;; Predicate definitions for POWER and PowerPC. ;; Copyright (C) 2005-2014 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . ;; Return 1 for anything except PARALLEL. (define_predicate "any_operand" (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem")) ;; Return 1 for any PARALLEL. (define_predicate "any_parallel_operand" (match_code "parallel")) ;; Return 1 if op is COUNT register. (define_predicate "count_register_operand" (and (match_code "reg") (match_test "REGNO (op) == CTR_REGNO || REGNO (op) > LAST_VIRTUAL_REGISTER"))) ;; Return 1 if op is an Altivec register. (define_predicate "altivec_register_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return ALTIVEC_REGNO_P (REGNO (op)); }) ;; Return 1 if op is a VSX register. (define_predicate "vsx_register_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VSX_REGNO_P (REGNO (op)); }) ;; Return 1 if op is a vector register that operates on floating point vectors ;; (either altivec or VSX). (define_predicate "vfloat_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VFLOAT_REGNO_P (REGNO (op)); }) ;; Return 1 if op is a vector register that operates on integer vectors ;; (only altivec, VSX doesn't support integer vectors) (define_predicate "vint_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VINT_REGNO_P (REGNO (op)); }) ;; Return 1 if op is a vector register to do logical operations on (and, or, ;; xor, etc.) (define_predicate "vlogical_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VLOGICAL_REGNO_P (REGNO (op)); }) ;; Return 1 if op is the carry register. (define_predicate "ca_operand" (and (match_code "reg") (match_test "CA_REGNO_P (REGNO (op))"))) ;; Return 1 if op is a signed 5-bit constant integer. (define_predicate "s5bit_cint_operand" (and (match_code "const_int") (match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15"))) ;; Return 1 if op is a unsigned 3-bit constant integer. (define_predicate "u3bit_cint_operand" (and (match_code "const_int") (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 7"))) ;; Return 1 if op is a unsigned 5-bit constant integer. (define_predicate "u5bit_cint_operand" (and (match_code "const_int") (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31"))) ;; Return 1 if op is a signed 8-bit constant integer. ;; Integer multiplication complete more quickly (define_predicate "s8bit_cint_operand" (and (match_code "const_int") (match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127"))) ;; Return 1 if op is a unsigned 10-bit constant integer. (define_predicate "u10bit_cint_operand" (and (match_code "const_int") (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 1023"))) ;; Return 1 if op is a constant integer that can fit in a D field. (define_predicate "short_cint_operand" (and (match_code "const_int") (match_test "satisfies_constraint_I (op)"))) ;; Return 1 if op is a constant integer that can fit in an unsigned D field. (define_predicate "u_short_cint_operand" (and (match_code "const_int") (match_test "satisfies_constraint_K (op)"))) ;; Return 1 if op is a constant integer that cannot fit in a signed D field. (define_predicate "non_short_cint_operand" (and (match_code "const_int") (match_test "(unsigned HOST_WIDE_INT) (INTVAL (op) + 0x8000) >= 0x10000"))) ;; Return 1 if op is a positive constant integer that is an exact power of 2. (define_predicate "exact_log2_cint_operand" (and (match_code "const_int") (match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0"))) ;; Match op = 0 or op = 1. (define_predicate "const_0_to_1_operand" (and (match_code "const_int") (match_test "IN_RANGE (INTVAL (op), 0, 1)"))) ;; Match op = 2 or op = 3. (define_predicate "const_2_to_3_operand" (and (match_code "const_int") (match_test "IN_RANGE (INTVAL (op), 2, 3)"))) ;; Match op = 0..15 (define_predicate "const_0_to_15_operand" (and (match_code "const_int") (match_test "IN_RANGE (INTVAL (op), 0, 15)"))) ;; Return 1 if op is a register that is not special. (define_predicate "gpc_reg_operand" (match_operand 0 "register_operand") { if ((TARGET_E500_DOUBLE || TARGET_SPE) && invalid_e500_subreg (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) >= ARG_POINTER_REGNUM && !CA_REGNO_P (REGNO (op))) return 1; if (TARGET_VSX && VSX_REGNO_P (REGNO (op))) return 1; return INT_REGNO_P (REGNO (op)) || FP_REGNO_P (REGNO (op)); }) ;; Return 1 if op is a general purpose register. Unlike gpc_reg_operand, don't ;; allow floating point or vector registers. (define_predicate "int_reg_operand" (match_operand 0 "register_operand") { if ((TARGET_E500_DOUBLE || TARGET_SPE) && invalid_e500_subreg (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) >= FIRST_PSEUDO_REGISTER) return 1; return INT_REGNO_P (REGNO (op)); }) ;; Like int_reg_operand, but only return true for base registers (define_predicate "base_reg_operand" (match_operand 0 "int_reg_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; return (REGNO (op) != FIRST_GPR_REGNO); }) ;; Return 1 if op is a HTM specific SPR register. (define_predicate "htm_spr_reg_operand" (match_operand 0 "register_operand") { if (!TARGET_HTM) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; switch (REGNO (op)) { case TFHAR_REGNO: case TFIAR_REGNO: case TEXASR_REGNO: return 1; default: break; } /* Unknown SPR. */ return 0; }) ;; Return 1 if op is a general purpose register that is an even register ;; which suitable for a load/store quad operation (define_predicate "quad_int_reg_operand" (match_operand 0 "register_operand") { HOST_WIDE_INT r; if (!TARGET_QUAD_MEMORY && !TARGET_QUAD_MEMORY_ATOMIC) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; r = REGNO (op); if (r >= FIRST_PSEUDO_REGISTER) return 1; return (INT_REGNO_P (r) && ((r & 1) == 0)); }) ;; Return 1 if op is a register that is a condition register field. (define_predicate "cc_reg_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return CR_REGNO_P (REGNO (op)); }) ;; Return 1 if op is a register that is a condition register field not cr0. (define_predicate "cc_reg_not_cr0_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return CR_REGNO_NOT_CR0_P (REGNO (op)); }) ;; Return 1 if op is a register that is a condition register field and if generating microcode, not cr0. (define_predicate "cc_reg_not_micro_cr0_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (!REG_P (op)) return 0; if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; if (rs6000_gen_cell_microcode) return CR_REGNO_NOT_CR0_P (REGNO (op)); else return CR_REGNO_P (REGNO (op)); }) ;; Return 1 if op is a constant integer valid for D field ;; or non-special register register. (define_predicate "reg_or_short_operand" (if_then_else (match_code "const_int") (match_operand 0 "short_cint_operand") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer valid whose negation is valid for ;; D field or non-special register register. ;; Do not allow a constant zero because all patterns that call this ;; predicate use "addic r1,r2,-const" to set carry when r2 is greater than ;; or equal to const, which does not work for zero. (define_predicate "reg_or_neg_short_operand" (if_then_else (match_code "const_int") (match_test "satisfies_constraint_P (op) && INTVAL (op) != 0") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer valid for DS field ;; or non-special register. (define_predicate "reg_or_aligned_short_operand" (if_then_else (match_code "const_int") (and (match_operand 0 "short_cint_operand") (match_test "!(INTVAL (op) & 3)")) (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer whose high-order 16 bits are zero ;; or non-special register. (define_predicate "reg_or_u_short_operand" (if_then_else (match_code "const_int") (match_operand 0 "u_short_cint_operand") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is any constant integer ;; or non-special register. (define_predicate "reg_or_cint_operand" (ior (match_code "const_int") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer valid for addition with addis, addi. (define_predicate "add_cint_operand" (and (match_code "const_int") (match_test "(unsigned HOST_WIDE_INT) (INTVAL (op) + (mode == SImode ? 0x80000000 : 0x80008000)) < (unsigned HOST_WIDE_INT) 0x100000000ll"))) ;; Return 1 if op is a constant integer valid for addition ;; or non-special register. (define_predicate "reg_or_add_cint_operand" (if_then_else (match_code "const_int") (match_operand 0 "add_cint_operand") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is a constant integer valid for subtraction ;; or non-special register. (define_predicate "reg_or_sub_cint_operand" (if_then_else (match_code "const_int") (match_test "(unsigned HOST_WIDE_INT) (- INTVAL (op) + (mode == SImode ? 0x80000000 : 0x80008000)) < (unsigned HOST_WIDE_INT) 0x100000000ll") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if op is any 32-bit unsigned constant integer ;; or non-special register. (define_predicate "reg_or_logical_cint_operand" (if_then_else (match_code "const_int") (match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && INTVAL (op) >= 0) || ((INTVAL (op) & GET_MODE_MASK (mode) & (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)") (match_operand 0 "gpc_reg_operand"))) ;; Like reg_or_logical_cint_operand, but allow vsx registers (define_predicate "vsx_reg_or_cint_operand" (ior (match_operand 0 "vsx_register_operand") (match_operand 0 "reg_or_logical_cint_operand"))) ;; Return 1 if operand is a CONST_DOUBLE that can be set in a register ;; with no more than one instruction per word. (define_predicate "easy_fp_constant" (match_code "const_double") { long k[4]; REAL_VALUE_TYPE rv; if (GET_MODE (op) != mode || (!SCALAR_FLOAT_MODE_P (mode) && mode != DImode)) return 0; /* Consider all constants with -msoft-float to be easy. */ if ((TARGET_SOFT_FLOAT || TARGET_E500_SINGLE || (TARGET_HARD_FLOAT && (TARGET_SINGLE_FLOAT && ! TARGET_DOUBLE_FLOAT))) && mode != DImode) return 1; /* The constant 0.0 is easy under VSX. */ if ((mode == SFmode || mode == DFmode || mode == SDmode || mode == DDmode) && VECTOR_UNIT_VSX_P (DFmode) && op == CONST0_RTX (mode)) return 1; if (DECIMAL_FLOAT_MODE_P (mode)) return 0; /* If we are using V.4 style PIC, consider all constants to be hard. */ if (flag_pic && DEFAULT_ABI == ABI_V4) return 0; #ifdef TARGET_RELOCATABLE /* Similarly if we are using -mrelocatable, consider all constants to be hard. */ if (TARGET_RELOCATABLE) return 0; #endif switch (mode) { case TFmode: if (TARGET_E500_DOUBLE) return 0; REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k); return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1); case DFmode: /* The constant 0.f is easy under VSX. */ if (op == CONST0_RTX (DFmode) && VECTOR_UNIT_VSX_P (DFmode)) return 1; /* Force constants to memory before reload to utilize compress_float_constant. Avoid this when flag_unsafe_math_optimizations is enabled because RDIV division to reciprocal optimization is not able to regenerate the division. */ if (TARGET_E500_DOUBLE || (!reload_in_progress && !reload_completed && !flag_unsafe_math_optimizations)) return 0; REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_DOUBLE (rv, k); return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1); case SFmode: /* The constant 0.f is easy. */ if (op == CONST0_RTX (SFmode)) return 1; /* Force constants to memory before reload to utilize compress_float_constant. Avoid this when flag_unsafe_math_optimizations is enabled because RDIV division to reciprocal optimization is not able to regenerate the division. */ if (!reload_in_progress && !reload_completed && !flag_unsafe_math_optimizations) return 0; REAL_VALUE_FROM_CONST_DOUBLE (rv, op); REAL_VALUE_TO_TARGET_SINGLE (rv, k[0]); return num_insns_constant_wide (k[0]) == 1; case DImode: return (num_insns_constant (op, DImode) <= 2); case SImode: return 1; default: gcc_unreachable (); } }) ;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a ;; vector register without using memory. (define_predicate "easy_vector_constant" (match_code "const_vector") { /* As the paired vectors are actually FPRs it seems that there is no easy way to load a CONST_VECTOR without using memory. */ if (TARGET_PAIRED_FLOAT) return false; if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)) { if (zero_constant (op, mode)) return true; return easy_altivec_constant (op, mode); } if (SPE_VECTOR_MODE (mode)) { int cst, cst2; if (zero_constant (op, mode)) return true; if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT) return false; /* Limit SPE vectors to 15 bits signed. These we can generate with: li r0, CONSTANT1 evmergelo r0, r0, r0 li r0, CONSTANT2 I don't know how efficient it would be to allow bigger constants, considering we'll have an extra 'ori' for every 'li'. I doubt 5 instructions is better than a 64-bit memory load, but I don't have the e500 timing specs. */ if (mode == V2SImode) { cst = INTVAL (CONST_VECTOR_ELT (op, 0)); cst2 = INTVAL (CONST_VECTOR_ELT (op, 1)); return cst >= -0x7fff && cst <= 0x7fff && cst2 >= -0x7fff && cst2 <= 0x7fff; } } return false; }) ;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF. (define_predicate "easy_vector_constant_add_self" (and (match_code "const_vector") (and (match_test "TARGET_ALTIVEC") (match_test "easy_altivec_constant (op, mode)"))) { HOST_WIDE_INT val; int elt; if (mode == V2DImode || mode == V2DFmode) return 0; elt = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 : 0; val = const_vector_elt_as_int (op, elt); val = ((val & 0xff) ^ 0x80) - 0x80; return EASY_VECTOR_15_ADD_SELF (val); }) ;; Same as easy_vector_constant but only for EASY_VECTOR_MSB. (define_predicate "easy_vector_constant_msb" (and (match_code "const_vector") (and (match_test "TARGET_ALTIVEC") (match_test "easy_altivec_constant (op, mode)"))) { HOST_WIDE_INT val; int elt; if (mode == V2DImode || mode == V2DFmode) return 0; elt = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 : 0; val = const_vector_elt_as_int (op, elt); return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode)); }) ;; Return 1 if operand is constant zero (scalars and vectors). (define_predicate "zero_constant" (and (match_code "const_int,const_double,const_vector") (match_test "op == CONST0_RTX (mode)"))) ;; Return 1 if operand is 0.0. (define_predicate "zero_fp_constant" (and (match_code "const_double") (match_test "SCALAR_FLOAT_MODE_P (mode) && op == CONST0_RTX (mode)"))) ;; Return 1 if the operand is in volatile memory. Note that during the ;; RTL generation phase, memory_operand does not return TRUE for volatile ;; memory references. So this function allows us to recognize volatile ;; references where it's safe. (define_predicate "volatile_mem_operand" (and (and (match_code "mem") (match_test "MEM_VOLATILE_P (op)")) (if_then_else (match_test "reload_completed") (match_operand 0 "memory_operand") (if_then_else (match_test "reload_in_progress") (match_test "strict_memory_address_p (mode, XEXP (op, 0))") (match_test "memory_address_p (mode, XEXP (op, 0))"))))) ;; Return 1 if the operand is an offsettable memory operand. (define_predicate "offsettable_mem_operand" (and (match_operand 0 "memory_operand") (match_test "offsettable_nonstrict_memref_p (op)"))) ;; Return 1 if the operand is suitable for load/store quad memory. ;; This predicate only checks for non-atomic loads/stores. (define_predicate "quad_memory_operand" (match_code "mem") { rtx addr, op0, op1; int ret; if (!TARGET_QUAD_MEMORY) ret = 0; else if (!memory_operand (op, mode)) ret = 0; else if (GET_MODE_SIZE (GET_MODE (op)) != 16) ret = 0; else if (MEM_ALIGN (op) < 128) ret = 0; else { addr = XEXP (op, 0); if (int_reg_operand (addr, Pmode)) ret = 1; else if (GET_CODE (addr) != PLUS) ret = 0; else { op0 = XEXP (addr, 0); op1 = XEXP (addr, 1); ret = (int_reg_operand (op0, Pmode) && GET_CODE (op1) == CONST_INT && IN_RANGE (INTVAL (op1), -32768, 32767) && (INTVAL (op1) & 15) == 0); } } if (TARGET_DEBUG_ADDR) { fprintf (stderr, "\nquad_memory_operand, ret = %s\n", ret ? "true" : "false"); debug_rtx (op); } return ret; }) ;; Return 1 if the operand is an indexed or indirect memory operand. (define_predicate "indexed_or_indirect_operand" (match_code "mem") { op = XEXP (op, 0); if (VECTOR_MEM_ALTIVEC_P (mode) && GET_CODE (op) == AND && GET_CODE (XEXP (op, 1)) == CONST_INT && INTVAL (XEXP (op, 1)) == -16) op = XEXP (op, 0); return indexed_or_indirect_address (op, mode); }) ;; Like indexed_or_indirect_operand, but also allow a GPR register if direct ;; moves are supported. (define_predicate "reg_or_indexed_operand" (match_code "mem,reg") { if (MEM_P (op)) return indexed_or_indirect_operand (op, mode); else if (TARGET_DIRECT_MOVE) return register_operand (op, mode); return 0; }) ;; Return 1 if the operand is an indexed or indirect memory operand with an ;; AND -16 in it, used to recognize when we need to switch to Altivec loads ;; to realign loops instead of VSX (altivec silently ignores the bottom bits, ;; while VSX uses the full address and traps) (define_predicate "altivec_indexed_or_indirect_operand" (match_code "mem") { op = XEXP (op, 0); if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode) && GET_CODE (op) == AND && GET_CODE (XEXP (op, 1)) == CONST_INT && INTVAL (XEXP (op, 1)) == -16) return indexed_or_indirect_address (XEXP (op, 0), mode); return 0; }) ;; Return 1 if the operand is an indexed or indirect address. (define_special_predicate "indexed_or_indirect_address" (and (match_test "REG_P (op) || (GET_CODE (op) == PLUS /* Omit testing REG_P (XEXP (op, 0)). */ && REG_P (XEXP (op, 1)))") (match_operand 0 "address_operand"))) ;; Return 1 if the operand is an index-form address. (define_special_predicate "indexed_address" (match_test "(GET_CODE (op) == PLUS && REG_P (XEXP (op, 0)) && REG_P (XEXP (op, 1)))")) ;; Return 1 if the operand is a MEM with an update-form address. This may ;; also include update-indexed form. (define_special_predicate "update_address_mem" (match_test "(MEM_P (op) && (GET_CODE (XEXP (op, 0)) == PRE_INC || GET_CODE (XEXP (op, 0)) == PRE_DEC || GET_CODE (XEXP (op, 0)) == PRE_MODIFY))")) ;; Return 1 if the operand is a MEM with an update-indexed-form address. Note ;; that PRE_INC/PRE_DEC will always be non-indexed (i.e. non X-form) since the ;; increment is based on the mode size and will therefor always be a const. (define_special_predicate "update_indexed_address_mem" (match_test "(MEM_P (op) && GET_CODE (XEXP (op, 0)) == PRE_MODIFY && indexed_address (XEXP (XEXP (op, 0), 1), mode))")) ;; Used for the destination of the fix_truncdfsi2 expander. ;; If stfiwx will be used, the result goes to memory; otherwise, ;; we're going to emit a store and a load of a subreg, so the dest is a ;; register. (define_predicate "fix_trunc_dest_operand" (if_then_else (match_test "! TARGET_E500_DOUBLE && TARGET_PPC_GFXOPT") (match_operand 0 "memory_operand") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if the operand is either a non-special register or can be used ;; as the operand of a `mode' add insn. (define_predicate "add_operand" (if_then_else (match_code "const_int") (match_test "satisfies_constraint_I (op) || satisfies_constraint_L (op)") (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if OP is a constant but not a valid add_operand. (define_predicate "non_add_cint_operand" (and (match_code "const_int") (match_test "!satisfies_constraint_I (op) && !satisfies_constraint_L (op)"))) ;; Return 1 if the operand is a constant that can be used as the operand ;; of an OR or XOR. (define_predicate "logical_const_operand" (match_code "const_int") { HOST_WIDE_INT opl; opl = INTVAL (op) & GET_MODE_MASK (mode); return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0 || (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0); }) ;; Return 1 if the operand is a non-special register or a constant that ;; can be used as the operand of an OR or XOR. (define_predicate "logical_operand" (ior (match_operand 0 "gpc_reg_operand") (match_operand 0 "logical_const_operand"))) ;; Return 1 if op is a constant that is not a logical operand, but could ;; be split into one. (define_predicate "non_logical_cint_operand" (and (match_code "const_int,const_double") (and (not (match_operand 0 "logical_operand")) (match_operand 0 "reg_or_logical_cint_operand")))) ;; Return 1 if op is a constant that can be encoded in a 32-bit mask, ;; suitable for use with rlwinm (no more than two 1->0 or 0->1 ;; transitions). Reject all ones and all zeros, since these should have ;; been optimized away and confuse the making of MB and ME. (define_predicate "mask_operand" (match_code "const_int") { HOST_WIDE_INT c, lsb; c = INTVAL (op); if (TARGET_POWERPC64) { /* Fail if the mask is not 32-bit. */ if (mode == DImode && (c & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0) return 0; /* Fail if the mask wraps around because the upper 32-bits of the mask will all be 1s, contrary to GCC's internal view. */ if ((c & 0x80000001) == 0x80000001) return 0; } /* We don't change the number of transitions by inverting, so make sure we start with the LS bit zero. */ if (c & 1) c = ~c; /* Reject all zeros or all ones. */ if (c == 0) return 0; /* Find the first transition. */ lsb = c & -c; /* Invert to look for a second transition. */ c = ~c; /* Erase first transition. */ c &= -lsb; /* Find the second transition (if any). */ lsb = c & -c; /* Match if all the bits above are 1's (or c is zero). */ return c == -lsb; }) ;; Return 1 for the PowerPC64 rlwinm corner case. (define_predicate "mask_operand_wrap" (match_code "const_int") { HOST_WIDE_INT c, lsb; c = INTVAL (op); if ((c & 0x80000001) != 0x80000001) return 0; c = ~c; if (c == 0) return 0; lsb = c & -c; c = ~c; c &= -lsb; lsb = c & -c; return c == -lsb; }) ;; Return 1 if the operand is a constant that is a PowerPC64 mask ;; suitable for use with rldicl or rldicr (no more than one 1->0 or 0->1 ;; transition). Reject all zeros, since zero should have been ;; optimized away and confuses the making of MB and ME. (define_predicate "mask64_operand" (match_code "const_int") { HOST_WIDE_INT c, lsb; c = INTVAL (op); /* Reject all zeros. */ if (c == 0) return 0; /* We don't change the number of transitions by inverting, so make sure we start with the LS bit zero. */ if (c & 1) c = ~c; /* Find the first transition. */ lsb = c & -c; /* Match if all the bits above are 1's (or c is zero). */ return c == -lsb; }) ;; Like mask64_operand, but allow up to three transitions. This ;; predicate is used by insn patterns that generate two rldicl or ;; rldicr machine insns. (define_predicate "mask64_2_operand" (match_code "const_int") { HOST_WIDE_INT c, lsb; c = INTVAL (op); /* Disallow all zeros. */ if (c == 0) return 0; /* We don't change the number of transitions by inverting, so make sure we start with the LS bit zero. */ if (c & 1) c = ~c; /* Find the first transition. */ lsb = c & -c; /* Invert to look for a second transition. */ c = ~c; /* Erase first transition. */ c &= -lsb; /* Find the second transition. */ lsb = c & -c; /* Invert to look for a third transition. */ c = ~c; /* Erase second transition. */ c &= -lsb; /* Find the third transition (if any). */ lsb = c & -c; /* Match if all the bits above are 1's (or c is zero). */ return c == -lsb; }) ;; Like and_operand, but also match constants that can be implemented ;; with two rldicl or rldicr insns. (define_predicate "and64_2_operand" (ior (match_operand 0 "mask64_2_operand") (if_then_else (match_test "fixed_regs[CR0_REGNO]") (match_operand 0 "gpc_reg_operand") (match_operand 0 "logical_operand")))) ;; Return 1 if the operand is either a non-special register or a ;; constant that can be used as the operand of a logical AND. (define_predicate "and_operand" (ior (match_operand 0 "mask_operand") (ior (and (match_test "TARGET_POWERPC64 && mode == DImode") (match_operand 0 "mask64_operand")) (if_then_else (match_test "fixed_regs[CR0_REGNO]") (match_operand 0 "gpc_reg_operand") (match_operand 0 "logical_operand"))))) ;; Return 1 if the operand is either a logical operand or a short cint operand. (define_predicate "scc_eq_operand" (ior (match_operand 0 "logical_operand") (match_operand 0 "short_cint_operand"))) ;; Return 1 if the operand is a general non-special register or memory operand. (define_predicate "reg_or_mem_operand" (ior (match_operand 0 "memory_operand") (ior (and (match_code "mem") (match_test "macho_lo_sum_memory_operand (op, mode)")) (ior (match_operand 0 "volatile_mem_operand") (match_operand 0 "gpc_reg_operand"))))) ;; Return 1 if the operand is either an easy FP constant or memory or reg. (define_predicate "reg_or_none500mem_operand" (if_then_else (match_code "mem") (and (match_test "!TARGET_E500_DOUBLE") (ior (match_operand 0 "memory_operand") (ior (match_test "macho_lo_sum_memory_operand (op, mode)") (match_operand 0 "volatile_mem_operand")))) (match_operand 0 "gpc_reg_operand"))) ;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand. (define_predicate "zero_reg_mem_operand" (ior (match_operand 0 "zero_fp_constant") (match_operand 0 "reg_or_mem_operand"))) ;; Return 1 if the operand is a CONST_INT and it is the element for 64-bit ;; data types inside of a vector that scalar instructions operate on (define_predicate "vsx_scalar_64bit" (match_code "const_int") { return (INTVAL (op) == VECTOR_ELEMENT_SCALAR_64BIT); }) ;; Return 1 if the operand is a general register or memory operand without ;; pre_inc or pre_dec or pre_modify, which produces invalid form of PowerPC ;; lwa instruction. (define_predicate "lwa_operand" (match_code "reg,subreg,mem") { rtx inner, addr, offset; inner = op; if (reload_completed && GET_CODE (inner) == SUBREG) inner = SUBREG_REG (inner); if (gpc_reg_operand (inner, mode)) return true; if (!memory_operand (inner, mode)) return false; addr = XEXP (inner, 0); if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC || (GET_CODE (addr) == PRE_MODIFY && !legitimate_indexed_address_p (XEXP (addr, 1), 0))) return false; if (GET_CODE (addr) == LO_SUM && GET_CODE (XEXP (addr, 0)) == REG && GET_CODE (XEXP (addr, 1)) == CONST) addr = XEXP (XEXP (addr, 1), 0); if (GET_CODE (addr) != PLUS) return true; offset = XEXP (addr, 1); if (GET_CODE (offset) != CONST_INT) return true; return INTVAL (offset) % 4 == 0; }) ;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF. (define_predicate "symbol_ref_operand" (and (match_code "symbol_ref") (match_test "(mode == VOIDmode || GET_MODE (op) == mode) && (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))"))) ;; Return 1 if op is an operand that can be loaded via the GOT. ;; or non-special register register field no cr0 (define_predicate "got_operand" (match_code "symbol_ref,const,label_ref")) ;; Return 1 if op is a simple reference that can be loaded via the GOT, ;; excluding labels involving addition. (define_predicate "got_no_const_operand" (match_code "symbol_ref,label_ref")) ;; Return 1 if op is a SYMBOL_REF for a TLS symbol. (define_predicate "rs6000_tls_symbol_ref" (and (match_code "symbol_ref") (match_test "RS6000_SYMBOL_REF_TLS_P (op)"))) ;; Return 1 if the operand, used inside a MEM, is a valid first argument ;; to CALL. This is a SYMBOL_REF, a pseudo-register, LR or CTR. (define_predicate "call_operand" (if_then_else (match_code "reg") (match_test "REGNO (op) == LR_REGNO || REGNO (op) == CTR_REGNO || REGNO (op) >= FIRST_PSEUDO_REGISTER") (match_code "symbol_ref"))) ;; Return 1 if the operand is a SYMBOL_REF for a function known to be in ;; this file. (define_predicate "current_file_function_operand" (and (match_code "symbol_ref") (match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op)) && ((SYMBOL_REF_LOCAL_P (op) && ((DEFAULT_ABI != ABI_AIX && DEFAULT_ABI != ABI_ELFv2) || !SYMBOL_REF_EXTERNAL_P (op))) || (op == XEXP (DECL_RTL (current_function_decl), 0)))"))) ;; Return 1 if this operand is a valid input for a move insn. (define_predicate "input_operand" (match_code "symbol_ref,const,reg,subreg,mem, const_double,const_vector,const_int") { /* Memory is always valid. */ if (memory_operand (op, mode)) return 1; /* For floating-point, easy constants are valid. */ if (SCALAR_FLOAT_MODE_P (mode) && easy_fp_constant (op, mode)) return 1; /* Allow any integer constant. */ if (GET_MODE_CLASS (mode) == MODE_INT && (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE)) return 1; /* Allow easy vector constants. */ if (GET_CODE (op) == CONST_VECTOR && easy_vector_constant (op, mode)) return 1; /* Do not allow invalid E500 subregs. */ if ((TARGET_E500_DOUBLE || TARGET_SPE) && GET_CODE (op) == SUBREG && invalid_e500_subreg (op, mode)) return 0; /* For floating-point or multi-word mode, the only remaining valid type is a register. */ if (SCALAR_FLOAT_MODE_P (mode) || GET_MODE_SIZE (mode) > UNITS_PER_WORD) return register_operand (op, mode); /* The only cases left are integral modes one word or smaller (we do not get called for MODE_CC values). These can be in any register. */ if (register_operand (op, mode)) return 1; /* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region to be valid. */ if (DEFAULT_ABI == ABI_V4 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST) && small_data_operand (op, Pmode)) return 1; return 0; }) ;; Return 1 if this operand is a valid input for a vsx_splat insn. (define_predicate "splat_input_operand" (match_code "symbol_ref,const,reg,subreg,mem, const_double,const_vector,const_int") { if (MEM_P (op)) { if (! volatile_ok && MEM_VOLATILE_P (op)) return 0; if (mode == DFmode) mode = V2DFmode; else if (mode == DImode) mode = V2DImode; else gcc_unreachable (); return memory_address_addr_space_p (mode, XEXP (op, 0), MEM_ADDR_SPACE (op)); } return input_operand (op, mode); }) ;; Return true if OP is a non-immediate operand and not an invalid ;; SUBREG operation on the e500. (define_predicate "rs6000_nonimmediate_operand" (match_code "reg,subreg,mem") { if ((TARGET_E500_DOUBLE || TARGET_SPE) && GET_CODE (op) == SUBREG && invalid_e500_subreg (op, mode)) return 0; return nonimmediate_operand (op, mode); }) ;; Return true if operand is boolean operator. (define_predicate "boolean_operator" (match_code "and,ior,xor")) ;; Return true if operand is OR-form of boolean operator. (define_predicate "boolean_or_operator" (match_code "ior,xor")) ;; Return true if operand is an equality operator. (define_special_predicate "equality_operator" (match_code "eq,ne")) ;; Return true if operand is MIN or MAX operator. (define_predicate "min_max_operator" (match_code "smin,smax,umin,umax")) ;; Return 1 if OP is a comparison operation that is valid for a branch ;; instruction. We check the opcode against the mode of the CC value. ;; validate_condition_mode is an assertion. (define_predicate "branch_comparison_operator" (and (match_operand 0 "comparison_operator") (and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC") (match_test "validate_condition_mode (GET_CODE (op), GET_MODE (XEXP (op, 0))), 1")))) ;; Return 1 if OP is a valid comparison operator for "cbranch" instructions. ;; If we're assuming that FP operations cannot generate user-visible traps, ;; then on e500 we can use the ordered-signaling instructions to implement ;; the unordered-quiet FP comparison predicates modulo a reversal. (define_predicate "rs6000_cbranch_operator" (if_then_else (match_test "TARGET_HARD_FLOAT && !TARGET_FPRS") (if_then_else (match_test "flag_trapping_math") (match_operand 0 "ordered_comparison_operator") (ior (match_operand 0 "ordered_comparison_operator") (match_code ("unlt,unle,ungt,unge")))) (match_operand 0 "comparison_operator"))) ;; Return 1 if OP is a comparison operation that is valid for an SCC insn -- ;; it must be a positive comparison. (define_predicate "scc_comparison_operator" (and (match_operand 0 "branch_comparison_operator") (match_code "eq,lt,gt,ltu,gtu,unordered"))) ;; Return 1 if OP is a comparison operation whose inverse would be valid for ;; an SCC insn. (define_predicate "scc_rev_comparison_operator" (and (match_operand 0 "branch_comparison_operator") (match_code "ne,le,ge,leu,geu,ordered"))) ;; Return 1 if OP is a comparison operation that is valid for a branch ;; insn, which is true if the corresponding bit in the CC register is set. (define_predicate "branch_positive_comparison_operator" (and (match_operand 0 "branch_comparison_operator") (match_code "eq,lt,gt,ltu,gtu,unordered"))) ;; Return 1 if OP is a load multiple operation, known to be a PARALLEL. (define_predicate "load_multiple_operation" (match_code "parallel") { int count = XVECLEN (op, 0); unsigned int dest_regno; rtx src_addr; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) return 0; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != SImode || REGNO (SET_DEST (elt)) != dest_regno + i || GET_CODE (SET_SRC (elt)) != MEM || GET_MODE (SET_SRC (elt)) != SImode || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr) || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4) return 0; } return 1; }) ;; Return 1 if OP is a store multiple operation, known to be a PARALLEL. ;; The second vector element is a CLOBBER. (define_predicate "store_multiple_operation" (match_code "parallel") { int count = XVECLEN (op, 0) - 1; unsigned int src_regno; rtx dest_addr; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) return 0; src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i + 1); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != SImode || REGNO (SET_SRC (elt)) != src_regno + i || GET_CODE (SET_DEST (elt)) != MEM || GET_MODE (SET_DEST (elt)) != SImode || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr) || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4) return 0; } return 1; }) ;; Return 1 if OP is valid for a save_world call in prologue, known to be ;; a PARLLEL. (define_predicate "save_world_operation" (match_code "parallel") { int index; int i; rtx elt; int count = XVECLEN (op, 0); if (count != 54) return 0; index = 0; if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER || GET_CODE (XVECEXP (op, 0, index++)) != USE) return 0; for (i=1; i <= 18; i++) { elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != MEM || ! memory_operand (SET_DEST (elt), DFmode) || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != DFmode) return 0; } for (i=1; i <= 12; i++) { elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != MEM || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != V4SImode) return 0; } for (i=1; i <= 19; i++) { elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != MEM || ! memory_operand (SET_DEST (elt), Pmode) || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != Pmode) return 0; } elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != MEM || ! memory_operand (SET_DEST (elt), Pmode) || GET_CODE (SET_SRC (elt)) != REG || REGNO (SET_SRC (elt)) != CR2_REGNO || GET_MODE (SET_SRC (elt)) != Pmode) return 0; if (GET_CODE (XVECEXP (op, 0, index++)) != SET || GET_CODE (XVECEXP (op, 0, index++)) != SET) return 0; return 1; }) ;; Return 1 if OP is valid for a restore_world call in epilogue, known to be ;; a PARLLEL. (define_predicate "restore_world_operation" (match_code "parallel") { int index; int i; rtx elt; int count = XVECLEN (op, 0); if (count != 59) return 0; index = 0; if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN || GET_CODE (XVECEXP (op, 0, index++)) != USE || GET_CODE (XVECEXP (op, 0, index++)) != USE || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER) return 0; elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != MEM || ! memory_operand (SET_SRC (elt), Pmode) || GET_CODE (SET_DEST (elt)) != REG || REGNO (SET_DEST (elt)) != CR2_REGNO || GET_MODE (SET_DEST (elt)) != Pmode) return 0; for (i=1; i <= 19; i++) { elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != MEM || ! memory_operand (SET_SRC (elt), Pmode) || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != Pmode) return 0; } for (i=1; i <= 12; i++) { elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != MEM || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != V4SImode) return 0; } for (i=1; i <= 18; i++) { elt = XVECEXP (op, 0, index++); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != MEM || ! memory_operand (SET_SRC (elt), DFmode) || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != DFmode) return 0; } if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER || GET_CODE (XVECEXP (op, 0, index++)) != USE) return 0; return 1; }) ;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL. (define_predicate "vrsave_operation" (match_code "parallel") { int count = XVECLEN (op, 0); unsigned int dest_regno, src_regno; int i; if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE || XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != UNSPECV_SET_VRSAVE) return 0; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_regno = REGNO (XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 1)); if (dest_regno != VRSAVE_REGNO || src_regno != VRSAVE_REGNO) return 0; for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != SET) return 0; } return 1; }) ;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL. (define_predicate "mfcr_operation" (match_code "parallel") { int count = XVECLEN (op, 0); int i; /* Perform a quick check so we don't blow up below. */ if (count < 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2) return 0; for (i = 0; i < count; i++) { rtx exp = XVECEXP (op, 0, i); rtx unspec; int maskval; rtx src_reg; src_reg = XVECEXP (SET_SRC (exp), 0, 0); if (GET_CODE (src_reg) != REG || GET_MODE (src_reg) != CCmode || ! CR_REGNO_P (REGNO (src_reg))) return 0; if (GET_CODE (exp) != SET || GET_CODE (SET_DEST (exp)) != REG || GET_MODE (SET_DEST (exp)) != SImode || ! INT_REGNO_P (REGNO (SET_DEST (exp)))) return 0; unspec = SET_SRC (exp); maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg)); if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR || XVECLEN (unspec, 0) != 2 || XVECEXP (unspec, 0, 0) != src_reg || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT || INTVAL (XVECEXP (unspec, 0, 1)) != maskval) return 0; } return 1; }) ;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL. (define_predicate "mtcrf_operation" (match_code "parallel") { int count = XVECLEN (op, 0); int i; rtx src_reg; /* Perform a quick check so we don't blow up below. */ if (count < 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2) return 0; src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0); if (GET_CODE (src_reg) != REG || GET_MODE (src_reg) != SImode || ! INT_REGNO_P (REGNO (src_reg))) return 0; for (i = 0; i < count; i++) { rtx exp = XVECEXP (op, 0, i); rtx unspec; int maskval; if (GET_CODE (exp) != SET || GET_CODE (SET_DEST (exp)) != REG || GET_MODE (SET_DEST (exp)) != CCmode || ! CR_REGNO_P (REGNO (SET_DEST (exp)))) return 0; unspec = SET_SRC (exp); maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp))); if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR || XVECLEN (unspec, 0) != 2 || XVECEXP (unspec, 0, 0) != src_reg || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT || INTVAL (XVECEXP (unspec, 0, 1)) != maskval) return 0; } return 1; }) ;; Return 1 if OP is valid for crsave insn, known to be a PARALLEL. (define_predicate "crsave_operation" (match_code "parallel") { int count = XVECLEN (op, 0); int i; for (i = 1; i < count; i++) { rtx exp = XVECEXP (op, 0, i); if (GET_CODE (exp) != USE || GET_CODE (XEXP (exp, 0)) != REG || GET_MODE (XEXP (exp, 0)) != CCmode || ! CR_REGNO_P (REGNO (XEXP (exp, 0)))) return 0; } return 1; }) ;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL. (define_predicate "lmw_operation" (match_code "parallel") { int count = XVECLEN (op, 0); unsigned int dest_regno; rtx src_addr; unsigned int base_regno; HOST_WIDE_INT offset; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) return 0; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); if (dest_regno > 31 || count != 32 - (int) dest_regno) return 0; if (legitimate_indirect_address_p (src_addr, 0)) { offset = 0; base_regno = REGNO (src_addr); if (base_regno == 0) return 0; } else if (rs6000_legitimate_offset_address_p (SImode, src_addr, false, false)) { offset = INTVAL (XEXP (src_addr, 1)); base_regno = REGNO (XEXP (src_addr, 0)); } else return 0; for (i = 0; i < count; i++) { rtx elt = XVECEXP (op, 0, i); rtx newaddr; rtx addr_reg; HOST_WIDE_INT newoffset; if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != SImode || REGNO (SET_DEST (elt)) != dest_regno + i || GET_CODE (SET_SRC (elt)) != MEM || GET_MODE (SET_SRC (elt)) != SImode) return 0; newaddr = XEXP (SET_SRC (elt), 0); if (legitimate_indirect_address_p (newaddr, 0)) { newoffset = 0; addr_reg = newaddr; } else if (rs6000_legitimate_offset_address_p (SImode, newaddr, false, false)) { addr_reg = XEXP (newaddr, 0); newoffset = INTVAL (XEXP (newaddr, 1)); } else return 0; if (REGNO (addr_reg) != base_regno || newoffset != offset + 4 * i) return 0; } return 1; }) ;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL. (define_predicate "stmw_operation" (match_code "parallel") { int count = XVECLEN (op, 0); unsigned int src_regno; rtx dest_addr; unsigned int base_regno; HOST_WIDE_INT offset; int i; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) return 0; src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); if (src_regno > 31 || count != 32 - (int) src_regno) return 0; if (legitimate_indirect_address_p (dest_addr, 0)) { offset = 0; base_regno = REGNO (dest_addr); if (base_regno == 0) return 0; } else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, false, false)) { offset = INTVAL (XEXP (dest_addr, 1)); base_regno = REGNO (XEXP (dest_addr, 0)); } else return 0; for (i = 0; i < count; i++) { rtx elt = XVECEXP (op, 0, i); rtx newaddr; rtx addr_reg; HOST_WIDE_INT newoffset; if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != SImode || REGNO (SET_SRC (elt)) != src_regno + i || GET_CODE (SET_DEST (elt)) != MEM || GET_MODE (SET_DEST (elt)) != SImode) return 0; newaddr = XEXP (SET_DEST (elt), 0); if (legitimate_indirect_address_p (newaddr, 0)) { newoffset = 0; addr_reg = newaddr; } else if (rs6000_legitimate_offset_address_p (SImode, newaddr, false, false)) { addr_reg = XEXP (newaddr, 0); newoffset = INTVAL (XEXP (newaddr, 1)); } else return 0; if (REGNO (addr_reg) != base_regno || newoffset != offset + 4 * i) return 0; } return 1; }) ;; Return 1 if OP is a stack tie operand. (define_predicate "tie_operand" (match_code "parallel") { return (GET_CODE (XVECEXP (op, 0, 0)) == SET && GET_CODE (XEXP (XVECEXP (op, 0, 0), 0)) == MEM && GET_MODE (XEXP (XVECEXP (op, 0, 0), 0)) == BLKmode && XEXP (XVECEXP (op, 0, 0), 1) == const0_rtx); }) ;; Match a small code model toc reference (or medium and large ;; model toc references before reload). (define_predicate "small_toc_ref" (match_code "unspec,plus") { if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), mode)) op = XEXP (op, 0); return GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_TOCREL; }) ;; Match the first insn (addis) in fusing the combination of addis and loads to ;; GPR registers on power8. (define_predicate "fusion_gpr_addis" (match_code "const_int,high,plus") { HOST_WIDE_INT value; rtx int_const; if (GET_CODE (op) == HIGH) return 1; if (CONST_INT_P (op)) int_const = op; else if (GET_CODE (op) == PLUS && base_reg_operand (XEXP (op, 0), Pmode) && CONST_INT_P (XEXP (op, 1))) int_const = XEXP (op, 1); else return 0; /* Power8 currently will only do the fusion if the top 11 bits of the addis value are all 1's or 0's. */ value = INTVAL (int_const); if ((value & (HOST_WIDE_INT)0xffff) != 0) return 0; if ((value & (HOST_WIDE_INT)0xffff0000) == 0) return 0; return (IN_RANGE (value >> 16, -32, 31)); }) ;; Match the second insn (lbz, lhz, lwz, ld) in fusing the combination of addis ;; and loads to GPR registers on power8. (define_predicate "fusion_gpr_mem_load" (match_code "mem,sign_extend,zero_extend") { rtx addr; /* Handle sign/zero extend. */ if (GET_CODE (op) == ZERO_EXTEND || (TARGET_P8_FUSION_SIGN && GET_CODE (op) == SIGN_EXTEND)) { op = XEXP (op, 0); mode = GET_MODE (op); } if (!MEM_P (op)) return 0; switch (mode) { case QImode: case HImode: case SImode: break; case DImode: if (!TARGET_POWERPC64) return 0; break; default: return 0; } addr = XEXP (op, 0); if (GET_CODE (addr) == PLUS) { rtx base = XEXP (addr, 0); rtx offset = XEXP (addr, 1); return (base_reg_operand (base, GET_MODE (base)) && satisfies_constraint_I (offset)); } else if (GET_CODE (addr) == LO_SUM) { rtx base = XEXP (addr, 0); rtx offset = XEXP (addr, 1); if (!base_reg_operand (base, GET_MODE (base))) return 0; else if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64)) return small_toc_ref (offset, GET_MODE (offset)); else if (TARGET_ELF && !TARGET_POWERPC64) return CONSTANT_P (offset); } return 0; })