/* ET-trees data structure implementation. Contributed by Pavel Nejedly Copyright (C) 2002-2014 Free Software Foundation, Inc. This file is part of the libiberty library. Libiberty is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libiberty is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with libiberty; see the file COPYING3. If not see . The ET-forest structure is described in: D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. G'omput. System Sci., 26(3):362 381, 1983. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "et-forest.h" #include "alloc-pool.h" /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */ #undef DEBUG_ET #ifdef DEBUG_ET #include "basic-block.h" /* To access index in record_path_before_1. */ #endif /* The occurrence of a node in the et tree. */ struct et_occ { struct et_node *of; /* The node. */ struct et_occ *parent; /* Parent in the splay-tree. */ struct et_occ *prev; /* Left son in the splay-tree. */ struct et_occ *next; /* Right son in the splay-tree. */ int depth; /* The depth of the node is the sum of depth fields on the path to the root. */ int min; /* The minimum value of the depth in the subtree is obtained by adding sum of depth fields on the path to the root. */ struct et_occ *min_occ; /* The occurrence in the subtree with the minimal depth. */ }; static alloc_pool et_nodes; static alloc_pool et_occurrences; /* Changes depth of OCC to D. */ static inline void set_depth (struct et_occ *occ, int d) { if (!occ) return; occ->min += d - occ->depth; occ->depth = d; } /* Adds D to the depth of OCC. */ static inline void set_depth_add (struct et_occ *occ, int d) { if (!occ) return; occ->min += d; occ->depth += d; } /* Sets prev field of OCC to P. */ static inline void set_prev (struct et_occ *occ, struct et_occ *t) { #ifdef DEBUG_ET gcc_assert (occ != t); #endif occ->prev = t; if (t) t->parent = occ; } /* Sets next field of OCC to P. */ static inline void set_next (struct et_occ *occ, struct et_occ *t) { #ifdef DEBUG_ET gcc_assert (occ != t); #endif occ->next = t; if (t) t->parent = occ; } /* Recompute minimum for occurrence OCC. */ static inline void et_recomp_min (struct et_occ *occ) { struct et_occ *mson = occ->prev; if (!mson || (occ->next && mson->min > occ->next->min)) mson = occ->next; if (mson && mson->min < 0) { occ->min = mson->min + occ->depth; occ->min_occ = mson->min_occ; } else { occ->min = occ->depth; occ->min_occ = occ; } } #ifdef DEBUG_ET /* Checks whether neighborhood of OCC seems sane. */ static void et_check_occ_sanity (struct et_occ *occ) { if (!occ) return; gcc_assert (occ->parent != occ); gcc_assert (occ->prev != occ); gcc_assert (occ->next != occ); gcc_assert (!occ->next || occ->next != occ->prev); if (occ->next) { gcc_assert (occ->next != occ->parent); gcc_assert (occ->next->parent == occ); } if (occ->prev) { gcc_assert (occ->prev != occ->parent); gcc_assert (occ->prev->parent == occ); } gcc_assert (!occ->parent || occ->parent->prev == occ || occ->parent->next == occ); } /* Checks whether tree rooted at OCC is sane. */ static void et_check_sanity (struct et_occ *occ) { et_check_occ_sanity (occ); if (occ->prev) et_check_sanity (occ->prev); if (occ->next) et_check_sanity (occ->next); } /* Checks whether tree containing OCC is sane. */ static void et_check_tree_sanity (struct et_occ *occ) { while (occ->parent) occ = occ->parent; et_check_sanity (occ); } /* For recording the paths. */ /* An ad-hoc constant; if the function has more blocks, this won't work, but since it is used for debugging only, it does not matter. */ #define MAX_NODES 100000 static int len; static void *datas[MAX_NODES]; static int depths[MAX_NODES]; /* Records the path represented by OCC, with depth incremented by DEPTH. */ static int record_path_before_1 (struct et_occ *occ, int depth) { int mn, m; depth += occ->depth; mn = depth; if (occ->prev) { m = record_path_before_1 (occ->prev, depth); if (m < mn) mn = m; } fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth); gcc_assert (len < MAX_NODES); depths[len] = depth; datas[len] = occ->of; len++; if (occ->next) { m = record_path_before_1 (occ->next, depth); if (m < mn) mn = m; } gcc_assert (mn == occ->min + depth - occ->depth); return mn; } /* Records the path represented by a tree containing OCC. */ static void record_path_before (struct et_occ *occ) { while (occ->parent) occ = occ->parent; len = 0; record_path_before_1 (occ, 0); fprintf (stderr, "\n"); } /* Checks whether the path represented by OCC, with depth incremented by DEPTH, was not changed since the last recording. */ static int check_path_after_1 (struct et_occ *occ, int depth) { int mn, m; depth += occ->depth; mn = depth; if (occ->next) { m = check_path_after_1 (occ->next, depth); if (m < mn) mn = m; } len--; gcc_assert (depths[len] == depth && datas[len] == occ->of); if (occ->prev) { m = check_path_after_1 (occ->prev, depth); if (m < mn) mn = m; } gcc_assert (mn == occ->min + depth - occ->depth); return mn; } /* Checks whether the path represented by a tree containing OCC was not changed since the last recording. */ static void check_path_after (struct et_occ *occ) { while (occ->parent) occ = occ->parent; check_path_after_1 (occ, 0); gcc_assert (!len); } #endif /* Splay the occurrence OCC to the root of the tree. */ static void et_splay (struct et_occ *occ) { struct et_occ *f, *gf, *ggf; int occ_depth, f_depth, gf_depth; #ifdef DEBUG_ET record_path_before (occ); et_check_tree_sanity (occ); #endif while (occ->parent) { occ_depth = occ->depth; f = occ->parent; f_depth = f->depth; gf = f->parent; if (!gf) { set_depth_add (occ, f_depth); occ->min_occ = f->min_occ; occ->min = f->min; if (f->prev == occ) { /* zig */ set_prev (f, occ->next); set_next (occ, f); set_depth_add (f->prev, occ_depth); } else { /* zag */ set_next (f, occ->prev); set_prev (occ, f); set_depth_add (f->next, occ_depth); } set_depth (f, -occ_depth); occ->parent = NULL; et_recomp_min (f); #ifdef DEBUG_ET et_check_tree_sanity (occ); check_path_after (occ); #endif return; } gf_depth = gf->depth; set_depth_add (occ, f_depth + gf_depth); occ->min_occ = gf->min_occ; occ->min = gf->min; ggf = gf->parent; if (gf->prev == f) { if (f->prev == occ) { /* zig zig */ set_prev (gf, f->next); set_prev (f, occ->next); set_next (occ, f); set_next (f, gf); set_depth (f, -occ_depth); set_depth_add (f->prev, occ_depth); set_depth (gf, -f_depth); set_depth_add (gf->prev, f_depth); } else { /* zag zig */ set_prev (gf, occ->next); set_next (f, occ->prev); set_prev (occ, f); set_next (occ, gf); set_depth (f, -occ_depth); set_depth_add (f->next, occ_depth); set_depth (gf, -occ_depth - f_depth); set_depth_add (gf->prev, occ_depth + f_depth); } } else { if (f->prev == occ) { /* zig zag */ set_next (gf, occ->prev); set_prev (f, occ->next); set_prev (occ, gf); set_next (occ, f); set_depth (f, -occ_depth); set_depth_add (f->prev, occ_depth); set_depth (gf, -occ_depth - f_depth); set_depth_add (gf->next, occ_depth + f_depth); } else { /* zag zag */ set_next (gf, f->prev); set_next (f, occ->prev); set_prev (occ, f); set_prev (f, gf); set_depth (f, -occ_depth); set_depth_add (f->next, occ_depth); set_depth (gf, -f_depth); set_depth_add (gf->next, f_depth); } } occ->parent = ggf; if (ggf) { if (ggf->prev == gf) ggf->prev = occ; else ggf->next = occ; } et_recomp_min (gf); et_recomp_min (f); #ifdef DEBUG_ET et_check_tree_sanity (occ); #endif } #ifdef DEBUG_ET et_check_sanity (occ); check_path_after (occ); #endif } /* Create a new et tree occurrence of NODE. */ static struct et_occ * et_new_occ (struct et_node *node) { struct et_occ *nw; if (!et_occurrences) et_occurrences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300); nw = (struct et_occ *) pool_alloc (et_occurrences); nw->of = node; nw->parent = NULL; nw->prev = NULL; nw->next = NULL; nw->depth = 0; nw->min_occ = nw; nw->min = 0; return nw; } /* Create a new et tree containing DATA. */ struct et_node * et_new_tree (void *data) { struct et_node *nw; if (!et_nodes) et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300); nw = (struct et_node *) pool_alloc (et_nodes); nw->data = data; nw->father = NULL; nw->left = NULL; nw->right = NULL; nw->son = NULL; nw->rightmost_occ = et_new_occ (nw); nw->parent_occ = NULL; return nw; } /* Releases et tree T. */ void et_free_tree (struct et_node *t) { while (t->son) et_split (t->son); if (t->father) et_split (t); pool_free (et_occurrences, t->rightmost_occ); pool_free (et_nodes, t); } /* Releases et tree T without maintaining other nodes. */ void et_free_tree_force (struct et_node *t) { pool_free (et_occurrences, t->rightmost_occ); if (t->parent_occ) pool_free (et_occurrences, t->parent_occ); pool_free (et_nodes, t); } /* Release the alloc pools, if they are empty. */ void et_free_pools (void) { free_alloc_pool_if_empty (&et_occurrences); free_alloc_pool_if_empty (&et_nodes); } /* Sets father of et tree T to FATHER. */ void et_set_father (struct et_node *t, struct et_node *father) { struct et_node *left, *right; struct et_occ *rmost, *left_part, *new_f_occ, *p; /* Update the path represented in the splay tree. */ new_f_occ = et_new_occ (father); rmost = father->rightmost_occ; et_splay (rmost); left_part = rmost->prev; p = t->rightmost_occ; et_splay (p); set_prev (new_f_occ, left_part); set_next (new_f_occ, p); p->depth++; p->min++; et_recomp_min (new_f_occ); set_prev (rmost, new_f_occ); if (new_f_occ->min + rmost->depth < rmost->min) { rmost->min = new_f_occ->min + rmost->depth; rmost->min_occ = new_f_occ->min_occ; } t->parent_occ = new_f_occ; /* Update the tree. */ t->father = father; right = father->son; if (right) left = right->left; else left = right = t; left->right = t; right->left = t; t->left = left; t->right = right; father->son = t; #ifdef DEBUG_ET et_check_tree_sanity (rmost); record_path_before (rmost); #endif } /* Splits the edge from T to its father. */ void et_split (struct et_node *t) { struct et_node *father = t->father; struct et_occ *r, *l, *rmost, *p_occ; /* Update the path represented by the splay tree. */ rmost = t->rightmost_occ; et_splay (rmost); for (r = rmost->next; r->prev; r = r->prev) continue; et_splay (r); r->prev->parent = NULL; p_occ = t->parent_occ; et_splay (p_occ); t->parent_occ = NULL; l = p_occ->prev; p_occ->next->parent = NULL; set_prev (r, l); et_recomp_min (r); et_splay (rmost); rmost->depth = 0; rmost->min = 0; pool_free (et_occurrences, p_occ); /* Update the tree. */ if (father->son == t) father->son = t->right; if (father->son == t) father->son = NULL; else { t->left->right = t->right; t->right->left = t->left; } t->left = t->right = NULL; t->father = NULL; #ifdef DEBUG_ET et_check_tree_sanity (rmost); record_path_before (rmost); et_check_tree_sanity (r); record_path_before (r); #endif } /* Finds the nearest common ancestor of the nodes N1 and N2. */ struct et_node * et_nca (struct et_node *n1, struct et_node *n2) { struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om; struct et_occ *l, *r, *ret; int mn; if (n1 == n2) return n1; et_splay (o1); l = o1->prev; r = o1->next; if (l) l->parent = NULL; if (r) r->parent = NULL; et_splay (o2); if (l == o2 || (l && l->parent != NULL)) { ret = o2->next; set_prev (o1, o2); if (r) r->parent = o1; } else if (r == o2 || (r && r->parent != NULL)) { ret = o2->prev; set_next (o1, o2); if (l) l->parent = o1; } else { /* O1 and O2 are in different components of the forest. */ if (l) l->parent = o1; if (r) r->parent = o1; return NULL; } if (0 < o2->depth) { om = o1; mn = o1->depth; } else { om = o2; mn = o2->depth + o1->depth; } #ifdef DEBUG_ET et_check_tree_sanity (o2); #endif if (ret && ret->min + o1->depth + o2->depth < mn) return ret->min_occ->of; else return om->of; } /* Checks whether the node UP is an ancestor of the node DOWN. */ bool et_below (struct et_node *down, struct et_node *up) { struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ; struct et_occ *l, *r; if (up == down) return true; et_splay (u); l = u->prev; r = u->next; if (!l) return false; l->parent = NULL; if (r) r->parent = NULL; et_splay (d); if (l == d || l->parent != NULL) { if (r) r->parent = u; set_prev (u, d); #ifdef DEBUG_ET et_check_tree_sanity (u); #endif } else { l->parent = u; /* In case O1 and O2 are in two different trees, we must just restore the original state. */ if (r && r->parent != NULL) set_next (u, d); else set_next (u, r); #ifdef DEBUG_ET et_check_tree_sanity (u); #endif return false; } if (0 >= d->depth) return false; return !d->next || d->next->min + d->depth >= 0; } /* Returns the root of the tree that contains NODE. */ struct et_node * et_root (struct et_node *node) { struct et_occ *occ = node->rightmost_occ, *r; /* The root of the tree corresponds to the rightmost occurrence in the represented path. */ et_splay (occ); for (r = occ; r->next; r = r->next) continue; et_splay (r); return r->of; }