) return false; return true; } // Array type hash code. unsigned int Array_type::do_hash_for_method(Gogo* gogo) const { // There is no very convenient way to get a hash code for the // length. return this->element_type_->hash_for_method(gogo) + 1; } // Write the hash function for an array which can not use the identify // function. void Array_type::write_hash_function(Gogo* gogo, Named_type* name, Function_type* hash_fntype, Function_type* equal_fntype) { Location bloc = Linemap::predeclared_location(); // The pointer to the array that we are going to hash. This is an // argument to the hash function we are implementing here. Named_object* key_arg = gogo->lookup("key", NULL); go_assert(key_arg != NULL); Type* key_arg_type = key_arg->var_value()->type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); // Get a 0. mpz_t ival; mpz_init_set_ui(ival, 0); Expression* zero = Expression::make_integer(&ival, uintptr_type, bloc); mpz_clear(ival); // Make a temporary to hold the return value, initialized to 0. Temporary_statement* retval = Statement::make_temporary(uintptr_type, zero, bloc); gogo->add_statement(retval); // Make a temporary to hold the key as a uintptr. Expression* ref = Expression::make_var_reference(key_arg, bloc); ref = Expression::make_cast(uintptr_type, ref, bloc); Temporary_statement* key = Statement::make_temporary(uintptr_type, ref, bloc); gogo->add_statement(key); // Loop over the array elements. // for i = range a Type* int_type = Type::lookup_integer_type("int"); Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc); gogo->add_statement(index); Expression* iref = Expression::make_temporary_reference(index, bloc); Expression* aref = Expression::make_var_reference(key_arg, bloc); Type* pt = Type::make_pointer_type(name != NULL ? static_cast(name) : static_cast(this)); aref = Expression::make_cast(pt, aref, bloc); For_range_statement* for_range = Statement::make_for_range_statement(iref, NULL, aref, bloc); gogo->start_block(bloc); // Multiply retval by 33. mpz_init_set_ui(ival, 33); Expression* i33 = Expression::make_integer(&ival, uintptr_type, bloc); mpz_clear(ival); ref = Expression::make_temporary_reference(retval, bloc); Statement* s = Statement::make_assignment_operation(OPERATOR_MULTEQ, ref, i33, bloc); gogo->add_statement(s); // Get the hash function for the element type. Named_object* hash_fn; Named_object* equal_fn; this->element_type_->type_functions(gogo, this->element_type_->named_type(), hash_fntype, equal_fntype, &hash_fn, &equal_fn); // Get a pointer to this element in the loop. Expression* subkey = Expression::make_temporary_reference(key, bloc); subkey = Expression::make_cast(key_arg_type, subkey, bloc); // Get the size of each element. Expression* ele_size = Expression::make_type_info(this->element_type_, Expression::TYPE_INFO_SIZE); // Get the hash of this element. Expression_list* args = new Expression_list(); args->push_back(subkey); args->push_back(ele_size); Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc); Expression* call = Expression::make_call(func, args, false, bloc); // Add the element's hash value to retval. Temporary_reference_expression* tref = Expression::make_temporary_reference(retval, bloc); tref->set_is_lvalue(); s = Statement::make_assignment_operation(OPERATOR_PLUSEQ, tref, call, bloc); gogo->add_statement(s); // Increase the element pointer. tref = Expression::make_temporary_reference(key, bloc); tref->set_is_lvalue(); s = Statement::make_assignment_operation(OPERATOR_PLUSEQ, tref, ele_size, bloc); Block* statements = gogo->finish_block(bloc); for_range->add_statements(statements); gogo->add_statement(for_range); // Return retval to the caller of the hash function. Expression_list* vals = new Expression_list(); ref = Expression::make_temporary_reference(retval, bloc); vals->push_back(ref); s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); } // Write the equality function for an array which can not use the // identity function. void Array_type::write_equal_function(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); // The pointers to the arrays we are going to compare. Named_object* key1_arg = gogo->lookup("key1", NULL); Named_object* key2_arg = gogo->lookup("key2", NULL); go_assert(key1_arg != NULL && key2_arg != NULL); // Build temporaries for the keys with the right types. Type* pt = Type::make_pointer_type(name != NULL ? static_cast(name) : static_cast(this)); Expression* ref = Expression::make_var_reference(key1_arg, bloc); ref = Expression::make_unsafe_cast(pt, ref, bloc); Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc); gogo->add_statement(p1); ref = Expression::make_var_reference(key2_arg, bloc); ref = Expression::make_unsafe_cast(pt, ref, bloc); Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc); gogo->add_statement(p2); // Loop over the array elements. // for i = range a Type* int_type = Type::lookup_integer_type("int"); Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc); gogo->add_statement(index); Expression* iref = Expression::make_temporary_reference(index, bloc); Expression* aref = Expression::make_temporary_reference(p1, bloc); For_range_statement* for_range = Statement::make_for_range_statement(iref, NULL, aref, bloc); gogo->start_block(bloc); // Compare element in P1 and P2. Expression* e1 = Expression::make_temporary_reference(p1, bloc); e1 = Expression::make_unary(OPERATOR_MULT, e1, bloc); ref = Expression::make_temporary_reference(index, bloc); e1 = Expression::make_array_index(e1, ref, NULL, NULL, bloc); Expression* e2 = Expression::make_temporary_reference(p2, bloc); e2 = Expression::make_unary(OPERATOR_MULT, e2, bloc); ref = Expression::make_temporary_reference(index, bloc); e2 = Expression::make_array_index(e2, ref, NULL, NULL, bloc); Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, e1, e2, bloc); // If the elements are not equal, return false. gogo->start_block(bloc); Expression_list* vals = new Expression_list(); vals->push_back(Expression::make_boolean(false, bloc)); Statement* s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); Block* then_block = gogo->finish_block(bloc); s = Statement::make_if_statement(cond, then_block, NULL, bloc); gogo->add_statement(s); Block* statements = gogo->finish_block(bloc); for_range->add_statements(statements); gogo->add_statement(for_range); // All the elements are equal, so return true. vals = new Expression_list(); vals->push_back(Expression::make_boolean(true, bloc)); s = Statement::make_return_statement(vals, bloc); gogo->add_statement(s); } // Get a tree for the length of a fixed array. The length may be // computed using a function call, so we must only evaluate it once. tree Array_type::get_length_tree(Gogo* gogo) { go_assert(this->length_ != NULL); if (this->length_tree_ == NULL_TREE) { Numeric_constant nc; mpz_t val; if (this->length_->numeric_constant_value(&nc) && nc.to_int(&val)) { if (mpz_sgn(val) < 0) { this->length_tree_ = error_mark_node; return this->length_tree_; } Type* t = nc.type(); if (t == NULL) t = Type::lookup_integer_type("int"); else if (t->is_abstract()) t = t->make_non_abstract_type(); Btype* btype = t->get_backend(gogo); Bexpression* iexpr = gogo->backend()->integer_constant_expression(btype, val); this->length_tree_ = expr_to_tree(iexpr); mpz_clear(val); } else { // Make up a translation context for the array length // expression. FIXME: This won't work in general. Translate_context context(gogo, NULL, NULL, NULL); tree len = this->length_->get_tree(&context); if (len != error_mark_node) { Type* int_type = Type::lookup_integer_type("int"); tree int_type_tree = type_to_tree(int_type->get_backend(gogo)); len = convert_to_integer(int_type_tree, len); len = save_expr(len); } this->length_tree_ = len; } } return this->length_tree_; } // Get the backend representation of the fields of a slice. This is // not declared in types.h so that types.h doesn't have to #include // backend.h. // // We use int for the count and capacity fields. This matches 6g. // The language more or less assumes that we can't allocate space of a // size which does not fit in int. static void get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder, std::vector* bfields) { bfields->resize(3); Type* pet = Type::make_pointer_type(type->element_type()); Btype* pbet = (use_placeholder ? pet->get_backend_placeholder(gogo) : pet->get_backend(gogo)); Location ploc = Linemap::predeclared_location(); Backend::Btyped_identifier* p = &(*bfields)[0]; p->name = "__values"; p->btype = pbet; p->location = ploc; Type* int_type = Type::lookup_integer_type("int"); p = &(*bfields)[1]; p->name = "__count"; p->btype = int_type->get_backend(gogo); p->location = ploc; p = &(*bfields)[2]; p->name = "__capacity"; p->btype = int_type->get_backend(gogo); p->location = ploc; } // Get a tree for the type of this array. A fixed array is simply // represented as ARRAY_TYPE with the appropriate index--i.e., it is // just like an array in C. An open array is a struct with three // fields: a data pointer, the length, and the capacity. Btype* Array_type::do_get_backend(Gogo* gogo) { if (this->length_ == NULL) { std::vector bfields; get_backend_slice_fields(gogo, this, false, &bfields); return gogo->backend()->struct_type(bfields); } else { Btype* element = this->get_backend_element(gogo, false); Bexpression* len = this->get_backend_length(gogo); return gogo->backend()->array_type(element, len); } } // Return the backend representation of the element type. Btype* Array_type::get_backend_element(Gogo* gogo, bool use_placeholder) { if (use_placeholder) return this->element_type_->get_backend_placeholder(gogo); else return this->element_type_->get_backend(gogo); } // Return the backend representation of the length. Bexpression* Array_type::get_backend_length(Gogo* gogo) { return tree_to_expr(this->get_length_tree(gogo)); } // Finish backend representation of the array. void Array_type::finish_backend_element(Gogo* gogo) { Type* et = this->array_type()->element_type(); et->get_backend(gogo); if (this->is_slice_type()) { // This relies on the fact that we always use the same // structure for a pointer to any given type. Type* pet = Type::make_pointer_type(et); pet->get_backend(gogo); } } // Return an expression for a pointer to the values in ARRAY. Expression* Array_type::get_value_pointer(Gogo*, Expression* array) const { if (this->length() != NULL) { // Fixed array. go_assert(array->type()->array_type() != NULL); Type* etype = array->type()->array_type()->element_type(); array = Expression::make_unary(OPERATOR_AND, array, array->location()); return Expression::make_cast(Type::make_pointer_type(etype), array, array->location()); } // Open array. return Expression::make_slice_info(array, Expression::SLICE_INFO_VALUE_POINTER, array->location()); } // Return an expression for the length of the array ARRAY which has this // type. Expression* Array_type::get_length(Gogo*, Expression* array) const { if (this->length_ != NULL) return this->length_; // This is an open array. We need to read the length field. return Expression::make_slice_info(array, Expression::SLICE_INFO_LENGTH, array->location()); } // Return an expression for the capacity of the array ARRAY which has this // type. Expression* Array_type::get_capacity(Gogo*, Expression* array) const { if (this->length_ != NULL) return this->length_; // This is an open array. We need to read the capacity field. return Expression::make_slice_info(array, Expression::SLICE_INFO_CAPACITY, array->location()); } // Export. void Array_type::do_export(Export* exp) const { exp->write_c_string("["); if (this->length_ != NULL) this->length_->export_expression(exp); exp->write_c_string("] "); exp->write_type(this->element_type_); } // Import. Array_type* Array_type::do_import(Import* imp) { imp->require_c_string("["); Expression* length; if (imp->peek_char() == ']') length = NULL; else length = Expression::import_expression(imp); imp->require_c_string("] "); Type* element_type = imp->read_type(); return Type::make_array_type(element_type, length); } // The type of an array type descriptor. Type* Array_type::make_array_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Struct_type* sf = Type::make_builtin_struct_type(4, "", tdt, "elem", ptdt, "slice", ptdt, "len", uintptr_type); ret = Type::make_builtin_named_type("ArrayType", sf); } return ret; } // The type of an slice type descriptor. Type* Array_type::make_slice_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Struct_type* sf = Type::make_builtin_struct_type(2, "", tdt, "elem", ptdt); ret = Type::make_builtin_named_type("SliceType", sf); } return ret; } // Build a type descriptor for an array/slice type. Expression* Array_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (this->length_ != NULL) return this->array_type_descriptor(gogo, name); else return this->slice_type_descriptor(gogo, name); } // Build a type descriptor for an array type. Expression* Array_type::array_type_descriptor(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); Type* atdt = Array_type::make_array_type_descriptor_type(); const Struct_field_list* fields = atdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("commonType")); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_ARRAY, name, NULL, true)); ++p; go_assert(p->is_field_name("elem")); vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); ++p; go_assert(p->is_field_name("slice")); Type* slice_type = Type::make_array_type(this->element_type_, NULL); vals->push_back(Expression::make_type_descriptor(slice_type, bloc)); ++p; go_assert(p->is_field_name("len")); vals->push_back(Expression::make_cast(p->type(), this->length_, bloc)); ++p; go_assert(p == fields->end()); return Expression::make_struct_composite_literal(atdt, vals, bloc); } // Build a type descriptor for a slice type. Expression* Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); Type* stdt = Array_type::make_slice_type_descriptor_type(); const Struct_field_list* fields = stdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(2); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("commonType")); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_SLICE, name, NULL, true)); ++p; go_assert(p->is_field_name("elem")); vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); ++p; go_assert(p == fields->end()); return Expression::make_struct_composite_literal(stdt, vals, bloc); } // Reflection string. void Array_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->push_back('['); if (this->length_ != NULL) { Numeric_constant nc; unsigned long val; if (!this->length_->numeric_constant_value(&nc) || nc.to_unsigned_long(&val) != Numeric_constant::NC_UL_VALID) error_at(this->length_->location(), "invalid array length"); else { char buf[50]; snprintf(buf, sizeof buf, "%lu", val); ret->append(buf); } } ret->push_back(']'); this->append_reflection(this->element_type_, gogo, ret); } // Mangled name. void Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('A'); this->append_mangled_name(this->element_type_, gogo, ret); if (this->length_ != NULL) { Numeric_constant nc; unsigned long val; if (!this->length_->numeric_constant_value(&nc) || nc.to_unsigned_long(&val) != Numeric_constant::NC_UL_VALID) error_at(this->length_->location(), "invalid array length"); else { char buf[50]; snprintf(buf, sizeof buf, "%lu", val); ret->append(buf); } } ret->push_back('e'); } // Make an array type. Array_type* Type::make_array_type(Type* element_type, Expression* length) { return new Array_type(element_type, length); } // Class Map_type. // Traversal. int Map_type::do_traverse(Traverse* traverse) { if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Check that the map type is OK. bool Map_type::do_verify() { // The runtime support uses "map[void]void". if (!this->key_type_->is_comparable() && !this->key_type_->is_void_type()) error_at(this->location_, "invalid map key type"); return true; } // Whether two map types are identical. bool Map_type::is_identical(const Map_type* t, bool errors_are_identical) const { return (Type::are_identical(this->key_type(), t->key_type(), errors_are_identical, NULL) && Type::are_identical(this->val_type(), t->val_type(), errors_are_identical, NULL)); } // Hash code. unsigned int Map_type::do_hash_for_method(Gogo* gogo) const { return (this->key_type_->hash_for_method(gogo) + this->val_type_->hash_for_method(gogo) + 2); } // Get the backend representation for a map type. A map type is // represented as a pointer to a struct. The struct is __go_map in // libgo/map.h. Btype* Map_type::do_get_backend(Gogo* gogo) { static Btype* backend_map_type; if (backend_map_type == NULL) { std::vector bfields(4); Location bloc = Linemap::predeclared_location(); Type* pdt = Type::make_type_descriptor_ptr_type(); bfields[0].name = "__descriptor"; bfields[0].btype = pdt->get_backend(gogo); bfields[0].location = bloc; Type* uintptr_type = Type::lookup_integer_type("uintptr"); bfields[1].name = "__element_count"; bfields[1].btype = uintptr_type->get_backend(gogo); bfields[1].location = bloc; bfields[2].name = "__bucket_count"; bfields[2].btype = bfields[1].btype; bfields[2].location = bloc; Btype* bvt = gogo->backend()->void_type(); Btype* bpvt = gogo->backend()->pointer_type(bvt); Btype* bppvt = gogo->backend()->pointer_type(bpvt); bfields[3].name = "__buckets"; bfields[3].btype = bppvt; bfields[3].location = bloc; Btype *bt = gogo->backend()->struct_type(bfields); bt = gogo->backend()->named_type("__go_map", bt, bloc); backend_map_type = gogo->backend()->pointer_type(bt); } return backend_map_type; } // The type of a map type descriptor. Type* Map_type::make_map_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Struct_type* sf = Type::make_builtin_struct_type(3, "", tdt, "key", ptdt, "elem", ptdt); ret = Type::make_builtin_named_type("MapType", sf); } return ret; } // Build a type descriptor for a map type. Expression* Map_type::do_type_descriptor(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); Type* mtdt = Map_type::make_map_type_descriptor_type(); const Struct_field_list* fields = mtdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("commonType")); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_MAP, name, NULL, true)); ++p; go_assert(p->is_field_name("key")); vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc)); ++p; go_assert(p->is_field_name("elem")); vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc)); ++p; go_assert(p == fields->end()); return Expression::make_struct_composite_literal(mtdt, vals, bloc); } // A mapping from map types to map descriptors. Map_type::Map_descriptors Map_type::map_descriptors; // Build a map descriptor for this type. Return a pointer to it. Bexpression* Map_type::map_descriptor_pointer(Gogo* gogo, Location location) { Bvariable* bvar = this->map_descriptor(gogo); Bexpression* var_expr = gogo->backend()->var_expression(bvar, location); return gogo->backend()->address_expression(var_expr, location); } // Build a map descriptor for this type. Bvariable* Map_type::map_descriptor(Gogo* gogo) { std::pair val(this, NULL); std::pair ins = Map_type::map_descriptors.insert(val); if (!ins.second) return ins.first->second; Type* key_type = this->key_type_; Type* val_type = this->val_type_; // The map entry type is a struct with three fields. Build that // struct so that we can get the offsets of the key and value within // a map entry. The first field should technically be a pointer to // this type itself, but since we only care about field offsets we // just use pointer to bool. Type* pbool = Type::make_pointer_type(Type::make_boolean_type()); Struct_type* map_entry_type = Type::make_builtin_struct_type(3, "__next", pbool, "__key", key_type, "__val", val_type); Type* map_descriptor_type = Map_type::make_map_descriptor_type(); const Struct_field_list* fields = map_descriptor_type->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(4); Location bloc = Linemap::predeclared_location(); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("__map_descriptor")); vals->push_back(Expression::make_type_descriptor(this, bloc)); ++p; go_assert(p->is_field_name("__entry_size")); Expression::Type_info type_info = Expression::TYPE_INFO_SIZE; vals->push_back(Expression::make_type_info(map_entry_type, type_info)); Struct_field_list::const_iterator pf = map_entry_type->fields()->begin(); ++pf; go_assert(pf->is_field_name("__key")); ++p; go_assert(p->is_field_name("__key_offset")); vals->push_back(Expression::make_struct_field_offset(map_entry_type, &*pf)); ++pf; go_assert(pf->is_field_name("__val")); ++p; go_assert(p->is_field_name("__val_offset")); vals->push_back(Expression::make_struct_field_offset(map_entry_type, &*pf)); ++p; go_assert(p == fields->end()); Expression* initializer = Expression::make_struct_composite_literal(map_descriptor_type, vals, bloc); std::string mangled_name = "__go_map_" + this->mangled_name(gogo); Btype* map_descriptor_btype = map_descriptor_type->get_backend(gogo); Bvariable* bvar = gogo->backend()->immutable_struct(mangled_name, false, true, map_descriptor_btype, bloc); Translate_context context(gogo, NULL, NULL, NULL); context.set_is_const(); Bexpression* binitializer = tree_to_expr(initializer->get_tree(&context)); gogo->backend()->immutable_struct_set_init(bvar, mangled_name, false, true, map_descriptor_btype, bloc, binitializer); ins.first->second = bvar; return bvar; } // Build the type of a map descriptor. This must match the struct // __go_map_descriptor in libgo/runtime/map.h. Type* Map_type::make_map_descriptor_type() { static Type* ret; if (ret == NULL) { Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Struct_type* sf = Type::make_builtin_struct_type(4, "__map_descriptor", ptdt, "__entry_size", uintptr_type, "__key_offset", uintptr_type, "__val_offset", uintptr_type); ret = Type::make_builtin_named_type("__go_map_descriptor", sf); } return ret; } // Reflection string for a map. void Map_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->append("map["); this->append_reflection(this->key_type_, gogo, ret); ret->append("]"); this->append_reflection(this->val_type_, gogo, ret); } // Mangled name for a map. void Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('M'); this->append_mangled_name(this->key_type_, gogo, ret); ret->append("__"); this->append_mangled_name(this->val_type_, gogo, ret); } // Export a map type. void Map_type::do_export(Export* exp) const { exp->write_c_string("map ["); exp->write_type(this->key_type_); exp->write_c_string("] "); exp->write_type(this->val_type_); } // Import a map type. Map_type* Map_type::do_import(Import* imp) { imp->require_c_string("map ["); Type* key_type = imp->read_type(); imp->require_c_string("] "); Type* val_type = imp->read_type(); return Type::make_map_type(key_type, val_type, imp->location()); } // Make a map type. Map_type* Type::make_map_type(Type* key_type, Type* val_type, Location location) { return new Map_type(key_type, val_type, location); } // Class Channel_type. // Hash code. unsigned int Channel_type::do_hash_for_method(Gogo* gogo) const { unsigned int ret = 0; if (this->may_send_) ret += 1; if (this->may_receive_) ret += 2; if (this->element_type_ != NULL) ret += this->element_type_->hash_for_method(gogo) << 2; return ret << 3; } // Whether this type is the same as T. bool Channel_type::is_identical(const Channel_type* t, bool errors_are_identical) const { if (!Type::are_identical(this->element_type(), t->element_type(), errors_are_identical, NULL)) return false; return (this->may_send_ == t->may_send_ && this->may_receive_ == t->may_receive_); } // Return the tree for a channel type. A channel is a pointer to a // __go_channel struct. The __go_channel struct is defined in // libgo/runtime/channel.h. Btype* Channel_type::do_get_backend(Gogo* gogo) { static Btype* backend_channel_type; if (backend_channel_type == NULL) { std::vector bfields; Btype* bt = gogo->backend()->struct_type(bfields); bt = gogo->backend()->named_type("__go_channel", bt, Linemap::predeclared_location()); backend_channel_type = gogo->backend()->pointer_type(bt); } return backend_channel_type; } // Build a type descriptor for a channel type. Type* Channel_type::make_chan_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Struct_type* sf = Type::make_builtin_struct_type(3, "", tdt, "elem", ptdt, "dir", uintptr_type); ret = Type::make_builtin_named_type("ChanType", sf); } return ret; } // Build a type descriptor for a map type. Expression* Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); Type* ctdt = Channel_type::make_chan_type_descriptor_type(); const Struct_field_list* fields = ctdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); go_assert(p->is_field_name("commonType")); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_CHAN, name, NULL, true)); ++p; go_assert(p->is_field_name("elem")); vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); ++p; go_assert(p->is_field_name("dir")); // These bits must match the ones in libgo/runtime/go-type.h. int val = 0; if (this->may_receive_) val |= 1; if (this->may_send_) val |= 2; mpz_t iv; mpz_init_set_ui(iv, val); vals->push_back(Expression::make_integer(&iv, p->type(), bloc)); mpz_clear(iv); ++p; go_assert(p == fields->end()); return Expression::make_struct_composite_literal(ctdt, vals, bloc); } // Reflection string. void Channel_type::do_reflection(Gogo* gogo, std::string* ret) const { if (!this->may_send_) ret->append("<-"); ret->append("chan"); if (!this->may_receive_) ret->append("<-"); ret->push_back(' '); this->append_reflection(this->element_type_, gogo, ret); } // Mangled name. void Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('C'); this->append_mangled_name(this->element_type_, gogo, ret); if (this->may_send_) ret->push_back('s'); if (this->may_receive_) ret->push_back('r'); ret->push_back('e'); } // Export. void Channel_type::do_export(Export* exp) const { exp->write_c_string("chan "); if (this->may_send_ && !this->may_receive_) exp->write_c_string("-< "); else if (this->may_receive_ && !this->may_send_) exp->write_c_string("<- "); exp->write_type(this->element_type_); } // Import. Channel_type* Channel_type::do_import(Import* imp) { imp->require_c_string("chan "); bool may_send; bool may_receive; if (imp->match_c_string("-< ")) { imp->advance(3); may_send = true; may_receive = false; } else if (imp->match_c_string("<- ")) { imp->advance(3); may_receive = true; may_send = false; } else { may_send = true; may_receive = true; } Type* element_type = imp->read_type(); return Type::make_channel_type(may_send, may_receive, element_type); } // Make a new channel type. Channel_type* Type::make_channel_type(bool send, bool receive, Type* element_type) { return new Channel_type(send, receive, element_type); } // Class Interface_type. // Return the list of methods. const Typed_identifier_list* Interface_type::methods() const { go_assert(this->methods_are_finalized_ || saw_errors()); return this->all_methods_; } // Return the number of methods. size_t Interface_type::method_count() const { go_assert(this->methods_are_finalized_ || saw_errors()); return this->all_methods_ == NULL ? 0 : this->all_methods_->size(); } // Traversal. int Interface_type::do_traverse(Traverse* traverse) { Typed_identifier_list* methods = (this->methods_are_finalized_ ? this->all_methods_ : this->parse_methods_); if (methods == NULL) return TRAVERSE_CONTINUE; return methods->traverse(traverse); } // Finalize the methods. This handles interface inheritance. void Interface_type::finalize_methods() { if (this->methods_are_finalized_) return; this->methods_are_finalized_ = true; if (this->parse_methods_ == NULL) return; this->all_methods_ = new Typed_identifier_list(); this->all_methods_->reserve(this->parse_methods_->size()); Typed_identifier_list inherit; for (Typed_identifier_list::const_iterator pm = this->parse_methods_->begin(); pm != this->parse_methods_->end(); ++pm) { const Typed_identifier* p = &*pm; if (p->name().empty()) inherit.push_back(*p); else if (this->find_method(p->name()) == NULL) this->all_methods_->push_back(*p); else error_at(p->location(), "duplicate method %qs", Gogo::message_name(p->name()).c_str()); } std::vector seen; seen.reserve(inherit.size()); bool issued_recursive_error = false; while (!inherit.empty()) { Type* t = inherit.back().type(); Location tl = inherit.back().location(); inherit.pop_back(); Interface_type* it = t->interface_type(); if (it == NULL) { if (!t->is_error()) error_at(tl, "interface contains embedded non-interface"); continue; } if (it == this) { if (!issued_recursive_error) { error_at(tl, "invalid recursive interface"); issued_recursive_error = true; } continue; } Named_type* nt = t->named_type(); if (nt != NULL && it->parse_methods_ != NULL) { std::vector::const_iterator q; for (q = seen.begin(); q != seen.end(); ++q) { if (*q == nt) { error_at(tl, "inherited interface loop"); break; } } if (q != seen.end()) continue; seen.push_back(nt); } const Typed_identifier_list* imethods = it->parse_methods_; if (imethods == NULL) continue; for (Typed_identifier_list::const_iterator q = imethods->begin(); q != imethods->end(); ++q) { if (q->name().empty()) inherit.push_back(*q); else if (this->find_method(q->name()) == NULL) this->all_methods_->push_back(Typed_identifier(q->name(), q->type(), tl)); else error_at(tl, "inherited method %qs is ambiguous", Gogo::message_name(q->name()).c_str()); } } if (!this->all_methods_->empty()) this->all_methods_->sort_by_name(); else { delete this->all_methods_; this->all_methods_ = NULL; } } // Return the method NAME, or NULL. const Typed_identifier* Interface_type::find_method(const std::string& name) const { go_assert(this->methods_are_finalized_); if (this->all_methods_ == NULL) return NULL; for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); p != this->all_methods_->end(); ++p) if (p->name() == name) return &*p; return NULL; } // Return the method index. size_t Interface_type::method_index(const std::string& name) const { go_assert(this->methods_are_finalized_ && this->all_methods_ != NULL); size_t ret = 0; for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); p != this->all_methods_->end(); ++p, ++ret) if (p->name() == name) return ret; go_unreachable(); } // Return whether NAME is an unexported method, for better error // reporting. bool Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const { go_assert(this->methods_are_finalized_); if (this->all_methods_ == NULL) return false; for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); p != this->all_methods_->end(); ++p) { const std::string& method_name(p->name()); if (Gogo::is_hidden_name(method_name) && name == Gogo::unpack_hidden_name(method_name) && gogo->pack_hidden_name(name, false) != method_name) return true; } return false; } // Whether this type is identical with T. bool Interface_type::is_identical(const Interface_type* t, bool errors_are_identical) const { // If methods have not been finalized, then we are asking whether // func redeclarations are the same. This is an error, so for // simplicity we say they are never the same. if (!this->methods_are_finalized_ || !t->methods_are_finalized_) return false; // We require the same methods with the same types. The methods // have already been sorted. if (this->all_methods_ == NULL || t->all_methods_ == NULL) return this->all_methods_ == t->all_methods_; if (this->assume_identical(this, t) || t->assume_identical(t, this)) return true; Assume_identical* hold_ai = this->assume_identical_; Assume_identical ai; ai.t1 = this; ai.t2 = t; ai.next = hold_ai; this->assume_identical_ = &ai; Typed_identifier_list::const_iterator p1 = this->all_methods_->begin(); Typed_identifier_list::const_iterator p2; for (p2 = t->all_methods_->begin(); p2 != t->all_methods_->end(); ++p1, ++p2) { if (p1 == this->all_methods_->end()) break; if (p1->name() != p2->name() || !Type::are_identical(p1->type(), p2->type(), errors_are_identical, NULL)) break; } this->assume_identical_ = hold_ai; return p1 == this->all_methods_->end() && p2 == t->all_methods_->end(); } // Return true if T1 and T2 are assumed to be identical during a type // comparison. bool Interface_type::assume_identical(const Interface_type* t1, const Interface_type* t2) const { for (Assume_identical* p = this->assume_identical_; p != NULL; p = p->next) if ((p->t1 == t1 && p->t2 == t2) || (p->t1 == t2 && p->t2 == t1)) return true; return false; } // Whether we can assign the interface type T to this type. The types // are known to not be identical. An interface assignment is only // permitted if T is known to implement all methods in THIS. // Otherwise a type guard is required. bool Interface_type::is_compatible_for_assign(const Interface_type* t, std::string* reason) const { go_assert(this->methods_are_finalized_ && t->methods_are_finalized_); if (this->all_methods_ == NULL) return true; for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); p != this->all_methods_->end(); ++p) { const Typed_identifier* m = t->find_method(p->name()); if (m == NULL) { if (reason != NULL) { char buf[200]; snprintf(buf, sizeof buf, _("need explicit conversion; missing method %s%s%s"), open_quote, Gogo::message_name(p->name()).c_str(), close_quote); reason->assign(buf); } return false; } std::string subreason; if (!Type::are_identical(p->type(), m->type(), true, &subreason)) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = 100 + n.length() + subreason.length(); char* buf = new char[len]; if (subreason.empty()) snprintf(buf, len, _("incompatible type for method %s%s%s"), open_quote, n.c_str(), close_quote); else snprintf(buf, len, _("incompatible type for method %s%s%s (%s)"), open_quote, n.c_str(), close_quote, subreason.c_str()); reason->assign(buf); delete[] buf; } return false; } } return true; } // Hash code. unsigned int Interface_type::do_hash_for_method(Gogo*) const { go_assert(this->methods_are_finalized_); unsigned int ret = 0; if (this->all_methods_ != NULL) { for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); p != this->all_methods_->end(); ++p) { ret = Type::hash_string(p->name(), ret); // We don't use the method type in the hash, to avoid // infinite recursion if an interface method uses a type // which is an interface which inherits from the interface // itself. // type T interface { F() interface {T}} ret <<= 1; } } return ret; } // Return true if T implements the interface. If it does not, and // REASON is not NULL, set *REASON to a useful error message. bool Interface_type::implements_interface(const Type* t, std::string* reason) const { go_assert(this->methods_are_finalized_); if (this->all_methods_ == NULL) return true; bool is_pointer = false; const Named_type* nt = t->named_type(); const Struct_type* st = t->struct_type(); // If we start with a named type, we don't dereference it to find // methods. if (nt == NULL) { const Type* pt = t->points_to(); if (pt != NULL) { // If T is a pointer to a named type, then we need to look at // the type to which it points. is_pointer = true; nt = pt->named_type(); st = pt->struct_type(); } } // If we have a named type, get the methods from it rather than from // any struct type. if (nt != NULL) st = NULL; // Only named and struct types have methods. if (nt == NULL && st == NULL) { if (reason != NULL) { if (t->points_to() != NULL && t->points_to()->interface_type() != NULL) reason->assign(_("pointer to interface type has no methods")); else reason->assign(_("type has no methods")); } return false; } if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods()) { if (reason != NULL) { if (t->points_to() != NULL && t->points_to()->interface_type() != NULL) reason->assign(_("pointer to interface type has no methods")); else reason->assign(_("type has no methods")); } return false; } for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); p != this->all_methods_->end(); ++p) { bool is_ambiguous = false; Method* m = (nt != NULL ? nt->method_function(p->name(), &is_ambiguous) : st->method_function(p->name(), &is_ambiguous)); if (m == NULL) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = n.length() + 100; char* buf = new char[len]; if (is_ambiguous) snprintf(buf, len, _("ambiguous method %s%s%s"), open_quote, n.c_str(), close_quote); else snprintf(buf, len, _("missing method %s%s%s"), open_quote, n.c_str(), close_quote); reason->assign(buf); delete[] buf; } return false; } Function_type *p_fn_type = p->type()->function_type(); Function_type* m_fn_type = m->type()->function_type(); go_assert(p_fn_type != NULL && m_fn_type != NULL); std::string subreason; if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason)) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = 100 + n.length() + subreason.length(); char* buf = new char[len]; if (subreason.empty()) snprintf(buf, len, _("incompatible type for method %s%s%s"), open_quote, n.c_str(), close_quote); else snprintf(buf, len, _("incompatible type for method %s%s%s (%s)"), open_quote, n.c_str(), close_quote, subreason.c_str()); reason->assign(buf); delete[] buf; } return false; } if (!is_pointer && !m->is_value_method()) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = 100 + n.length(); char* buf = new char[len]; snprintf(buf, len, _("method %s%s%s requires a pointer receiver"), open_quote, n.c_str(), close_quote); reason->assign(buf); delete[] buf; } return false; } // If the magic //go:nointerface comment was used, the method // may not be used to implement interfaces. if (m->nointerface()) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = 100 + n.length(); char* buf = new char[len]; snprintf(buf, len, _("method %s%s%s is marked go:nointerface"), open_quote, n.c_str(), close_quote); reason->assign(buf); delete[] buf; } return false; } } return true; } // Return the backend representation of the empty interface type. We // use the same struct for all empty interfaces. Btype* Interface_type::get_backend_empty_interface_type(Gogo* gogo) { static Btype* empty_interface_type; if (empty_interface_type == NULL) { std::vector bfields(2); Location bloc = Linemap::predeclared_location(); Type* pdt = Type::make_type_descriptor_ptr_type(); bfields[0].name = "__type_descriptor"; bfields[0].btype = pdt->get_backend(gogo); bfields[0].location = bloc; Type* vt = Type::make_pointer_type(Type::make_void_type()); bfields[1].name = "__object"; bfields[1].btype = vt->get_backend(gogo); bfields[1].location = bloc; empty_interface_type = gogo->backend()->struct_type(bfields); } return empty_interface_type; } // Return a pointer to the backend representation of the method table. Btype* Interface_type::get_backend_methods(Gogo* gogo) { if (this->bmethods_ != NULL && !this->bmethods_is_placeholder_) return this->bmethods_; Location loc = this->location(); std::vector mfields(this->all_methods_->size() + 1); Type* pdt = Type::make_type_descriptor_ptr_type(); mfields[0].name = "__type_descriptor"; mfields[0].btype = pdt->get_backend(gogo); mfields[0].location = loc; std::string last_name = ""; size_t i = 1; for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); p != this->all_methods_->end(); ++p, ++i) { // The type of the method in Go only includes the parameters. // The actual method also has a receiver, which is always a // pointer. We need to add that pointer type here in order to // generate the correct type for the backend. Function_type* ft = p->type()->function_type(); go_assert(ft->receiver() == NULL); const Typed_identifier_list* params = ft->parameters(); Typed_identifier_list* mparams = new Typed_identifier_list(); if (params != NULL) mparams->reserve(params->size() + 1); Type* vt = Type::make_pointer_type(Type::make_void_type()); mparams->push_back(Typed_identifier("", vt, ft->location())); if (params != NULL) { for (Typed_identifier_list::const_iterator pp = params->begin(); pp != params->end(); ++pp) mparams->push_back(*pp); } Typed_identifier_list* mresults = (ft->results() == NULL ? NULL : ft->results()->copy()); Function_type* mft = Type::make_function_type(NULL, mparams, mresults, ft->location()); mfields[i].name = Gogo::unpack_hidden_name(p->name()); mfields[i].btype = mft->get_backend_fntype(gogo); mfields[i].location = loc; // Sanity check: the names should be sorted. go_assert(p->name() > last_name); last_name = p->name(); } Btype* st = gogo->backend()->struct_type(mfields); Btype* ret = gogo->backend()->pointer_type(st); if (this->bmethods_ != NULL && this->bmethods_is_placeholder_) gogo->backend()->set_placeholder_pointer_type(this->bmethods_, ret); this->bmethods_ = ret; this->bmethods_is_placeholder_ = false; return ret; } // Return a placeholder for the pointer to the backend methods table. Btype* Interface_type::get_backend_methods_placeholder(Gogo* gogo) { if (this->bmethods_ == NULL) { Location loc = this->location(); this->bmethods_ = gogo->backend()->placeholder_pointer_type("", loc, false); this->bmethods_is_placeholder_ = true; } return this->bmethods_; } // Return the fields of a non-empty interface type. This is not // declared in types.h so that types.h doesn't have to #include // backend.h. static void get_backend_interface_fields(Gogo* gogo, Interface_type* type, bool use_placeholder, std::vector* bfields) { Location loc = type->location(); bfields->resize(2); (*bfields)[0].name = "__methods"; (*bfields)[0].btype = (use_placeholder ? type->get_backend_methods_placeholder(gogo) : type->get_backend_methods(gogo)); (*bfields)[0].location = loc; Type* vt = Type::make_pointer_type(Type::make_void_type()); (*bfields)[1].name = "__object"; (*bfields)[1].btype = vt->get_backend(gogo); (*bfields)[1].location = Linemap::predeclared_location(); } // Return a tree for an interface type. An interface is a pointer to // a struct. The struct has three fields. The first field is a // pointer to the type descriptor for the dynamic type of the object. // The second field is a pointer to a table of methods for the // interface to be used with the object. The third field is the value // of the object itself. Btype* Interface_type::do_get_backend(Gogo* gogo) { if (this->is_empty()) return Interface_type::get_backend_empty_interface_type(gogo); else { if (this->interface_btype_ != NULL) return this->interface_btype_; this->interface_btype_ = gogo->backend()->placeholder_struct_type("", this->location_); std::vector bfields; get_backend_interface_fields(gogo, this, false, &bfields); if (!gogo->backend()->set_placeholder_struct_type(this->interface_btype_, bfields)) this->interface_btype_ = gogo->backend()->error_type(); return this->interface_btype_; } } // Finish the backend representation of the methods. void Interface_type::finish_backend_methods(Gogo* gogo) { if (!this->is_empty()) { const Typed_identifier_list* methods = this->methods(); if (methods != NULL) { for (Typed_identifier_list::const_iterator p = methods->begin(); p != methods->end(); ++p) p->type()->get_backend(gogo); } // Getting the backend methods now will set the placeholder // pointer. this->get_backend_methods(gogo); } } // The type of an interface type descriptor. Type* Interface_type::make_interface_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* string_type = Type::lookup_string_type(); Type* pointer_string_type = Type::make_pointer_type(string_type); Struct_type* sm = Type::make_builtin_struct_type(3, "name", pointer_string_type, "pkgPath", pointer_string_type, "typ", ptdt); Type* nsm = Type::make_builtin_named_type("imethod", sm); Type* slice_nsm = Type::make_array_type(nsm, NULL); Struct_type* s = Type::make_builtin_struct_type(2, "", tdt, "methods", slice_nsm); ret = Type::make_builtin_named_type("InterfaceType", s); } return ret; } // Build a type descriptor for an interface type. Expression* Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name) { Location bloc = Linemap::predeclared_location(); Type* itdt = Interface_type::make_interface_type_descriptor_type(); const Struct_field_list* ifields = itdt->struct_type()->fields(); Expression_list* ivals = new Expression_list(); ivals->reserve(2); Struct_field_list::const_iterator pif = ifields->begin(); go_assert(pif->is_field_name("commonType")); const int rt = RUNTIME_TYPE_KIND_INTERFACE; ivals->push_back(this->type_descriptor_constructor(gogo, rt, name, NULL, true)); ++pif; go_assert(pif->is_field_name("methods")); Expression_list* methods = new Expression_list(); if (this->all_methods_ != NULL) { Type* elemtype = pif->type()->array_type()->element_type(); methods->reserve(this->all_methods_->size()); for (Typed_identifier_list::const_iterator pm = this->all_methods_->begin(); pm != this->all_methods_->end(); ++pm) { const Struct_field_list* mfields = elemtype->struct_type()->fields(); Expression_list* mvals = new Expression_list(); mvals->reserve(3); Struct_field_list::const_iterator pmf = mfields->begin(); go_assert(pmf->is_field_name("name")); std::string s = Gogo::unpack_hidden_name(pm->name()); Expression* e = Expression::make_string(s, bloc); mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc)); ++pmf; go_assert(pmf->is_field_name("pkgPath")); if (!Gogo::is_hidden_name(pm->name())) mvals->push_back(Expression::make_nil(bloc)); else { s = Gogo::hidden_name_pkgpath(pm->name()); e = Expression::make_string(s, bloc); mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc)); } ++pmf; go_assert(pmf->is_field_name("typ")); mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc)); ++pmf; go_assert(pmf == mfields->end()); e = Expression::make_struct_composite_literal(elemtype, mvals, bloc); methods->push_back(e); } } ivals->push_back(Expression::make_slice_composite_literal(pif->type(), methods, bloc)); ++pif; go_assert(pif == ifields->end()); return Expression::make_struct_composite_literal(itdt, ivals, bloc); } // Reflection string. void Interface_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->append("interface {"); const Typed_identifier_list* methods = this->parse_methods_; if (methods != NULL) { ret->push_back(' '); for (Typed_identifier_list::const_iterator p = methods->begin(); p != methods->end(); ++p) { if (p != methods->begin()) ret->append("; "); if (p->name().empty()) this->append_reflection(p->type(), gogo, ret); else { if (!Gogo::is_hidden_name(p->name())) ret->append(p->name()); else if (gogo->pkgpath_from_option()) ret->append(p->name().substr(1)); else { // If no -fgo-pkgpath option, backward compatibility // for how this used to work before -fgo-pkgpath was // introduced. std::string pkgpath = Gogo::hidden_name_pkgpath(p->name()); ret->append(pkgpath.substr(pkgpath.find('.') + 1)); ret->push_back('.'); ret->append(Gogo::unpack_hidden_name(p->name())); } std::string sub = p->type()->reflection(gogo); go_assert(sub.compare(0, 4, "func") == 0); sub = sub.substr(4); ret->append(sub); } } ret->push_back(' '); } ret->append("}"); } // Mangled name. void Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const { go_assert(this->methods_are_finalized_); ret->push_back('I'); const Typed_identifier_list* methods = this->all_methods_; if (methods != NULL && !this->seen_) { this->seen_ = true; for (Typed_identifier_list::const_iterator p = methods->begin(); p != methods->end(); ++p) { if (!p->name().empty()) { std::string n; if (!Gogo::is_hidden_name(p->name())) n = p->name(); else { n = "."; std::string pkgpath = Gogo::hidden_name_pkgpath(p->name()); n.append(Gogo::pkgpath_for_symbol(pkgpath)); n.append(1, '.'); n.append(Gogo::unpack_hidden_name(p->name())); } char buf[20]; snprintf(buf, sizeof buf, "%u_", static_cast(n.length())); ret->append(buf); ret->append(n); } this->append_mangled_name(p->type(), gogo, ret); } this->seen_ = false; } ret->push_back('e'); } // Export. void Interface_type::do_export(Export* exp) const { exp->write_c_string("interface { "); const Typed_identifier_list* methods = this->parse_methods_; if (methods != NULL) { for (Typed_identifier_list::const_iterator pm = methods->begin(); pm != methods->end(); ++pm) { if (pm->name().empty()) { exp->write_c_string("? "); exp->write_type(pm->type()); } else { exp->write_string(pm->name()); exp->write_c_string(" ("); const Function_type* fntype = pm->type()->function_type(); bool first = true; const Typed_identifier_list* parameters = fntype->parameters(); if (parameters != NULL) { bool is_varargs = fntype->is_varargs(); for (Typed_identifier_list::const_iterator pp = parameters->begin(); pp != parameters->end(); ++pp) { if (first) first = false; else exp->write_c_string(", "); exp->write_name(pp->name()); exp->write_c_string(" "); if (!is_varargs || pp + 1 != parameters->end()) exp->write_type(pp->type()); else { exp->write_c_string("..."); Type *pptype = pp->type(); exp->write_type(pptype->array_type()->element_type()); } } } exp->write_c_string(")"); const Typed_identifier_list* results = fntype->results(); if (results != NULL) { exp->write_c_string(" "); if (results->size() == 1 && results->begin()->name().empty()) exp->write_type(results->begin()->type()); else { first = true; exp->write_c_string("("); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) { if (first) first = false; else exp->write_c_string(", "); exp->write_name(p->name()); exp->write_c_string(" "); exp->write_type(p->type()); } exp->write_c_string(")"); } } } exp->write_c_string("; "); } } exp->write_c_string("}"); } // Import an interface type. Interface_type* Interface_type::do_import(Import* imp) { imp->require_c_string("interface { "); Typed_identifier_list* methods = new Typed_identifier_list; while (imp->peek_char() != '}') { std::string name = imp->read_identifier(); if (name == "?") { imp->require_c_string(" "); Type* t = imp->read_type(); methods->push_back(Typed_identifier("", t, imp->location())); imp->require_c_string("; "); continue; } imp->require_c_string(" ("); Typed_identifier_list* parameters; bool is_varargs = false; if (imp->peek_char() == ')') parameters = NULL; else { parameters = new Typed_identifier_list; while (true) { std::string name = imp->read_name(); imp->require_c_string(" "); if (imp->match_c_string("...")) { imp->advance(3); is_varargs = true; } Type* ptype = imp->read_type(); if (is_varargs) ptype = Type::make_array_type(ptype, NULL); parameters->push_back(Typed_identifier(name, ptype, imp->location())); if (imp->peek_char() != ',') break; go_assert(!is_varargs); imp->require_c_string(", "); } } imp->require_c_string(")"); Typed_identifier_list* results; if (imp->peek_char() != ' ') results = NULL; else { results = new Typed_identifier_list; imp->advance(1); if (imp->peek_char() != '(') { Type* rtype = imp->read_type(); results->push_back(Typed_identifier("", rtype, imp->location())); } else { imp->advance(1); while (true) { std::string name = imp->read_name(); imp->require_c_string(" "); Type* rtype = imp->read_type(); results->push_back(Typed_identifier(name, rtype, imp->location())); if (imp->peek_char() != ',') break; imp->require_c_string(", "); } imp->require_c_string(")"); } } Function_type* fntype = Type::make_function_type(NULL, parameters, results, imp->location()); if (is_varargs) fntype->set_is_varargs(); methods->push_back(Typed_identifier(name, fntype, imp->location())); imp->require_c_string("; "); } imp->require_c_string("}"); if (methods->empty()) { delete methods; methods = NULL; } return Type::make_interface_type(methods, imp->location()); } // Make an interface type. Interface_type* Type::make_interface_type(Typed_identifier_list* methods, Location location) { return new Interface_type(methods, location); } // Make an empty interface type. Interface_type* Type::make_empty_interface_type(Location location) { Interface_type* ret = new Interface_type(NULL, location); ret->finalize_methods(); return ret; } // Class Method. // Bind a method to an object. Expression* Method::bind_method(Expression* expr, Location location) const { if (this->stub_ == NULL) { // When there is no stub object, the binding is determined by // the child class. return this->do_bind_method(expr, location); } return Expression::make_bound_method(expr, this, this->stub_, location); } // Return the named object associated with a method. This may only be // called after methods are finalized. Named_object* Method::named_object() const { if (this->stub_ != NULL) return this->stub_; return this->do_named_object(); } // Class Named_method. // The type of the method. Function_type* Named_method::do_type() const { if (this->named_object_->is_function()) return this->named_object_->func_value()->type(); else if (this->named_object_->is_function_declaration()) return this->named_object_->func_declaration_value()->type(); else go_unreachable(); } // Return the location of the method receiver. Location Named_method::do_receiver_location() const { return this->do_type()->receiver()->location(); } // Bind a method to an object. Expression* Named_method::do_bind_method(Expression* expr, Location location) const { Named_object* no = this->named_object_; Bound_method_expression* bme = Expression::make_bound_method(expr, this, no, location); // If this is not a local method, and it does not use a stub, then // the real method expects a different type. We need to cast the // first argument. if (this->depth() > 0 && !this->needs_stub_method()) { Function_type* ftype = this->do_type(); go_assert(ftype->is_method()); Type* frtype = ftype->receiver()->type(); bme->set_first_argument_type(frtype); } return bme; } // Return whether this method should not participate in interfaces. bool Named_method::do_nointerface() const { Named_object* no = this->named_object_; return no->is_function() && no->func_value()->nointerface(); } // Class Interface_method. // Bind a method to an object. Expression* Interface_method::do_bind_method(Expression* expr, Location location) const { return Expression::make_interface_field_reference(expr, this->name_, location); } // Class Methods. // Insert a new method. Return true if it was inserted, false // otherwise. bool Methods::insert(const std::string& name, Method* m) { std::pair ins = this->methods_.insert(std::make_pair(name, m)); if (ins.second) return true; else { Method* old_method = ins.first->second; if (m->depth() < old_method->depth()) { delete old_method; ins.first->second = m; return true; } else { if (m->depth() == old_method->depth()) old_method->set_is_ambiguous(); return false; } } } // Return the number of unambiguous methods. size_t Methods::count() const { size_t ret = 0; for (Method_map::const_iterator p = this->methods_.begin(); p != this->methods_.end(); ++p) if (!p->second->is_ambiguous()) ++ret; return ret; } // Class Named_type. // Return the name of the type. const std::string& Named_type::name() const { return this->named_object_->name(); } // Return the name of the type to use in an error message. std::string Named_type::message_name() const { return this->named_object_->message_name(); } // Whether this is an alias. There are currently only two aliases so // we just recognize them by name. bool Named_type::is_alias() const { if (!this->is_builtin()) return false; const std::string& name(this->name()); return name == "byte" || name == "rune"; } // Return the base type for this type. We have to be careful about // circular type definitions, which are invalid but may be seen here. Type* Named_type::named_base() { if (this->seen_) return this; this->seen_ = true; Type* ret = this->type_->base(); this->seen_ = false; return ret; } const Type* Named_type::named_base() const { if (this->seen_) return this; this->seen_ = true; const Type* ret = this->type_->base(); this->seen_ = false; return ret; } // Return whether this is an error type. We have to be careful about // circular type definitions, which are invalid but may be seen here. bool Named_type::is_named_error_type() const { if (this->seen_) return false; this->seen_ = true; bool ret = this->type_->is_error_type(); this->seen_ = false; return ret; } // Whether this type is comparable. We have to be careful about // circular type definitions. bool Named_type::named_type_is_comparable(std::string* reason) const { if (this->seen_) return false; this->seen_ = true; bool ret = Type::are_compatible_for_comparison(true, this->type_, this->type_, reason); this->seen_ = false; return ret; } // Add a method to this type. Named_object* Named_type::add_method(const std::string& name, Function* function) { if (this->local_methods_ == NULL) this->local_methods_ = new Bindings(NULL); return this->local_methods_->add_function(name, NULL, function); } // Add a method declaration to this type. Named_object* Named_type::add_method_declaration(const std::string& name, Package* package, Function_type* type, Location location) { if (this->local_methods_ == NULL) this->local_methods_ = new Bindings(NULL); return this->local_methods_->add_function_declaration(name, package, type, location); } // Add an existing method to this type. void Named_type::add_existing_method(Named_object* no) { if (this->local_methods_ == NULL) this->local_methods_ = new Bindings(NULL); this->local_methods_->add_named_object(no); } // Look for a local method NAME, and returns its named object, or NULL // if not there. Named_object* Named_type::find_local_method(const std::string& name) const { if (this->local_methods_ == NULL) return NULL; return this->local_methods_->lookup(name); } // Return whether NAME is an unexported field or method, for better // error reporting. bool Named_type::is_unexported_local_method(Gogo* gogo, const std::string& name) const { Bindings* methods = this->local_methods_; if (methods != NULL) { for (Bindings::const_declarations_iterator p = methods->begin_declarations(); p != methods->end_declarations(); ++p) { if (Gogo::is_hidden_name(p->first) && name == Gogo::unpack_hidden_name(p->first) && gogo->pack_hidden_name(name, false) != p->first) return true; } } return false; } // Build the complete list of methods for this type, which means // recursively including all methods for anonymous fields. Create all // stub methods. void Named_type::finalize_methods(Gogo* gogo) { if (this->all_methods_ != NULL) return; if (this->local_methods_ != NULL && (this->points_to() != NULL || this->interface_type() != NULL)) { const Bindings* lm = this->local_methods_; for (Bindings::const_declarations_iterator p = lm->begin_declarations(); p != lm->end_declarations(); ++p) error_at(p->second->location(), "invalid pointer or interface receiver type"); delete this->local_methods_; this->local_methods_ = NULL; return; } Type::finalize_methods(gogo, this, this->location_, &this->all_methods_); } // Return the method NAME, or NULL if there isn't one or if it is // ambiguous. Set *IS_AMBIGUOUS if the method exists but is // ambiguous. Method* Named_type::method_function(const std::string& name, bool* is_ambiguous) const { return Type::method_function(this->all_methods_, name, is_ambiguous); } // Return a pointer to the interface method table for this type for // the interface INTERFACE. IS_POINTER is true if this is for a // pointer to THIS. tree Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface, bool is_pointer) { return Type::interface_method_table(gogo, this, interface, is_pointer, &this->interface_method_tables_, &this->pointer_interface_method_tables_); } // Return whether a named type has any hidden fields. bool Named_type::named_type_has_hidden_fields(std::string* reason) const { if (this->seen_) return false; this->seen_ = true; bool ret = this->type_->has_hidden_fields(this, reason); this->seen_ = false; return ret; } // Look for a use of a complete type within another type. This is // used to check that we don't try to use a type within itself. class Find_type_use : public Traverse { public: Find_type_use(Named_type* find_type) : Traverse(traverse_types), find_type_(find_type), found_(false) { } // Whether we found the type. bool found() const { return this->found_; } protected: int type(Type*); private: // The type we are looking for. Named_type* find_type_; // Whether we found the type. bool found_; }; // Check for FIND_TYPE in TYPE. int Find_type_use::type(Type* type) { if (type->named_type() != NULL && this->find_type_ == type->named_type()) { this->found_ = true; return TRAVERSE_EXIT; } // It's OK if we see a reference to the type in any type which is // essentially a pointer: a pointer, a slice, a function, a map, or // a channel. if (type->points_to() != NULL || type->is_slice_type() || type->function_type() != NULL || type->map_type() != NULL || type->channel_type() != NULL) return TRAVERSE_SKIP_COMPONENTS; // For an interface, a reference to the type in a method type should // be ignored, but we have to consider direct inheritance. When // this is called, there may be cases of direct inheritance // represented as a method with no name. if (type->interface_type() != NULL) { const Typed_identifier_list* methods = type->interface_type()->methods(); if (methods != NULL) { for (Typed_identifier_list::const_iterator p = methods->begin(); p != methods->end(); ++p) { if (p->name().empty()) { if (Type::traverse(p->type(), this) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } } } return TRAVERSE_SKIP_COMPONENTS; } // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need // to convert TYPE to the backend representation before we convert // FIND_TYPE_. if (type->named_type() != NULL) { switch (type->base()->classification()) { case Type::TYPE_ERROR: case Type::TYPE_BOOLEAN: case Type::TYPE_INTEGER: case Type::TYPE_FLOAT: case Type::TYPE_COMPLEX: case Type::TYPE_STRING: case Type::TYPE_NIL: break; case Type::TYPE_ARRAY: case Type::TYPE_STRUCT: this->find_type_->add_dependency(type->named_type()); break; case Type::TYPE_NAMED: case Type::TYPE_FORWARD: go_assert(saw_errors()); break; case Type::TYPE_VOID: case Type::TYPE_SINK: case Type::TYPE_FUNCTION: case Type::TYPE_POINTER: case Type::TYPE_CALL_MULTIPLE_RESULT: case Type::TYPE_MAP: case Type::TYPE_CHANNEL: case Type::TYPE_INTERFACE: default: go_unreachable(); } } return TRAVERSE_CONTINUE; } // Verify that a named type does not refer to itself. bool Named_type::do_verify() { if (this->is_verified_) return true; this->is_verified_ = true; Find_type_use find(this); Type::traverse(this->type_, &find); if (find.found()) { error_at(this->location_, "invalid recursive type %qs", this->message_name().c_str()); this->is_error_ = true; return false; } // Check whether any of the local methods overloads an existing // struct field or interface method. We don't need to check the // list of methods against itself: that is handled by the Bindings // code. if (this->local_methods_ != NULL) { Struct_type* st = this->type_->struct_type(); if (st != NULL) { for (Bindings::const_declarations_iterator p = this->local_methods_->begin_declarations(); p != this->local_methods_->end_declarations(); ++p) { const std::string& name(p->first); if (st != NULL && st->find_local_field(name, NULL) != NULL) { error_at(p->second->location(), "method %qs redeclares struct field name", Gogo::message_name(name).c_str()); } } } } return true; } // Return whether this type is or contains a pointer. bool Named_type::do_has_pointer() const { if (this->seen_) return false; this->seen_ = true; bool ret = this->type_->has_pointer(); this->seen_ = false; return ret; } // Return whether comparisons for this type can use the identity // function. bool Named_type::do_compare_is_identity(Gogo* gogo) { // We don't use this->seen_ here because compare_is_identity may // call base() later, and that will mess up if seen_ is set here. if (this->seen_in_compare_is_identity_) return false; this->seen_in_compare_is_identity_ = true; bool ret = this->type_->compare_is_identity(gogo); this->seen_in_compare_is_identity_ = false; return ret; } // Return a hash code. This is used for method lookup. We simply // hash on the name itself. unsigned int Named_type::do_hash_for_method(Gogo* gogo) const { if (this->is_alias()) return this->type_->named_type()->do_hash_for_method(gogo); const std::string& name(this->named_object()->name()); unsigned int ret = Type::hash_string(name, 0); // GOGO will be NULL here when called from Type_hash_identical. // That is OK because that is only used for internal hash tables // where we are going to be comparing named types for equality. In // other cases, which are cases where the runtime is going to // compare hash codes to see if the types are the same, we need to // include the pkgpath in the hash. if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin()) { const Package* package = this->named_object()->package(); if (package == NULL) ret = Type::hash_string(gogo->pkgpath(), ret); else ret = Type::hash_string(package->pkgpath(), ret); } return ret; } // Convert a named type to the backend representation. In order to // get dependencies right, we fill in a dummy structure for this type, // then convert all the dependencies, then complete this type. When // this function is complete, the size of the type is known. void Named_type::convert(Gogo* gogo) { if (this->is_error_ || this->is_converted_) return; this->create_placeholder(gogo); // If we are called to turn unsafe.Sizeof into a constant, we may // not have verified the type yet. We have to make sure it is // verified, since that sets the list of dependencies. this->verify(); // Convert all the dependencies. If they refer indirectly back to // this type, they will pick up the intermediate tree we just // created. for (std::vector::const_iterator p = this->dependencies_.begin(); p != this->dependencies_.end(); ++p) (*p)->convert(gogo); // Complete this type. Btype* bt = this->named_btype_; Type* base = this->type_->base(); switch (base->classification()) { case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: break; case TYPE_MAP: case TYPE_CHANNEL: break; case TYPE_FUNCTION: case TYPE_POINTER: // The size of these types is already correct. We don't worry // about filling them in until later, when we also track // circular references. break; case TYPE_STRUCT: { std::vector bfields; get_backend_struct_fields(gogo, base->struct_type()->fields(), true, &bfields); if (!gogo->backend()->set_placeholder_struct_type(bt, bfields)) bt = gogo->backend()->error_type(); } break; case TYPE_ARRAY: // Slice types were completed in create_placeholder. if (!base->is_slice_type()) { Btype* bet = base->array_type()->get_backend_element(gogo, true); Bexpression* blen = base->array_type()->get_backend_length(gogo); if (!gogo->backend()->set_placeholder_array_type(bt, bet, blen)) bt = gogo->backend()->error_type(); } break; case TYPE_INTERFACE: // Interface types were completed in create_placeholder. break; case TYPE_ERROR: return; default: case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: case TYPE_NAMED: case TYPE_FORWARD: go_unreachable(); } this->named_btype_ = bt; this->is_converted_ = true; this->is_placeholder_ = false; } // Create the placeholder for a named type. This is the first step in // converting to the backend representation. void Named_type::create_placeholder(Gogo* gogo) { if (this->is_error_) this->named_btype_ = gogo->backend()->error_type(); if (this->named_btype_ != NULL) return; // Create the structure for this type. Note that because we call // base() here, we don't attempt to represent a named type defined // as another named type. Instead both named types will point to // different base representations. Type* base = this->type_->base(); Btype* bt; bool set_name = true; switch (base->classification()) { case TYPE_ERROR: this->is_error_ = true; this->named_btype_ = gogo->backend()->error_type(); return; case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: // These are simple basic types, we can just create them // directly. bt = Type::get_named_base_btype(gogo, base); break; case TYPE_MAP: case TYPE_CHANNEL: // All maps and channels have the same backend representation. bt = Type::get_named_base_btype(gogo, base); break; case TYPE_FUNCTION: case TYPE_POINTER: { bool for_function = base->classification() == TYPE_FUNCTION; bt = gogo->backend()->placeholder_pointer_type(this->name(), this->location_, for_function); set_name = false; } break; case TYPE_STRUCT: bt = gogo->backend()->placeholder_struct_type(this->name(), this->location_); this->is_placeholder_ = true; set_name = false; break; case TYPE_ARRAY: if (base->is_slice_type()) bt = gogo->backend()->placeholder_struct_type(this->name(), this->location_); else { bt = gogo->backend()->placeholder_array_type(this->name(), this->location_); this->is_placeholder_ = true; } set_name = false; break; case TYPE_INTERFACE: if (base->interface_type()->is_empty()) bt = Interface_type::get_backend_empty_interface_type(gogo); else { bt = gogo->backend()->placeholder_struct_type(this->name(), this->location_); set_name = false; } break; default: case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: case TYPE_NAMED: case TYPE_FORWARD: go_unreachable(); } if (set_name) bt = gogo->backend()->named_type(this->name(), bt, this->location_); this->named_btype_ = bt; if (base->is_slice_type()) { // We do not record slices as dependencies of other types, // because we can fill them in completely here with the final // size. std::vector bfields; get_backend_slice_fields(gogo, base->array_type(), true, &bfields); if (!gogo->backend()->set_placeholder_struct_type(bt, bfields)) this->named_btype_ = gogo->backend()->error_type(); } else if (base->interface_type() != NULL && !base->interface_type()->is_empty()) { // We do not record interfaces as dependencies of other types, // because we can fill them in completely here with the final // size. std::vector bfields; get_backend_interface_fields(gogo, base->interface_type(), true, &bfields); if (!gogo->backend()->set_placeholder_struct_type(bt, bfields)) this->named_btype_ = gogo->backend()->error_type(); } } // Get a tree for a named type. Btype* Named_type::do_get_backend(Gogo* gogo) { if (this->is_error_) return gogo->backend()->error_type(); Btype* bt = this->named_btype_; if (!gogo->named_types_are_converted()) { // We have not completed converting named types. NAMED_BTYPE_ // is a placeholder and we shouldn't do anything further. if (bt != NULL) return bt; // We don't build dependencies for types whose sizes do not // change or are not relevant, so we may see them here while // converting types. this->create_placeholder(gogo); bt = this->named_btype_; go_assert(bt != NULL); return bt; } // We are not converting types. This should only be called if the // type has already been converted. if (!this->is_converted_) { go_assert(saw_errors()); return gogo->backend()->error_type(); } go_assert(bt != NULL); // Complete the tree. Type* base = this->type_->base(); Btype* bt1; switch (base->classification()) { case TYPE_ERROR: return gogo->backend()->error_type(); case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: case TYPE_MAP: case TYPE_CHANNEL: return bt; case TYPE_STRUCT: if (!this->seen_in_get_backend_) { this->seen_in_get_backend_ = true; base->struct_type()->finish_backend_fields(gogo); this->seen_in_get_backend_ = false; } return bt; case TYPE_ARRAY: if (!this->seen_in_get_backend_) { this->seen_in_get_backend_ = true; base->array_type()->finish_backend_element(gogo); this->seen_in_get_backend_ = false; } return bt; case TYPE_INTERFACE: if (!this->seen_in_get_backend_) { this->seen_in_get_backend_ = true; base->interface_type()->finish_backend_methods(gogo); this->seen_in_get_backend_ = false; } return bt; case TYPE_FUNCTION: // Don't build a circular data structure. GENERIC can't handle // it. if (this->seen_in_get_backend_) { this->is_circular_ = true; return gogo->backend()->circular_pointer_type(bt, false); } this->seen_in_get_backend_ = true; bt1 = Type::get_named_base_btype(gogo, base); this->seen_in_get_backend_ = false; if (this->is_circular_) bt1 = gogo->backend()->circular_pointer_type(bt, false); if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1)) bt = gogo->backend()->error_type(); return bt; case TYPE_POINTER: // Don't build a circular data structure. GENERIC can't handle // it. if (this->seen_in_get_backend_) { this->is_circular_ = true; return gogo->backend()->circular_pointer_type(bt, false); } this->seen_in_get_backend_ = true; bt1 = Type::get_named_base_btype(gogo, base); this->seen_in_get_backend_ = false; if (this->is_circular_) bt1 = gogo->backend()->circular_pointer_type(bt, false); if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1)) bt = gogo->backend()->error_type(); return bt; default: case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: case TYPE_NAMED: case TYPE_FORWARD: go_unreachable(); } go_unreachable(); } // Build a type descriptor for a named type. Expression* Named_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (name == NULL && this->is_alias()) return this->type_->type_descriptor(gogo, this->type_); // If NAME is not NULL, then we don't really want the type // descriptor for this type; we want the descriptor for the // underlying type, giving it the name NAME. return this->named_type_descriptor(gogo, this->type_, name == NULL ? this : name); } // Add to the reflection string. This is used mostly for the name of // the type used in a type descriptor, not for actual reflection // strings. void Named_type::do_reflection(Gogo* gogo, std::string* ret) const { if (this->is_alias()) { this->append_reflection(this->type_, gogo, ret); return; } if (!this->is_builtin()) { // We handle -fgo-prefix and -fgo-pkgpath differently here for // compatibility with how the compiler worked before // -fgo-pkgpath was introduced. When -fgo-pkgpath is specified, // we use it to make a unique reflection string, so that the // type canonicalization in the reflect package will work. In // order to be compatible with the gc compiler, we put tabs into // the package path, so that the reflect methods can discard it. const Package* package = this->named_object_->package(); if (gogo->pkgpath_from_option()) { ret->push_back('\t'); ret->append(package != NULL ? package->pkgpath_symbol() : gogo->pkgpath_symbol()); ret->push_back('\t'); } ret->append(package != NULL ? package->package_name() : gogo->package_name()); ret->push_back('.'); } if (this->in_function_ != NULL) { ret->push_back('\t'); ret->append(Gogo::unpack_hidden_name(this->in_function_->name())); ret->push_back('$'); if (this->in_function_index_ > 0) { char buf[30]; snprintf(buf, sizeof buf, "%u", this->in_function_index_); ret->append(buf); ret->push_back('$'); } ret->push_back('\t'); } ret->append(Gogo::unpack_hidden_name(this->named_object_->name())); } // Get the mangled name. void Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const { if (this->is_alias()) { this->append_mangled_name(this->type_, gogo, ret); return; } Named_object* no = this->named_object_; std::string name; if (this->is_builtin()) go_assert(this->in_function_ == NULL); else { const std::string& pkgpath(no->package() == NULL ? gogo->pkgpath_symbol() : no->package()->pkgpath_symbol()); name = pkgpath; name.append(1, '.'); if (this->in_function_ != NULL) { name.append(Gogo::unpack_hidden_name(this->in_function_->name())); name.append(1, '$'); if (this->in_function_index_ > 0) { char buf[30]; snprintf(buf, sizeof buf, "%u", this->in_function_index_); name.append(buf); name.append(1, '$'); } } } name.append(Gogo::unpack_hidden_name(no->name())); char buf[20]; snprintf(buf, sizeof buf, "N%u_", static_cast(name.length())); ret->append(buf); ret->append(name); } // Export the type. This is called to export a global type. void Named_type::export_named_type(Export* exp, const std::string&) const { // We don't need to write the name of the type here, because it will // be written by Export::write_type anyhow. exp->write_c_string("type "); exp->write_type(this); exp->write_c_string(";\n"); } // Import a named type. void Named_type::import_named_type(Import* imp, Named_type** ptype) { imp->require_c_string("type "); Type *type = imp->read_type(); *ptype = type->named_type(); go_assert(*ptype != NULL); imp->require_c_string(";\n"); } // Export the type when it is referenced by another type. In this // case Export::export_type will already have issued the name. void Named_type::do_export(Export* exp) const { exp->write_type(this->type_); // To save space, we only export the methods directly attached to // this type. Bindings* methods = this->local_methods_; if (methods == NULL) return; exp->write_c_string("\n"); for (Bindings::const_definitions_iterator p = methods->begin_definitions(); p != methods->end_definitions(); ++p) { exp->write_c_string(" "); (*p)->export_named_object(exp); } for (Bindings::const_declarations_iterator p = methods->begin_declarations(); p != methods->end_declarations(); ++p) { if (p->second->is_function_declaration()) { exp->write_c_string(" "); p->second->export_named_object(exp); } } } // Make a named type. Named_type* Type::make_named_type(Named_object* named_object, Type* type, Location location) { return new Named_type(named_object, type, location); } // Finalize the methods for TYPE. It will be a named type or a struct // type. This sets *ALL_METHODS to the list of methods, and builds // all required stubs. void Type::finalize_methods(Gogo* gogo, const Type* type, Location location, Methods** all_methods) { *all_methods = NULL; std::vector seen; Type::add_methods_for_type(type, NULL, 0, false, false, &seen, all_methods); Type::build_stub_methods(gogo, type, *all_methods, location); } // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to // build up the struct field indexes as we go. DEPTH is the depth of // the field within TYPE. IS_EMBEDDED_POINTER is true if we are // adding these methods for an anonymous field with pointer type. // NEEDS_STUB_METHOD is true if we need to use a stub method which // calls the real method. TYPES_SEEN is used to avoid infinite // recursion. void Type::add_methods_for_type(const Type* type, const Method::Field_indexes* field_indexes, unsigned int depth, bool is_embedded_pointer, bool needs_stub_method, std::vector* seen, Methods** methods) { // Pointer types may not have methods. if (type->points_to() != NULL) return; const Named_type* nt = type->named_type(); if (nt != NULL) { for (std::vector::const_iterator p = seen->begin(); p != seen->end(); ++p) { if (*p == nt) return; } seen->push_back(nt); Type::add_local_methods_for_type(nt, field_indexes, depth, is_embedded_pointer, needs_stub_method, methods); } Type::add_embedded_methods_for_type(type, field_indexes, depth, is_embedded_pointer, needs_stub_method, seen, methods); // If we are called with depth > 0, then we are looking at an // anonymous field of a struct. If such a field has interface type, // then we need to add the interface methods. We don't want to add // them when depth == 0, because we will already handle them // following the usual rules for an interface type. if (depth > 0) Type::add_interface_methods_for_type(type, field_indexes, depth, methods); if (nt != NULL) seen->pop_back(); } // Add the local methods for the named type NT to *METHODS. The // parameters are as for add_methods_to_type. void Type::add_local_methods_for_type(const Named_type* nt, const Method::Field_indexes* field_indexes, unsigned int depth, bool is_embedded_pointer, bool needs_stub_method, Methods** methods) { const Bindings* local_methods = nt->local_methods(); if (local_methods == NULL) return; if (*methods == NULL) *methods = new Methods(); for (Bindings::const_declarations_iterator p = local_methods->begin_declarations(); p != local_methods->end_declarations(); ++p) { Named_object* no = p->second; bool is_value_method = (is_embedded_pointer || !Type::method_expects_pointer(no)); Method* m = new Named_method(no, field_indexes, depth, is_value_method, (needs_stub_method || depth > 0)); if (!(*methods)->insert(no->name(), m)) delete m; } } // Add the embedded methods for TYPE to *METHODS. These are the // methods attached to anonymous fields. The parameters are as for // add_methods_to_type. void Type::add_embedded_methods_for_type(const Type* type, const Method::Field_indexes* field_indexes, unsigned int depth, bool is_embedded_pointer, bool needs_stub_method, std::vector* seen, Methods** methods) { // Look for anonymous fields in TYPE. TYPE has fields if it is a // struct. const Struct_type* st = type->struct_type(); if (st == NULL) return; const Struct_field_list* fields = st->fields(); if (fields == NULL) return; unsigned int i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (!pf->is_anonymous()) continue; Type* ftype = pf->type(); bool is_pointer = false; if (ftype->points_to() != NULL) { ftype = ftype->points_to(); is_pointer = true; } Named_type* fnt = ftype->named_type(); if (fnt == NULL) { // This is an error, but it will be diagnosed elsewhere. continue; } Method::Field_indexes* sub_field_indexes = new Method::Field_indexes(); sub_field_indexes->next = field_indexes; sub_field_indexes->field_index = i; Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1, (is_embedded_pointer || is_pointer), (needs_stub_method || is_pointer || i > 0), seen, methods); } } // If TYPE is an interface type, then add its method to *METHODS. // This is for interface methods attached to an anonymous field. The // parameters are as for add_methods_for_type. void Type::add_interface_methods_for_type(const Type* type, const Method::Field_indexes* field_indexes, unsigned int depth, Methods** methods) { const Interface_type* it = type->interface_type(); if (it == NULL) return; const Typed_identifier_list* imethods = it->methods(); if (imethods == NULL) return; if (*methods == NULL) *methods = new Methods(); for (Typed_identifier_list::const_iterator pm = imethods->begin(); pm != imethods->end(); ++pm) { Function_type* fntype = pm->type()->function_type(); if (fntype == NULL) { // This is an error, but it should be reported elsewhere // when we look at the methods for IT. continue; } go_assert(!fntype->is_method()); fntype = fntype->copy_with_receiver(const_cast(type)); Method* m = new Interface_method(pm->name(), pm->location(), fntype, field_indexes, depth); if (!(*methods)->insert(pm->name(), m)) delete m; } } // Build stub methods for TYPE as needed. METHODS is the set of // methods for the type. A stub method may be needed when a type // inherits a method from an anonymous field. When we need the // address of the method, as in a type descriptor, we need to build a // little stub which does the required field dereferences and jumps to // the real method. LOCATION is the location of the type definition. void Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods, Location location) { if (methods == NULL) return; for (Methods::const_iterator p = methods->begin(); p != methods->end(); ++p) { Method* m = p->second; if (m->is_ambiguous() || !m->needs_stub_method()) continue; const std::string& name(p->first); // Build a stub method. const Function_type* fntype = m->type(); static unsigned int counter; char buf[100]; snprintf(buf, sizeof buf, "$this%u", counter); ++counter; Type* receiver_type = const_cast(type); if (!m->is_value_method()) receiver_type = Type::make_pointer_type(receiver_type); Location receiver_location = m->receiver_location(); Typed_identifier* receiver = new Typed_identifier(buf, receiver_type, receiver_location); const Typed_identifier_list* fnparams = fntype->parameters(); Typed_identifier_list* stub_params; if (fnparams == NULL || fnparams->empty()) stub_params = NULL; else { // We give each stub parameter a unique name. stub_params = new Typed_identifier_list(); for (Typed_identifier_list::const_iterator pp = fnparams->begin(); pp != fnparams->end(); ++pp) { char pbuf[100]; snprintf(pbuf, sizeof pbuf, "$p%u", counter); stub_params->push_back(Typed_identifier(pbuf, pp->type(), pp->location())); ++counter; } } const Typed_identifier_list* fnresults = fntype->results(); Typed_identifier_list* stub_results; if (fnresults == NULL || fnresults->empty()) stub_results = NULL; else { // We create the result parameters without any names, since // we won't refer to them. stub_results = new Typed_identifier_list(); for (Typed_identifier_list::const_iterator pr = fnresults->begin(); pr != fnresults->end(); ++pr) stub_results->push_back(Typed_identifier("", pr->type(), pr->location())); } Function_type* stub_type = Type::make_function_type(receiver, stub_params, stub_results, fntype->location()); if (fntype->is_varargs()) stub_type->set_is_varargs(); // We only create the function in the package which creates the // type. const Package* package; if (type->named_type() == NULL) package = NULL; else package = type->named_type()->named_object()->package(); Named_object* stub; if (package != NULL) stub = Named_object::make_function_declaration(name, package, stub_type, location); else { stub = gogo->start_function(name, stub_type, false, fntype->location()); Type::build_one_stub_method(gogo, m, buf, stub_params, fntype->is_varargs(), location); gogo->finish_function(fntype->location()); if (type->named_type() == NULL && stub->is_function()) stub->func_value()->set_is_unnamed_type_stub_method(); if (m->nointerface() && stub->is_function()) stub->func_value()->set_nointerface(); } m->set_stub_object(stub); } } // Build a stub method which adjusts the receiver as required to call // METHOD. RECEIVER_NAME is the name we used for the receiver. // PARAMS is the list of function parameters. void Type::build_one_stub_method(Gogo* gogo, Method* method, const char* receiver_name, const Typed_identifier_list* params, bool is_varargs, Location location) { Named_object* receiver_object = gogo->lookup(receiver_name, NULL); go_assert(receiver_object != NULL); Expression* expr = Expression::make_var_reference(receiver_object, location); expr = Type::apply_field_indexes(expr, method->field_indexes(), location); if (expr->type()->points_to() == NULL) expr = Expression::make_unary(OPERATOR_AND, expr, location); Expression_list* arguments; if (params == NULL || params->empty()) arguments = NULL; else { arguments = new Expression_list(); for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) { Named_object* param = gogo->lookup(p->name(), NULL); go_assert(param != NULL); Expression* param_ref = Expression::make_var_reference(param, location); arguments->push_back(param_ref); } } Expression* func = method->bind_method(expr, location); go_assert(func != NULL); Call_expression* call = Expression::make_call(func, arguments, is_varargs, location); call->set_hidden_fields_are_ok(); Statement* s = Statement::make_return_from_call(call, location); Return_statement* retstat = s->return_statement(); if (retstat != NULL) { // We can return values with hidden fields from a stub. This is // necessary if the method is itself hidden. retstat->set_hidden_fields_are_ok(); } gogo->add_statement(s); } // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied // in reverse order. Expression* Type::apply_field_indexes(Expression* expr, const Method::Field_indexes* field_indexes, Location location) { if (field_indexes == NULL) return expr; expr = Type::apply_field_indexes(expr, field_indexes->next, location); Struct_type* stype = expr->type()->deref()->struct_type(); go_assert(stype != NULL && field_indexes->field_index < stype->field_count()); if (expr->type()->struct_type() == NULL) { go_assert(expr->type()->points_to() != NULL); expr = Expression::make_unary(OPERATOR_MULT, expr, location); go_assert(expr->type()->struct_type() == stype); } return Expression::make_field_reference(expr, field_indexes->field_index, location); } // Return whether NO is a method for which the receiver is a pointer. bool Type::method_expects_pointer(const Named_object* no) { const Function_type *fntype; if (no->is_function()) fntype = no->func_value()->type(); else if (no->is_function_declaration()) fntype = no->func_declaration_value()->type(); else go_unreachable(); return fntype->receiver()->type()->points_to() != NULL; } // Given a set of methods for a type, METHODS, return the method NAME, // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS // is not NULL, then set *IS_AMBIGUOUS to true if the method exists // but is ambiguous (and return NULL). Method* Type::method_function(const Methods* methods, const std::string& name, bool* is_ambiguous) { if (is_ambiguous != NULL) *is_ambiguous = false; if (methods == NULL) return NULL; Methods::const_iterator p = methods->find(name); if (p == methods->end()) return NULL; Method* m = p->second; if (m->is_ambiguous()) { if (is_ambiguous != NULL) *is_ambiguous = true; return NULL; } return m; } // Return a pointer to the interface method table for TYPE for the // interface INTERFACE. tree Type::interface_method_table(Gogo* gogo, Type* type, const Interface_type *interface, bool is_pointer, Interface_method_tables** method_tables, Interface_method_tables** pointer_tables) { go_assert(!interface->is_empty()); Interface_method_tables** pimt = is_pointer ? method_tables : pointer_tables; if (*pimt == NULL) *pimt = new Interface_method_tables(5); std::pair val(interface, NULL_TREE); std::pair ins = (*pimt)->insert(val); if (ins.second) { // This is a new entry in the hash table. go_assert(ins.first->second == NULL_TREE); ins.first->second = gogo->interface_method_table_for_type(interface, type, is_pointer); } tree decl = ins.first->second; if (decl == error_mark_node) return error_mark_node; go_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL); return build_fold_addr_expr(decl); } // Look for field or method NAME for TYPE. Return an Expression for // the field or method bound to EXPR. If there is no such field or // method, give an appropriate error and return an error expression. Expression* Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr, const std::string& name, Location location) { if (type->deref()->is_error_type()) return Expression::make_error(location); const Named_type* nt = type->deref()->named_type(); const Struct_type* st = type->deref()->struct_type(); const Interface_type* it = type->interface_type(); // If this is a pointer to a pointer, then it is possible that the // pointed-to type has methods. bool dereferenced = false; if (nt == NULL && st == NULL && it == NULL && type->points_to() != NULL && type->points_to()->points_to() != NULL) { expr = Expression::make_unary(OPERATOR_MULT, expr, location); type = type->points_to(); if (type->deref()->is_error_type()) return Expression::make_error(location); nt = type->points_to()->named_type(); st = type->points_to()->struct_type(); dereferenced = true; } bool receiver_can_be_pointer = (expr->type()->points_to() != NULL || expr->is_addressable()); std::vector seen; bool is_method = false; bool found_pointer_method = false; std::string ambig1; std::string ambig2; if (Type::find_field_or_method(type, name, receiver_can_be_pointer, &seen, NULL, &is_method, &found_pointer_method, &ambig1, &ambig2)) { Expression* ret; if (!is_method) { go_assert(st != NULL); if (type->struct_type() == NULL) { go_assert(type->points_to() != NULL); expr = Expression::make_unary(OPERATOR_MULT, expr, location); go_assert(expr->type()->struct_type() == st); } ret = st->field_reference(expr, name, location); } else if (it != NULL && it->find_method(name) != NULL) ret = Expression::make_interface_field_reference(expr, name, location); else { Method* m; if (nt != NULL) m = nt->method_function(name, NULL); else if (st != NULL) m = st->method_function(name, NULL); else go_unreachable(); go_assert(m != NULL); if (dereferenced && m->is_value_method()) { error_at(location, "calling value method requires explicit dereference"); return Expression::make_error(location); } if (!m->is_value_method() && expr->type()->points_to() == NULL) expr = Expression::make_unary(OPERATOR_AND, expr, location); ret = m->bind_method(expr, location); } go_assert(ret != NULL); return ret; } else { if (Gogo::is_erroneous_name(name)) { // An error was already reported. } else if (!ambig1.empty()) error_at(location, "%qs is ambiguous via %qs and %qs", Gogo::message_name(name).c_str(), ambig1.c_str(), ambig2.c_str()); else if (found_pointer_method) error_at(location, "method requires a pointer receiver"); else if (nt == NULL && st == NULL && it == NULL) error_at(location, ("reference to field %qs in object which " "has no fields or methods"), Gogo::message_name(name).c_str()); else { bool is_unexported; // The test for 'a' and 'z' is to handle builtin names, // which are not hidden. if (!Gogo::is_hidden_name(name) && (name[0] < 'a' || name[0] > 'z')) is_unexported = false; else { std::string unpacked = Gogo::unpack_hidden_name(name); seen.clear(); is_unexported = Type::is_unexported_field_or_method(gogo, type, unpacked, &seen); } if (is_unexported) error_at(location, "reference to unexported field or method %qs", Gogo::message_name(name).c_str()); else error_at(location, "reference to undefined field or method %qs", Gogo::message_name(name).c_str()); } return Expression::make_error(location); } } // Look in TYPE for a field or method named NAME, return true if one // is found. This looks through embedded anonymous fields and handles // ambiguity. If a method is found, sets *IS_METHOD to true; // otherwise, if a field is found, set it to false. If // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value // whose address can not be taken. SEEN is used to avoid infinite // recursion on invalid types. // When returning false, this sets *FOUND_POINTER_METHOD if we found a // method we couldn't use because it requires a pointer. LEVEL is // used for recursive calls, and can be NULL for a non-recursive call. // When this function returns false because it finds that the name is // ambiguous, it will store a path to the ambiguous names in *AMBIG1 // and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2 // will be unchanged. // This function just returns whether or not there is a field or // method, and whether it is a field or method. It doesn't build an // expression to refer to it. If it is a method, we then look in the // list of all methods for the type. If it is a field, the search has // to be done again, looking only for fields, and building up the // expression as we go. bool Type::find_field_or_method(const Type* type, const std::string& name, bool receiver_can_be_pointer, std::vector* seen, int* level, bool* is_method, bool* found_pointer_method, std::string* ambig1, std::string* ambig2) { // Named types can have locally defined methods. const Named_type* nt = type->named_type(); if (nt == NULL && type->points_to() != NULL) nt = type->points_to()->named_type(); if (nt != NULL) { Named_object* no = nt->find_local_method(name); if (no != NULL) { if (receiver_can_be_pointer || !Type::method_expects_pointer(no)) { *is_method = true; return true; } // Record that we have found a pointer method in order to // give a better error message if we don't find anything // else. *found_pointer_method = true; } for (std::vector::const_iterator p = seen->begin(); p != seen->end(); ++p) { if (*p == nt) { // We've already seen this type when searching for methods. return false; } } } // Interface types can have methods. const Interface_type* it = type->interface_type(); if (it != NULL && it->find_method(name) != NULL) { *is_method = true; return true; } // Struct types can have fields. They can also inherit fields and // methods from anonymous fields. const Struct_type* st = type->deref()->struct_type(); if (st == NULL) return false; const Struct_field_list* fields = st->fields(); if (fields == NULL) return false; if (nt != NULL) seen->push_back(nt); int found_level = 0; bool found_is_method = false; std::string found_ambig1; std::string found_ambig2; const Struct_field* found_parent = NULL; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (pf->is_field_name(name)) { *is_method = false; if (nt != NULL) seen->pop_back(); return true; } if (!pf->is_anonymous()) continue; if (pf->type()->deref()->is_error_type() || pf->type()->deref()->is_undefined()) continue; Named_type* fnt = pf->type()->named_type(); if (fnt == NULL) fnt = pf->type()->deref()->named_type(); go_assert(fnt != NULL); // Methods with pointer receivers on embedded field are // inherited by the pointer to struct, and also by the struct // type if the field itself is a pointer. bool can_be_pointer = (receiver_can_be_pointer || pf->type()->points_to() != NULL); int sublevel = level == NULL ? 1 : *level + 1; bool sub_is_method; std::string subambig1; std::string subambig2; bool subfound = Type::find_field_or_method(fnt, name, can_be_pointer, seen, &sublevel, &sub_is_method, found_pointer_method, &subambig1, &subambig2); if (!subfound) { if (!subambig1.empty()) { // The name was found via this field, but is ambiguous. // if the ambiguity is lower or at the same level as // anything else we have already found, then we want to // pass the ambiguity back to the caller. if (found_level == 0 || sublevel <= found_level) { found_ambig1 = (Gogo::message_name(pf->field_name()) + '.' + subambig1); found_ambig2 = (Gogo::message_name(pf->field_name()) + '.' + subambig2); found_level = sublevel; } } } else { // The name was found via this field. Use the level to see // if we want to use this one, or whether it introduces an // ambiguity. if (found_level == 0 || sublevel < found_level) { found_level = sublevel; found_is_method = sub_is_method; found_ambig1.clear(); found_ambig2.clear(); found_parent = &*pf; } else if (sublevel > found_level) ; else if (found_ambig1.empty()) { // We found an ambiguity. go_assert(found_parent != NULL); found_ambig1 = Gogo::message_name(found_parent->field_name()); found_ambig2 = Gogo::message_name(pf->field_name()); } else { // We found an ambiguity, but we already know of one. // Just report the earlier one. } } } // Here if we didn't find anything FOUND_LEVEL is 0. If we found // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty. if (nt != NULL) seen->pop_back(); if (found_level == 0) return false; else if (!found_ambig1.empty()) { go_assert(!found_ambig1.empty()); ambig1->assign(found_ambig1); ambig2->assign(found_ambig2); if (level != NULL) *level = found_level; return false; } else { if (level != NULL) *level = found_level; *is_method = found_is_method; return true; } } // Return whether NAME is an unexported field or method for TYPE. bool Type::is_unexported_field_or_method(Gogo* gogo, const Type* type, const std::string& name, std::vector* seen) { const Named_type* nt = type->named_type(); if (nt == NULL) nt = type->deref()->named_type(); if (nt != NULL) { if (nt->is_unexported_local_method(gogo, name)) return true; for (std::vector::const_iterator p = seen->begin(); p != seen->end(); ++p) { if (*p == nt) { // We've already seen this type. return false; } } } const Interface_type* it = type->interface_type(); if (it != NULL && it->is_unexported_method(gogo, name)) return true; type = type->deref(); const Struct_type* st = type->struct_type(); if (st != NULL && st->is_unexported_local_field(gogo, name)) return true; if (st == NULL) return false; const Struct_field_list* fields = st->fields(); if (fields == NULL) return false; if (nt != NULL) seen->push_back(nt); for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (pf->is_anonymous() && !pf->type()->deref()->is_error_type() && !pf->type()->deref()->is_undefined()) { Named_type* subtype = pf->type()->named_type(); if (subtype == NULL) subtype = pf->type()->deref()->named_type(); if (subtype == NULL) { // This is an error, but it will be diagnosed elsewhere. continue; } if (Type::is_unexported_field_or_method(gogo, subtype, name, seen)) { if (nt != NULL) seen->pop_back(); return true; } } } if (nt != NULL) seen->pop_back(); return false; } // Class Forward_declaration. Forward_declaration_type::Forward_declaration_type(Named_object* named_object) : Type(TYPE_FORWARD), named_object_(named_object->resolve()), warned_(false) { go_assert(this->named_object_->is_unknown() || this->named_object_->is_type_declaration()); } // Return the named object. Named_object* Forward_declaration_type::named_object() { return this->named_object_->resolve(); } const Named_object* Forward_declaration_type::named_object() const { return this->named_object_->resolve(); } // Return the name of the forward declared type. const std::string& Forward_declaration_type::name() const { return this->named_object()->name(); } // Warn about a use of a type which has been declared but not defined. void Forward_declaration_type::warn() const { Named_object* no = this->named_object_->resolve(); if (no->is_unknown()) { // The name was not defined anywhere. if (!this->warned_) { error_at(this->named_object_->location(), "use of undefined type %qs", no->message_name().c_str()); this->warned_ = true; } } else if (no->is_type_declaration()) { // The name was seen as a type, but the type was never defined. if (no->type_declaration_value()->using_type()) { error_at(this->named_object_->location(), "use of undefined type %qs", no->message_name().c_str()); this->warned_ = true; } } else { // The name was defined, but not as a type. if (!this->warned_) { error_at(this->named_object_->location(), "expected type"); this->warned_ = true; } } } // Get the base type of a declaration. This gives an error if the // type has not yet been defined. Type* Forward_declaration_type::real_type() { if (this->is_defined()) return this->named_object()->type_value(); else { this->warn(); return Type::make_error_type(); } } const Type* Forward_declaration_type::real_type() const { if (this->is_defined()) return this->named_object()->type_value(); else { this->warn(); return Type::make_error_type(); } } // Return whether the base type is defined. bool Forward_declaration_type::is_defined() const { return this->named_object()->is_type(); } // Add a method. This is used when methods are defined before the // type. Named_object* Forward_declaration_type::add_method(const std::string& name, Function* function) { Named_object* no = this->named_object(); if (no->is_unknown()) no->declare_as_type(); return no->type_declaration_value()->add_method(name, function); } // Add a method declaration. This is used when methods are declared // before the type. Named_object* Forward_declaration_type::add_method_declaration(const std::string& name, Package* package, Function_type* type, Location location) { Named_object* no = this->named_object(); if (no->is_unknown()) no->declare_as_type(); Type_declaration* td = no->type_declaration_value(); return td->add_method_declaration(name, package, type, location); } // Traversal. int Forward_declaration_type::do_traverse(Traverse* traverse) { if (this->is_defined() && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Verify the type. bool Forward_declaration_type::do_verify() { if (!this->is_defined() && !this->is_nil_constant_as_type()) { this->warn(); return false; } return true; } // Get the backend representation for the type. Btype* Forward_declaration_type::do_get_backend(Gogo* gogo) { if (this->is_defined()) return Type::get_named_base_btype(gogo, this->real_type()); if (this->warned_) return gogo->backend()->error_type(); // We represent an undefined type as a struct with no fields. That // should work fine for the backend, since the same case can arise // in C. std::vector fields; Btype* bt = gogo->backend()->struct_type(fields); return gogo->backend()->named_type(this->name(), bt, this->named_object()->location()); } // Build a type descriptor for a forwarded type. Expression* Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name) { Location ploc = Linemap::predeclared_location(); if (!this->is_defined()) return Expression::make_error(ploc); else { Type* t = this->real_type(); if (name != NULL) return this->named_type_descriptor(gogo, t, name); else return Expression::make_type_descriptor(t, ploc); } } // The reflection string. void Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const { this->append_reflection(this->real_type(), gogo, ret); } // The mangled name. void Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const { if (this->is_defined()) this->append_mangled_name(this->real_type(), gogo, ret); else { const Named_object* no = this->named_object(); std::string name; if (no->package() == NULL) name = gogo->pkgpath_symbol(); else name = no->package()->pkgpath_symbol(); name += '.'; name += Gogo::unpack_hidden_name(no->name()); char buf[20]; snprintf(buf, sizeof buf, "N%u_", static_cast(name.length())); ret->append(buf); ret->append(name); } } // Export a forward declaration. This can happen when a defined type // refers to a type which is only declared (and is presumably defined // in some other file in the same package). void Forward_declaration_type::do_export(Export*) const { // If there is a base type, that should be exported instead of this. go_assert(!this->is_defined()); // We don't output anything. } // Make a forward declaration. Type* Type::make_forward_declaration(Named_object* named_object) { return new Forward_declaration_type(named_object); } // Class Typed_identifier_list. // Sort the entries by name. struct Typed_identifier_list_sort { public: bool operator()(const Typed_identifier& t1, const Typed_identifier& t2) const { return t1.name() < t2.name(); } }; void Typed_identifier_list::sort_by_name() { std::sort(this->entries_.begin(), this->entries_.end(), Typed_identifier_list_sort()); } // Traverse types. int Typed_identifier_list::traverse(Traverse* traverse) { for (Typed_identifier_list::const_iterator p = this->begin(); p != this->end(); ++p) { if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } // Copy the list. Typed_identifier_list* Typed_identifier_list::copy() const { Typed_identifier_list* ret = new Typed_identifier_list(); for (Typed_identifier_list::const_iterator p = this->begin(); p != this->end(); ++p) ret->push_back(Typed_identifier(p->name(), p->type(), p->location())); return ret; }