\input texinfo @c -*-texinfo-*- @c %**start of header @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo @c o @c GNAT DOCUMENTATION o @c o @c G N A T _ RM o @c o @c GNAT is maintained by Ada Core Technologies Inc (http://www.gnat.com). o @c o @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo @setfilename gnat_rm.info @copying Copyright @copyright{} 1995-2012, Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being ``GNAT Reference Manual'', and with no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. @end copying @set EDITION GNAT @settitle GNAT Reference Manual @setchapternewpage odd @syncodeindex fn cp @include gcc-common.texi @dircategory GNU Ada tools @direntry * GNAT Reference Manual: (gnat_rm). Reference Manual for GNU Ada tools. @end direntry @titlepage @title GNAT Reference Manual @subtitle GNAT, The GNU Ada Development Environment @versionsubtitle @author AdaCore @page @vskip 0pt plus 1filll @insertcopying @end titlepage @ifnottex @node Top, About This Guide, (dir), (dir) @top GNAT Reference Manual @noindent GNAT Reference Manual @noindent GNAT, The GNU Ada Development Environment@* GCC version @value{version-GCC}@* @noindent AdaCore @menu * About This Guide:: * Implementation Defined Pragmas:: * Implementation Defined Aspects:: * Implementation Defined Attributes:: * Standard and Implementation Defined Restrictions:: * Implementation Advice:: * Implementation Defined Characteristics:: * Intrinsic Subprograms:: * Representation Clauses and Pragmas:: * Standard Library Routines:: * The Implementation of Standard I/O:: * The GNAT Library:: * Interfacing to Other Languages:: * Specialized Needs Annexes:: * Implementation of Specific Ada Features:: * Implementation of Ada 2012 Features:: * Obsolescent Features:: * GNU Free Documentation License:: * Index:: --- The Detailed Node Listing --- About This Guide * What This Reference Manual Contains:: * Related Information:: Implementation Defined Pragmas * Pragma Abort_Defer:: * Pragma Abstract_State:: * Pragma Ada_83:: * Pragma Ada_95:: * Pragma Ada_05:: * Pragma Ada_2005:: * Pragma Ada_12:: * Pragma Ada_2012:: * Pragma Allow_Integer_Address:: * Pragma Annotate:: * Pragma Assert:: * Pragma Assert_And_Cut:: * Pragma Assertion_Policy:: * Pragma Assume:: * Pragma Assume_No_Invalid_Values:: * Pragma Attribute_Definition:: * Pragma Ast_Entry:: * Pragma C_Pass_By_Copy:: * Pragma Check:: * Pragma Check_Float_Overflow:: * Pragma Check_Name:: * Pragma Check_Policy:: * Pragma CIL_Constructor:: * Pragma Comment:: * Pragma Common_Object:: * Pragma Compile_Time_Error:: * Pragma Compile_Time_Warning:: * Pragma Compiler_Unit:: * Pragma Compiler_Unit_Warning:: * Pragma Complete_Representation:: * Pragma Complex_Representation:: * Pragma Component_Alignment:: * Pragma Contract_Cases:: * Pragma Convention_Identifier:: * Pragma CPP_Class:: * Pragma CPP_Constructor:: * Pragma CPP_Virtual:: * Pragma CPP_Vtable:: * Pragma CPU:: * Pragma Debug:: * Pragma Debug_Policy:: * Pragma Default_Storage_Pool:: * Pragma Depends:: * Pragma Detect_Blocking:: * Pragma Disable_Atomic_Synchronization:: * Pragma Dispatching_Domain:: * Pragma Elaboration_Checks:: * Pragma Eliminate:: * Pragma Enable_Atomic_Synchronization:: * Pragma Export_Exception:: * Pragma Export_Function:: * Pragma Export_Object:: * Pragma Export_Procedure:: * Pragma Export_Value:: * Pragma Export_Valued_Procedure:: * Pragma Extend_System:: * Pragma Extensions_Allowed:: * Pragma External:: * Pragma External_Name_Casing:: * Pragma Fast_Math:: * Pragma Favor_Top_Level:: * Pragma Finalize_Storage_Only:: * Pragma Float_Representation:: * Pragma Global:: * Pragma Ident:: * Pragma Implementation_Defined:: * Pragma Implemented:: * Pragma Implicit_Packing:: * Pragma Import_Exception:: * Pragma Import_Function:: * Pragma Import_Object:: * Pragma Import_Procedure:: * Pragma Import_Valued_Procedure:: * Pragma Independent:: * Pragma Independent_Components:: * Pragma Initial_Condition:: * Pragma Initialize_Scalars:: * Pragma Initializes:: * Pragma Inline_Always:: * Pragma Inline_Generic:: * Pragma Interface:: * Pragma Interface_Name:: * Pragma Interrupt_Handler:: * Pragma Interrupt_State:: * Pragma Invariant:: * Pragma Java_Constructor:: * Pragma Java_Interface:: * Pragma Keep_Names:: * Pragma License:: * Pragma Link_With:: * Pragma Linker_Alias:: * Pragma Linker_Constructor:: * Pragma Linker_Destructor:: * Pragma Linker_Section:: * Pragma Long_Float:: * Pragma Loop_Invariant:: * Pragma Loop_Optimize:: * Pragma Loop_Variant:: * Pragma Machine_Attribute:: * Pragma Main:: * Pragma Main_Storage:: * Pragma No_Body:: * Pragma No_Inline:: * Pragma No_Return:: * Pragma No_Run_Time:: * Pragma No_Strict_Aliasing :: * Pragma Normalize_Scalars:: * Pragma Obsolescent:: * Pragma Optimize_Alignment:: * Pragma Ordered:: * Pragma Overflow_Mode:: * Pragma Overriding_Renamings:: * Pragma Partition_Elaboration_Policy:: * Pragma Passive:: * Pragma Persistent_BSS:: * Pragma Polling:: * Pragma Post:: * Pragma Postcondition:: * Pragma Post_Class:: * Pragma Pre:: * Pragma Precondition:: * Pragma Predicate:: * Pragma Preelaborable_Initialization:: * Pragma Preelaborate_05:: * Pragma Pre_Class:: * Pragma Priority_Specific_Dispatching:: * Pragma Profile:: * Pragma Profile_Warnings:: * Pragma Propagate_Exceptions:: * Pragma Provide_Shift_Operators:: * Pragma Psect_Object:: * Pragma Pure_05:: * Pragma Pure_12:: * Pragma Pure_Function:: * Pragma Ravenscar:: * Pragma Refined_State:: * Pragma Relative_Deadline:: * Pragma Remote_Access_Type:: * Pragma Restricted_Run_Time:: * Pragma Restriction_Warnings:: * Pragma Reviewable:: * Pragma Share_Generic:: * Pragma Shared:: * Pragma Short_Circuit_And_Or:: * Pragma Short_Descriptors:: * Pragma Simple_Storage_Pool_Type:: * Pragma Source_File_Name:: * Pragma Source_File_Name_Project:: * Pragma Source_Reference:: * Pragma SPARK_Mode:: * Pragma Static_Elaboration_Desired:: * Pragma Stream_Convert:: * Pragma Style_Checks:: * Pragma Subtitle:: * Pragma Suppress:: * Pragma Suppress_All:: * Pragma Suppress_Debug_Info:: * Pragma Suppress_Exception_Locations:: * Pragma Suppress_Initialization:: * Pragma Task_Info:: * Pragma Task_Name:: * Pragma Task_Storage:: * Pragma Test_Case:: * Pragma Thread_Local_Storage:: * Pragma Time_Slice:: * Pragma Title:: * Pragma Type_Invariant:: * Pragma Type_Invariant_Class:: * Pragma Unchecked_Union:: * Pragma Unimplemented_Unit:: * Pragma Universal_Aliasing :: * Pragma Universal_Data:: * Pragma Unmodified:: * Pragma Unreferenced:: * Pragma Unreferenced_Objects:: * Pragma Unreserve_All_Interrupts:: * Pragma Unsuppress:: * Pragma Use_VADS_Size:: * Pragma Validity_Checks:: * Pragma Volatile:: * Pragma Warning_As_Error:: * Pragma Warnings:: * Pragma Weak_External:: * Pragma Wide_Character_Encoding:: Implementation Defined Aspects * Aspect Abstract_State:: * Aspect Contract_Cases:: * Aspect Depends:: * Aspect Dimension:: * Aspect Dimension_System:: * Aspect Favor_Top_Level:: * Aspect Global:: * Aspect Initial_Condition:: * Aspect Initializes:: * Aspect Inline_Always:: * Aspect Invariant:: * Aspect Linker_Section:: * Aspect Object_Size:: * Aspect Persistent_BSS:: * Aspect Predicate:: * Aspect Preelaborate_05:: * Aspect Pure_05:: * Aspect Pure_12:: * Aspect Pure_Function:: * Aspect Refined_State:: * Aspect Remote_Access_Type:: * Aspect Scalar_Storage_Order:: * Aspect Shared:: * Aspect Simple_Storage_Pool:: * Aspect Simple_Storage_Pool_Type:: * Aspect SPARK_Mode:: * Aspect Suppress_Debug_Info:: * Aspect Test_Case:: * Aspect Universal_Aliasing:: * Aspect Universal_Data:: * Aspect Unmodified:: * Aspect Unreferenced:: * Aspect Unreferenced_Objects:: * Aspect Value_Size:: * Aspect Warnings:: Implementation Defined Attributes * Attribute Abort_Signal:: * Attribute Address_Size:: * Attribute Asm_Input:: * Attribute Asm_Output:: * Attribute AST_Entry:: * Attribute Bit:: * Attribute Bit_Position:: * Attribute Compiler_Version:: * Attribute Code_Address:: * Attribute Default_Bit_Order:: * Attribute Descriptor_Size:: * Attribute Elaborated:: * Attribute Elab_Body:: * Attribute Elab_Spec:: * Attribute Elab_Subp_Body:: * Attribute Emax:: * Attribute Enabled:: * Attribute Enum_Rep:: * Attribute Enum_Val:: * Attribute Epsilon:: * Attribute Fixed_Value:: * Attribute Has_Access_Values:: * Attribute Has_Discriminants:: * Attribute Img:: * Attribute Integer_Value:: * Attribute Invalid_Value:: * Attribute Large:: * Attribute Library_Level:: * Attribute Loop_Entry:: * Attribute Machine_Size:: * Attribute Mantissa:: * Attribute Max_Interrupt_Priority:: * Attribute Max_Priority:: * Attribute Maximum_Alignment:: * Attribute Mechanism_Code:: * Attribute Null_Parameter:: * Attribute Object_Size:: * Attribute Passed_By_Reference:: * Attribute Pool_Address:: * Attribute Range_Length:: * Attribute Ref:: * Attribute Restriction_Set:: * Attribute Result:: * Attribute Safe_Emax:: * Attribute Safe_Large:: * Attribute Scalar_Storage_Order:: * Attribute Simple_Storage_Pool:: * Attribute Small:: * Attribute Storage_Unit:: * Attribute Stub_Type:: * Attribute System_Allocator_Alignment:: * Attribute Target_Name:: * Attribute Tick:: * Attribute To_Address:: * Attribute Type_Class:: * Attribute UET_Address:: * Attribute Unconstrained_Array:: * Attribute Universal_Literal_String:: * Attribute Unrestricted_Access:: * Attribute Update:: * Attribute Valid_Scalars:: * Attribute VADS_Size:: * Attribute Value_Size:: * Attribute Wchar_T_Size:: * Attribute Word_Size:: Standard and Implementation Defined Restrictions * Partition-Wide Restrictions:: * Program Unit Level Restrictions:: Partition-Wide Restrictions * Immediate_Reclamation:: * Max_Asynchronous_Select_Nesting:: * Max_Entry_Queue_Length:: * Max_Protected_Entries:: * Max_Select_Alternatives:: * Max_Storage_At_Blocking:: * Max_Task_Entries:: * Max_Tasks:: * No_Abort_Statements:: * No_Access_Parameter_Allocators:: * No_Access_Subprograms:: * No_Allocators:: * No_Anonymous_Allocators:: * No_Calendar:: * No_Coextensions:: * No_Default_Initialization:: * No_Delay:: * No_Dependence:: * No_Direct_Boolean_Operators:: * No_Dispatch:: * No_Dispatching_Calls:: * No_Dynamic_Attachment:: * No_Dynamic_Priorities:: * No_Entry_Calls_In_Elaboration_Code:: * No_Enumeration_Maps:: * No_Exception_Handlers:: * No_Exception_Propagation:: * No_Exception_Registration:: * No_Exceptions:: * No_Finalization:: * No_Fixed_Point:: * No_Floating_Point:: * No_Implicit_Conditionals:: * No_Implicit_Dynamic_Code:: * No_Implicit_Heap_Allocations:: * No_Implicit_Loops:: * No_Initialize_Scalars:: * No_IO:: * No_Local_Allocators:: * No_Local_Protected_Objects:: * No_Local_Timing_Events:: * No_Nested_Finalization:: * No_Protected_Type_Allocators:: * No_Protected_Types:: * No_Recursion:: * No_Reentrancy:: * No_Relative_Delay:: * No_Requeue_Statements:: * No_Secondary_Stack:: * No_Select_Statements:: * No_Specific_Termination_Handlers:: * No_Specification_of_Aspect:: * No_Standard_Allocators_After_Elaboration:: * No_Standard_Storage_Pools:: * No_Stream_Optimizations:: * No_Streams:: * No_Task_Allocators:: * No_Task_Attributes_Package:: * No_Task_Hierarchy:: * No_Task_Termination:: * No_Tasking:: * No_Terminate_Alternatives:: * No_Unchecked_Access:: * Simple_Barriers:: * Static_Priorities:: * Static_Storage_Size:: Program Unit Level Restrictions * No_Elaboration_Code:: * No_Entry_Queue:: * No_Implementation_Aspect_Specifications:: * No_Implementation_Attributes:: * No_Implementation_Identifiers:: * No_Implementation_Pragmas:: * No_Implementation_Restrictions:: * No_Implementation_Units:: * No_Implicit_Aliasing:: * No_Obsolescent_Features:: * No_Wide_Characters:: * SPARK_05:: The Implementation of Standard I/O * Standard I/O Packages:: * FORM Strings:: * Direct_IO:: * Sequential_IO:: * Text_IO:: * Wide_Text_IO:: * Wide_Wide_Text_IO:: * Stream_IO:: * Text Translation:: * Shared Files:: * Filenames encoding:: * Open Modes:: * Operations on C Streams:: * Interfacing to C Streams:: The GNAT Library * Ada.Characters.Latin_9 (a-chlat9.ads):: * Ada.Characters.Wide_Latin_1 (a-cwila1.ads):: * Ada.Characters.Wide_Latin_9 (a-cwila9.ads):: * Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads):: * Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads):: * Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads):: * Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads):: * Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads):: * Ada.Containers.Formal_Ordered_Maps (a-cforma.ads):: * Ada.Containers.Formal_Ordered_Sets (a-cforse.ads):: * Ada.Containers.Formal_Vectors (a-cofove.ads):: * Ada.Command_Line.Environment (a-colien.ads):: * Ada.Command_Line.Remove (a-colire.ads):: * Ada.Command_Line.Response_File (a-clrefi.ads):: * Ada.Direct_IO.C_Streams (a-diocst.ads):: * Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads):: * Ada.Exceptions.Last_Chance_Handler (a-elchha.ads):: * Ada.Exceptions.Traceback (a-exctra.ads):: * Ada.Sequential_IO.C_Streams (a-siocst.ads):: * Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads):: * Ada.Strings.Unbounded.Text_IO (a-suteio.ads):: * Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads):: * Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads):: * Ada.Text_IO.C_Streams (a-tiocst.ads):: * Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads):: * Ada.Wide_Characters.Unicode (a-wichun.ads):: * Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads):: * Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads):: * Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads):: * Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads):: * Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads):: * GNAT.Altivec (g-altive.ads):: * GNAT.Altivec.Conversions (g-altcon.ads):: * GNAT.Altivec.Vector_Operations (g-alveop.ads):: * GNAT.Altivec.Vector_Types (g-alvety.ads):: * GNAT.Altivec.Vector_Views (g-alvevi.ads):: * GNAT.Array_Split (g-arrspl.ads):: * GNAT.AWK (g-awk.ads):: * GNAT.Bounded_Buffers (g-boubuf.ads):: * GNAT.Bounded_Mailboxes (g-boumai.ads):: * GNAT.Bubble_Sort (g-bubsor.ads):: * GNAT.Bubble_Sort_A (g-busora.ads):: * GNAT.Bubble_Sort_G (g-busorg.ads):: * GNAT.Byte_Order_Mark (g-byorma.ads):: * GNAT.Byte_Swapping (g-bytswa.ads):: * GNAT.Calendar (g-calend.ads):: * GNAT.Calendar.Time_IO (g-catiio.ads):: * GNAT.Case_Util (g-casuti.ads):: * GNAT.CGI (g-cgi.ads):: * GNAT.CGI.Cookie (g-cgicoo.ads):: * GNAT.CGI.Debug (g-cgideb.ads):: * GNAT.Command_Line (g-comlin.ads):: * GNAT.Compiler_Version (g-comver.ads):: * GNAT.Ctrl_C (g-ctrl_c.ads):: * GNAT.CRC32 (g-crc32.ads):: * GNAT.Current_Exception (g-curexc.ads):: * GNAT.Debug_Pools (g-debpoo.ads):: * GNAT.Debug_Utilities (g-debuti.ads):: * GNAT.Decode_String (g-decstr.ads):: * GNAT.Decode_UTF8_String (g-deutst.ads):: * GNAT.Directory_Operations (g-dirope.ads):: * GNAT.Directory_Operations.Iteration (g-diopit.ads):: * GNAT.Dynamic_HTables (g-dynhta.ads):: * GNAT.Dynamic_Tables (g-dyntab.ads):: * GNAT.Encode_String (g-encstr.ads):: * GNAT.Encode_UTF8_String (g-enutst.ads):: * GNAT.Exception_Actions (g-excact.ads):: * GNAT.Exception_Traces (g-exctra.ads):: * GNAT.Exceptions (g-except.ads):: * GNAT.Expect (g-expect.ads):: * GNAT.Expect.TTY (g-exptty.ads):: * GNAT.Float_Control (g-flocon.ads):: * GNAT.Heap_Sort (g-heasor.ads):: * GNAT.Heap_Sort_A (g-hesora.ads):: * GNAT.Heap_Sort_G (g-hesorg.ads):: * GNAT.HTable (g-htable.ads):: * GNAT.IO (g-io.ads):: * GNAT.IO_Aux (g-io_aux.ads):: * GNAT.Lock_Files (g-locfil.ads):: * GNAT.MBBS_Discrete_Random (g-mbdira.ads):: * GNAT.MBBS_Float_Random (g-mbflra.ads):: * GNAT.MD5 (g-md5.ads):: * GNAT.Memory_Dump (g-memdum.ads):: * GNAT.Most_Recent_Exception (g-moreex.ads):: * GNAT.OS_Lib (g-os_lib.ads):: * GNAT.Perfect_Hash_Generators (g-pehage.ads):: * GNAT.Random_Numbers (g-rannum.ads):: * GNAT.Regexp (g-regexp.ads):: * GNAT.Registry (g-regist.ads):: * GNAT.Regpat (g-regpat.ads):: * GNAT.Secondary_Stack_Info (g-sestin.ads):: * GNAT.Semaphores (g-semaph.ads):: * GNAT.Serial_Communications (g-sercom.ads):: * GNAT.SHA1 (g-sha1.ads):: * GNAT.SHA224 (g-sha224.ads):: * GNAT.SHA256 (g-sha256.ads):: * GNAT.SHA384 (g-sha384.ads):: * GNAT.SHA512 (g-sha512.ads):: * GNAT.Signals (g-signal.ads):: * GNAT.Sockets (g-socket.ads):: * GNAT.Source_Info (g-souinf.ads):: * GNAT.Spelling_Checker (g-speche.ads):: * GNAT.Spelling_Checker_Generic (g-spchge.ads):: * GNAT.Spitbol.Patterns (g-spipat.ads):: * GNAT.Spitbol (g-spitbo.ads):: * GNAT.Spitbol.Table_Boolean (g-sptabo.ads):: * GNAT.Spitbol.Table_Integer (g-sptain.ads):: * GNAT.Spitbol.Table_VString (g-sptavs.ads):: * GNAT.SSE (g-sse.ads):: * GNAT.SSE.Vector_Types (g-ssvety.ads):: * GNAT.Strings (g-string.ads):: * GNAT.String_Split (g-strspl.ads):: * GNAT.Table (g-table.ads):: * GNAT.Task_Lock (g-tasloc.ads):: * GNAT.Threads (g-thread.ads):: * GNAT.Time_Stamp (g-timsta.ads):: * GNAT.Traceback (g-traceb.ads):: * GNAT.Traceback.Symbolic (g-trasym.ads):: * GNAT.UTF_32 (g-utf_32.ads):: * GNAT.UTF_32_Spelling_Checker (g-u3spch.ads):: * GNAT.Wide_Spelling_Checker (g-wispch.ads):: * GNAT.Wide_String_Split (g-wistsp.ads):: * GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads):: * GNAT.Wide_Wide_String_Split (g-zistsp.ads):: * Interfaces.C.Extensions (i-cexten.ads):: * Interfaces.C.Streams (i-cstrea.ads):: * Interfaces.CPP (i-cpp.ads):: * Interfaces.Packed_Decimal (i-pacdec.ads):: * Interfaces.VxWorks (i-vxwork.ads):: * Interfaces.VxWorks.IO (i-vxwoio.ads):: * System.Address_Image (s-addima.ads):: * System.Assertions (s-assert.ads):: * System.Memory (s-memory.ads):: * System.Multiprocessors (s-multip.ads):: * System.Multiprocessors.Dispatching_Domains (s-mudido.ads):: * System.Partition_Interface (s-parint.ads):: * System.Pool_Global (s-pooglo.ads):: * System.Pool_Local (s-pooloc.ads):: * System.Restrictions (s-restri.ads):: * System.Rident (s-rident.ads):: * System.Strings.Stream_Ops (s-ststop.ads):: * System.Task_Info (s-tasinf.ads):: * System.Wch_Cnv (s-wchcnv.ads):: * System.Wch_Con (s-wchcon.ads):: Text_IO * Text_IO Stream Pointer Positioning:: * Text_IO Reading and Writing Non-Regular Files:: * Get_Immediate:: * Treating Text_IO Files as Streams:: * Text_IO Extensions:: * Text_IO Facilities for Unbounded Strings:: Wide_Text_IO * Wide_Text_IO Stream Pointer Positioning:: * Wide_Text_IO Reading and Writing Non-Regular Files:: Wide_Wide_Text_IO * Wide_Wide_Text_IO Stream Pointer Positioning:: * Wide_Wide_Text_IO Reading and Writing Non-Regular Files:: Interfacing to Other Languages * Interfacing to C:: * Interfacing to C++:: * Interfacing to COBOL:: * Interfacing to Fortran:: * Interfacing to non-GNAT Ada code:: Specialized Needs Annexes Implementation of Specific Ada Features * Machine Code Insertions:: * GNAT Implementation of Tasking:: * GNAT Implementation of Shared Passive Packages:: * Code Generation for Array Aggregates:: * The Size of Discriminated Records with Default Discriminants:: * Strict Conformance to the Ada Reference Manual:: Implementation of Ada 2012 Features Obsolescent Features GNU Free Documentation License Index @end menu @end ifnottex @node About This Guide @unnumbered About This Guide @noindent This manual contains useful information in writing programs using the @value{EDITION} compiler. It includes information on implementation dependent characteristics of @value{EDITION}, including all the information required by Annex M of the Ada language standard. @value{EDITION} implements Ada 95, Ada 2005 and Ada 2012, and it may also be invoked in Ada 83 compatibility mode. By default, @value{EDITION} assumes Ada 2012, but you can override with a compiler switch to explicitly specify the language version. (Please refer to @ref{Compiling Different Versions of Ada,,, gnat_ugn, @value{EDITION} User's Guide}, for details on these switches.) Throughout this manual, references to ``Ada'' without a year suffix apply to all the Ada versions of the language. Ada is designed to be highly portable. In general, a program will have the same effect even when compiled by different compilers on different platforms. However, since Ada is designed to be used in a wide variety of applications, it also contains a number of system dependent features to be used in interfacing to the external world. @cindex Implementation-dependent features @cindex Portability Note: Any program that makes use of implementation-dependent features may be non-portable. You should follow good programming practice and isolate and clearly document any sections of your program that make use of these features in a non-portable manner. @ifset PROEDITION For ease of exposition, ``@value{EDITION}'' will be referred to simply as ``GNAT'' in the remainder of this document. @end ifset @menu * What This Reference Manual Contains:: * Conventions:: * Related Information:: @end menu @node What This Reference Manual Contains @unnumberedsec What This Reference Manual Contains @noindent This reference manual contains the following chapters: @itemize @bullet @item @ref{Implementation Defined Pragmas}, lists GNAT implementation-dependent pragmas, which can be used to extend and enhance the functionality of the compiler. @item @ref{Implementation Defined Attributes}, lists GNAT implementation-dependent attributes, which can be used to extend and enhance the functionality of the compiler. @item @ref{Standard and Implementation Defined Restrictions}, lists GNAT implementation-dependent restrictions, which can be used to extend and enhance the functionality of the compiler. @item @ref{Implementation Advice}, provides information on generally desirable behavior which are not requirements that all compilers must follow since it cannot be provided on all systems, or which may be undesirable on some systems. @item @ref{Implementation Defined Characteristics}, provides a guide to minimizing implementation dependent features. @item @ref{Intrinsic Subprograms}, describes the intrinsic subprograms implemented by GNAT, and how they can be imported into user application programs. @item @ref{Representation Clauses and Pragmas}, describes in detail the way that GNAT represents data, and in particular the exact set of representation clauses and pragmas that is accepted. @item @ref{Standard Library Routines}, provides a listing of packages and a brief description of the functionality that is provided by Ada's extensive set of standard library routines as implemented by GNAT@. @item @ref{The Implementation of Standard I/O}, details how the GNAT implementation of the input-output facilities. @item @ref{The GNAT Library}, is a catalog of packages that complement the Ada predefined library. @item @ref{Interfacing to Other Languages}, describes how programs written in Ada using GNAT can be interfaced to other programming languages. @ref{Specialized Needs Annexes}, describes the GNAT implementation of all of the specialized needs annexes. @item @ref{Implementation of Specific Ada Features}, discusses issues related to GNAT's implementation of machine code insertions, tasking, and several other features. @item @ref{Implementation of Ada 2012 Features}, describes the status of the GNAT implementation of the Ada 2012 language standard. @item @ref{Obsolescent Features} documents implementation dependent features, including pragmas and attributes, which are considered obsolescent, since there are other preferred ways of achieving the same results. These obsolescent forms are retained for backwards compatibility. @end itemize @cindex Ada 95 Language Reference Manual @cindex Ada 2005 Language Reference Manual @noindent This reference manual assumes a basic familiarity with the Ada 95 language, as described in the International Standard ANSI/ISO/IEC-8652:1995, January 1995. It does not require knowledge of the new features introduced by Ada 2005, (officially known as ISO/IEC 8652:1995 with Technical Corrigendum 1 and Amendment 1). Both reference manuals are included in the GNAT documentation package. @node Conventions @unnumberedsec Conventions @cindex Conventions, typographical @cindex Typographical conventions @noindent Following are examples of the typographical and graphic conventions used in this guide: @itemize @bullet @item @code{Functions}, @code{utility program names}, @code{standard names}, and @code{classes}. @item @code{Option flags} @item @file{File names}, @samp{button names}, and @samp{field names}. @item @code{Variables}, @env{environment variables}, and @var{metasyntactic variables}. @item @emph{Emphasis}. @item [optional information or parameters] @item Examples are described by text @smallexample and then shown this way. @end smallexample @end itemize @noindent Commands that are entered by the user are preceded in this manual by the characters @samp{$ } (dollar sign followed by space). If your system uses this sequence as a prompt, then the commands will appear exactly as you see them in the manual. If your system uses some other prompt, then the command will appear with the @samp{$} replaced by whatever prompt character you are using. @node Related Information @unnumberedsec Related Information @noindent See the following documents for further information on GNAT: @itemize @bullet @item @xref{Top, @value{EDITION} User's Guide, About This Guide, gnat_ugn, @value{EDITION} User's Guide}, which provides information on how to use the GNAT compiler system. @item @cite{Ada 95 Reference Manual}, which contains all reference material for the Ada 95 programming language. @item @cite{Ada 95 Annotated Reference Manual}, which is an annotated version of the Ada 95 standard. The annotations describe detailed aspects of the design decision, and in particular contain useful sections on Ada 83 compatibility. @item @cite{Ada 2005 Reference Manual}, which contains all reference material for the Ada 2005 programming language. @item @cite{Ada 2005 Annotated Reference Manual}, which is an annotated version of the Ada 2005 standard. The annotations describe detailed aspects of the design decision, and in particular contain useful sections on Ada 83 and Ada 95 compatibility. @item @cite{DEC Ada, Technical Overview and Comparison on DIGITAL Platforms}, which contains specific information on compatibility between GNAT and DEC Ada 83 systems. @item @cite{DEC Ada, Language Reference Manual, part number AA-PYZAB-TK} which describes in detail the pragmas and attributes provided by the DEC Ada 83 compiler system. @end itemize @node Implementation Defined Pragmas @chapter Implementation Defined Pragmas @noindent Ada defines a set of pragmas that can be used to supply additional information to the compiler. These language defined pragmas are implemented in GNAT and work as described in the Ada Reference Manual. In addition, Ada allows implementations to define additional pragmas whose meaning is defined by the implementation. GNAT provides a number of these implementation-defined pragmas, which can be used to extend and enhance the functionality of the compiler. This section of the GNAT Reference Manual describes these additional pragmas. Note that any program using these pragmas might not be portable to other compilers (although GNAT implements this set of pragmas on all platforms). Therefore if portability to other compilers is an important consideration, the use of these pragmas should be minimized. @menu * Pragma Abort_Defer:: * Pragma Abstract_State:: * Pragma Ada_83:: * Pragma Ada_95:: * Pragma Ada_05:: * Pragma Ada_2005:: * Pragma Ada_12:: * Pragma Ada_2012:: * Pragma Allow_Integer_Address:: * Pragma Annotate:: * Pragma Assert:: * Pragma Assert_And_Cut:: * Pragma Assertion_Policy:: * Pragma Assume:: * Pragma Assume_No_Invalid_Values:: * Pragma Attribute_Definition:: * Pragma Ast_Entry:: * Pragma C_Pass_By_Copy:: * Pragma Check:: * Pragma Check_Float_Overflow:: * Pragma Check_Name:: * Pragma Check_Policy:: * Pragma CIL_Constructor:: * Pragma Comment:: * Pragma Common_Object:: * Pragma Compile_Time_Error:: * Pragma Compile_Time_Warning:: * Pragma Compiler_Unit:: * Pragma Compiler_Unit_Warning:: * Pragma Complete_Representation:: * Pragma Complex_Representation:: * Pragma Component_Alignment:: * Pragma Contract_Cases:: * Pragma Convention_Identifier:: * Pragma CPP_Class:: * Pragma CPP_Constructor:: * Pragma CPP_Virtual:: * Pragma CPP_Vtable:: * Pragma CPU:: * Pragma Debug:: * Pragma Debug_Policy:: * Pragma Default_Storage_Pool:: * Pragma Depends:: * Pragma Detect_Blocking:: * Pragma Disable_Atomic_Synchronization:: * Pragma Dispatching_Domain:: * Pragma Elaboration_Checks:: * Pragma Eliminate:: * Pragma Enable_Atomic_Synchronization:: * Pragma Export_Exception:: * Pragma Export_Function:: * Pragma Export_Object:: * Pragma Export_Procedure:: * Pragma Export_Value:: * Pragma Export_Valued_Procedure:: * Pragma Extend_System:: * Pragma Extensions_Allowed:: * Pragma External:: * Pragma External_Name_Casing:: * Pragma Fast_Math:: * Pragma Favor_Top_Level:: * Pragma Finalize_Storage_Only:: * Pragma Float_Representation:: * Pragma Global:: * Pragma Ident:: * Pragma Implementation_Defined:: * Pragma Implemented:: * Pragma Implicit_Packing:: * Pragma Import_Exception:: * Pragma Import_Function:: * Pragma Import_Object:: * Pragma Import_Procedure:: * Pragma Import_Valued_Procedure:: * Pragma Independent:: * Pragma Independent_Components:: * Pragma Initial_Condition:: * Pragma Initialize_Scalars:: * Pragma Initializes:: * Pragma Inline_Always:: * Pragma Inline_Generic:: * Pragma Interface:: * Pragma Interface_Name:: * Pragma Interrupt_Handler:: * Pragma Interrupt_State:: * Pragma Invariant:: * Pragma Java_Constructor:: * Pragma Java_Interface:: * Pragma Keep_Names:: * Pragma License:: * Pragma Link_With:: * Pragma Linker_Alias:: * Pragma Linker_Constructor:: * Pragma Linker_Destructor:: * Pragma Linker_Section:: * Pragma Long_Float:: * Pragma Loop_Invariant:: * Pragma Loop_Optimize:: * Pragma Loop_Variant:: * Pragma Machine_Attribute:: * Pragma Main:: * Pragma Main_Storage:: * Pragma No_Body:: * Pragma No_Inline:: * Pragma No_Return:: * Pragma No_Run_Time:: * Pragma No_Strict_Aliasing:: * Pragma Normalize_Scalars:: * Pragma Obsolescent:: * Pragma Optimize_Alignment:: * Pragma Ordered:: * Pragma Overflow_Mode:: * Pragma Overriding_Renamings:: * Pragma Partition_Elaboration_Policy:: * Pragma Passive:: * Pragma Persistent_BSS:: * Pragma Polling:: * Pragma Post:: * Pragma Postcondition:: * Pragma Post_Class:: * Pragma Pre:: * Pragma Precondition:: * Pragma Predicate:: * Pragma Preelaborable_Initialization:: * Pragma Preelaborate_05:: * Pragma Pre_Class:: * Pragma Priority_Specific_Dispatching:: * Pragma Profile:: * Pragma Profile_Warnings:: * Pragma Propagate_Exceptions:: * Pragma Provide_Shift_Operators:: * Pragma Psect_Object:: * Pragma Pure_05:: * Pragma Pure_12:: * Pragma Pure_Function:: * Pragma Ravenscar:: * Pragma Refined_State:: * Pragma Relative_Deadline:: * Pragma Remote_Access_Type:: * Pragma Restricted_Run_Time:: * Pragma Restriction_Warnings:: * Pragma Reviewable:: * Pragma Share_Generic:: * Pragma Shared:: * Pragma Short_Circuit_And_Or:: * Pragma Short_Descriptors:: * Pragma Simple_Storage_Pool_Type:: * Pragma Source_File_Name:: * Pragma Source_File_Name_Project:: * Pragma Source_Reference:: * Pragma SPARK_Mode:: * Pragma Static_Elaboration_Desired:: * Pragma Stream_Convert:: * Pragma Style_Checks:: * Pragma Subtitle:: * Pragma Suppress:: * Pragma Suppress_All:: * Pragma Suppress_Debug_Info:: * Pragma Suppress_Exception_Locations:: * Pragma Suppress_Initialization:: * Pragma Task_Info:: * Pragma Task_Name:: * Pragma Task_Storage:: * Pragma Test_Case:: * Pragma Thread_Local_Storage:: * Pragma Time_Slice:: * Pragma Title:: * Pragma Type_Invariant:: * Pragma Type_Invariant_Class:: * Pragma Unchecked_Union:: * Pragma Unimplemented_Unit:: * Pragma Universal_Aliasing :: * Pragma Universal_Data:: * Pragma Unmodified:: * Pragma Unreferenced:: * Pragma Unreferenced_Objects:: * Pragma Unreserve_All_Interrupts:: * Pragma Unsuppress:: * Pragma Use_VADS_Size:: * Pragma Validity_Checks:: * Pragma Volatile:: * Pragma Warning_As_Error:: * Pragma Warnings:: * Pragma Weak_External:: * Pragma Wide_Character_Encoding:: @end menu @node Pragma Abort_Defer @unnumberedsec Pragma Abort_Defer @findex Abort_Defer @cindex Deferring aborts @noindent Syntax: @smallexample pragma Abort_Defer; @end smallexample @noindent This pragma must appear at the start of the statement sequence of a handled sequence of statements (right after the @code{begin}). It has the effect of deferring aborts for the sequence of statements (but not for the declarations or handlers, if any, associated with this statement sequence). @node Pragma Abstract_State @unnumberedsec Pragma Abstract_State @findex Abstract_State @noindent For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.4. @node Pragma Ada_83 @unnumberedsec Pragma Ada_83 @findex Ada_83 @noindent Syntax: @smallexample @c ada pragma Ada_83; @end smallexample @noindent A configuration pragma that establishes Ada 83 mode for the unit to which it applies, regardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts to be as compatible with the syntax and semantics of Ada 83, as defined in the original Ada 83 Reference Manual as possible. In particular, the keywords added by Ada 95 and Ada 2005 are not recognized, optional package bodies are allowed, and generics may name types with unknown discriminants without using the @code{(<>)} notation. In addition, some but not all of the additional restrictions of Ada 83 are enforced. Ada 83 mode is intended for two purposes. Firstly, it allows existing Ada 83 code to be compiled and adapted to GNAT with less effort. Secondly, it aids in keeping code backwards compatible with Ada 83. However, there is no guarantee that code that is processed correctly by GNAT in Ada 83 mode will in fact compile and execute with an Ada 83 compiler, since GNAT does not enforce all the additional checks required by Ada 83. @node Pragma Ada_95 @unnumberedsec Pragma Ada_95 @findex Ada_95 @noindent Syntax: @smallexample @c ada pragma Ada_95; @end smallexample @noindent A configuration pragma that establishes Ada 95 mode for the unit to which it applies, regardless of the mode set by the command line switches. This mode is set automatically for the @code{Ada} and @code{System} packages and their children, so you need not specify it in these contexts. This pragma is useful when writing a reusable component that itself uses Ada 95 features, but which is intended to be usable from either Ada 83 or Ada 95 programs. @node Pragma Ada_05 @unnumberedsec Pragma Ada_05 @findex Ada_05 @noindent Syntax: @smallexample @c ada pragma Ada_05; pragma Ada_05 (local_NAME); @end smallexample @noindent A configuration pragma that establishes Ada 2005 mode for the unit to which it applies, regardless of the mode set by the command line switches. This pragma is useful when writing a reusable component that itself uses Ada 2005 features, but which is intended to be usable from either Ada 83 or Ada 95 programs. The one argument form (which is not a configuration pragma) is used for managing the transition from Ada 95 to Ada 2005 in the run-time library. If an entity is marked as Ada_2005 only, then referencing the entity in Ada_83 or Ada_95 mode will generate a warning. In addition, in Ada_83 or Ada_95 mode, a preference rule is established which does not choose such an entity unless it is unambiguously specified. This avoids extra subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2005 programs. The one argument form is intended for exclusive use in the GNAT run-time library. @node Pragma Ada_2005 @unnumberedsec Pragma Ada_2005 @findex Ada_2005 @noindent Syntax: @smallexample @c ada pragma Ada_2005; @end smallexample @noindent This configuration pragma is a synonym for pragma Ada_05 and has the same syntax and effect. @node Pragma Ada_12 @unnumberedsec Pragma Ada_12 @findex Ada_12 @noindent Syntax: @smallexample @c ada pragma Ada_12; pragma Ada_12 (local_NAME); @end smallexample @noindent A configuration pragma that establishes Ada 2012 mode for the unit to which it applies, regardless of the mode set by the command line switches. This mode is set automatically for the @code{Ada} and @code{System} packages and their children, so you need not specify it in these contexts. This pragma is useful when writing a reusable component that itself uses Ada 2012 features, but which is intended to be usable from Ada 83, Ada 95, or Ada 2005 programs. The one argument form, which is not a configuration pragma, is used for managing the transition from Ada 2005 to Ada 2012 in the run-time library. If an entity is marked as Ada_201 only, then referencing the entity in any pre-Ada_2012 mode will generate a warning. In addition, in any pre-Ada_2012 mode, a preference rule is established which does not choose such an entity unless it is unambiguously specified. This avoids extra subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2012 programs. The one argument form is intended for exclusive use in the GNAT run-time library. @node Pragma Ada_2012 @unnumberedsec Pragma Ada_2012 @findex Ada_2005 @noindent Syntax: @smallexample @c ada pragma Ada_2012; @end smallexample @noindent This configuration pragma is a synonym for pragma Ada_12 and has the same syntax and effect. @node Pragma Allow_Integer_Address @unnumberedsec Pragma Allow_Integer_Address @findex Allow_Integer_Address @noindent Syntax: @smallexample @c ada pragma Allow_Integer_Address; @end smallexample @noindent In almost all versions of GNAT, @code{System.Address} is a private type in accordance with the implementation advice in the RM. This means that integer values, in particular integer literals, are not allowed as address values. If the configuration pragma @code{Allow_Integer_Address} is given, then integer expressions may be used anywhere a value of type @code{System.Address} is required. The effect is to introduce an implicit unchecked conversion from the integer value to type @code{System.Address}. The reverse case of using an address where an integer type is required is handled analogously. The following example compiles without errors: @smallexample @c ada pragma Allow_Integer_Address; with System; use System; package AddrAsInt is X : Integer; Y : Integer; for X'Address use 16#1240#; for Y use at 16#3230#; m : Address := 16#4000#; n : constant Address := 4000; p : constant Address := Address (X + Y); v : Integer := y'Address; w : constant Integer := Integer (Y'Address); type R is new integer; RR : R := 1000; Z : Integer; for Z'Address use RR; end AddrAsInt; @end smallexample @noindent Note that pragma @code{Allow_Integer_Address} is ignored if @code{System.Address} is not a private type. In implementations of @code{GNAT} where System.Address is a visible integer type (notably the implementations for @code{OpenVMS}), this pragma serves no purpose but is ignored rather than rejected to allow common sets of sources to be used in the two situations. @node Pragma Annotate @unnumberedsec Pragma Annotate @findex Annotate @noindent Syntax: @smallexample @c ada pragma Annotate (IDENTIFIER [,IDENTIFIER @{, ARG@}]); ARG ::= NAME | EXPRESSION @end smallexample @noindent This pragma is used to annotate programs. @var{identifier} identifies the type of annotation. GNAT verifies that it is an identifier, but does not otherwise analyze it. The second optional identifier is also left unanalyzed, and by convention is used to control the action of the tool to which the annotation is addressed. The remaining @var{arg} arguments can be either string literals or more generally expressions. String literals are assumed to be either of type @code{Standard.String} or else @code{Wide_String} or @code{Wide_Wide_String} depending on the character literals they contain. All other kinds of arguments are analyzed as expressions, and must be unambiguous. The analyzed pragma is retained in the tree, but not otherwise processed by any part of the GNAT compiler, except to generate corresponding note lines in the generated ALI file. For the format of these note lines, see the compiler source file lib-writ.ads. This pragma is intended for use by external tools, including ASIS@. The use of pragma Annotate does not affect the compilation process in any way. This pragma may be used as a configuration pragma. @node Pragma Assert @unnumberedsec Pragma Assert @findex Assert @noindent Syntax: @smallexample @c ada pragma Assert ( boolean_EXPRESSION [, string_EXPRESSION]); @end smallexample @noindent The effect of this pragma depends on whether the corresponding command line switch is set to activate assertions. The pragma expands into code equivalent to the following: @smallexample @c ada if assertions-enabled then if not boolean_EXPRESSION then System.Assertions.Raise_Assert_Failure (string_EXPRESSION); end if; end if; @end smallexample @noindent The string argument, if given, is the message that will be associated with the exception occurrence if the exception is raised. If no second argument is given, the default message is @samp{@var{file}:@var{nnn}}, where @var{file} is the name of the source file containing the assert, and @var{nnn} is the line number of the assert. A pragma is not a statement, so if a statement sequence contains nothing but a pragma assert, then a null statement is required in addition, as in: @smallexample @c ada @dots{} if J > 3 then pragma Assert (K > 3, "Bad value for K"); null; end if; @end smallexample @noindent Note that, as with the @code{if} statement to which it is equivalent, the type of the expression is either @code{Standard.Boolean}, or any type derived from this standard type. Assert checks can be either checked or ignored. By default they are ignored. They will be checked if either the command line switch @option{-gnata} is used, or if an @code{Assertion_Policy} or @code{Check_Policy} pragma is used to enable @code{Assert_Checks}. If assertions are ignored, then there is no run-time effect (and in particular, any side effects from the expression will not occur at run time). (The expression is still analyzed at compile time, and may cause types to be frozen if they are mentioned here for the first time). If assertions are checked, then the given expression is tested, and if it is @code{False} then @code{System.Assertions.Raise_Assert_Failure} is called which results in the raising of @code{Assert_Failure} with the given message. You should generally avoid side effects in the expression arguments of this pragma, because these side effects will turn on and off with the setting of the assertions mode, resulting in assertions that have an effect on the program. However, the expressions are analyzed for semantic correctness whether or not assertions are enabled, so turning assertions on and off cannot affect the legality of a program. Note that the implementation defined policy @code{DISABLE}, given in a pragma @code{Assertion_Policy}, can be used to suppress this semantic analysis. Note: this is a standard language-defined pragma in versions of Ada from 2005 on. In GNAT, it is implemented in all versions of Ada, and the DISABLE policy is an implementation-defined addition. @node Pragma Assert_And_Cut @unnumberedsec Pragma Assert_And_Cut @findex Assert_And_Cut @noindent Syntax: @smallexample @c ada pragma Assert_And_Cut ( boolean_EXPRESSION [, string_EXPRESSION]); @end smallexample @noindent The effect of this pragma is identical to that of pragma @code{Assert}, except that in an @code{Assertion_Policy} pragma, the identifier @code{Assert_And_Cut} is used to control whether it is ignored or checked (or disabled). The intention is that this be used within a subprogram when the given test expresion sums up all the work done so far in the subprogram, so that the rest of the subprogram can be verified (informally or formally) using only the entry preconditions, and the expression in this pragma. This allows dividing up a subprogram into sections for the purposes of testing or formal verification. The pragma also serves as useful documentation. @node Pragma Assertion_Policy @unnumberedsec Pragma Assertion_Policy @findex Assertion_Policy @noindent Syntax: @smallexample @c ada pragma Assertion_Policy (CHECK | DISABLE | IGNORE); pragma Assertion_Policy ( ASSERTION_KIND => POLICY_IDENTIFIER @{, ASSERTION_KIND => POLICY_IDENTIFIER@}); ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND RM_ASSERTION_KIND ::= Assert | Static_Predicate | Dynamic_Predicate | Pre | Pre'Class | Post | Post'Class | Type_Invariant | Type_Invariant'Class ID_ASSERTION_KIND ::= Assertions | Assert_And_Cut | Assume | Contract_Cases | Debug | Invariant | Invariant'Class | Loop_Invariant | Loop_Variant | Postcondition | Precondition | Predicate | Refined_Post | Statement_Assertions POLICY_IDENTIFIER ::= Check | Disable | Ignore @end smallexample @noindent This is a standard Ada 2012 pragma that is available as an implementation-defined pragma in earlier versions of Ada. The assertion kinds @code{RM_ASSERTION_KIND} are those defined in the Ada standard. The assertion kinds @code{ID_ASSERTION_KIND} are implementation defined additions recognized by the GNAT compiler. The pragma applies in both cases to pragmas and aspects with matching names, e.g. @code{Pre} applies to the Pre aspect, and @code{Precondition} applies to both the @code{Precondition} pragma and the aspect @code{Precondition}. Note that the identifiers for pragmas Pre_Class and Post_Class are Pre'Class and Post'Class (not Pre_Class and Post_Class), since these pragmas are intended to be identical to the corresponding aspects). If the policy is @code{CHECK}, then assertions are enabled, i.e. the corresponding pragma or aspect is activated. If the policy is @code{IGNORE}, then assertions are ignored, i.e. the corresponding pragma or aspect is deactivated. This pragma overrides the effect of the @option{-gnata} switch on the command line. The implementation defined policy @code{DISABLE} is like @code{IGNORE} except that it completely disables semantic checking of the corresponding pragma or aspect. This is useful when the pragma or aspect argument references subprograms in a with'ed package which is replaced by a dummy package for the final build. The implementation defined policy @code{Assertions} applies to all assertion kinds. The form with no assertion kind given implies this choice, so it applies to all assertion kinds (RM defined, and implementation defined). The implementation defined policy @code{Statement_Assertions} applies to @code{Assert}, @code{Assert_And_Cut}, @code{Assume}, @code{Loop_Invariant}, and @code{Loop_Variant}. @node Pragma Assume @unnumberedsec Pragma Assume @findex Assume @noindent Syntax: @smallexample @c ada pragma Assume ( boolean_EXPRESSION [, string_EXPRESSION]); @end smallexample @noindent The effect of this pragma is identical to that of pragma @code{Assert}, except that in an @code{Assertion_Policy} pragma, the identifier @code{Assume} is used to control whether it is ignored or checked (or disabled). The intention is that this be used for assumptions about the external environment. So you cannot expect to verify formally or informally that the condition is met, this must be established by examining things outside the program itself. For example, we may have code that depends on the size of @code{Long_Long_Integer} being at least 64. So we could write: @smallexample @c ada pragma Assume (Long_Long_Integer'Size >= 64); @end smallexample @noindent This assumption cannot be proved from the program itself, but it acts as a useful run-time check that the assumption is met, and documents the need to ensure that it is met by reference to information outside the program. @node Pragma Assume_No_Invalid_Values @unnumberedsec Pragma Assume_No_Invalid_Values @findex Assume_No_Invalid_Values @cindex Invalid representations @cindex Invalid values @noindent Syntax: @smallexample @c ada pragma Assume_No_Invalid_Values (On | Off); @end smallexample @noindent This is a configuration pragma that controls the assumptions made by the compiler about the occurrence of invalid representations (invalid values) in the code. The default behavior (corresponding to an Off argument for this pragma), is to assume that values may in general be invalid unless the compiler can prove they are valid. Consider the following example: @smallexample @c ada V1 : Integer range 1 .. 10; V2 : Integer range 11 .. 20; ... for J in V2 .. V1 loop ... end loop; @end smallexample @noindent if V1 and V2 have valid values, then the loop is known at compile time not to execute since the lower bound must be greater than the upper bound. However in default mode, no such assumption is made, and the loop may execute. If @code{Assume_No_Invalid_Values (On)} is given, the compiler will assume that any occurrence of a variable other than in an explicit @code{'Valid} test always has a valid value, and the loop above will be optimized away. The use of @code{Assume_No_Invalid_Values (On)} is appropriate if you know your code is free of uninitialized variables and other possible sources of invalid representations, and may result in more efficient code. A program that accesses an invalid representation with this pragma in effect is erroneous, so no guarantees can be made about its behavior. It is peculiar though permissible to use this pragma in conjunction with validity checking (-gnatVa). In such cases, accessing invalid values will generally give an exception, though formally the program is erroneous so there are no guarantees that this will always be the case, and it is recommended that these two options not be used together. @node Pragma Ast_Entry @unnumberedsec Pragma Ast_Entry @cindex OpenVMS @findex Ast_Entry @noindent Syntax: @smallexample @c ada pragma AST_Entry (entry_IDENTIFIER); @end smallexample @noindent This pragma is implemented only in the OpenVMS implementation of GNAT@. The argument is the simple name of a single entry; at most one @code{AST_Entry} pragma is allowed for any given entry. This pragma must be used in conjunction with the @code{AST_Entry} attribute, and is only allowed after the entry declaration and in the same task type specification or single task as the entry to which it applies. This pragma specifies that the given entry may be used to handle an OpenVMS asynchronous system trap (@code{AST}) resulting from an OpenVMS system service call. The pragma does not affect normal use of the entry. For further details on this pragma, see the DEC Ada Language Reference Manual, section 9.12a. @node Pragma Attribute_Definition @unnumberedsec Pragma Attribute_Definition @findex Attribute_Definition @noindent Syntax: @smallexample @c ada pragma Attribute_Definition ([Attribute =>] ATTRIBUTE_DESIGNATOR, [Entity =>] LOCAL_NAME, [Expression =>] EXPRESSION | NAME); @end smallexample @noindent If @code{Attribute} is a known attribute name, this pragma is equivalent to the attribute definition clause: @smallexample @c ada for Entity'Attribute use Expression; @end smallexample If @code{Attribute} is not a recognized attribute name, the pragma is ignored, and a warning is emitted. This allows source code to be written that takes advantage of some new attribute, while remaining compilable with earlier compilers. @node Pragma C_Pass_By_Copy @unnumberedsec Pragma C_Pass_By_Copy @cindex Passing by copy @findex C_Pass_By_Copy @noindent Syntax: @smallexample @c ada pragma C_Pass_By_Copy ([Max_Size =>] static_integer_EXPRESSION); @end smallexample @noindent Normally the default mechanism for passing C convention records to C convention subprograms is to pass them by reference, as suggested by RM B.3(69). Use the configuration pragma @code{C_Pass_By_Copy} to change this default, by requiring that record formal parameters be passed by copy if all of the following conditions are met: @itemize @bullet @item The size of the record type does not exceed the value specified for @code{Max_Size}. @item The record type has @code{Convention C}. @item The formal parameter has this record type, and the subprogram has a foreign (non-Ada) convention. @end itemize @noindent If these conditions are met the argument is passed by copy, i.e.@: in a manner consistent with what C expects if the corresponding formal in the C prototype is a struct (rather than a pointer to a struct). You can also pass records by copy by specifying the convention @code{C_Pass_By_Copy} for the record type, or by using the extended @code{Import} and @code{Export} pragmas, which allow specification of passing mechanisms on a parameter by parameter basis. @node Pragma Check @unnumberedsec Pragma Check @cindex Assertions @cindex Named assertions @findex Check @noindent Syntax: @smallexample @c ada pragma Check ( [Name =>] CHECK_KIND, [Check =>] Boolean_EXPRESSION [, [Message =>] string_EXPRESSION] ); CHECK_KIND ::= IDENTIFIER | Pre'Class | Post'Class | Type_Invariant'Class | Invariant'Class @end smallexample @noindent This pragma is similar to the predefined pragma @code{Assert} except that an extra identifier argument is present. In conjunction with pragma @code{Check_Policy}, this can be used to define groups of assertions that can be independently controlled. The identifier @code{Assertion} is special, it refers to the normal set of pragma @code{Assert} statements. Checks introduced by this pragma are normally deactivated by default. They can be activated either by the command line option @option{-gnata}, which turns on all checks, or individually controlled using pragma @code{Check_Policy}. The identifiers @code{Assertions} and @code{Statement_Assertions} are not permitted as check kinds, since this would cause confusion with the use of these identifiers in @code{Assertion_Policy} and @code{Check_Policy} pragmas, where they are used to refer to sets of assertions. @node Pragma Check_Float_Overflow @unnumberedsec Pragma Check_Float_Overflow @cindex Floating-point overflow @findex Check_Float_Overflow @noindent Syntax: @smallexample @c ada pragma Check_Float_Overflow; @end smallexample @noindent In Ada, the predefined floating-point types (@code{Short_Float}, @code{Float}, @code{Long_Float}, @code{Long_Long_Float}) are defined to be @emph{unconstrained}. This means that even though each has a well-defined base range, an operation that delivers a result outside this base range is not required to raise an exception. This implementation permission accommodates the notion of infinities in IEEE floating-point, and corresponds to the efficient execution mode on most machines. GNAT will not raise overflow exceptions on these machines; instead it will generate infinities and NaN's as defined in the IEEE standard. Generating infinities, although efficient, is not always desirable. Often the preferable approach is to check for overflow, even at the (perhaps considerable) expense of run-time performance. This can be accomplished by defining your own constrained floating-point subtypes -- i.e., by supplying explicit range constraints -- and indeed such a subtype can have the same base range as its base type. For example: @smallexample @c ada subtype My_Float is Float range Float'Range; @end smallexample @noindent Here @code{My_Float} has the same range as @code{Float} but is constrained, so operations on @code{My_Float} values will be checked for overflow against this range. This style will achieve the desired goal, but it is often more convenient to be able to simply use the standard predefined floating-point types as long as overflow checking could be guaranteed. The @code{Check_Float_Overflow} configuration pragma achieves this effect. If a unit is compiled subject to this configuration pragma, then all operations on predefined floating-point types will be treated as though those types were constrained, and overflow checks will be generated. The @code{Constraint_Error} exception is raised if the result is out of range. This mode can also be set by use of the compiler switch @option{-gnateF}. @node Pragma Check_Name @unnumberedsec Pragma Check_Name @cindex Defining check names @cindex Check names, defining @findex Check_Name @noindent Syntax: @smallexample @c ada pragma Check_Name (check_name_IDENTIFIER); @end smallexample @noindent This is a configuration pragma that defines a new implementation defined check name (unless IDENTIFIER matches one of the predefined check names, in which case the pragma has no effect). Check names are global to a partition, so if two or more configuration pragmas are present in a partition mentioning the same name, only one new check name is introduced. An implementation defined check name introduced with this pragma may be used in only three contexts: @code{pragma Suppress}, @code{pragma Unsuppress}, and as the prefix of a @code{Check_Name'Enabled} attribute reference. For any of these three cases, the check name must be visible. A check name is visible if it is in the configuration pragmas applying to the current unit, or if it appears at the start of any unit that is part of the dependency set of the current unit (e.g., units that are mentioned in @code{with} clauses). Check names introduced by this pragma are subject to control by compiler switches (in particular -gnatp) in the usual manner. @node Pragma Check_Policy @unnumberedsec Pragma Check_Policy @cindex Controlling assertions @cindex Assertions, control @cindex Check pragma control @cindex Named assertions @findex Check @noindent Syntax: @smallexample @c ada pragma Check_Policy ([Name =>] CHECK_KIND, [Policy =>] POLICY_IDENTIFIER); pragma Check_Policy ( CHECK_KIND => POLICY_IDENTIFIER @{, CHECK_KIND => POLICY_IDENTIFIER@}); ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND CHECK_KIND ::= IDENTIFIER | Pre'Class | Post'Class | Type_Invariant'Class | Invariant'Class The identifiers Name and Policy are not allowed as CHECK_KIND values. This avoids confusion between the two possible syntax forms for this pragma. POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE @end smallexample @noindent This pragma is used to set the checking policy for assertions (specified by aspects or pragmas), the @code{Debug} pragma, or additional checks to be checked using the @code{Check} pragma. It may appear either as a configuration pragma, or within a declarative part of package. In the latter case, it applies from the point where it appears to the end of the declarative region (like pragma @code{Suppress}). The @code{Check_Policy} pragma is similar to the predefined @code{Assertion_Policy} pragma, and if the check kind corresponds to one of the assertion kinds that are allowed by @code{Assertion_Policy}, then the effect is identical. If the first argument is Debug, then the policy applies to Debug pragmas, disabling their effect if the policy is @code{OFF}, @code{DISABLE}, or @code{IGNORE}, and allowing them to execute with normal semantics if the policy is @code{ON} or @code{CHECK}. In addition if the policy is @code{DISABLE}, then the procedure call in @code{Debug} pragmas will be totally ignored and not analyzed semantically. Finally the first argument may be some other identifier than the above possibilities, in which case it controls a set of named assertions that can be checked using pragma @code{Check}. For example, if the pragma: @smallexample @c ada pragma Check_Policy (Critical_Error, OFF); @end smallexample @noindent is given, then subsequent @code{Check} pragmas whose first argument is also @code{Critical_Error} will be disabled. The check policy is @code{OFF} to turn off corresponding checks, and @code{ON} to turn on corresponding checks. The default for a set of checks for which no @code{Check_Policy} is given is @code{OFF} unless the compiler switch @option{-gnata} is given, which turns on all checks by default. The check policy settings @code{CHECK} and @code{IGNORE} are recognized as synonyms for @code{ON} and @code{OFF}. These synonyms are provided for compatibility with the standard @code{Assertion_Policy} pragma. The check policy setting @code{DISABLE} causes the second argument of a corresponding @code{Check} pragma to be completely ignored and not analyzed. @node Pragma CIL_Constructor @unnumberedsec Pragma CIL_Constructor @findex CIL_Constructor @noindent Syntax: @smallexample @c ada pragma CIL_Constructor ([Entity =>] function_LOCAL_NAME); @end smallexample @noindent This pragma is used to assert that the specified Ada function should be mapped to the .NET constructor for some Ada tagged record type. See section 4.1 of the @code{GNAT User's Guide: Supplement for the .NET Platform.} for related information. @node Pragma Comment @unnumberedsec Pragma Comment @findex Comment @noindent Syntax: @smallexample @c ada pragma Comment (static_string_EXPRESSION); @end smallexample @noindent This is almost identical in effect to pragma @code{Ident}. It allows the placement of a comment into the object file and hence into the executable file if the operating system permits such usage. The difference is that @code{Comment}, unlike @code{Ident}, has no limitations on placement of the pragma (it can be placed anywhere in the main source unit), and if more than one pragma is used, all comments are retained. @node Pragma Common_Object @unnumberedsec Pragma Common_Object @findex Common_Object @noindent Syntax: @smallexample @c ada pragma Common_Object ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Size =>] EXTERNAL_SYMBOL] ); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION @end smallexample @noindent This pragma enables the shared use of variables stored in overlaid linker areas corresponding to the use of @code{COMMON} in Fortran. The single object @var{LOCAL_NAME} is assigned to the area designated by the @var{External} argument. You may define a record to correspond to a series of fields. The @var{Size} argument is syntax checked in GNAT, but otherwise ignored. @code{Common_Object} is not supported on all platforms. If no support is available, then the code generator will issue a message indicating that the necessary attribute for implementation of this pragma is not available. @node Pragma Compile_Time_Error @unnumberedsec Pragma Compile_Time_Error @findex Compile_Time_Error @noindent Syntax: @smallexample @c ada pragma Compile_Time_Error (boolean_EXPRESSION, static_string_EXPRESSION); @end smallexample @noindent This pragma can be used to generate additional compile time error messages. It is particularly useful in generics, where errors can be issued for specific problematic instantiations. The first parameter is a boolean expression. The pragma is effective only if the value of this expression is known at compile time, and has the value True. The set of expressions whose values are known at compile time includes all static boolean expressions, and also other values which the compiler can determine at compile time (e.g., the size of a record type set by an explicit size representation clause, or the value of a variable which was initialized to a constant and is known not to have been modified). If these conditions are met, an error message is generated using the value given as the second argument. This string value may contain embedded ASCII.LF characters to break the message into multiple lines. @node Pragma Compile_Time_Warning @unnumberedsec Pragma Compile_Time_Warning @findex Compile_Time_Warning @noindent Syntax: @smallexample @c ada pragma Compile_Time_Warning (boolean_EXPRESSION, static_string_EXPRESSION); @end smallexample @noindent Same as pragma Compile_Time_Error, except a warning is issued instead of an error message. Note that if this pragma is used in a package that is with'ed by a client, the client will get the warning even though it is issued by a with'ed package (normally warnings in with'ed units are suppressed, but this is a special exception to that rule). One typical use is within a generic where compile time known characteristics of formal parameters are tested, and warnings given appropriately. Another use with a first parameter of True is to warn a client about use of a package, for example that it is not fully implemented. @node Pragma Compiler_Unit @unnumberedsec Pragma Compiler_Unit @findex Compiler_Unit @noindent Syntax: @smallexample @c ada pragma Compiler_Unit; @end smallexample @noindent This pragma is obsolete. It is equivalent to Compiler_Unit_Warning. It is retained so that old versions of the GNAT run-time that use this pragma can be compiled with newer versions of the compiler. @node Pragma Compiler_Unit_Warning @unnumberedsec Pragma Compiler_Unit_Warning @findex Compiler_Unit_Warning @noindent Syntax: @smallexample @c ada pragma Compiler_Unit_Warning; @end smallexample @noindent This pragma is intended only for internal use in the GNAT run-time library. It indicates that the unit is used as part of the compiler build. The effect is to generate warnings for the use of constructs (for example, conditional expressions) that would cause trouble when bootstrapping using an older version of GNAT. For the exact list of restrictions, see the compiler sources and references to Check_Compiler_Unit. @node Pragma Complete_Representation @unnumberedsec Pragma Complete_Representation @findex Complete_Representation @noindent Syntax: @smallexample @c ada pragma Complete_Representation; @end smallexample @noindent This pragma must appear immediately within a record representation clause. Typical placements are before the first component clause or after the last component clause. The effect is to give an error message if any component is missing a component clause. This pragma may be used to ensure that a record representation clause is complete, and that this invariant is maintained if fields are added to the record in the future. @node Pragma Complex_Representation @unnumberedsec Pragma Complex_Representation @findex Complex_Representation @noindent Syntax: @smallexample @c ada pragma Complex_Representation ([Entity =>] LOCAL_NAME); @end smallexample @noindent The @var{Entity} argument must be the name of a record type which has two fields of the same floating-point type. The effect of this pragma is to force gcc to use the special internal complex representation form for this record, which may be more efficient. Note that this may result in the code for this type not conforming to standard ABI (application binary interface) requirements for the handling of record types. For example, in some environments, there is a requirement for passing records by pointer, and the use of this pragma may result in passing this type in floating-point registers. @node Pragma Component_Alignment @unnumberedsec Pragma Component_Alignment @cindex Alignments of components @findex Component_Alignment @noindent Syntax: @smallexample @c ada pragma Component_Alignment ( [Form =>] ALIGNMENT_CHOICE [, [Name =>] type_LOCAL_NAME]); ALIGNMENT_CHOICE ::= Component_Size | Component_Size_4 | Storage_Unit | Default @end smallexample @noindent Specifies the alignment of components in array or record types. The meaning of the @var{Form} argument is as follows: @table @code @findex Component_Size @item Component_Size Aligns scalar components and subcomponents of the array or record type on boundaries appropriate to their inherent size (naturally aligned). For example, 1-byte components are aligned on byte boundaries, 2-byte integer components are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-byte boundaries and so on. These alignment rules correspond to the normal rules for C compilers on all machines except the VAX@. @findex Component_Size_4 @item Component_Size_4 Naturally aligns components with a size of four or fewer bytes. Components that are larger than 4 bytes are placed on the next 4-byte boundary. @findex Storage_Unit @item Storage_Unit Specifies that array or record components are byte aligned, i.e.@: aligned on boundaries determined by the value of the constant @code{System.Storage_Unit}. @cindex OpenVMS @item Default Specifies that array or record components are aligned on default boundaries, appropriate to the underlying hardware or operating system or both. For OpenVMS VAX systems, the @code{Default} choice is the same as the @code{Storage_Unit} choice (byte alignment). For all other systems, the @code{Default} choice is the same as @code{Component_Size} (natural alignment). @end table @noindent If the @code{Name} parameter is present, @var{type_LOCAL_NAME} must refer to a local record or array type, and the specified alignment choice applies to the specified type. The use of @code{Component_Alignment} together with a pragma @code{Pack} causes the @code{Component_Alignment} pragma to be ignored. The use of @code{Component_Alignment} together with a record representation clause is only effective for fields not specified by the representation clause. If the @code{Name} parameter is absent, the pragma can be used as either a configuration pragma, in which case it applies to one or more units in accordance with the normal rules for configuration pragmas, or it can be used within a declarative part, in which case it applies to types that are declared within this declarative part, or within any nested scope within this declarative part. In either case it specifies the alignment to be applied to any record or array type which has otherwise standard representation. If the alignment for a record or array type is not specified (using pragma @code{Pack}, pragma @code{Component_Alignment}, or a record rep clause), the GNAT uses the default alignment as described previously. @node Pragma Contract_Cases @unnumberedsec Pragma Contract_Cases @cindex Contract cases @findex Contract_Cases @noindent Syntax: @smallexample @c ada pragma Contract_Cases ( Condition => Consequence @{,Condition => Consequence@}); @end smallexample @noindent The @code{Contract_Cases} pragma allows defining fine-grain specifications that can complement or replace the contract given by a precondition and a postcondition. Additionally, the @code{Contract_Cases} pragma can be used by testing and formal verification tools. The compiler checks its validity and, depending on the assertion policy at the point of declaration of the pragma, it may insert a check in the executable. For code generation, the contract cases @smallexample @c ada pragma Contract_Cases ( Cond1 => Pred1, Cond2 => Pred2); @end smallexample @noindent are equivalent to @smallexample @c ada C1 : constant Boolean := Cond1; -- evaluated at subprogram entry C2 : constant Boolean := Cond2; -- evaluated at subprogram entry pragma Precondition ((C1 and not C2) or (C2 and not C1)); pragma Postcondition (if C1 then Pred1); pragma Postcondition (if C2 then Pred2); @end smallexample @noindent The precondition ensures that one and only one of the conditions is satisfied on entry to the subprogram. The postcondition ensures that for the condition that was True on entry, the corrresponding consequence is True on exit. Other consequence expressions are not evaluated. A precondition @code{P} and postcondition @code{Q} can also be expressed as contract cases: @smallexample @c ada pragma Contract_Cases (P => Q); @end smallexample The placement and visibility rules for @code{Contract_Cases} pragmas are identical to those described for preconditions and postconditions. The compiler checks that boolean expressions given in conditions and consequences are valid, where the rules for conditions are the same as the rule for an expression in @code{Precondition} and the rules for consequences are the same as the rule for an expression in @code{Postcondition}. In particular, attributes @code{'Old} and @code{'Result} can only be used within consequence expressions. The condition for the last contract case may be @code{others}, to denote any case not captured by the previous cases. The following is an example of use within a package spec: @smallexample @c ada package Math_Functions is ... function Sqrt (Arg : Float) return Float; pragma Contract_Cases ((Arg in 0 .. 99) => Sqrt'Result < 10, Arg >= 100 => Sqrt'Result >= 10, others => Sqrt'Result = 0); ... end Math_Functions; @end smallexample @noindent The meaning of contract cases is that only one case should apply at each call, as determined by the corresponding condition evaluating to True, and that the consequence for this case should hold when the subprogram returns. @node Pragma Convention_Identifier @unnumberedsec Pragma Convention_Identifier @findex Convention_Identifier @cindex Conventions, synonyms @noindent Syntax: @smallexample @c ada pragma Convention_Identifier ( [Name =>] IDENTIFIER, [Convention =>] convention_IDENTIFIER); @end smallexample @noindent This pragma provides a mechanism for supplying synonyms for existing convention identifiers. The @code{Name} identifier can subsequently be used as a synonym for the given convention in other pragmas (including for example pragma @code{Import} or another @code{Convention_Identifier} pragma). As an example of the use of this, suppose you had legacy code which used Fortran77 as the identifier for Fortran. Then the pragma: @smallexample @c ada pragma Convention_Identifier (Fortran77, Fortran); @end smallexample @noindent would allow the use of the convention identifier @code{Fortran77} in subsequent code, avoiding the need to modify the sources. As another example, you could use this to parameterize convention requirements according to systems. Suppose you needed to use @code{Stdcall} on windows systems, and @code{C} on some other system, then you could define a convention identifier @code{Library} and use a single @code{Convention_Identifier} pragma to specify which convention would be used system-wide. @node Pragma CPP_Class @unnumberedsec Pragma CPP_Class @findex CPP_Class @cindex Interfacing with C++ @noindent Syntax: @smallexample @c ada pragma CPP_Class ([Entity =>] LOCAL_NAME); @end smallexample @noindent The argument denotes an entity in the current declarative region that is declared as a record type. It indicates that the type corresponds to an externally declared C++ class type, and is to be laid out the same way that C++ would lay out the type. If the C++ class has virtual primitives then the record must be declared as a tagged record type. Types for which @code{CPP_Class} is specified do not have assignment or equality operators defined (such operations can be imported or declared as subprograms as required). Initialization is allowed only by constructor functions (see pragma @code{CPP_Constructor}). Such types are implicitly limited if not explicitly declared as limited or derived from a limited type, and an error is issued in that case. See @ref{Interfacing to C++} for related information. Note: Pragma @code{CPP_Class} is currently obsolete. It is supported for backward compatibility but its functionality is available using pragma @code{Import} with @code{Convention} = @code{CPP}. @node Pragma CPP_Constructor @unnumberedsec Pragma CPP_Constructor @cindex Interfacing with C++ @findex CPP_Constructor @noindent Syntax: @smallexample @c ada pragma CPP_Constructor ([Entity =>] LOCAL_NAME [, [External_Name =>] static_string_EXPRESSION ] [, [Link_Name =>] static_string_EXPRESSION ]); @end smallexample @noindent This pragma identifies an imported function (imported in the usual way with pragma @code{Import}) as corresponding to a C++ constructor. If @code{External_Name} and @code{Link_Name} are not specified then the @code{Entity} argument is a name that must have been previously mentioned in a pragma @code{Import} with @code{Convention} = @code{CPP}. Such name must be of one of the following forms: @itemize @bullet @item @code{function @var{Fname} return @var{T}} @itemize @bullet @item @code{function @var{Fname} return @var{T}'Class} @item @code{function @var{Fname} (@dots{}) return @var{T}} @end itemize @item @code{function @var{Fname} (@dots{}) return @var{T}'Class} @end itemize @noindent where @var{T} is a limited record type imported from C++ with pragma @code{Import} and @code{Convention} = @code{CPP}. The first two forms import the default constructor, used when an object of type @var{T} is created on the Ada side with no explicit constructor. The latter two forms cover all the non-default constructors of the type. See the @value{EDITION} User's Guide for details. If no constructors are imported, it is impossible to create any objects on the Ada side and the type is implicitly declared abstract. Pragma @code{CPP_Constructor} is intended primarily for automatic generation using an automatic binding generator tool (such as the @code{-fdump-ada-spec} GCC switch). See @ref{Interfacing to C++} for more related information. Note: The use of functions returning class-wide types for constructors is currently obsolete. They are supported for backward compatibility. The use of functions returning the type T leave the Ada sources more clear because the imported C++ constructors always return an object of type T; that is, they never return an object whose type is a descendant of type T. @node Pragma CPP_Virtual @unnumberedsec Pragma CPP_Virtual @cindex Interfacing to C++ @findex CPP_Virtual @noindent This pragma is now obsolete and, other than generating a warning if warnings on obsolescent features are enabled, is completely ignored. It is retained for compatibility purposes. It used to be required to ensure compoatibility with C++, but is no longer required for that purpose because GNAT generates the same object layout as the G++ compiler by default. See @ref{Interfacing to C++} for related information. @node Pragma CPP_Vtable @unnumberedsec Pragma CPP_Vtable @cindex Interfacing with C++ @findex CPP_Vtable @noindent This pragma is now obsolete and, other than generating a warning if warnings on obsolescent features are enabled, is completely ignored. It used to be required to ensure compatibility with C++, but is no longer required for that purpose because GNAT generates the same object layout than the G++ compiler by default. See @ref{Interfacing to C++} for related information. @node Pragma CPU @unnumberedsec Pragma CPU @findex CPU @noindent Syntax: @smallexample @c ada pragma CPU (EXPRESSION); @end smallexample @noindent This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an implementation-defined pragma. See Ada 2012 Reference Manual for details. @node Pragma Debug @unnumberedsec Pragma Debug @findex Debug @noindent Syntax: @smallexample @c ada pragma Debug ([CONDITION, ]PROCEDURE_CALL_WITHOUT_SEMICOLON); PROCEDURE_CALL_WITHOUT_SEMICOLON ::= PROCEDURE_NAME | PROCEDURE_PREFIX ACTUAL_PARAMETER_PART @end smallexample @noindent The procedure call argument has the syntactic form of an expression, meeting the syntactic requirements for pragmas. If debug pragmas are not enabled or if the condition is present and evaluates to False, this pragma has no effect. If debug pragmas are enabled, the semantics of the pragma is exactly equivalent to the procedure call statement corresponding to the argument with a terminating semicolon. Pragmas are permitted in sequences of declarations, so you can use pragma @code{Debug} to intersperse calls to debug procedures in the middle of declarations. Debug pragmas can be enabled either by use of the command line switch @option{-gnata} or by use of the pragma @code{Check_Policy} with a first argument of @code{Debug}. @node Pragma Debug_Policy @unnumberedsec Pragma Debug_Policy @findex Debug_Policy @noindent Syntax: @smallexample @c ada pragma Debug_Policy (CHECK | DISABLE | IGNORE | ON | OFF); @end smallexample @noindent This pragma is equivalent to a corresponding @code{Check_Policy} pragma with a first argument of @code{Debug}. It is retained for historical compatibility reasons. @node Pragma Default_Storage_Pool @unnumberedsec Pragma Default_Storage_Pool @findex Default_Storage_Pool @noindent Syntax: @smallexample @c ada pragma Default_Storage_Pool (storage_pool_NAME | null); @end smallexample @noindent This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an implementation-defined pragma. See Ada 2012 Reference Manual for details. @node Pragma Depends @unnumberedsec Pragma Depends @findex Depends @noindent For the description of this pragma, see SPARK 2014 Reference Manual, section 6.1.5. @node Pragma Detect_Blocking @unnumberedsec Pragma Detect_Blocking @findex Detect_Blocking @noindent Syntax: @smallexample @c ada pragma Detect_Blocking; @end smallexample @noindent This is a standard pragma in Ada 2005, that is available in all earlier versions of Ada as an implementation-defined pragma. This is a configuration pragma that forces the detection of potentially blocking operations within a protected operation, and to raise Program_Error if that happens. @node Pragma Disable_Atomic_Synchronization @unnumberedsec Pragma Disable_Atomic_Synchronization @cindex Atomic Synchronization @findex Disable_Atomic_Synchronization @noindent Syntax: @smallexample @c ada pragma Disable_Atomic_Synchronization [(Entity)]; @end smallexample @noindent Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchronization points in the case of multiple tasks. Particularly in the case of multi-processors this may require special handling, e.g. the generation of memory barriers. This capability may be turned off using this pragma in cases where it is known not to be required. The placement and scope rules for this pragma are the same as those for @code{pragma Suppress}. In particular it can be used as a configuration pragma, or in a declaration sequence where it applies till the end of the scope. If an @code{Entity} argument is present, the action applies only to that entity. @node Pragma Dispatching_Domain @unnumberedsec Pragma Dispatching_Domain @findex Dispatching_Domain @noindent Syntax: @smallexample @c ada pragma Dispatching_Domain (EXPRESSION); @end smallexample @noindent This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an implementation-defined pragma. See Ada 2012 Reference Manual for details. @node Pragma Elaboration_Checks @unnumberedsec Pragma Elaboration_Checks @cindex Elaboration control @findex Elaboration_Checks @noindent Syntax: @smallexample @c ada pragma Elaboration_Checks (Dynamic | Static); @end smallexample @noindent This is a configuration pragma that provides control over the elaboration model used by the compilation affected by the pragma. If the parameter is @code{Dynamic}, then the dynamic elaboration model described in the Ada Reference Manual is used, as though the @option{-gnatE} switch had been specified on the command line. If the parameter is @code{Static}, then the default GNAT static model is used. This configuration pragma overrides the setting of the command line. For full details on the elaboration models used by the GNAT compiler, see @ref{Elaboration Order Handling in GNAT,,, gnat_ugn, @value{EDITION} User's Guide}. @node Pragma Eliminate @unnumberedsec Pragma Eliminate @cindex Elimination of unused subprograms @findex Eliminate @noindent Syntax: @smallexample @c ada pragma Eliminate ([Entity =>] DEFINING_DESIGNATOR, [Source_Location =>] STRING_LITERAL); @end smallexample @noindent The string literal given for the source location is a string which specifies the line number of the occurrence of the entity, using the syntax for SOURCE_TRACE given below: @smallexample @c ada SOURCE_TRACE ::= SOURCE_REFERENCE [LBRACKET SOURCE_TRACE RBRACKET] LBRACKET ::= [ RBRACKET ::= ] SOURCE_REFERENCE ::= FILE_NAME : LINE_NUMBER LINE_NUMBER ::= DIGIT @{DIGIT@} @end smallexample @noindent Spaces around the colon in a @code{Source_Reference} are optional. The @code{DEFINING_DESIGNATOR} matches the defining designator used in an explicit subprogram declaration, where the @code{entity} name in this designator appears on the source line specified by the source location. The source trace that is given as the @code{Source_Location} shall obey the following rules. The @code{FILE_NAME} is the short name (with no directory information) of an Ada source file, given using exactly the required syntax for the underlying file system (e.g. case is important if the underlying operating system is case sensitive). @code{LINE_NUMBER} gives the line number of the occurrence of the @code{entity} as a decimal literal without an exponent or point. If an @code{entity} is not declared in a generic instantiation (this includes generic subprogram instances), the source trace includes only one source reference. If an entity is declared inside a generic instantiation, its source trace (when parsing from left to right) starts with the source location of the declaration of the entity in the generic unit and ends with the source location of the instantiation (it is given in square brackets). This approach is recursively used in case of nested instantiations: the rightmost (nested most deeply in square brackets) element of the source trace is the location of the outermost instantiation, the next to left element is the location of the next (first nested) instantiation in the code of the corresponding generic unit, and so on, and the leftmost element (that is out of any square brackets) is the location of the declaration of the entity to eliminate in a generic unit. Note that the @code{Source_Location} argument specifies which of a set of similarly named entities is being eliminated, dealing both with overloading, and also appearance of the same entity name in different scopes. This pragma indicates that the given entity is not used in the program to be compiled and built. The effect of the pragma is to allow the compiler to eliminate the code or data associated with the named entity. Any reference to an eliminated entity causes a compile-time or link-time error. The intention of pragma @code{Eliminate} is to allow a program to be compiled in a system-independent manner, with unused entities eliminated, without needing to modify the source text. Normally the required set of @code{Eliminate} pragmas is constructed automatically using the gnatelim tool. Any source file change that removes, splits, or adds lines may make the set of Eliminate pragmas invalid because their @code{Source_Location} argument values may get out of date. Pragma @code{Eliminate} may be used where the referenced entity is a dispatching operation. In this case all the subprograms to which the given operation can dispatch are considered to be unused (are never called as a result of a direct or a dispatching call). @node Pragma Enable_Atomic_Synchronization @unnumberedsec Pragma Enable_Atomic_Synchronization @cindex Atomic Synchronization @findex Enable_Atomic_Synchronization @noindent Syntax: @smallexample @c ada pragma Enable_Atomic_Synchronization [(Entity)]; @end smallexample @noindent Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchronization points in the case of multiple tasks. Particularly in the case of multi-processors this may require special handling, e.g. the generation of memory barriers. This synchronization is performed by default, but can be turned off using @code{pragma Disable_Atomic_Synchronization}. The @code{Enable_Atomic_Synchronization} pragma can be used to turn it back on. The placement and scope rules for this pragma are the same as those for @code{pragma Unsuppress}. In particular it can be used as a configuration pragma, or in a declaration sequence where it applies till the end of the scope. If an @code{Entity} argument is present, the action applies only to that entity. @node Pragma Export_Exception @unnumberedsec Pragma Export_Exception @cindex OpenVMS @findex Export_Exception @noindent Syntax: @smallexample @c ada pragma Export_Exception ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Form =>] Ada | VMS] [, [Code =>] static_integer_EXPRESSION]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION @end smallexample @noindent This pragma is implemented only in the OpenVMS implementation of GNAT@. It causes the specified exception to be propagated outside of the Ada program, so that it can be handled by programs written in other OpenVMS languages. This pragma establishes an external name for an Ada exception and makes the name available to the OpenVMS Linker as a global symbol. For further details on this pragma, see the DEC Ada Language Reference Manual, section 13.9a3.2. @node Pragma Export_Function @unnumberedsec Pragma Export_Function @cindex Argument passing mechanisms @findex Export_Function @noindent Syntax: @smallexample @c ada pragma Export_Function ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Parameter_Types =>] PARAMETER_TYPES] [, [Result_Type =>] result_SUBTYPE_MARK] [, [Mechanism =>] MECHANISM] [, [Result_Mechanism =>] MECHANISM_NAME]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION | "" PARAMETER_TYPES ::= null | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@} TYPE_DESIGNATOR ::= subtype_NAME | subtype_Name ' Access MECHANISM ::= MECHANISM_NAME | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@}) MECHANISM_ASSOCIATION ::= [formal_parameter_NAME =>] MECHANISM_NAME MECHANISM_NAME ::= Value | Reference | Descriptor [([Class =>] CLASS_NAME)] | Short_Descriptor [([Class =>] CLASS_NAME)] CLASS_NAME ::= ubs | ubsb | uba | s | sb | a @end smallexample @noindent Use this pragma to make a function externally callable and optionally provide information on mechanisms to be used for passing parameter and result values. We recommend, for the purposes of improving portability, this pragma always be used in conjunction with a separate pragma @code{Export}, which must precede the pragma @code{Export_Function}. GNAT does not require a separate pragma @code{Export}, but if none is present, @code{Convention Ada} is assumed, which is usually not what is wanted, so it is usually appropriate to use this pragma in conjunction with a @code{Export} or @code{Convention} pragma that specifies the desired foreign convention. Pragma @code{Export_Function} (and @code{Export}, if present) must appear in the same declarative region as the function to which they apply. @var{internal_name} must uniquely designate the function to which the pragma applies. If more than one function name exists of this name in the declarative part you must use the @code{Parameter_Types} and @code{Result_Type} parameters is mandatory to achieve the required unique designation. @var{subtype_mark}s in these parameters must exactly match the subtypes in the corresponding function specification, using positional notation to match parameters with subtype marks. The form with an @code{'Access} attribute can be used to match an anonymous access parameter. @cindex OpenVMS @cindex Passing by descriptor Passing by descriptor is supported only on the OpenVMS ports of GNAT@. The default behavior for Export_Function is to accept either 64bit or 32bit descriptors unless short_descriptor is specified, then only 32bit descriptors are accepted. @cindex Suppressing external name Special treatment is given if the EXTERNAL is an explicit null string or a static string expressions that evaluates to the null string. In this case, no external name is generated. This form still allows the specification of parameter mechanisms. @node Pragma Export_Object @unnumberedsec Pragma Export_Object @findex Export_Object @noindent Syntax: @smallexample @c ada pragma Export_Object [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Size =>] EXTERNAL_SYMBOL] EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION @end smallexample @noindent This pragma designates an object as exported, and apart from the extended rules for external symbols, is identical in effect to the use of the normal @code{Export} pragma applied to an object. You may use a separate Export pragma (and you probably should from the point of view of portability), but it is not required. @var{Size} is syntax checked, but otherwise ignored by GNAT@. @node Pragma Export_Procedure @unnumberedsec Pragma Export_Procedure @findex Export_Procedure @noindent Syntax: @smallexample @c ada pragma Export_Procedure ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Parameter_Types =>] PARAMETER_TYPES] [, [Mechanism =>] MECHANISM]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION | "" PARAMETER_TYPES ::= null | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@} TYPE_DESIGNATOR ::= subtype_NAME | subtype_Name ' Access MECHANISM ::= MECHANISM_NAME | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@}) MECHANISM_ASSOCIATION ::= [formal_parameter_NAME =>] MECHANISM_NAME MECHANISM_NAME ::= Value | Reference | Descriptor [([Class =>] CLASS_NAME)] | Short_Descriptor [([Class =>] CLASS_NAME)] CLASS_NAME ::= ubs | ubsb | uba | s | sb | a @end smallexample @noindent This pragma is identical to @code{Export_Function} except that it applies to a procedure rather than a function and the parameters @code{Result_Type} and @code{Result_Mechanism} are not permitted. GNAT does not require a separate pragma @code{Export}, but if none is present, @code{Convention Ada} is assumed, which is usually not what is wanted, so it is usually appropriate to use this pragma in conjunction with a @code{Export} or @code{Convention} pragma that specifies the desired foreign convention. @cindex OpenVMS @cindex Passing by descriptor Passing by descriptor is supported only on the OpenVMS ports of GNAT@. The default behavior for Export_Procedure is to accept either 64bit or 32bit descriptors unless short_descriptor is specified, then only 32bit descriptors are accepted. @cindex Suppressing external name Special treatment is given if the EXTERNAL is an explicit null string or a static string expressions that evaluates to the null string. In this case, no external name is generated. This form still allows the specification of parameter mechanisms. @node Pragma Export_Value @unnumberedsec Pragma Export_Value @findex Export_Value @noindent Syntax: @smallexample @c ada pragma Export_Value ( [Value =>] static_integer_EXPRESSION, [Link_Name =>] static_string_EXPRESSION); @end smallexample @noindent This pragma serves to export a static integer value for external use. The first argument specifies the value to be exported. The Link_Name argument specifies the symbolic name to be associated with the integer value. This pragma is useful for defining a named static value in Ada that can be referenced in assembly language units to be linked with the application. This pragma is currently supported only for the AAMP target and is ignored for other targets. @node Pragma Export_Valued_Procedure @unnumberedsec Pragma Export_Valued_Procedure @findex Export_Valued_Procedure @noindent Syntax: @smallexample @c ada pragma Export_Valued_Procedure ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Parameter_Types =>] PARAMETER_TYPES] [, [Mechanism =>] MECHANISM]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION | "" PARAMETER_TYPES ::= null | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@} TYPE_DESIGNATOR ::= subtype_NAME | subtype_Name ' Access MECHANISM ::= MECHANISM_NAME | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@}) MECHANISM_ASSOCIATION ::= [formal_parameter_NAME =>] MECHANISM_NAME MECHANISM_NAME ::= Value | Reference | Descriptor [([Class =>] CLASS_NAME)] | Short_Descriptor [([Class =>] CLASS_NAME)] CLASS_NAME ::= ubs | ubsb | uba | s | sb | a @end smallexample @noindent This pragma is identical to @code{Export_Procedure} except that the first parameter of @var{LOCAL_NAME}, which must be present, must be of mode @code{OUT}, and externally the subprogram is treated as a function with this parameter as the result of the function. GNAT provides for this capability to allow the use of @code{OUT} and @code{IN OUT} parameters in interfacing to external functions (which are not permitted in Ada functions). GNAT does not require a separate pragma @code{Export}, but if none is present, @code{Convention Ada} is assumed, which is almost certainly not what is wanted since the whole point of this pragma is to interface with foreign language functions, so it is usually appropriate to use this pragma in conjunction with a @code{Export} or @code{Convention} pragma that specifies the desired foreign convention. @cindex OpenVMS @cindex Passing by descriptor Passing by descriptor is supported only on the OpenVMS ports of GNAT@. The default behavior for Export_Valued_Procedure is to accept either 64bit or 32bit descriptors unless short_descriptor is specified, then only 32bit descriptors are accepted. @cindex Suppressing external name Special treatment is given if the EXTERNAL is an explicit null string or a static string expressions that evaluates to the null string. In this case, no external name is generated. This form still allows the specification of parameter mechanisms. @node Pragma Extend_System @unnumberedsec Pragma Extend_System @cindex @code{system}, extending @cindex Dec Ada 83 @findex Extend_System @noindent Syntax: @smallexample @c ada pragma Extend_System ([Name =>] IDENTIFIER); @end smallexample @noindent This pragma is used to provide backwards compatibility with other implementations that extend the facilities of package @code{System}. In GNAT, @code{System} contains only the definitions that are present in the Ada RM@. However, other implementations, notably the DEC Ada 83 implementation, provide many extensions to package @code{System}. For each such implementation accommodated by this pragma, GNAT provides a package @code{Aux_@var{xxx}}, e.g.@: @code{Aux_DEC} for the DEC Ada 83 implementation, which provides the required additional definitions. You can use this package in two ways. You can @code{with} it in the normal way and access entities either by selection or using a @code{use} clause. In this case no special processing is required. However, if existing code contains references such as @code{System.@var{xxx}} where @var{xxx} is an entity in the extended definitions provided in package @code{System}, you may use this pragma to extend visibility in @code{System} in a non-standard way that provides greater compatibility with the existing code. Pragma @code{Extend_System} is a configuration pragma whose single argument is the name of the package containing the extended definition (e.g.@: @code{Aux_DEC} for the DEC Ada case). A unit compiled under control of this pragma will be processed using special visibility processing that looks in package @code{System.Aux_@var{xxx}} where @code{Aux_@var{xxx}} is the pragma argument for any entity referenced in package @code{System}, but not found in package @code{System}. You can use this pragma either to access a predefined @code{System} extension supplied with the compiler, for example @code{Aux_DEC} or you can construct your own extension unit following the above definition. Note that such a package is a child of @code{System} and thus is considered part of the implementation. To compile it you will have to use the @option{-gnatg} switch, or the @option{/GNAT_INTERNAL} qualifier on OpenVMS, for compiling System units, as explained in the @value{EDITION} User's Guide. @node Pragma Extensions_Allowed @unnumberedsec Pragma Extensions_Allowed @cindex Ada Extensions @cindex GNAT Extensions @findex Extensions_Allowed @noindent Syntax: @smallexample @c ada pragma Extensions_Allowed (On | Off); @end smallexample @noindent This configuration pragma enables or disables the implementation extension mode (the use of Off as a parameter cancels the effect of the @option{-gnatX} command switch). In extension mode, the latest version of the Ada language is implemented (currently Ada 2012), and in addition a small number of GNAT specific extensions are recognized as follows: @table @asis @item Constrained attribute for generic objects The @code{Constrained} attribute is permitted for objects of generic types. The result indicates if the corresponding actual is constrained. @end table @node Pragma External @unnumberedsec Pragma External @findex External @noindent Syntax: @smallexample @c ada pragma External ( [ Convention =>] convention_IDENTIFIER, [ Entity =>] LOCAL_NAME [, [External_Name =>] static_string_EXPRESSION ] [, [Link_Name =>] static_string_EXPRESSION ]); @end smallexample @noindent This pragma is identical in syntax and semantics to pragma @code{Export} as defined in the Ada Reference Manual. It is provided for compatibility with some Ada 83 compilers that used this pragma for exactly the same purposes as pragma @code{Export} before the latter was standardized. @node Pragma External_Name_Casing @unnumberedsec Pragma External_Name_Casing @cindex Dec Ada 83 casing compatibility @cindex External Names, casing @cindex Casing of External names @findex External_Name_Casing @noindent Syntax: @smallexample @c ada pragma External_Name_Casing ( Uppercase | Lowercase [, Uppercase | Lowercase | As_Is]); @end smallexample @noindent This pragma provides control over the casing of external names associated with Import and Export pragmas. There are two cases to consider: @table @asis @item Implicit external names Implicit external names are derived from identifiers. The most common case arises when a standard Ada Import or Export pragma is used with only two arguments, as in: @smallexample @c ada pragma Import (C, C_Routine); @end smallexample @noindent Since Ada is a case-insensitive language, the spelling of the identifier in the Ada source program does not provide any information on the desired casing of the external name, and so a convention is needed. In GNAT the default treatment is that such names are converted to all lower case letters. This corresponds to the normal C style in many environments. The first argument of pragma @code{External_Name_Casing} can be used to control this treatment. If @code{Uppercase} is specified, then the name will be forced to all uppercase letters. If @code{Lowercase} is specified, then the normal default of all lower case letters will be used. This same implicit treatment is also used in the case of extended DEC Ada 83 compatible Import and Export pragmas where an external name is explicitly specified using an identifier rather than a string. @item Explicit external names Explicit external names are given as string literals. The most common case arises when a standard Ada Import or Export pragma is used with three arguments, as in: @smallexample @c ada pragma Import (C, C_Routine, "C_routine"); @end smallexample @noindent In this case, the string literal normally provides the exact casing required for the external name. The second argument of pragma @code{External_Name_Casing} may be used to modify this behavior. If @code{Uppercase} is specified, then the name will be forced to all uppercase letters. If @code{Lowercase} is specified, then the name will be forced to all lowercase letters. A specification of @code{As_Is} provides the normal default behavior in which the casing is taken from the string provided. @end table @noindent This pragma may appear anywhere that a pragma is valid. In particular, it can be used as a configuration pragma in the @file{gnat.adc} file, in which case it applies to all subsequent compilations, or it can be used as a program unit pragma, in which case it only applies to the current unit, or it can be used more locally to control individual Import/Export pragmas. It is primarily intended for use with OpenVMS systems, where many compilers convert all symbols to upper case by default. For interfacing to such compilers (e.g.@: the DEC C compiler), it may be convenient to use the pragma: @smallexample @c ada pragma External_Name_Casing (Uppercase, Uppercase); @end smallexample @noindent to enforce the upper casing of all external symbols. @node Pragma Fast_Math @unnumberedsec Pragma Fast_Math @findex Fast_Math @noindent Syntax: @smallexample @c ada pragma Fast_Math; @end smallexample @noindent This is a configuration pragma which activates a mode in which speed is considered more important for floating-point operations than absolutely accurate adherence to the requirements of the standard. Currently the following operations are affected: @table @asis @item Complex Multiplication The normal simple formula for complex multiplication can result in intermediate overflows for numbers near the end of the range. The Ada standard requires that this situation be detected and corrected by scaling, but in Fast_Math mode such cases will simply result in overflow. Note that to take advantage of this you must instantiate your own version of @code{Ada.Numerics.Generic_Complex_Types} under control of the pragma, rather than use the preinstantiated versions. @end table @node Pragma Favor_Top_Level @unnumberedsec Pragma Favor_Top_Level @findex Favor_Top_Level @noindent Syntax: @smallexample @c ada pragma Favor_Top_Level (type_NAME); @end smallexample @noindent The named type must be an access-to-subprogram type. This pragma is an efficiency hint to the compiler, regarding the use of 'Access or 'Unrestricted_Access on nested (non-library-level) subprograms. The pragma means that nested subprograms are not used with this type, or are rare, so that the generated code should be efficient in the top-level case. When this pragma is used, dynamically generated trampolines may be used on some targets for nested subprograms. See also the No_Implicit_Dynamic_Code restriction. @node Pragma Finalize_Storage_Only @unnumberedsec Pragma Finalize_Storage_Only @findex Finalize_Storage_Only @noindent Syntax: @smallexample @c ada pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME); @end smallexample @noindent This pragma allows the compiler not to emit a Finalize call for objects defined at the library level. This is mostly useful for types where finalization is only used to deal with storage reclamation since in most environments it is not necessary to reclaim memory just before terminating execution, hence the name. @node Pragma Float_Representation @unnumberedsec Pragma Float_Representation @cindex OpenVMS @findex Float_Representation @noindent Syntax: @smallexample @c ada pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]); FLOAT_REP ::= VAX_Float | IEEE_Float @end smallexample @noindent In the one argument form, this pragma is a configuration pragma which allows control over the internal representation chosen for the predefined floating point types declared in the packages @code{Standard} and @code{System}. On all systems other than OpenVMS, the argument must be @code{IEEE_Float} and the pragma has no effect. On OpenVMS, the argument may be @code{VAX_Float} to specify the use of the VAX float format for the floating-point types in Standard. This requires that the standard runtime libraries be recompiled. The two argument form specifies the representation to be used for the specified floating-point type. On all systems other than OpenVMS, the argument must be @code{IEEE_Float} to specify the use of IEEE format, as follows: @itemize @bullet @item For a digits value of 6, 32-bit IEEE short format will be used. @item For a digits value of 15, 64-bit IEEE long format will be used. @item No other value of digits is permitted. @end itemize On OpenVMS, the argument may be @code{VAX_Float} to specify the use of the VAX float format, as follows: @itemize @bullet @item For digits values up to 6, F float format will be used. @item For digits values from 7 to 9, D float format will be used. @item For digits values from 10 to 15, G float format will be used. @item Digits values above 15 are not allowed. @end itemize @node Pragma Global @unnumberedsec Pragma Global @findex Global @noindent For the description of this pragma, see SPARK 2014 Reference Manual, section 6.1.4. @node Pragma Ident @unnumberedsec Pragma Ident @findex Ident @noindent Syntax: @smallexample @c ada pragma Ident (static_string_EXPRESSION); @end smallexample @noindent This pragma provides a string identification in the generated object file, if the system supports the concept of this kind of identification string. This pragma is allowed only in the outermost declarative part or declarative items of a compilation unit. If more than one @code{Ident} pragma is given, only the last one processed is effective. @cindex OpenVMS On OpenVMS systems, the effect of the pragma is identical to the effect of the DEC Ada 83 pragma of the same name. Note that in DEC Ada 83, the maximum allowed length is 31 characters, so if it is important to maintain compatibility with this compiler, you should obey this length limit. @node Pragma Implementation_Defined @unnumberedsec Pragma Implementation_Defined @findex Implementation_Defined @noindent Syntax: @smallexample @c ada pragma Implementation_Defined (local_NAME); @end smallexample @noindent This pragma marks a previously declared entioty as implementation-defined. For an overloaded entity, applies to the most recent homonym. @smallexample @c ada pragma Implementation_Defined; @end smallexample @noindent The form with no arguments appears anywhere within a scope, most typically a package spec, and indicates that all entities that are defined within the package spec are Implementation_Defined. This pragma is used within the GNAT runtime library to identify implementation-defined entities introduced in language-defined units, for the purpose of implementing the No_Implementation_Identifiers restriction. @node Pragma Implemented @unnumberedsec Pragma Implemented @findex Implemented @noindent Syntax: @smallexample @c ada pragma Implemented (procedure_LOCAL_NAME, implementation_kind); implementation_kind ::= By_Entry | By_Protected_Procedure | By_Any @end smallexample @noindent This is an Ada 2012 representation pragma which applies to protected, task and synchronized interface primitives. The use of pragma Implemented provides a way to impose a static requirement on the overriding operation by adhering to one of the three implementation kinds: entry, protected procedure or any of the above. This pragma is available in all earlier versions of Ada as an implementation-defined pragma. @smallexample @c ada type Synch_Iface is synchronized interface; procedure Prim_Op (Obj : in out Iface) is abstract; pragma Implemented (Prim_Op, By_Protected_Procedure); protected type Prot_1 is new Synch_Iface with procedure Prim_Op; -- Legal end Prot_1; protected type Prot_2 is new Synch_Iface with entry Prim_Op; -- Illegal end Prot_2; task type Task_Typ is new Synch_Iface with entry Prim_Op; -- Illegal end Task_Typ; @end smallexample @noindent When applied to the procedure_or_entry_NAME of a requeue statement, pragma Implemented determines the runtime behavior of the requeue. Implementation kind By_Entry guarantees that the action of requeueing will proceed from an entry to another entry. Implementation kind By_Protected_Procedure transforms the requeue into a dispatching call, thus eliminating the chance of blocking. Kind By_Any shares the behavior of By_Entry and By_Protected_Procedure depending on the target's overriding subprogram kind. @node Pragma Implicit_Packing @unnumberedsec Pragma Implicit_Packing @findex Implicit_Packing @cindex Rational Profile @noindent Syntax: @smallexample @c ada pragma Implicit_Packing; @end smallexample @noindent This is a configuration pragma that requests implicit packing for packed arrays for which a size clause is given but no explicit pragma Pack or specification of Component_Size is present. It also applies to records where no record representation clause is present. Consider this example: @smallexample @c ada type R is array (0 .. 7) of Boolean; for R'Size use 8; @end smallexample @noindent In accordance with the recommendation in the RM (RM 13.3(53)), a Size clause does not change the layout of a composite object. So the Size clause in the above example is normally rejected, since the default layout of the array uses 8-bit components, and thus the array requires a minimum of 64 bits. If this declaration is compiled in a region of code covered by an occurrence of the configuration pragma Implicit_Packing, then the Size clause in this and similar examples will cause implicit packing and thus be accepted. For this implicit packing to occur, the type in question must be an array of small components whose size is known at compile time, and the Size clause must specify the exact size that corresponds to the number of elements in the array multiplied by the size in bits of the component type (both single and multi-dimensioned arrays can be controlled with this pragma). @cindex Array packing Similarly, the following example shows the use in the record case @smallexample @c ada type r is record a, b, c, d, e, f, g, h : boolean; chr : character; end record; for r'size use 16; @end smallexample @noindent Without a pragma Pack, each Boolean field requires 8 bits, so the minimum size is 72 bits, but with a pragma Pack, 16 bits would be sufficient. The use of pragma Implicit_Packing allows this record declaration to compile without an explicit pragma Pack. @node Pragma Import_Exception @unnumberedsec Pragma Import_Exception @cindex OpenVMS @findex Import_Exception @noindent Syntax: @smallexample @c ada pragma Import_Exception ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Form =>] Ada | VMS] [, [Code =>] static_integer_EXPRESSION]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION @end smallexample @noindent This pragma is implemented only in the OpenVMS implementation of GNAT@. It allows OpenVMS conditions (for example, from OpenVMS system services or other OpenVMS languages) to be propagated to Ada programs as Ada exceptions. The pragma specifies that the exception associated with an exception declaration in an Ada program be defined externally (in non-Ada code). For further details on this pragma, see the DEC Ada Language Reference Manual, section 13.9a.3.1. @node Pragma Import_Function @unnumberedsec Pragma Import_Function @findex Import_Function @noindent Syntax: @smallexample @c ada pragma Import_Function ( [Internal =>] LOCAL_NAME, [, [External =>] EXTERNAL_SYMBOL] [, [Parameter_Types =>] PARAMETER_TYPES] [, [Result_Type =>] SUBTYPE_MARK] [, [Mechanism =>] MECHANISM] [, [Result_Mechanism =>] MECHANISM_NAME] [, [First_Optional_Parameter =>] IDENTIFIER]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION PARAMETER_TYPES ::= null | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@} TYPE_DESIGNATOR ::= subtype_NAME | subtype_Name ' Access MECHANISM ::= MECHANISM_NAME | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@}) MECHANISM_ASSOCIATION ::= [formal_parameter_NAME =>] MECHANISM_NAME MECHANISM_NAME ::= Value | Reference | Descriptor [([Class =>] CLASS_NAME)] | Short_Descriptor [([Class =>] CLASS_NAME)] CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca @end smallexample @noindent This pragma is used in conjunction with a pragma @code{Import} to specify additional information for an imported function. The pragma @code{Import} (or equivalent pragma @code{Interface}) must precede the @code{Import_Function} pragma and both must appear in the same declarative part as the function specification. The @var{Internal} argument must uniquely designate the function to which the pragma applies. If more than one function name exists of this name in the declarative part you must use the @code{Parameter_Types} and @var{Result_Type} parameters to achieve the required unique designation. Subtype marks in these parameters must exactly match the subtypes in the corresponding function specification, using positional notation to match parameters with subtype marks. The form with an @code{'Access} attribute can be used to match an anonymous access parameter. You may optionally use the @var{Mechanism} and @var{Result_Mechanism} parameters to specify passing mechanisms for the parameters and result. If you specify a single mechanism name, it applies to all parameters. Otherwise you may specify a mechanism on a parameter by parameter basis using either positional or named notation. If the mechanism is not specified, the default mechanism is used. @cindex OpenVMS @cindex Passing by descriptor Passing by descriptor is supported only on the OpenVMS ports of GNAT@. The default behavior for Import_Function is to pass a 64bit descriptor unless short_descriptor is specified, then a 32bit descriptor is passed. @code{First_Optional_Parameter} applies only to OpenVMS ports of GNAT@. It specifies that the designated parameter and all following parameters are optional, meaning that they are not passed at the generated code level (this is distinct from the notion of optional parameters in Ada where the parameters are passed anyway with the designated optional parameters). All optional parameters must be of mode @code{IN} and have default parameter values that are either known at compile time expressions, or uses of the @code{'Null_Parameter} attribute. @node Pragma Import_Object @unnumberedsec Pragma Import_Object @findex Import_Object @noindent Syntax: @smallexample @c ada pragma Import_Object [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Size =>] EXTERNAL_SYMBOL]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION @end smallexample @noindent This pragma designates an object as imported, and apart from the extended rules for external symbols, is identical in effect to the use of the normal @code{Import} pragma applied to an object. Unlike the subprogram case, you need not use a separate @code{Import} pragma, although you may do so (and probably should do so from a portability point of view). @var{size} is syntax checked, but otherwise ignored by GNAT@. @node Pragma Import_Procedure @unnumberedsec Pragma Import_Procedure @findex Import_Procedure @noindent Syntax: @smallexample @c ada pragma Import_Procedure ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Parameter_Types =>] PARAMETER_TYPES] [, [Mechanism =>] MECHANISM] [, [First_Optional_Parameter =>] IDENTIFIER]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION PARAMETER_TYPES ::= null | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@} TYPE_DESIGNATOR ::= subtype_NAME | subtype_Name ' Access MECHANISM ::= MECHANISM_NAME | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@}) MECHANISM_ASSOCIATION ::= [formal_parameter_NAME =>] MECHANISM_NAME MECHANISM_NAME ::= Value | Reference | Descriptor [([Class =>] CLASS_NAME)] | Short_Descriptor [([Class =>] CLASS_NAME)] CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca @end smallexample @noindent This pragma is identical to @code{Import_Function} except that it applies to a procedure rather than a function and the parameters @code{Result_Type} and @code{Result_Mechanism} are not permitted. @node Pragma Import_Valued_Procedure @unnumberedsec Pragma Import_Valued_Procedure @findex Import_Valued_Procedure @noindent Syntax: @smallexample @c ada pragma Import_Valued_Procedure ( [Internal =>] LOCAL_NAME [, [External =>] EXTERNAL_SYMBOL] [, [Parameter_Types =>] PARAMETER_TYPES] [, [Mechanism =>] MECHANISM] [, [First_Optional_Parameter =>] IDENTIFIER]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION PARAMETER_TYPES ::= null | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@} TYPE_DESIGNATOR ::= subtype_NAME | subtype_Name ' Access MECHANISM ::= MECHANISM_NAME | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@}) MECHANISM_ASSOCIATION ::= [formal_parameter_NAME =>] MECHANISM_NAME MECHANISM_NAME ::= Value | Reference | Descriptor [([Class =>] CLASS_NAME)] | Short_Descriptor [([Class =>] CLASS_NAME)] CLASS_NAME ::= ubs | ubsb | uba | s | sb | a | nca @end smallexample @noindent This pragma is identical to @code{Import_Procedure} except that the first parameter of @var{LOCAL_NAME}, which must be present, must be of mode @code{OUT}, and externally the subprogram is treated as a function with this parameter as the result of the function. The purpose of this capability is to allow the use of @code{OUT} and @code{IN OUT} parameters in interfacing to external functions (which are not permitted in Ada functions). You may optionally use the @code{Mechanism} parameters to specify passing mechanisms for the parameters. If you specify a single mechanism name, it applies to all parameters. Otherwise you may specify a mechanism on a parameter by parameter basis using either positional or named notation. If the mechanism is not specified, the default mechanism is used. Note that it is important to use this pragma in conjunction with a separate pragma Import that specifies the desired convention, since otherwise the default convention is Ada, which is almost certainly not what is required. @node Pragma Independent @unnumberedsec Pragma Independent @findex Independent @noindent Syntax: @smallexample @c ada pragma Independent (Local_NAME); @end smallexample @noindent This pragma is standard in Ada 2012 mode (which also provides an aspect of the same name). It is also available as an implementation-defined pragma in all earlier versions. It specifies that the designated object or all objects of the designated type must be independently addressable. This means that separate tasks can safely manipulate such objects. For example, if two components of a record are independent, then two separate tasks may access these two components. This may place constraints on the representation of the object (for instance prohibiting tight packing). @node Pragma Independent_Components @unnumberedsec Pragma Independent_Components @findex Independent_Components @noindent Syntax: @smallexample @c ada pragma Independent_Components (Local_NAME); @end smallexample @noindent This pragma is standard in Ada 2012 mode (which also provides an aspect of the same name). It is also available as an implementation-defined pragma in all earlier versions. It specifies that the components of the designated object, or the components of each object of the designated type, must be independently addressable. This means that separate tasks can safely manipulate separate components in the composite object. This may place constraints on the representation of the object (for instance prohibiting tight packing). @node Pragma Initial_Condition @unnumberedsec Pragma Initial_Condition @findex Initial_Condition @noindent For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.6. @node Pragma Initialize_Scalars @unnumberedsec Pragma Initialize_Scalars @findex Initialize_Scalars @cindex debugging with Initialize_Scalars @noindent Syntax: @smallexample @c ada pragma Initialize_Scalars; @end smallexample @noindent This pragma is similar to @code{Normalize_Scalars} conceptually but has two important differences. First, there is no requirement for the pragma to be used uniformly in all units of a partition, in particular, it is fine to use this just for some or all of the application units of a partition, without needing to recompile the run-time library. In the case where some units are compiled with the pragma, and some without, then a declaration of a variable where the type is defined in package Standard or is locally declared will always be subject to initialization, as will any declaration of a scalar variable. For composite variables, whether the variable is initialized may also depend on whether the package in which the type of the variable is declared is compiled with the pragma. The other important difference is that you can control the value used for initializing scalar objects. At bind time, you can select several options for initialization. You can initialize with invalid values (similar to Normalize_Scalars, though for Initialize_Scalars it is not always possible to determine the invalid values in complex cases like signed component fields with non-standard sizes). You can also initialize with high or low values, or with a specified bit pattern. See the @value{EDITION} User's Guide for binder options for specifying these cases. This means that you can compile a program, and then without having to recompile the program, you can run it with different values being used for initializing otherwise uninitialized values, to test if your program behavior depends on the choice. Of course the behavior should not change, and if it does, then most likely you have an incorrect reference to an uninitialized value. It is even possible to change the value at execution time eliminating even the need to rebind with a different switch using an environment variable. See the @value{EDITION} User's Guide for details. Note that pragma @code{Initialize_Scalars} is particularly useful in conjunction with the enhanced validity checking that is now provided in GNAT, which checks for invalid values under more conditions. Using this feature (see description of the @option{-gnatV} flag in the @value{EDITION} User's Guide) in conjunction with pragma @code{Initialize_Scalars} provides a powerful new tool to assist in the detection of problems caused by uninitialized variables. Note: the use of @code{Initialize_Scalars} has a fairly extensive effect on the generated code. This may cause your code to be substantially larger. It may also cause an increase in the amount of stack required, so it is probably a good idea to turn on stack checking (see description of stack checking in the @value{EDITION} User's Guide) when using this pragma. @node Pragma Initializes @unnumberedsec Pragma Initializes @findex Initializes @noindent For the description of this pragma, see SPARK 2014 Reference Manual, section 7.1.5. @node Pragma Inline_Always @unnumberedsec Pragma Inline_Always @findex Inline_Always @noindent Syntax: @smallexample @c ada pragma Inline_Always (NAME [, NAME]); @end smallexample @noindent Similar to pragma @code{Inline} except that inlining is not subject to the use of option @option{-gnatn} or @option{-gnatN} and the inlining happens regardless of whether these options are used. @node Pragma Inline_Generic @unnumberedsec Pragma Inline_Generic @findex Inline_Generic @noindent Syntax: @smallexample @c ada pragma Inline_Generic (GNAME @{, GNAME@}); GNAME ::= generic_unit_NAME | generic_instance_NAME @end smallexample @noindent This pragma is provided for compatibility with Dec Ada 83. It has no effect in @code{GNAT} (which always inlines generics), other than to check that the given names are all names of generic units or generic instances. @node Pragma Interface @unnumberedsec Pragma Interface @findex Interface @noindent Syntax: @smallexample @c ada pragma Interface ( [Convention =>] convention_identifier, [Entity =>] local_NAME [, [External_Name =>] static_string_expression] [, [Link_Name =>] static_string_expression]); @end smallexample @noindent This pragma is identical in syntax and semantics to the standard Ada pragma @code{Import}. It is provided for compatibility with Ada 83. The definition is upwards compatible both with pragma @code{Interface} as defined in the Ada 83 Reference Manual, and also with some extended implementations of this pragma in certain Ada 83 implementations. The only difference between pragma @code{Interface} and pragma @code{Import} is that there is special circuitry to allow both pragmas to appear for the same subprogram entity (normally it is illegal to have multiple @code{Import} pragmas. This is useful in maintaining Ada 83/Ada 95 compatibility and is compatible with other Ada 83 compilers. @node Pragma Interface_Name @unnumberedsec Pragma Interface_Name @findex Interface_Name @noindent Syntax: @smallexample @c ada pragma Interface_Name ( [Entity =>] LOCAL_NAME [, [External_Name =>] static_string_EXPRESSION] [, [Link_Name =>] static_string_EXPRESSION]); @end smallexample @noindent This pragma provides an alternative way of specifying the interface name for an interfaced subprogram, and is provided for compatibility with Ada 83 compilers that use the pragma for this purpose. You must provide at least one of @var{External_Name} or @var{Link_Name}. @node Pragma Interrupt_Handler @unnumberedsec Pragma Interrupt_Handler @findex Interrupt_Handler @noindent Syntax: @smallexample @c ada pragma Interrupt_Handler (procedure_LOCAL_NAME); @end smallexample @noindent This program unit pragma is supported for parameterless protected procedures as described in Annex C of the Ada Reference Manual. On the AAMP target the pragma can also be specified for nonprotected parameterless procedures that are declared at the library level (which includes procedures declared at the top level of a library package). In the case of AAMP, when this pragma is applied to a nonprotected procedure, the instruction @code{IERET} is generated for returns from the procedure, enabling maskable interrupts, in place of the normal return instruction. @node Pragma Interrupt_State @unnumberedsec Pragma Interrupt_State @findex Interrupt_State @noindent Syntax: @smallexample @c ada pragma Interrupt_State ([Name =>] value, [State =>] SYSTEM | RUNTIME | USER); @end smallexample @noindent Normally certain interrupts are reserved to the implementation. Any attempt to attach an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical example is the @code{SIGINT} interrupt used in many systems for an @kbd{Ctrl-C} interrupt. Normally this interrupt is reserved to the implementation, so that @kbd{Ctrl-C} can be used to interrupt execution. Additionally, signals such as @code{SIGSEGV}, @code{SIGABRT}, @code{SIGFPE} and @code{SIGILL} are often mapped to specific Ada exceptions, or used to implement run-time functions such as the @code{abort} statement and stack overflow checking. Pragma @code{Interrupt_State} provides a general mechanism for overriding such uses of interrupts. It subsumes the functionality of pragma @code{Unreserve_All_Interrupts}. Pragma @code{Interrupt_State} is not available on Windows or VMS. On all other platforms than VxWorks, it applies to signals; on VxWorks, it applies to vectored hardware interrupts and may be used to mark interrupts required by the board support package as reserved. Interrupts can be in one of three states: @itemize @bullet @item System The interrupt is reserved (no Ada handler can be installed), and the Ada run-time may not install a handler. As a result you are guaranteed standard system default action if this interrupt is raised. @item Runtime The interrupt is reserved (no Ada handler can be installed). The run time is allowed to install a handler for internal control purposes, but is not required to do so. @item User The interrupt is unreserved. The user may install a handler to provide some other action. @end itemize @noindent These states are the allowed values of the @code{State} parameter of the pragma. The @code{Name} parameter is a value of the type @code{Ada.Interrupts.Interrupt_ID}. Typically, it is a name declared in @code{Ada.Interrupts.Names}. This is a configuration pragma, and the binder will check that there are no inconsistencies between different units in a partition in how a given interrupt is specified. It may appear anywhere a pragma is legal. The effect is to move the interrupt to the specified state. By declaring interrupts to be SYSTEM, you guarantee the standard system action, such as a core dump. By declaring interrupts to be USER, you guarantee that you can install a handler. Note that certain signals on many operating systems cannot be caught and handled by applications. In such cases, the pragma is ignored. See the operating system documentation, or the value of the array @code{Reserved} declared in the spec of package @code{System.OS_Interface}. Overriding the default state of signals used by the Ada runtime may interfere with an application's runtime behavior in the cases of the synchronous signals, and in the case of the signal used to implement the @code{abort} statement. @node Pragma Invariant @unnumberedsec Pragma Invariant @findex Invariant @noindent Syntax: @smallexample @c ada pragma Invariant ([Entity =>] private_type_LOCAL_NAME, [Check =>] EXPRESSION [,[Message =>] String_Expression]); @end smallexample @noindent This pragma provides exactly the same capabilities as the Type_Invariant aspect defined in AI05-0146-1, and in the Ada 2012 Reference Manual. The Type_Invariant aspect is fully implemented in Ada 2012 mode, but since it requires the use of the aspect syntax, which is not available except in 2012 mode, it is not possible to use the Type_Invariant aspect in earlier versions of Ada. However the Invariant pragma may be used in any version of Ada. Also note that the aspect Invariant is a synonym in GNAT for the aspect Type_Invariant, but there is no pragma Type_Invariant. The pragma must appear within the visible part of the package specification, after the type to which its Entity argument appears. As with the Invariant aspect, the Check expression is not analyzed until the end of the visible part of the package, so it may contain forward references. The Message argument, if present, provides the exception message used if the invariant is violated. If no Message parameter is provided, a default message that identifies the line on which the pragma appears is used. It is permissible to have multiple Invariants for the same type entity, in which case they are and'ed together. It is permissible to use this pragma in Ada 2012 mode, but you cannot have both an invariant aspect and an invariant pragma for the same entity. For further details on the use of this pragma, see the Ada 2012 documentation of the Type_Invariant aspect. @node Pragma Java_Constructor @unnumberedsec Pragma Java_Constructor @findex Java_Constructor @noindent Syntax: @smallexample @c ada pragma Java_Constructor ([Entity =>] function_LOCAL_NAME); @end smallexample @noindent This pragma is used to assert that the specified Ada function should be mapped to the Java constructor for some Ada tagged record type. See section 7.3.2 of the @code{GNAT User's Guide: Supplement for the JVM Platform.} for related information. @node Pragma Java_Interface @unnumberedsec Pragma Java_Interface @findex Java_Interface @noindent Syntax: @smallexample @c ada pragma Java_Interface ([Entity =>] abstract_tagged_type_LOCAL_NAME); @end smallexample @noindent This pragma is used to assert that the specified Ada abstract tagged type is to be mapped to a Java interface name. See sections 7.1 and 7.2 of the @code{GNAT User's Guide: Supplement for the JVM Platform.} for related information. @node Pragma Keep_Names @unnumberedsec Pragma Keep_Names @findex Keep_Names @noindent Syntax: @smallexample @c ada pragma Keep_Names ([On =>] enumeration_first_subtype_LOCAL_NAME); @end smallexample @noindent The @var{LOCAL_NAME} argument must refer to an enumeration first subtype in the current declarative part. The effect is to retain the enumeration literal names for use by @code{Image} and @code{Value} even if a global @code{Discard_Names} pragma applies. This is useful when you want to generally suppress enumeration literal names and for example you therefore use a @code{Discard_Names} pragma in the @file{gnat.adc} file, but you want to retain the names for specific enumeration types. @node Pragma License @unnumberedsec Pragma License @findex License @cindex License checking @noindent Syntax: @smallexample @c ada pragma License (Unrestricted | GPL | Modified_GPL | Restricted); @end smallexample @noindent This pragma is provided to allow automated checking for appropriate license conditions with respect to the standard and modified GPL@. A pragma @code{License}, which is a configuration pragma that typically appears at the start of a source file or in a separate @file{gnat.adc} file, specifies the licensing conditions of a unit as follows: @itemize @bullet @item Unrestricted This is used for a unit that can be freely used with no license restrictions. Examples of such units are public domain units, and units from the Ada Reference Manual. @item GPL This is used for a unit that is licensed under the unmodified GPL, and which therefore cannot be @code{with}'ed by a restricted unit. @item Modified_GPL This is used for a unit licensed under the GNAT modified GPL that includes a special exception paragraph that specifically permits the inclusion of the unit in programs without requiring the entire program to be released under the GPL@. @item Restricted This is used for a unit that is restricted in that it is not permitted to depend on units that are licensed under the GPL@. Typical examples are proprietary code that is to be released under more restrictive license conditions. Note that restricted units are permitted to @code{with} units which are licensed under the modified GPL (this is the whole point of the modified GPL). @end itemize @noindent Normally a unit with no @code{License} pragma is considered to have an unknown license, and no checking is done. However, standard GNAT headers are recognized, and license information is derived from them as follows. @itemize @bullet A GNAT license header starts with a line containing 78 hyphens. The following comment text is searched for the appearance of any of the following strings. If the string ``GNU General Public License'' is found, then the unit is assumed to have GPL license, unless the string ``As a special exception'' follows, in which case the license is assumed to be modified GPL@. If one of the strings ``This specification is adapted from the Ada Semantic Interface'' or ``This specification is derived from the Ada Reference Manual'' is found then the unit is assumed to be unrestricted. @end itemize @noindent These default actions means that a program with a restricted license pragma will automatically get warnings if a GPL unit is inappropriately @code{with}'ed. For example, the program: @smallexample @c ada with Sem_Ch3; with GNAT.Sockets; procedure Secret_Stuff is @dots{} end Secret_Stuff @end smallexample @noindent if compiled with pragma @code{License} (@code{Restricted}) in a @file{gnat.adc} file will generate the warning: @smallexample 1. with Sem_Ch3; | >>> license of withed unit "Sem_Ch3" is incompatible 2. with GNAT.Sockets; 3. procedure Secret_Stuff is @end smallexample @noindent Here we get a warning on @code{Sem_Ch3} since it is part of the GNAT compiler and is licensed under the GPL, but no warning for @code{GNAT.Sockets} which is part of the GNAT run time, and is therefore licensed under the modified GPL@. @node Pragma Link_With @unnumberedsec Pragma Link_With @findex Link_With @noindent Syntax: @smallexample @c ada pragma Link_With (static_string_EXPRESSION @{,static_string_EXPRESSION@}); @end smallexample @noindent This pragma is provided for compatibility with certain Ada 83 compilers. It has exactly the same effect as pragma @code{Linker_Options} except that spaces occurring within one of the string expressions are treated as separators. For example, in the following case: @smallexample @c ada pragma Link_With ("-labc -ldef"); @end smallexample @noindent results in passing the strings @code{-labc} and @code{-ldef} as two separate arguments to the linker. In addition pragma Link_With allows multiple arguments, with the same effect as successive pragmas. @node Pragma Linker_Alias @unnumberedsec Pragma Linker_Alias @findex Linker_Alias @noindent Syntax: @smallexample @c ada pragma Linker_Alias ( [Entity =>] LOCAL_NAME, [Target =>] static_string_EXPRESSION); @end smallexample @noindent @var{LOCAL_NAME} must refer to an object that is declared at the library level. This pragma establishes the given entity as a linker alias for the given target. It is equivalent to @code{__attribute__((alias))} in GNU C and causes @var{LOCAL_NAME} to be emitted as an alias for the symbol @var{static_string_EXPRESSION} in the object file, that is to say no space is reserved for @var{LOCAL_NAME} by the assembler and it will be resolved to the same address as @var{static_string_EXPRESSION} by the linker. The actual linker name for the target must be used (e.g.@: the fully encoded name with qualification in Ada, or the mangled name in C++), or it must be declared using the C convention with @code{pragma Import} or @code{pragma Export}. Not all target machines support this pragma. On some of them it is accepted only if @code{pragma Weak_External} has been applied to @var{LOCAL_NAME}. @smallexample @c ada -- Example of the use of pragma Linker_Alias package p is i : Integer := 1; pragma Export (C, i); new_name_for_i : Integer; pragma Linker_Alias (new_name_for_i, "i"); end p; @end smallexample @node Pragma Linker_Constructor @unnumberedsec Pragma Linker_Constructor @findex Linker_Constructor @noindent Syntax: @smallexample @c ada pragma Linker_Constructor (procedure_LOCAL_NAME); @end smallexample @noindent @var{procedure_LOCAL_NAME} must refer to a parameterless procedure that is declared at the library level. A procedure to which this pragma is applied will be treated as an initialization routine by the linker. It is equivalent to @code{__attribute__((constructor))} in GNU C and causes @var{procedure_LOCAL_NAME} to be invoked before the entry point of the executable is called (or immediately after the shared library is loaded if the procedure is linked in a shared library), in particular before the Ada run-time environment is set up. Because of these specific contexts, the set of operations such a procedure can perform is very limited and the type of objects it can manipulate is essentially restricted to the elementary types. In particular, it must only contain code to which pragma Restrictions (No_Elaboration_Code) applies. This pragma is used by GNAT to implement auto-initialization of shared Stand Alone Libraries, which provides a related capability without the restrictions listed above. Where possible, the use of Stand Alone Libraries is preferable to the use of this pragma. @node Pragma Linker_Destructor @unnumberedsec Pragma Linker_Destructor @findex Linker_Destructor @noindent Syntax: @smallexample @c ada pragma Linker_Destructor (procedure_LOCAL_NAME); @end smallexample @noindent @var{procedure_LOCAL_NAME} must refer to a parameterless procedure that is declared at the library level. A procedure to which this pragma is applied will be treated as a finalization routine by the linker. It is equivalent to @code{__attribute__((destructor))} in GNU C and causes @var{procedure_LOCAL_NAME} to be invoked after the entry point of the executable has exited (or immediately before the shared library is unloaded if the procedure is linked in a shared library), in particular after the Ada run-time environment is shut down. See @code{pragma Linker_Constructor} for the set of restrictions that apply because of these specific contexts. @node Pragma Linker_Section @unnumberedsec Pragma Linker_Section @findex Linker_Section @noindent Syntax: @smallexample @c ada pragma Linker_Section ( [Entity =>] LOCAL_NAME, [Section =>] static_string_EXPRESSION); @end smallexample @noindent @var{LOCAL_NAME} must refer to an object, type, or subprogram that is declared at the library level. This pragma specifies the name of the linker section for the given entity. It is equivalent to @code{__attribute__((section))} in GNU C and causes @var{LOCAL_NAME} to be placed in the @var{static_string_EXPRESSION} section of the executable (assuming the linker doesn't rename the section). GNAT also provides an implementation defined aspect of the same name. In the case of specifying this aspect for a type, the effect is to specify the corresponding for all library level objects of the type which do not have an explicit linker section set. Note that this only applies to whole objects, not to components of composite objects. In the case of a subprogram, the linker section applies to all previously declared matching overloaded subprograms in the current declarative part which do not already have a linker section assigned. The linker section aspect is useful in this case for specifying different linker sections for different elements of such an overloaded set. Note that an empty string specifies that no linker section is specified. This is not quite the same as omitting the pragma or aspect, since it can be used to specify that one element of an overloaded set of subprograms has the default linker section, or that one object of a type for which a linker section is specified should has the default linker section. The compiler normally places library-level entities in standard sections depending on the class: procedures and functions generally go in the @code{.text} section, initialized variables in the @code{.data} section and uninitialized variables in the @code{.bss} section. Other, special sections may exist on given target machines to map special hardware, for example I/O ports or flash memory. This pragma is a means to defer the final layout of the executable to the linker, thus fully working at the symbolic level with the compiler. Some file formats do not support arbitrary sections so not all target machines support this pragma. The use of this pragma may cause a program execution to be erroneous if it is used to place an entity into an inappropriate section (e.g.@: a modified variable into the @code{.text} section). See also @code{pragma Persistent_BSS}. @smallexample @c ada -- Example of the use of pragma Linker_Section package IO_Card is Port_A : Integer; pragma Volatile (Port_A); pragma Linker_Section (Port_A, ".bss.port_a"); Port_B : Integer; pragma Volatile (Port_B); pragma Linker_Section (Port_B, ".bss.port_b"); type Port_Type is new Integer with Linker_Section => ".bss"; PA : Port_Type with Linker_Section => ".bss.PA"; PB : Port_Type; -- ends up in linker section ".bss" procedure Q with Linker_Section => "Qsection"; end IO_Card; @end smallexample @node Pragma Long_Float @unnumberedsec Pragma Long_Float @cindex OpenVMS @findex Long_Float @noindent Syntax: @smallexample @c ada pragma Long_Float (FLOAT_FORMAT); FLOAT_FORMAT ::= D_Float | G_Float @end smallexample @noindent This pragma is implemented only in the OpenVMS implementation of GNAT@. It allows control over the internal representation chosen for the predefined type @code{Long_Float} and for floating point type representations with @code{digits} specified in the range 7 through 15. For further details on this pragma, see the @cite{DEC Ada Language Reference Manual}, section 3.5.7b. Note that to use this pragma, the standard runtime libraries must be recompiled. @node Pragma Loop_Invariant @unnumberedsec Pragma Loop_Invariant @findex Loop_Invariant @noindent Syntax: @smallexample @c ada pragma Loop_Invariant ( boolean_EXPRESSION ); @end smallexample @noindent The effect of this pragma is similar to that of pragma @code{Assert}, except that in an @code{Assertion_Policy} pragma, the identifier @code{Loop_Invariant} is used to control whether it is ignored or checked (or disabled). @code{Loop_Invariant} can only appear as one of the items in the sequence of statements of a loop body, or nested inside block statements that appear in the sequence of statements of a loop body. The intention is that it be used to represent a "loop invariant" assertion, i.e. something that is true each time through the loop, and which can be used to show that the loop is achieving its purpose. Multiple @code{Loop_Invariant} and @code{Loop_Variant} pragmas that apply to the same loop should be grouped in the same sequence of statements. To aid in writing such invariants, the special attribute @code{Loop_Entry} may be used to refer to the value of an expression on entry to the loop. This attribute can only be used within the expression of a @code{Loop_Invariant} pragma. For full details, see documentation of attribute @code{Loop_Entry}. @node Pragma Loop_Optimize @unnumberedsec Pragma Loop_Optimize @findex Loop_Optimize @noindent Syntax: @smallexample @c ada pragma Loop_Optimize (OPTIMIZATION_HINT @{, OPTIMIZATION_HINT@}); OPTIMIZATION_HINT ::= No_Unroll | Unroll | No_Vector | Vector @end smallexample @noindent This pragma must appear immediately within a loop statement. It allows the programmer to specify optimization hints for the enclosing loop. The hints are not mutually exclusive and can be freely mixed, but not all combinations will yield a sensible outcome. There are four supported optimization hints for a loop: @itemize @bullet @item No_Unroll The loop must not be unrolled. This is a strong hint: the compiler will not unroll a loop marked with this hint. @item Unroll The loop should be unrolled. This is a weak hint: the compiler will try to apply unrolling to this loop preferably to other optimizations, notably vectorization, but there is no guarantee that the loop will be unrolled. @item No_Vector The loop must not be vectorized. This is a strong hint: the compiler will not vectorize a loop marked with this hint. @item Vector The loop should be vectorized. This is a weak hint: the compiler will try to apply vectorization to this loop preferably to other optimizations, notably unrolling, but there is no guarantee that the loop will be vectorized. @end itemize These hints do not void the need to pass the appropriate switches to the compiler in order to enable the relevant optimizations, that is to say @option{-funroll-loops} for unrolling and @option{-ftree-vectorize} for vectorization. @node Pragma Loop_Variant @unnumberedsec Pragma Loop_Variant @findex Loop_Variant @noindent Syntax: @smallexample @c ada pragma Loop_Variant ( LOOP_VARIANT_ITEM @{, LOOP_VARIANT_ITEM @} ); LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION CHANGE_DIRECTION ::= Increases | Decreases @end smallexample @noindent @code{Loop_Variant} can only appear as one of the items in the sequence of statements of a loop body, or nested inside block statements that appear in the sequence of statements of a loop body. It allows the specification of quantities which must always decrease or increase in successive iterations of the loop. In its simplest form, just one expression is specified, whose value must increase or decrease on each iteration of the loop. In a more complex form, multiple arguments can be given which are intepreted in a nesting lexicographic manner. For example: @smallexample @c ada pragma Loop_Variant (Increases => X, Decreases => Y); @end smallexample @noindent specifies that each time through the loop either X increases, or X stays the same and Y decreases. A @code{Loop_Variant} pragma ensures that the loop is making progress. It can be useful in helping to show informally or prove formally that the loop always terminates. @code{Loop_Variant} is an assertion whose effect can be controlled using an @code{Assertion_Policy} with a check name of @code{Loop_Variant}. The policy can be @code{Check} to enable the loop variant check, @code{Ignore} to ignore the check (in which case the pragma has no effect on the program), or @code{Disable} in which case the pragma is not even checked for correct syntax. Multiple @code{Loop_Invariant} and @code{Loop_Variant} pragmas that apply to the same loop should be grouped in the same sequence of statements. The @code{Loop_Entry} attribute may be used within the expressions of the @code{Loop_Variant} pragma to refer to values on entry to the loop. @node Pragma Machine_Attribute @unnumberedsec Pragma Machine_Attribute @findex Machine_Attribute @noindent Syntax: @smallexample @c ada pragma Machine_Attribute ( [Entity =>] LOCAL_NAME, [Attribute_Name =>] static_string_EXPRESSION [, [Info =>] static_EXPRESSION] ); @end smallexample @noindent Machine-dependent attributes can be specified for types and/or declarations. This pragma is semantically equivalent to @code{__attribute__((@var{attribute_name}))} (if @var{info} is not specified) or @code{__attribute__((@var{attribute_name}(@var{info})))} in GNU C, where @code{@var{attribute_name}} is recognized by the compiler middle-end or the @code{TARGET_ATTRIBUTE_TABLE} machine specific macro. A string literal for the optional parameter @var{info} is transformed into an identifier, which may make this pragma unusable for some attributes. @xref{Target Attributes,, Defining target-specific uses of @code{__attribute__}, gccint, GNU Compiler Collection (GCC) Internals}, further information. @node Pragma Main @unnumberedsec Pragma Main @cindex OpenVMS @findex Main @noindent Syntax: @smallexample @c ada pragma Main (MAIN_OPTION [, MAIN_OPTION]); MAIN_OPTION ::= [Stack_Size =>] static_integer_EXPRESSION | [Task_Stack_Size_Default =>] static_integer_EXPRESSION | [Time_Slicing_Enabled =>] static_boolean_EXPRESSION @end smallexample @noindent This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect in GNAT, other than being syntax checked. @node Pragma Main_Storage @unnumberedsec Pragma Main_Storage @cindex OpenVMS @findex Main_Storage @noindent Syntax: @smallexample @c ada pragma Main_Storage (MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]); MAIN_STORAGE_OPTION ::= [WORKING_STORAGE =>] static_SIMPLE_EXPRESSION | [TOP_GUARD =>] static_SIMPLE_EXPRESSION @end smallexample @noindent This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect in GNAT, other than being syntax checked. Note that the pragma also has no effect in DEC Ada 83 for OpenVMS Alpha Systems. @node Pragma No_Body @unnumberedsec Pragma No_Body @findex No_Body @noindent Syntax: @smallexample @c ada pragma No_Body; @end smallexample @noindent There are a number of cases in which a package spec does not require a body, and in fact a body is not permitted. GNAT will not permit the spec to be compiled if there is a body around. The pragma No_Body allows you to provide a body file, even in a case where no body is allowed. The body file must contain only comments and a single No_Body pragma. This is recognized by the compiler as indicating that no body is logically present. This is particularly useful during maintenance when a package is modified in such a way that a body needed before is no longer needed. The provision of a dummy body with a No_Body pragma ensures that there is no interference from earlier versions of the package body. @node Pragma No_Inline @unnumberedsec Pragma No_Inline @findex No_Inline @noindent Syntax: @smallexample @c ada pragma No_Inline (NAME @{, NAME@}); @end smallexample @noindent This pragma suppresses inlining for the callable entity or the instances of the generic subprogram designated by @var{NAME}, including inlining that results from the use of pragma @code{Inline}. This pragma is always active, in particular it is not subject to the use of option @option{-gnatn} or @option{-gnatN}. It is illegal to specify both pragma @code{No_Inline} and pragma @code{Inline_Always} for the same @var{NAME}. @node Pragma No_Return @unnumberedsec Pragma No_Return @findex No_Return @noindent Syntax: @smallexample @c ada pragma No_Return (procedure_LOCAL_NAME @{, procedure_LOCAL_NAME@}); @end smallexample @noindent Each @var{procedure_LOCAL_NAME} argument must refer to one or more procedure declarations in the current declarative part. A procedure to which this pragma is applied may not contain any explicit @code{return} statements. In addition, if the procedure contains any implicit returns from falling off the end of a statement sequence, then execution of that implicit return will cause Program_Error to be raised. One use of this pragma is to identify procedures whose only purpose is to raise an exception. Another use of this pragma is to suppress incorrect warnings about missing returns in functions, where the last statement of a function statement sequence is a call to such a procedure. Note that in Ada 2005 mode, this pragma is part of the language. It is available in all earlier versions of Ada as an implementation-defined pragma. @node Pragma No_Run_Time @unnumberedsec Pragma No_Run_Time @findex No_Run_Time @noindent Syntax: @smallexample @c ada pragma No_Run_Time; @end smallexample @noindent This is an obsolete configuration pragma that historically was used to setup what is now called the "zero footprint" library. It causes any library units outside this basic library to be ignored. The use of this pragma has been superseded by the general configurable run-time capability of @code{GNAT} where the compiler takes into account whatever units happen to be accessible in the library. @node Pragma No_Strict_Aliasing @unnumberedsec Pragma No_Strict_Aliasing @findex No_Strict_Aliasing @noindent Syntax: @smallexample @c ada pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)]; @end smallexample @noindent @var{type_LOCAL_NAME} must refer to an access type declaration in the current declarative part. The effect is to inhibit strict aliasing optimization for the given type. The form with no arguments is a configuration pragma which applies to all access types declared in units to which the pragma applies. For a detailed description of the strict aliasing optimization, and the situations in which it must be suppressed, see @ref{Optimization and Strict Aliasing,,, gnat_ugn, @value{EDITION} User's Guide}. This pragma currently has no effects on access to unconstrained array types. @node Pragma Normalize_Scalars @unnumberedsec Pragma Normalize_Scalars @findex Normalize_Scalars @noindent Syntax: @smallexample @c ada pragma Normalize_Scalars; @end smallexample @noindent This is a language defined pragma which is fully implemented in GNAT@. The effect is to cause all scalar objects that are not otherwise initialized to be initialized. The initial values are implementation dependent and are as follows: @table @code @item Standard.Character @noindent Objects whose root type is Standard.Character are initialized to Character'Last unless the subtype range excludes NUL (in which case NUL is used). This choice will always generate an invalid value if one exists. @item Standard.Wide_Character @noindent Objects whose root type is Standard.Wide_Character are initialized to Wide_Character'Last unless the subtype range excludes NUL (in which case NUL is used). This choice will always generate an invalid value if one exists. @item Standard.Wide_Wide_Character @noindent Objects whose root type is Standard.Wide_Wide_Character are initialized to the invalid value 16#FFFF_FFFF# unless the subtype range excludes NUL (in which case NUL is used). This choice will always generate an invalid value if one exists. @item Integer types @noindent Objects of an integer type are treated differently depending on whether negative values are present in the subtype. If no negative values are present, then all one bits is used as the initial value except in the special case where zero is excluded from the subtype, in which case all zero bits are used. This choice will always generate an invalid value if one exists. For subtypes with negative values present, the largest negative number is used, except in the unusual case where this largest negative number is in the subtype, and the largest positive number is not, in which case the largest positive value is used. This choice will always generate an invalid value if one exists. @item Floating-Point Types Objects of all floating-point types are initialized to all 1-bits. For standard IEEE format, this corresponds to a NaN (not a number) which is indeed an invalid value. @item Fixed-Point Types Objects of all fixed-point types are treated as described above for integers, with the rules applying to the underlying integer value used to represent the fixed-point value. @item Modular types Objects of a modular type are initialized to all one bits, except in the special case where zero is excluded from the subtype, in which case all zero bits are used. This choice will always generate an invalid value if one exists. @item Enumeration types Objects of an enumeration type are initialized to all one-bits, i.e.@: to the value @code{2 ** typ'Size - 1} unless the subtype excludes the literal whose Pos value is zero, in which case a code of zero is used. This choice will always generate an invalid value if one exists. @end table @node Pragma Obsolescent @unnumberedsec Pragma Obsolescent @findex Obsolescent @noindent Syntax: @smallexample @c ada pragma Obsolescent; pragma Obsolescent ( [Message =>] static_string_EXPRESSION [,[Version =>] Ada_05]]); pragma Obsolescent ( [Entity =>] NAME [,[Message =>] static_string_EXPRESSION [,[Version =>] Ada_05]] ); @end smallexample @noindent This pragma can occur immediately following a declaration of an entity, including the case of a record component. If no Entity argument is present, then this declaration is the one to which the pragma applies. If an Entity parameter is present, it must either match the name of the entity in this declaration, or alternatively, the pragma can immediately follow an enumeration type declaration, where the Entity argument names one of the enumeration literals. This pragma is used to indicate that the named entity is considered obsolescent and should not be used. Typically this is used when an API must be modified by eventually removing or modifying existing subprograms or other entities. The pragma can be used at an intermediate stage when the entity is still present, but will be removed later. The effect of this pragma is to output a warning message on a reference to an entity thus marked that the subprogram is obsolescent if the appropriate warning option in the compiler is activated. If the Message parameter is present, then a second warning message is given containing this text. In addition, a reference to the entity is considered to be a violation of pragma Restrictions (No_Obsolescent_Features). This pragma can also be used as a program unit pragma for a package, in which case the entity name is the name of the package, and the pragma indicates that the entire package is considered obsolescent. In this case a client @code{with}'ing such a package violates the restriction, and the @code{with} statement is flagged with warnings if the warning option is set. If the Version parameter is present (which must be exactly the identifier Ada_05, no other argument is allowed), then the indication of obsolescence applies only when compiling in Ada 2005 mode. This is primarily intended for dealing with the situations in the predefined library where subprograms or packages have become defined as obsolescent in Ada 2005 (e.g.@: in Ada.Characters.Handling), but may be used anywhere. The following examples show typical uses of this pragma: @smallexample @c ada package p is pragma Obsolescent (p, Message => "use pp instead of p"); end p; package q is procedure q2; pragma Obsolescent ("use q2new instead"); type R is new integer; pragma Obsolescent (Entity => R, Message => "use RR in Ada 2005", Version => Ada_05); type M is record F1 : Integer; F2 : Integer; pragma Obsolescent; F3 : Integer; end record; type E is (a, bc, 'd', quack); pragma Obsolescent (Entity => bc) pragma Obsolescent (Entity => 'd') function "+" (a, b : character) return character; pragma Obsolescent (Entity => "+"); end; @end smallexample @noindent Note that, as for all pragmas, if you use a pragma argument identifier, then all subsequent parameters must also use a pragma argument identifier. So if you specify "Entity =>" for the Entity argument, and a Message argument is present, it must be preceded by "Message =>". @node Pragma Optimize_Alignment @unnumberedsec Pragma Optimize_Alignment @findex Optimize_Alignment @cindex Alignment, default settings @noindent Syntax: @smallexample @c ada pragma Optimize_Alignment (TIME | SPACE | OFF); @end smallexample @noindent This is a configuration pragma which affects the choice of default alignments for types and objects where no alignment is explicitly specified. There is a time/space trade-off in the selection of these values. Large alignments result in more efficient code, at the expense of larger data space, since sizes have to be increased to match these alignments. Smaller alignments save space, but the access code is slower. The normal choice of default alignments for types and individual alignment promotions for objects (which is what you get if you do not use this pragma, or if you use an argument of OFF), tries to balance these two requirements. Specifying SPACE causes smaller default alignments to be chosen in two cases. First any packed record is given an alignment of 1. Second, if a size is given for the type, then the alignment is chosen to avoid increasing this size. For example, consider: @smallexample @c ada type R is record X : Integer; Y : Character; end record; for R'Size use 5*8; @end smallexample @noindent In the default mode, this type gets an alignment of 4, so that access to the Integer field X are efficient. But this means that objects of the type end up with a size of 8 bytes. This is a valid choice, since sizes of objects are allowed to be bigger than the size of the type, but it can waste space if for example fields of type R appear in an enclosing record. If the above type is compiled in @code{Optimize_Alignment (Space)} mode, the alignment is set to 1. However, there is one case in which SPACE is ignored. If a variable length record (that is a discriminated record with a component which is an array whose length depends on a discriminant), has a pragma Pack, then it is not in general possible to set the alignment of such a record to one, so the pragma is ignored in this case (with a warning). Specifying SPACE also disables alignment promotions for standalone objects, which occur when the compiler increases the alignment of a specific object without changing the alignment of its type. Specifying TIME causes larger default alignments to be chosen in the case of small types with sizes that are not a power of 2. For example, consider: @smallexample @c ada type R is record A : Character; B : Character; C : Boolean; end record; pragma Pack (R); for R'Size use 17; @end smallexample @noindent The default alignment for this record is normally 1, but if this type is compiled in @code{Optimize_Alignment (Time)} mode, then the alignment is set to 4, which wastes space for objects of the type, since they are now 4 bytes long, but results in more efficient access when the whole record is referenced. As noted above, this is a configuration pragma, and there is a requirement that all units in a partition be compiled with a consistent setting of the optimization setting. This would normally be achieved by use of a configuration pragma file containing the appropriate setting. The exception to this rule is that units with an explicit configuration pragma in the same file as the source unit are excluded from the consistency check, as are all predefined units. The latter are compiled by default in pragma Optimize_Alignment (Off) mode if no pragma appears at the start of the file. @node Pragma Ordered @unnumberedsec Pragma Ordered @findex Ordered @findex pragma @code{Ordered} @noindent Syntax: @smallexample @c ada pragma Ordered (enumeration_first_subtype_LOCAL_NAME); @end smallexample @noindent Most enumeration types are from a conceptual point of view unordered. For example, consider: @smallexample @c ada type Color is (Red, Blue, Green, Yellow); @end smallexample @noindent By Ada semantics @code{Blue > Red} and @code{Green > Blue}, but really these relations make no sense; the enumeration type merely specifies a set of possible colors, and the order is unimportant. For unordered enumeration types, it is generally a good idea if clients avoid comparisons (other than equality or inequality) and explicit ranges. (A @emph{client} is a unit where the type is referenced, other than the unit where the type is declared, its body, and its subunits.) For example, if code buried in some client says: @smallexample @c ada if Current_Color < Yellow then ... if Current_Color in Blue .. Green then ... @end smallexample @noindent then the client code is relying on the order, which is undesirable. It makes the code hard to read and creates maintenance difficulties if entries have to be added to the enumeration type. Instead, the code in the client should list the possibilities, or an appropriate subtype should be declared in the unit that declares the original enumeration type. E.g., the following subtype could be declared along with the type @code{Color}: @smallexample @c ada subtype RBG is Color range Red .. Green; @end smallexample @noindent and then the client could write: @smallexample @c ada if Current_Color in RBG then ... if Current_Color = Blue or Current_Color = Green then ... @end smallexample @noindent However, some enumeration types are legitimately ordered from a conceptual point of view. For example, if you declare: @smallexample @c ada type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun); @end smallexample @noindent then the ordering imposed by the language is reasonable, and clients can depend on it, writing for example: @smallexample @c ada if D in Mon .. Fri then ... if D < Wed then ... @end smallexample @noindent The pragma @option{Ordered} is provided to mark enumeration types that are conceptually ordered, alerting the reader that clients may depend on the ordering. GNAT provides a pragma to mark enumerations as ordered rather than one to mark them as unordered, since in our experience, the great majority of enumeration types are conceptually unordered. The types @code{Boolean}, @code{Character}, @code{Wide_Character}, and @code{Wide_Wide_Character} are considered to be ordered types, so each is declared with a pragma @code{Ordered} in package @code{Standard}. Normally pragma @code{Ordered} serves only as documentation and a guide for coding standards, but GNAT provides a warning switch @option{-gnatw.u} that requests warnings for inappropriate uses (comparisons and explicit subranges) for unordered types. If this switch is used, then any enumeration type not marked with pragma @code{Ordered} will be considered as unordered, and will generate warnings for inappropriate uses. For additional information please refer to the description of the @option{-gnatw.u} switch in the @value{EDITION} User's Guide. @node Pragma Overflow_Mode @unnumberedsec Pragma Overflow_Mode @findex Overflow checks @findex Overflow mode @findex pragma @code{Overflow_Mode} @noindent Syntax: @smallexample @c ada pragma Overflow_Mode ( [General =>] MODE [,[Assertions =>] MODE]); MODE ::= STRICT | MINIMIZED | ELIMINATED @end smallexample @noindent This pragma sets the current overflow mode to the given setting. For details of the meaning of these modes, please refer to the ``Overflow Check Handling in GNAT'' appendix in the @value{EDITION} User's Guide. If only the @code{General} parameter is present, the given mode applies to all expressions. If both parameters are present, the @code{General} mode applies to expressions outside assertions, and the @code{Eliminated} mode applies to expressions within assertions. The case of the @code{MODE} parameter is ignored, so @code{MINIMIZED}, @code{Minimized} and @code{minimized} all have the same effect. The @code{Overflow_Mode} pragma has the same scoping and placement rules as pragma @code{Suppress}, so it can occur either as a configuration pragma, specifying a default for the whole program, or in a declarative scope, where it applies to the remaining declarations and statements in that scope. The pragma @code{Suppress (Overflow_Check)} suppresses overflow checking, but does not affect the overflow mode. The pragma @code{Unsuppress (Overflow_Check)} unsuppresses (enables) overflow checking, but does not affect the overflow mode. @node Pragma Overriding_Renamings @unnumberedsec Pragma Overriding_Renamings @findex Overriding_Renamings @cindex Rational profile @cindex Rational compatibility @noindent Syntax: @smallexample @c ada pragma Overriding_Renamings; @end smallexample @noindent This is a GNAT configuration pragma to simplify porting legacy code accepted by the Rational Ada compiler. In the presence of this pragma, a renaming declaration that renames an inherited operation declared in the same scope is legal if selected notation is used as in: @smallexample @c ada pragma Overriding_Renamings; ... package R is function F (..); ... function F (..) renames R.F; end R; @end smallexample even though RM 8.3 (15) stipulates that an overridden operation is not visible within the declaration of the overriding operation. @node Pragma Partition_Elaboration_Policy @unnumberedsec Pragma Partition_Elaboration_Policy @findex Partition_Elaboration_Policy @noindent Syntax: @smallexample @c ada pragma Partition_Elaboration_Policy (POLICY_IDENTIFIER); POLICY_IDENTIFIER ::= Concurrent | Sequential @end smallexample @noindent This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an implementation-defined pragma. See Ada 2012 Reference Manual for details. @node Pragma Passive @unnumberedsec Pragma Passive @findex Passive @noindent Syntax: @smallexample @c ada pragma Passive [(Semaphore | No)]; @end smallexample @noindent Syntax checked, but otherwise ignored by GNAT@. This is recognized for compatibility with DEC Ada 83 implementations, where it is used within a task definition to request that a task be made passive. If the argument @code{Semaphore} is present, or the argument is omitted, then DEC Ada 83 treats the pragma as an assertion that the containing task is passive and that optimization of context switch with this task is permitted and desired. If the argument @code{No} is present, the task must not be optimized. GNAT does not attempt to optimize any tasks in this manner (since protected objects are available in place of passive tasks). For more information on the subject of passive tasks, see the section ``Passive Task Optimization'' in the GNAT Users Guide. @node Pragma Persistent_BSS @unnumberedsec Pragma Persistent_BSS @findex Persistent_BSS @noindent Syntax: @smallexample @c ada pragma Persistent_BSS [(LOCAL_NAME)] @end smallexample @noindent This pragma allows selected objects to be placed in the @code{.persistent_bss} section. On some targets the linker and loader provide for special treatment of this section, allowing a program to be reloaded without affecting the contents of this data (hence the name persistent). There are two forms of usage. If an argument is given, it must be the local name of a library level object, with no explicit initialization and whose type is potentially persistent. If no argument is given, then the pragma is a configuration pragma, and applies to all library level objects with no explicit initialization of potentially persistent types. A potentially persistent type is a scalar type, or a non-tagged, non-discriminated record, all of whose components have no explicit initialization and are themselves of a potentially persistent type, or an array, all of whose constraints are static, and whose component type is potentially persistent. If this pragma is used on a target where this feature is not supported, then the pragma will be ignored. See also @code{pragma Linker_Section}. @node Pragma Polling @unnumberedsec Pragma Polling @findex Polling @noindent Syntax: @smallexample @c ada pragma Polling (ON | OFF); @end smallexample @noindent This pragma controls the generation of polling code. This is normally off. If @code{pragma Polling (ON)} is used then periodic calls are generated to the routine @code{Ada.Exceptions.Poll}. This routine is a separate unit in the runtime library, and can be found in file @file{a-excpol.adb}. Pragma @code{Polling} can appear as a configuration pragma (for example it can be placed in the @file{gnat.adc} file) to enable polling globally, or it can be used in the statement or declaration sequence to control polling more locally. A call to the polling routine is generated at the start of every loop and at the start of every subprogram call. This guarantees that the @code{Poll} routine is called frequently, and places an upper bound (determined by the complexity of the code) on the period between two @code{Poll} calls. The primary purpose of the polling interface is to enable asynchronous aborts on targets that cannot otherwise support it (for example Windows NT), but it may be used for any other purpose requiring periodic polling. The standard version is null, and can be replaced by a user program. This will require re-compilation of the @code{Ada.Exceptions} package that can be found in files @file{a-except.ads} and @file{a-except.adb}. A standard alternative unit (in file @file{4wexcpol.adb} in the standard GNAT distribution) is used to enable the asynchronous abort capability on targets that do not normally support the capability. The version of @code{Poll} in this file makes a call to the appropriate runtime routine to test for an abort condition. Note that polling can also be enabled by use of the @option{-gnatP} switch. @xref{Switches for gcc,,, gnat_ugn, @value{EDITION} User's Guide}, for details. @node Pragma Post @unnumberedsec Pragma Post @cindex Post @cindex Checks, postconditions @findex Postconditions @noindent Syntax: @smallexample @c ada pragma Post (Boolean_Expression); @end smallexample @noindent The @code{Post} pragma is intended to be an exact replacement for the language-defined @code{Post} aspect, and shares its restrictions and semantics. It must appear either immediately following the corresponding subprogram declaration (only other pragmas may intervene), or if there is no separate subprogram declaration, then it can appear at the start of the declarations in a subprogram body (preceded only by other pragmas). @node Pragma Postcondition @unnumberedsec Pragma Postcondition @cindex Postcondition @cindex Checks, postconditions @findex Postconditions @noindent Syntax: @smallexample @c ada pragma Postcondition ( [Check =>] Boolean_Expression [,[Message =>] String_Expression]); @end smallexample @noindent The @code{Postcondition} pragma allows specification of automatic postcondition checks for subprograms. These checks are similar to assertions, but are automatically inserted just prior to the return statements of the subprogram with which they are associated (including implicit returns at the end of procedure bodies and associated exception handlers). In addition, the boolean expression which is the condition which must be true may contain references to function'Result in the case of a function to refer to the returned value. @code{Postcondition} pragmas may appear either immediately following the (separate) declaration of a subprogram, or at the start of the declarations of a subprogram body. Only other pragmas may intervene (that is appear between the subprogram declaration and its postconditions, or appear before the postcondition in the declaration sequence in a subprogram body). In the case of a postcondition appearing after a subprogram declaration, the formal arguments of the subprogram are visible, and can be referenced in the postcondition expressions. The postconditions are collected and automatically tested just before any return (implicit or explicit) in the subprogram body. A postcondition is only recognized if postconditions are active at the time the pragma is encountered. The compiler switch @option{gnata} turns on all postconditions by default, and pragma @code{Check_Policy} with an identifier of @code{Postcondition} can also be used to control whether postconditions are active. The general approach is that postconditions are placed in the spec if they represent functional aspects which make sense to the client. For example we might have: @smallexample @c ada function Direction return Integer; pragma Postcondition (Direction'Result = +1 or else Direction'Result = -1); @end smallexample @noindent which serves to document that the result must be +1 or -1, and will test that this is the case at run time if postcondition checking is active. Postconditions within the subprogram body can be used to check that some internal aspect of the implementation, not visible to the client, is operating as expected. For instance if a square root routine keeps an internal counter of the number of times it is called, then we might have the following postcondition: @smallexample @c ada Sqrt_Calls : Natural := 0; function Sqrt (Arg : Float) return Float is pragma Postcondition (Sqrt_Calls = Sqrt_Calls'Old + 1); ... end Sqrt @end smallexample @noindent As this example, shows, the use of the @code{Old} attribute is often useful in postconditions to refer to the state on entry to the subprogram. Note that postconditions are only checked on normal returns from the subprogram. If an abnormal return results from raising an exception, then the postconditions are not checked. If a postcondition fails, then the exception @code{System.Assertions.Assert_Failure} is raised. If a message argument was supplied, then the given string will be used as the exception message. If no message argument was supplied, then the default message has the form "Postcondition failed at file:line". The exception is raised in the context of the subprogram body, so it is possible to catch postcondition failures within the subprogram body itself. Within a package spec, normal visibility rules in Ada would prevent forward references within a postcondition pragma to functions defined later in the same package. This would introduce undesirable ordering constraints. To avoid this problem, all postcondition pragmas are analyzed at the end of the package spec, allowing forward references. The following example shows that this even allows mutually recursive postconditions as in: @smallexample @c ada package Parity_Functions is function Odd (X : Natural) return Boolean; pragma Postcondition (Odd'Result = (x = 1 or else (x /= 0 and then Even (X - 1)))); function Even (X : Natural) return Boolean; pragma Postcondition (Even'Result = (x = 0 or else (x /= 1 and then Odd (X - 1)))); end Parity_Functions; @end smallexample @noindent There are no restrictions on the complexity or form of conditions used within @code{Postcondition} pragmas. The following example shows that it is even possible to verify performance behavior. @smallexample @c ada package Sort is Performance : constant Float; -- Performance constant set by implementation -- to match target architecture behavior. procedure Treesort (Arg : String); -- Sorts characters of argument using N*logN sort pragma Postcondition (Float (Clock - Clock'Old) <= Float (Arg'Length) * log (Float (Arg'Length)) * Performance); end Sort; @end smallexample @noindent Note: postcondition pragmas associated with subprograms that are marked as Inline_Always, or those marked as Inline with front-end inlining (-gnatN option set) are accepted and legality-checked by the compiler, but are ignored at run-time even if postcondition checking is enabled. Note that pragma @code{Postcondition} differs from the language-defined @code{Post} aspect (and corresponding @code{Post} pragma) in allowing multiple occurrences, allowing occurences in the body even if there is a separate spec, and allowing a second string parameter, and the use of the pragma identifier @code{Check}. Historically, pragma @code{Postcondition} was implemented prior to the development of Ada 2012, and has been retained in its original form for compatibility purposes. @node Pragma Post_Class @unnumberedsec Pragma Post_Class @cindex Post @cindex Checks, postconditions @findex Postconditions @noindent Syntax: @smallexample @c ada pragma Post_Class (Boolean_Expression); @end smallexample @noindent The @code{Post_Class} pragma is intended to be an exact replacement for the language-defined @code{Post'Class} aspect, and shares its restrictions and semantics. It must appear either immediately following the corresponding subprogram declaration (only other pragmas may intervene), or if there is no separate subprogram declaration, then it can appear at the start of the declarations in a subprogram body (preceded only by other pragmas). Note: This pragma is called @code{Post_Class} rather than @code{Post'Class} because the latter would not be strictly conforming to the allowed syntax for pragmas. The motivation for provinding pragmas equivalent to the aspects is to allow a program to be written using the pragmas, and then compiled if necessary using an Ada compiler that does not recognize the pragmas or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this pragma is @code{Post'Class}, not @code{Post_Class}. @node Pragma Pre @unnumberedsec Pragma Pre @cindex Pre @cindex Checks, preconditions @findex Preconditions @noindent Syntax: @smallexample @c ada pragma Pre (Boolean_Expression); @end smallexample @noindent The @code{Pre} pragma is intended to be an exact replacement for the language-defined @code{Pre} aspect, and shares its restrictions and semantics. It must appear either immediately following the corresponding subprogram declaration (only other pragmas may intervene), or if there is no separate subprogram declaration, then it can appear at the start of the declarations in a subprogram body (preceded only by other pragmas). @node Pragma Precondition @unnumberedsec Pragma Precondition @cindex Preconditions @cindex Checks, preconditions @findex Preconditions @noindent Syntax: @smallexample @c ada pragma Precondition ( [Check =>] Boolean_Expression [,[Message =>] String_Expression]); @end smallexample @noindent The @code{Precondition} pragma is similar to @code{Postcondition} except that the corresponding checks take place immediately upon entry to the subprogram, and if a precondition fails, the exception is raised in the context of the caller, and the attribute 'Result cannot be used within the precondition expression. Otherwise, the placement and visibility rules are identical to those described for postconditions. The following is an example of use within a package spec: @smallexample @c ada package Math_Functions is ... function Sqrt (Arg : Float) return Float; pragma Precondition (Arg >= 0.0) ... end Math_Functions; @end smallexample @noindent @code{Precondition} pragmas may appear either immediately following the (separate) declaration of a subprogram, or at the start of the declarations of a subprogram body. Only other pragmas may intervene (that is appear between the subprogram declaration and its postconditions, or appear before the postcondition in the declaration sequence in a subprogram body). Note: precondition pragmas associated with subprograms that are marked as Inline_Always, or those marked as Inline with front-end inlining (-gnatN option set) are accepted and legality-checked by the compiler, but are ignored at run-time even if precondition checking is enabled. Note that pragma @code{Precondition} differs from the language-defined @code{Pre} aspect (and corresponding @code{Pre} pragma) in allowing multiple occurrences, allowing occurences in the body even if there is a separate spec, and allowing a second string parameter, and the use of the pragma identifier @code{Check}. Historically, pragma @code{Precondition} was implemented prior to the development of Ada 2012, and has been retained in its original form for compatibility purposes. @node Pragma Predicate @unnumberedsec Pragma Predicate @findex Predicate @findex Predicate pragma @noindent Syntax: @smallexample @c ada pragma Predicate ([Entity =>] type_LOCAL_NAME, [Check =>] EXPRESSION); @end smallexample @noindent This pragma (available in all versions of Ada in GNAT) encompasses both the @code{Static_Predicate} and @code{Dynamic_Predicate} aspects in Ada 2012. A predicate is regarded as static if it has an allowed form for @code{Static_Predicate} and is otherwise treated as a @code{Dynamic_Predicate}. Otherwise, predicates specified by this pragma behave exactly as described in the Ada 2012 reference manual. For example, if we have @smallexample @c ada type R is range 1 .. 10; subtype S is R; pragma Predicate (Entity => S, Check => S not in 4 .. 6); subtype Q is R pragma Predicate (Entity => Q, Check => F(Q) or G(Q)); @end smallexample @noindent the effect is identical to the following Ada 2012 code: @smallexample @c ada type R is range 1 .. 10; subtype S is R with Static_Predicate => S not in 4 .. 6; subtype Q is R with Dynamic_Predicate => F(Q) or G(Q); @end smallexample Note that there is are no pragmas @code{Dynamic_Predicate} or @code{Static_Predicate}. That is because these pragmas would affect legality and semantics of the program and thus do not have a neutral effect if ignored. The motivation behind providing pragmas equivalent to corresponding aspects is to allow a program to be written using the pragmas, and then compiled with a compiler that will ignore the pragmas. That doesn't work in the case of static and dynamic predicates, since if the corresponding pragmas are ignored, then the behavior of the program is fundamentally changed (for example a membership test @code{A in B} would not take into account a predicate defined for subtype B). When following this approach, the use of predicates should be avoided. @node Pragma Preelaborable_Initialization @unnumberedsec Pragma Preelaborable_Initialization @findex Preelaborable_Initialization @noindent Syntax: @smallexample @c ada pragma Preelaborable_Initialization (DIRECT_NAME); @end smallexample @noindent This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an implementation-defined pragma. See Ada 2012 Reference Manual for details. @node Pragma Preelaborate_05 @unnumberedsec Pragma Preelaborate_05 @findex Preelaborate_05 @noindent Syntax: @smallexample @c ada pragma Preelaborate_05 [(library_unit_NAME)]; @end smallexample @noindent This pragma is only available in GNAT mode (@option{-gnatg} switch set) and is intended for use in the standard run-time library only. It has no effect in Ada 83 or Ada 95 mode, but is equivalent to @code{pragma Prelaborate} when operating in later Ada versions. This is used to handle some cases where packages not previously preelaborable became so in Ada 2005. @node Pragma Pre_Class @unnumberedsec Pragma Pre_Class @cindex Pre_Class @cindex Checks, preconditions @findex Preconditions @noindent Syntax: @smallexample @c ada pragma Pre_Class (Boolean_Expression); @end smallexample @noindent The @code{Pre_Class} pragma is intended to be an exact replacement for the language-defined @code{Pre'Class} aspect, and shares its restrictions and semantics. It must appear either immediately following the corresponding subprogram declaration (only other pragmas may intervene), or if there is no separate subprogram declaration, then it can appear at the start of the declarations in a subprogram body (preceded only by other pragmas). Note: This pragma is called @code{Pre_Class} rather than @code{Pre'Class} because the latter would not be strictly conforming to the allowed syntax for pragmas. The motivation for providing pragmas equivalent to the aspects is to allow a program to be written using the pragmas, and then compiled if necessary using an Ada compiler that does not recognize the pragmas or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this pragma is @code{Pre'Class}, not @code{Pre_Class}. @node Pragma Priority_Specific_Dispatching @unnumberedsec Pragma Priority_Specific_Dispatching @findex Priority_Specific_Dispatching @noindent Syntax: @smallexample @c ada pragma Priority_Specific_Dispatching ( POLICY_IDENTIFIER, first_priority_EXPRESSION, last_priority_EXPRESSION) POLICY_IDENTIFIER ::= EDF_Across_Priorities | FIFO_Within_Priorities | Non_Preemptive_Within_Priorities | Round_Robin_Within_Priorities @end smallexample @noindent This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an implementation-defined pragma. See Ada 2012 Reference Manual for details. @node Pragma Profile @unnumberedsec Pragma Profile @findex Profile @noindent Syntax: @smallexample @c ada pragma Profile (Ravenscar | Restricted | Rational); @end smallexample @noindent This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an implementation-defined pragma. This is a configuration pragma that establishes a set of configiuration pragmas that depend on the argument. @code{Ravenscar} is standard in Ada 2005. The other two possibilities (@code{Restricted} or @code{Rational}) are implementation-defined. The set of configuration pragmas is defined in the following sections. @itemize @item Pragma Profile (Ravenscar) @findex Ravenscar @noindent The @code{Ravenscar} profile is standard in Ada 2005, but is available in all earlier versions of Ada as an implementation-defined pragma. This profile establishes the following set of configuration pragmas: @table @code @item Task_Dispatching_Policy (FIFO_Within_Priorities) [RM D.2.2] Tasks are dispatched following a preemptive priority-ordered scheduling policy. @item Locking_Policy (Ceiling_Locking) [RM D.3] While tasks and interrupts execute a protected action, they inherit the ceiling priority of the corresponding protected object. @item Detect_Blocking This pragma forces the detection of potentially blocking operations within a protected operation, and to raise Program_Error if that happens. @end table @noindent plus the following set of restrictions: @table @code @item Max_Entry_Queue_Length => 1 No task can be queued on a protected entry. @item Max_Protected_Entries => 1 @item Max_Task_Entries => 0 No rendezvous statements are allowed. @item No_Abort_Statements @item No_Dynamic_Attachment @item No_Dynamic_Priorities @item No_Implicit_Heap_Allocations @item No_Local_Protected_Objects @item No_Local_Timing_Events @item No_Protected_Type_Allocators @item No_Relative_Delay @item No_Requeue_Statements @item No_Select_Statements @item No_Specific_Termination_Handlers @item No_Task_Allocators @item No_Task_Hierarchy @item No_Task_Termination @item Simple_Barriers @end table @noindent The Ravenscar profile also includes the following restrictions that specify that there are no semantic dependences on the corresponding predefined packages: @table @code @item No_Dependence => Ada.Asynchronous_Task_Control @item No_Dependence => Ada.Calendar @item No_Dependence => Ada.Execution_Time.Group_Budget @item No_Dependence => Ada.Execution_Time.Timers @item No_Dependence => Ada.Task_Attributes @item No_Dependence => System.Multiprocessors.Dispatching_Domains @end table @noindent This set of configuration pragmas and restrictions correspond to the definition of the ``Ravenscar Profile'' for limited tasking, devised and published by the @cite{International Real-Time Ada Workshop}, 1997, and whose most recent description is available at @url{http://www-users.cs.york.ac.uk/~burns/ravenscar.ps}. The original definition of the profile was revised at subsequent IRTAW meetings. It has been included in the ISO @cite{Guide for the Use of the Ada Programming Language in High Integrity Systems}, and has been approved by ISO/IEC/SC22/WG9 for inclusion in the next revision of the standard. The formal definition given by the Ada Rapporteur Group (ARG) can be found in two Ada Issues (AI-249 and AI-305) available at @url{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt} and @url{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt}. The above set is a superset of the restrictions provided by pragma @code{Profile (Restricted)}, it includes six additional restrictions (@code{Simple_Barriers}, @code{No_Select_Statements}, @code{No_Calendar}, @code{No_Implicit_Heap_Allocations}, @code{No_Relative_Delay} and @code{No_Task_Termination}). This means that pragma @code{Profile (Ravenscar)}, like the pragma @code{Profile (Restricted)}, automatically causes the use of a simplified, more efficient version of the tasking run-time system. @item Pragma Profile (Restricted) @findex Restricted Run Time @noindent This profile corresponds to the GNAT restricted run time. It establishes the following set of restrictions: @itemize @bullet @item No_Abort_Statements @item No_Entry_Queue @item No_Task_Hierarchy @item No_Task_Allocators @item No_Dynamic_Priorities @item No_Terminate_Alternatives @item No_Dynamic_Attachment @item No_Protected_Type_Allocators @item No_Local_Protected_Objects @item No_Requeue_Statements @item No_Task_Attributes_Package @item Max_Asynchronous_Select_Nesting = 0 @item Max_Task_Entries = 0 @item Max_Protected_Entries = 1 @item Max_Select_Alternatives = 0 @end itemize @noindent This set of restrictions causes the automatic selection of a simplified version of the run time that provides improved performance for the limited set of tasking functionality permitted by this set of restrictions. @item Pragma Profile (Rational) @findex Rational compatibility mode @noindent The Rational profile is intended to facilitate porting legacy code that compiles with the Rational APEX compiler, even when the code includes non- conforming Ada constructs. The profile enables the following three pragmas: @itemize @bullet @item pragma Implicit_Packing @item pragma Overriding_Renamings @item pragma Use_VADS_Size @end itemize @end itemize @node Pragma Profile_Warnings @unnumberedsec Pragma Profile_Warnings @findex Profile_Warnings @noindent Syntax: @smallexample @c ada pragma Profile_Warnings (Ravenscar | Restricted | Rational); @end smallexample @noindent This is an implementation-defined pragma that is similar in effect to @code{pragma Profile} except that instead of generating @code{Restrictions} pragmas, it generates @code{Restriction_Warnings} pragmas. The result is that violations of the profile generate warning messages instead of error messages. @node Pragma Propagate_Exceptions @unnumberedsec Pragma Propagate_Exceptions @cindex Interfacing to C++ @findex Propagate_Exceptions @noindent Syntax: @smallexample @c ada pragma Propagate_Exceptions; @end smallexample @noindent This pragma is now obsolete and, other than generating a warning if warnings on obsolescent features are enabled, is ignored. It is retained for compatibility purposes. It used to be used in connection with optimization of a now-obsolete mechanism for implementation of exceptions. @node Pragma Provide_Shift_Operators @unnumberedsec Pragma Provide_Shift_Operators @cindex Shift operators @findex Provide_Shift_Operators @noindent Syntax: @smallexample @c ada pragma Provide_Shift_Operators (integer_first_subtype_LOCAL_NAME); @end smallexample @noindent This pragma can be applied to a first subtype local name that specifies either an unsigned or signed type. It has the effect of providing the five shift operators (Shift_Left, Shift_Right, Shift_Right_Arithmetic, Rotate_Left and Rotate_Right) for the given type. It is equivalent to including the function declarations for these five operators, together with the pragma Import (Intrinsic, ...) statements. @node Pragma Psect_Object @unnumberedsec Pragma Psect_Object @findex Psect_Object @noindent Syntax: @smallexample @c ada pragma Psect_Object ( [Internal =>] LOCAL_NAME, [, [External =>] EXTERNAL_SYMBOL] [, [Size =>] EXTERNAL_SYMBOL]); EXTERNAL_SYMBOL ::= IDENTIFIER | static_string_EXPRESSION @end smallexample @noindent This pragma is identical in effect to pragma @code{Common_Object}. @node Pragma Pure_05 @unnumberedsec Pragma Pure_05 @findex Pure_05 @noindent Syntax: @smallexample @c ada pragma Pure_05 [(library_unit_NAME)]; @end smallexample @noindent This pragma is only available in GNAT mode (@option{-gnatg} switch set) and is intended for use in the standard run-time library only. It has no effect in Ada 83 or Ada 95 mode, but is equivalent to @code{pragma Pure} when operating in later Ada versions. This is used to handle some cases where packages not previously pure became so in Ada 2005. @node Pragma Pure_12 @unnumberedsec Pragma Pure_12 @findex Pure_12 @noindent Syntax: @smallexample @c ada pragma Pure_12 [(library_unit_NAME)]; @end smallexample @noindent This pragma is only available in GNAT mode (@option{-gnatg} switch set) and is intended for use in the standard run-time library only. It has no effect in Ada 83, Ada 95, or Ada 2005 modes, but is equivalent to @code{pragma Pure} when operating in later Ada versions. This is used to handle some cases where packages not previously pure became so in Ada 2012. @node Pragma Pure_Function @unnumberedsec Pragma Pure_Function @findex Pure_Function @noindent Syntax: @smallexample @c ada pragma Pure_Function ([Entity =>] function_LOCAL_NAME); @end smallexample @noindent This pragma appears in the same declarative part as a function declaration (or a set of function declarations if more than one overloaded declaration exists, in which case the pragma applies to all entities). It specifies that the function @code{Entity} is to be considered pure for the purposes of code generation. This means that the compiler can assume that there are no side effects, and in particular that two calls with identical arguments produce the same result. It also means that the function can be used in an address clause. Note that, quite deliberately, there are no static checks to try to ensure that this promise is met, so @code{Pure_Function} can be used with functions that are conceptually pure, even if they do modify global variables. For example, a square root function that is instrumented to count the number of times it is called is still conceptually pure, and can still be optimized, even though it modifies a global variable (the count). Memo functions are another example (where a table of previous calls is kept and consulted to avoid re-computation). Note also that the normal rules excluding optimization of subprograms in pure units (when parameter types are descended from System.Address, or when the full view of a parameter type is limited), do not apply for the Pure_Function case. If you explicitly specify Pure_Function, the compiler may optimize away calls with identical arguments, and if that results in unexpected behavior, the proper action is not to use the pragma for subprograms that are not (conceptually) pure. @findex Pure Note: Most functions in a @code{Pure} package are automatically pure, and there is no need to use pragma @code{Pure_Function} for such functions. One exception is any function that has at least one formal of type @code{System.Address} or a type derived from it. Such functions are not considered pure by default, since the compiler assumes that the @code{Address} parameter may be functioning as a pointer and that the referenced data may change even if the address value does not. Similarly, imported functions are not considered to be pure by default, since there is no way of checking that they are in fact pure. The use of pragma @code{Pure_Function} for such a function will override these default assumption, and cause the compiler to treat a designated subprogram as pure in these cases. Note: If pragma @code{Pure_Function} is applied to a renamed function, it applies to the underlying renamed function. This can be used to disambiguate cases of overloading where some but not all functions in a set of overloaded functions are to be designated as pure. If pragma @code{Pure_Function} is applied to a library level function, the function is also considered pure from an optimization point of view, but the unit is not a Pure unit in the categorization sense. So for example, a function thus marked is free to @code{with} non-pure units. @node Pragma Ravenscar @unnumberedsec Pragma Ravenscar @findex Pragma Ravenscar @noindent Syntax: @smallexample @c ada pragma Ravenscar; @end smallexample @noindent This pragma is considered obsolescent, but is retained for compatibility purposes. It is equivalent to: @smallexample @c ada pragma Profile (Ravenscar); @end smallexample @noindent which is the preferred method of setting the @code{Ravenscar} profile. @node Pragma Refined_State @unnumberedsec Pragma Refined_State @findex Refined_State @noindent For the description of this pragma, see SPARK 2014 Reference Manual, section 7.2.2. @node Pragma Relative_Deadline @unnumberedsec Pragma Relative_Deadline @findex Relative_Deadline @noindent Syntax: @smallexample @c ada pragma Relative_Deadline (time_span_EXPRESSION); @end smallexample @noindent This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an implementation-defined pragma. See Ada 2012 Reference Manual for details. @node Pragma Remote_Access_Type @unnumberedsec Pragma Remote_Access_Type @findex Remote_Access_Type @noindent Syntax: @smallexample @c ada pragma Remote_Access_Type ([Entity =>] formal_access_type_LOCAL_NAME); @end smallexample @noindent This pragma appears in the formal part of a generic declaration. It specifies an exception to the RM rule from E.2.2(17/2), which forbids the use of a remote access to class-wide type as actual for a formal access type. When this pragma applies to a formal access type @code{Entity}, that type is treated as a remote access to class-wide type in the generic. It must be a formal general access type, and its designated type must be the class-wide type of a formal tagged limited private type from the same generic declaration. In the generic unit, the formal type is subject to all restrictions pertaining to remote access to class-wide types. At instantiation, the actual type must be a remote access to class-wide type. @node Pragma Restricted_Run_Time @unnumberedsec Pragma Restricted_Run_Time @findex Pragma Restricted_Run_Time @noindent Syntax: @smallexample @c ada pragma Restricted_Run_Time; @end smallexample @noindent This pragma is considered obsolescent, but is retained for compatibility purposes. It is equivalent to: @smallexample @c ada pragma Profile (Restricted); @end smallexample @noindent which is the preferred method of setting the restricted run time profile. @node Pragma Restriction_Warnings @unnumberedsec Pragma Restriction_Warnings @findex Restriction_Warnings @noindent Syntax: @smallexample @c ada pragma Restriction_Warnings (restriction_IDENTIFIER @{, restriction_IDENTIFIER@}); @end smallexample @noindent This pragma allows a series of restriction identifiers to be specified (the list of allowed identifiers is the same as for pragma @code{Restrictions}). For each of these identifiers the compiler checks for violations of the restriction, but generates a warning message rather than an error message if the restriction is violated. One use of this is in situations where you want to know about violations of a restriction, but you want to ignore some of these violations. Consider this example, where you want to set Ada_95 mode and enable style checks, but you want to know about any other use of implementation pragmas: @smallexample @c ada pragma Restriction_Warnings (No_Implementation_Pragmas); pragma Warnings (Off, "violation of*No_Implementation_Pragmas*"); pragma Ada_95; pragma Style_Checks ("2bfhkM160"); pragma Warnings (On, "violation of*No_Implementation_Pragmas*"); @end smallexample @noindent By including the above lines in a configuration pragmas file, the Ada_95 and Style_Checks pragmas are accepted without generating a warning, but any other use of implementation defined pragmas will cause a warning to be generated. @node Pragma Reviewable @unnumberedsec Pragma Reviewable @findex Reviewable @noindent Syntax: @smallexample @c ada pragma Reviewable; @end smallexample @noindent This pragma is an RM-defined standard pragma, but has no effect on the program being compiled, or on the code generated for the program. To obtain the required output specified in RM H.3.1, the compiler must be run with various special switches as follows: @table @i @item Where compiler-generated run-time checks remain The switch @option{-gnatGL} @findex @option{-gnatGL} may be used to list the expanded code in pseudo-Ada form. Runtime checks show up in the listing either as explicit checks or operators marked with @{@} to indicate a check is present. @item An identification of known exceptions at compile time If the program is compiled with @option{-gnatwa}, @findex @option{-gnatwa} the compiler warning messages will indicate all cases where the compiler detects that an exception is certain to occur at run time. @item Possible reads of uninitialized variables The compiler warns of many such cases, but its output is incomplete. @ifclear FSFEDITION The CodePeer analysis tool @findex CodePeer static analysis tool @end ifclear @ifset FSFEDITION A supplemental static analysis tool @end ifset may be used to obtain a comprehensive list of all possible points at which uninitialized data may be read. @item Where run-time support routines are implicitly invoked In the output from @option{-gnatGL}, @findex @option{-gnatGL} run-time calls are explicitly listed as calls to the relevant run-time routine. @item Object code listing This may be obtained either by using the @option{-S} switch, @findex @option{-S} or the objdump utility. @findex objdump @item Constructs known to be erroneous at compile time These are identified by warnings issued by the compiler (use @option{-gnatwa}). @findex @option{-gnatwa} @item Stack usage information Static stack usage data (maximum per-subprogram) can be obtained via the @option{-fstack-usage} switch to the compiler. @findex @option{-fstack-usage} Dynamic stack usage data (per task) can be obtained via the @option{-u} switch to gnatbind @findex @option{-u} @ifclear FSFEDITION The gnatstack utility @findex gnatstack can be used to provide additional information on stack usage. @end ifclear @item Object code listing of entire partition This can be obtained by compiling the partition with @option{-S}, @findex @option{-S} or by applying objdump @findex objdump to all the object files that are part of the partition. @item A description of the run-time model The full sources of the run-time are available, and the documentation of these routines describes how these run-time routines interface to the underlying operating system facilities. @item Control and data-flow information @ifclear FSFEDITION The CodePeer tool @findex CodePeer static analysis tool @end ifclear @ifset FSFEDITION A supplemental static analysis tool @end ifset may be used to obtain complete control and data-flow information, as well as comprehensive messages identifying possible problems based on this information. @end table @node Pragma Share_Generic @unnumberedsec Pragma Share_Generic @findex Share_Generic @noindent Syntax: @smallexample @c ada pragma Share_Generic (GNAME @{, GNAME@}); GNAME ::= generic_unit_NAME | generic_instance_NAME @end smallexample @noindent This pragma is provided for compatibility with Dec Ada 83. It has no effect in @code{GNAT} (which does not implement shared generics), other than to check that the given names are all names of generic units or generic instances. @node Pragma Shared @unnumberedsec Pragma Shared @findex Shared @noindent This pragma is provided for compatibility with Ada 83. The syntax and semantics are identical to pragma Atomic. @node Pragma Short_Circuit_And_Or @unnumberedsec Pragma Short_Circuit_And_Or @findex Short_Circuit_And_Or @noindent Syntax: @smallexample @c ada pragma Short_Circuit_And_Or; @end smallexample @noindent This configuration pragma causes any occurrence of the AND operator applied to operands of type Standard.Boolean to be short-circuited (i.e. the AND operator is treated as if it were AND THEN). Or is similarly treated as OR ELSE. This may be useful in the context of certification protocols requiring the use of short-circuited logical operators. If this configuration pragma occurs locally within the file being compiled, it applies only to the file being compiled. There is no requirement that all units in a partition use this option. @node Pragma Short_Descriptors @unnumberedsec Pragma Short_Descriptors @findex Short_Descriptors @noindent Syntax: @smallexample @c ada pragma Short_Descriptors @end smallexample @noindent In VMS versions of the compiler, this configuration pragma causes all occurrences of the mechanism types Descriptor[_xxx] to be treated as Short_Descriptor[_xxx]. This is helpful in porting legacy applications from a 32-bit environment to a 64-bit environment. This pragma is ignored for non-VMS versions. @node Pragma Simple_Storage_Pool_Type @unnumberedsec Pragma Simple_Storage_Pool_Type @findex Simple_Storage_Pool_Type @cindex Storage pool, simple @cindex Simple storage pool @noindent Syntax: @smallexample @c ada pragma Simple_Storage_Pool_Type (type_LOCAL_NAME); @end smallexample @noindent A type can be established as a ``simple storage pool type'' by applying the representation pragma @code{Simple_Storage_Pool_Type} to the type. A type named in the pragma must be a library-level immutably limited record type or limited tagged type declared immediately within a package declaration. The type can also be a limited private type whose full type is allowed as a simple storage pool type. For a simple storage pool type @var{SSP}, nonabstract primitive subprograms @code{Allocate}, @code{Deallocate}, and @code{Storage_Size} can be declared that are subtype conformant with the following subprogram declarations: @smallexample @c ada procedure Allocate (Pool : in out SSP; Storage_Address : out System.Address; Size_In_Storage_Elements : System.Storage_Elements.Storage_Count; Alignment : System.Storage_Elements.Storage_Count); procedure Deallocate (Pool : in out SSP; Storage_Address : System.Address; Size_In_Storage_Elements : System.Storage_Elements.Storage_Count; Alignment : System.Storage_Elements.Storage_Count); function Storage_Size (Pool : SSP) return System.Storage_Elements.Storage_Count; @end smallexample @noindent Procedure @code{Allocate} must be declared, whereas @code{Deallocate} and @code{Storage_Size} are optional. If @code{Deallocate} is not declared, then applying an unchecked deallocation has no effect other than to set its actual parameter to null. If @code{Storage_Size} is not declared, then the @code{Storage_Size} attribute applied to an access type associated with a pool object of type SSP returns zero. Additional operations can be declared for a simple storage pool type (such as for supporting a mark/release storage-management discipline). An object of a simple storage pool type can be associated with an access type by specifying the attribute @code{Simple_Storage_Pool}. For example: @smallexample @c ada My_Pool : My_Simple_Storage_Pool_Type; type Acc is access My_Data_Type; for Acc'Simple_Storage_Pool use My_Pool; @end smallexample @noindent See attribute @code{Simple_Storage_Pool} for further details. @node Pragma Source_File_Name @unnumberedsec Pragma Source_File_Name @findex Source_File_Name @noindent Syntax: @smallexample @c ada pragma Source_File_Name ( [Unit_Name =>] unit_NAME, Spec_File_Name => STRING_LITERAL, [Index => INTEGER_LITERAL]); pragma Source_File_Name ( [Unit_Name =>] unit_NAME, Body_File_Name => STRING_LITERAL, [Index => INTEGER_LITERAL]); @end smallexample @noindent Use this to override the normal naming convention. It is a configuration pragma, and so has the usual applicability of configuration pragmas (i.e.@: it applies to either an entire partition, or to all units in a compilation, or to a single unit, depending on how it is used. @var{unit_name} is mapped to @var{file_name_literal}. The identifier for the second argument is required, and indicates whether this is the file name for the spec or for the body. The optional Index argument should be used when a file contains multiple units, and when you do not want to use @code{gnatchop} to separate then into multiple files (which is the recommended procedure to limit the number of recompilations that are needed when some sources change). For instance, if the source file @file{source.ada} contains @smallexample @c ada package B is ... end B; with B; procedure A is begin .. end A; @end smallexample you could use the following configuration pragmas: @smallexample @c ada pragma Source_File_Name (B, Spec_File_Name => "source.ada", Index => 1); pragma Source_File_Name (A, Body_File_Name => "source.ada", Index => 2); @end smallexample Note that the @code{gnatname} utility can also be used to generate those configuration pragmas. Another form of the @code{Source_File_Name} pragma allows the specification of patterns defining alternative file naming schemes to apply to all files. @smallexample @c ada pragma Source_File_Name ( [Spec_File_Name =>] STRING_LITERAL [,[Casing =>] CASING_SPEC] [,[Dot_Replacement =>] STRING_LITERAL]); pragma Source_File_Name ( [Body_File_Name =>] STRING_LITERAL [,[Casing =>] CASING_SPEC] [,[Dot_Replacement =>] STRING_LITERAL]); pragma Source_File_Name ( [Subunit_File_Name =>] STRING_LITERAL [,[Casing =>] CASING_SPEC] [,[Dot_Replacement =>] STRING_LITERAL]); CASING_SPEC ::= Lowercase | Uppercase | Mixedcase @end smallexample @noindent The first argument is a pattern that contains a single asterisk indicating the point at which the unit name is to be inserted in the pattern string to form the file name. The second argument is optional. If present it specifies the casing of the unit name in the resulting file name string. The default is lower case. Finally the third argument allows for systematic replacement of any dots in the unit name by the specified string literal. Note that Source_File_Name pragmas should not be used if you are using project files. The reason for this rule is that the project manager is not aware of these pragmas, and so other tools that use the projet file would not be aware of the intended naming conventions. If you are using project files, file naming is controlled by Source_File_Name_Project pragmas, which are usually supplied automatically by the project manager. A pragma Source_File_Name cannot appear after a @ref{Pragma Source_File_Name_Project}. For more details on the use of the @code{Source_File_Name} pragma, @xref{Using Other File Names,,, gnat_ugn, @value{EDITION} User's Guide}, and @ref{Alternative File Naming Schemes,,, gnat_ugn, @value{EDITION} User's Guide}. @node Pragma Source_File_Name_Project @unnumberedsec Pragma Source_File_Name_Project @findex Source_File_Name_Project @noindent This pragma has the same syntax and semantics as pragma Source_File_Name. It is only allowed as a stand alone configuration pragma. It cannot appear after a @ref{Pragma Source_File_Name}, and most importantly, once pragma Source_File_Name_Project appears, no further Source_File_Name pragmas are allowed. The intention is that Source_File_Name_Project pragmas are always generated by the Project Manager in a manner consistent with the naming specified in a project file, and when naming is controlled in this manner, it is not permissible to attempt to modify this naming scheme using Source_File_Name or Source_File_Name_Project pragmas (which would not be known to the project manager). @node Pragma Source_Reference @unnumberedsec Pragma Source_Reference @findex Source_Reference @noindent Syntax: @smallexample @c ada pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL); @end smallexample @noindent This pragma must appear as the first line of a source file. @var{integer_literal} is the logical line number of the line following the pragma line (for use in error messages and debugging information). @var{string_literal} is a static string constant that specifies the file name to be used in error messages and debugging information. This is most notably used for the output of @code{gnatchop} with the @option{-r} switch, to make sure that the original unchopped source file is the one referred to. The second argument must be a string literal, it cannot be a static string expression other than a string literal. This is because its value is needed for error messages issued by all phases of the compiler. @node Pragma SPARK_Mode @unnumberedsec Pragma SPARK_Mode @findex SPARK_Mode @noindent Syntax: @smallexample @c ada pragma SPARK_Mode [(On | Off)] ; @end smallexample @noindent In general a program can have some parts that are in SPARK 2014 (and follow all the rules in the SPARK Reference Manual), and some parts that are full Ada 2012. The SPARK_Mode pragma is used to identify which parts are in SPARK 2014 (by default programs are in full Ada). The SPARK_Mode pragma can be used in the following places: @itemize @bullet @item As a configuration pragma, in which case it sets the default mode for all units compiled with this pragma. @item Immediately following a library-level subprogram spec @item Immediately within a library-level package body @item Immediately following the @code{private} keyword of a library-level package spec @item Immediately following the @code{begin} keyword of a library-level package body @item Immediately within a library-level subprogram body @end itemize @noindent Normally a subprogram or package spec/body inherits the current mode that is active at the point it is declared. But this can be overridden by pragma within the spec or body as above. The basic consistency rule is that you can't turn SPARK_Mode back @code{On}, once you have explicitly (with a pragma) turned if @code{Off}. So the following rules apply: @noindent If a subprogram spec has SPARK_Mode @code{Off}, then the body must also have SPARK_Mode @code{Off}. @noindent For a package, we have four parts: @itemize @item the package public declarations @item the package private part @item the body of the package @item the elaboration code after @code{begin} @end itemize @noindent For a package, the rule is that if you explicitly turn SPARK_Mode @code{Off} for any part, then all the following parts must have SPARK_Mode @code{Off}. Note that this may require repeating a pragma SPARK_Mode (@code{Off}) in the body. For example, if we have a configuration pragma SPARK_Mode (@code{On}) that turns the mode on by default everywhere, and one particular package spec has pragma SPARK_Mode (@code{Off}), then that pragma will need to be repeated in the package body. @node Pragma Static_Elaboration_Desired @unnumberedsec Pragma Static_Elaboration_Desired @findex Static_Elaboration_Desired @noindent Syntax: @smallexample @c ada pragma Static_Elaboration_Desired; @end smallexample @noindent This pragma is used to indicate that the compiler should attempt to initialize statically the objects declared in the library unit to which the pragma applies, when these objects are initialized (explicitly or implicitly) by an aggregate. In the absence of this pragma, aggregates in object declarations are expanded into assignments and loops, even when the aggregate components are static constants. When the aggregate is present the compiler builds a static expression that requires no run-time code, so that the initialized object can be placed in read-only data space. If the components are not static, or the aggregate has more that 100 components, the compiler emits a warning that the pragma cannot be obeyed. (See also the restriction No_Implicit_Loops, which supports static construction of larger aggregates with static components that include an others choice.) @node Pragma Stream_Convert @unnumberedsec Pragma Stream_Convert @findex Stream_Convert @noindent Syntax: @smallexample @c ada pragma Stream_Convert ( [Entity =>] type_LOCAL_NAME, [Read =>] function_NAME, [Write =>] function_NAME); @end smallexample @noindent This pragma provides an efficient way of providing user-defined stream attributes. Not only is it simpler to use than specifying the attributes directly, but more importantly, it allows the specification to be made in such a way that the predefined unit Ada.Streams is not loaded unless it is actually needed (i.e. unless the stream attributes are actually used); the use of the Stream_Convert pragma adds no overhead at all, unless the stream attributes are actually used on the designated type. The first argument specifies the type for which stream functions are provided. The second parameter provides a function used to read values of this type. It must name a function whose argument type may be any subtype, and whose returned type must be the type given as the first argument to the pragma. The meaning of the @var{Read} parameter is that if a stream attribute directly or indirectly specifies reading of the type given as the first parameter, then a value of the type given as the argument to the Read function is read from the stream, and then the Read function is used to convert this to the required target type. Similarly the @var{Write} parameter specifies how to treat write attributes that directly or indirectly apply to the type given as the first parameter. It must have an input parameter of the type specified by the first parameter, and the return type must be the same as the input type of the Read function. The effect is to first call the Write function to convert to the given stream type, and then write the result type to the stream. The Read and Write functions must not be overloaded subprograms. If necessary renamings can be supplied to meet this requirement. The usage of this attribute is best illustrated by a simple example, taken from the GNAT implementation of package Ada.Strings.Unbounded: @smallexample @c ada function To_Unbounded (S : String) return Unbounded_String renames To_Unbounded_String; pragma Stream_Convert (Unbounded_String, To_Unbounded, To_String); @end smallexample @noindent The specifications of the referenced functions, as given in the Ada Reference Manual are: @smallexample @c ada function To_Unbounded_String (Source : String) return Unbounded_String; function To_String (Source : Unbounded_String) return String; @end smallexample @noindent The effect is that if the value of an unbounded string is written to a stream, then the representation of the item in the stream is in the same format that would be used for @code{Standard.String'Output}, and this same representation is expected when a value of this type is read from the stream. Note that the value written always includes the bounds, even for Unbounded_String'Write, since Unbounded_String is not an array type. Note that the @code{Stream_Convert} pragma is not effective in the case of a derived type of a non-limited tagged type. If such a type is specified then the pragma is silently ignored, and the default implementation of the stream attributes is used instead. @node Pragma Style_Checks @unnumberedsec Pragma Style_Checks @findex Style_Checks @noindent Syntax: @smallexample @c ada pragma Style_Checks (string_LITERAL | ALL_CHECKS | On | Off [, LOCAL_NAME]); @end smallexample @noindent This pragma is used in conjunction with compiler switches to control the built in style checking provided by GNAT@. The compiler switches, if set, provide an initial setting for the switches, and this pragma may be used to modify these settings, or the settings may be provided entirely by the use of the pragma. This pragma can be used anywhere that a pragma is legal, including use as a configuration pragma (including use in the @file{gnat.adc} file). The form with a string literal specifies which style options are to be activated. These are additive, so they apply in addition to any previously set style check options. The codes for the options are the same as those used in the @option{-gnaty} switch to @command{gcc} or @command{gnatmake}. For example the following two methods can be used to enable layout checking: @itemize @bullet @item @smallexample @c ada pragma Style_Checks ("l"); @end smallexample @item @smallexample gcc -c -gnatyl @dots{} @end smallexample @end itemize @noindent The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of the @code{gnaty} switch with no options. @xref{Top, @value{EDITION} User's Guide, About This Guide, gnat_ugn, @value{EDITION} User's Guide}, for details.) Note: the behavior is slightly different in GNAT mode (@option{-gnatg} used). In this case, ALL_CHECKS implies the standard set of GNAT mode style check options (i.e. equivalent to -gnatyg). The forms with @code{Off} and @code{On} can be used to temporarily disable style checks as shown in the following example: @smallexample @c ada @iftex @leftskip=0cm @end iftex pragma Style_Checks ("k"); -- requires keywords in lower case pragma Style_Checks (Off); -- turn off style checks NULL; -- this will not generate an error message pragma Style_Checks (On); -- turn style checks back on NULL; -- this will generate an error message @end smallexample @noindent Finally the two argument form is allowed only if the first argument is @code{On} or @code{Off}. The effect is to turn of semantic style checks for the specified entity, as shown in the following example: @smallexample @c ada @iftex @leftskip=0cm @end iftex pragma Style_Checks ("r"); -- require consistency of identifier casing Arg : Integer; Rf1 : Integer := ARG; -- incorrect, wrong case pragma Style_Checks (Off, Arg); Rf2 : Integer := ARG; -- OK, no error @end smallexample @node Pragma Subtitle @unnumberedsec Pragma Subtitle @findex Subtitle @noindent Syntax: @smallexample @c ada pragma Subtitle ([Subtitle =>] STRING_LITERAL); @end smallexample @noindent This pragma is recognized for compatibility with other Ada compilers but is ignored by GNAT@. @node Pragma Suppress @unnumberedsec Pragma Suppress @findex Suppress @noindent Syntax: @smallexample @c ada pragma Suppress (Identifier [, [On =>] Name]); @end smallexample @noindent This is a standard pragma, and supports all the check names required in the RM. It is included here because GNAT recognizes some additional check names that are implementation defined (as permitted by the RM): @itemize @bullet @item @code{Alignment_Check} can be used to suppress alignment checks on addresses used in address clauses. Such checks can also be suppressed by suppressing range checks, but the specific use of @code{Alignment_Check} allows suppression of alignment checks without suppressing other range checks. @item @code{Predicate_Check} can be used to control whether predicate checks are active. It is applicable only to predicates for which the policy is @code{Check}. Unlike @code{Assertion_Policy}, which determines if a given predicate is ignored or checked for the whole program, the use of @code{Suppress} and @code{Unsuppress} with this check name allows a given predicate to be turned on and off at specific points in the program. @item @code{Validity_Check} can be used specifically to control validity checks. If @code{Suppress} is used to suppress validity checks, then no validity checks are performed, including those specified by the appropriate compiler switch or the @code{Validity_Checks} pragma. @item Additional check names previously introduced by use of the @code{Check_Name} pragma are also allowed. @end itemize @noindent Note that pragma Suppress gives the compiler permission to omit checks, but does not require the compiler to omit checks. The compiler will generate checks if they are essentially free, even when they are suppressed. In particular, if the compiler can prove that a certain check will necessarily fail, it will generate code to do an unconditional ``raise'', even if checks are suppressed. The compiler warns in this case. Of course, run-time checks are omitted whenever the compiler can prove that they will not fail, whether or not checks are suppressed. @node Pragma Suppress_All @unnumberedsec Pragma Suppress_All @findex Suppress_All @noindent Syntax: @smallexample @c ada pragma Suppress_All; @end smallexample @noindent This pragma can appear anywhere within a unit. The effect is to apply @code{Suppress (All_Checks)} to the unit in which it appears. This pragma is implemented for compatibility with DEC Ada 83 usage where it appears at the end of a unit, and for compatibility with Rational Ada, where it appears as a program unit pragma. The use of the standard Ada pragma @code{Suppress (All_Checks)} as a normal configuration pragma is the preferred usage in GNAT@. @node Pragma Suppress_Debug_Info @unnumberedsec Pragma Suppress_Debug_Info @findex Suppress_Debug_Info @noindent Syntax: @smallexample @c ada Suppress_Debug_Info ([Entity =>] LOCAL_NAME); @end smallexample @noindent This pragma can be used to suppress generation of debug information for the specified entity. It is intended primarily for use in debugging the debugger, and navigating around debugger problems. @node Pragma Suppress_Exception_Locations @unnumberedsec Pragma Suppress_Exception_Locations @findex Suppress_Exception_Locations @noindent Syntax: @smallexample @c ada pragma Suppress_Exception_Locations; @end smallexample @noindent In normal mode, a raise statement for an exception by default generates an exception message giving the file name and line number for the location of the raise. This is useful for debugging and logging purposes, but this entails extra space for the strings for the messages. The configuration pragma @code{Suppress_Exception_Locations} can be used to suppress the generation of these strings, with the result that space is saved, but the exception message for such raises is null. This configuration pragma may appear in a global configuration pragma file, or in a specific unit as usual. It is not required that this pragma be used consistently within a partition, so it is fine to have some units within a partition compiled with this pragma and others compiled in normal mode without it. @node Pragma Suppress_Initialization @unnumberedsec Pragma Suppress_Initialization @findex Suppress_Initialization @cindex Suppressing initialization @cindex Initialization, suppression of @noindent Syntax: @smallexample @c ada pragma Suppress_Initialization ([Entity =>] subtype_Name); @end smallexample @noindent Here subtype_Name is the name introduced by a type declaration or subtype declaration. This pragma suppresses any implicit or explicit initialization for all variables of the given type or subtype, including initialization resulting from the use of pragmas Normalize_Scalars or Initialize_Scalars. This is considered a representation item, so it cannot be given after the type is frozen. It applies to all subsequent object declarations, and also any allocator that creates objects of the type. If the pragma is given for the first subtype, then it is considered to apply to the base type and all its subtypes. If the pragma is given for other than a first subtype, then it applies only to the given subtype. The pragma may not be given after the type is frozen. @node Pragma Task_Info @unnumberedsec Pragma Task_Info @findex Task_Info @noindent Syntax @smallexample @c ada pragma Task_Info (EXPRESSION); @end smallexample @noindent This pragma appears within a task definition (like pragma @code{Priority}) and applies to the task in which it appears. The argument must be of type @code{System.Task_Info.Task_Info_Type}. The @code{Task_Info} pragma provides system dependent control over aspects of tasking implementation, for example, the ability to map tasks to specific processors. For details on the facilities available for the version of GNAT that you are using, see the documentation in the spec of package System.Task_Info in the runtime library. @node Pragma Task_Name @unnumberedsec Pragma Task_Name @findex Task_Name @noindent Syntax @smallexample @c ada pragma Task_Name (string_EXPRESSION); @end smallexample @noindent This pragma appears within a task definition (like pragma @code{Priority}) and applies to the task in which it appears. The argument must be of type String, and provides a name to be used for the task instance when the task is created. Note that this expression is not required to be static, and in particular, it can contain references to task discriminants. This facility can be used to provide different names for different tasks as they are created, as illustrated in the example below. The task name is recorded internally in the run-time structures and is accessible to tools like the debugger. In addition the routine @code{Ada.Task_Identification.Image} will return this string, with a unique task address appended. @smallexample @c ada -- Example of the use of pragma Task_Name with Ada.Task_Identification; use Ada.Task_Identification; with Text_IO; use Text_IO; procedure t3 is type Astring is access String; task type Task_Typ (Name : access String) is pragma Task_Name (Name.all); end Task_Typ; task body Task_Typ is Nam : constant String := Image (Current_Task); begin Put_Line ("-->" & Nam (1 .. 14) & "<--"); end Task_Typ; type Ptr_Task is access Task_Typ; Task_Var : Ptr_Task; begin Task_Var := new Task_Typ (new String'("This is task 1")); Task_Var := new Task_Typ (new String'("This is task 2")); end; @end smallexample @node Pragma Task_Storage @unnumberedsec Pragma Task_Storage @findex Task_Storage Syntax: @smallexample @c ada pragma Task_Storage ( [Task_Type =>] LOCAL_NAME, [Top_Guard =>] static_integer_EXPRESSION); @end smallexample @noindent This pragma specifies the length of the guard area for tasks. The guard area is an additional storage area allocated to a task. A value of zero means that either no guard area is created or a minimal guard area is created, depending on the target. This pragma can appear anywhere a @code{Storage_Size} attribute definition clause is allowed for a task type. @node Pragma Test_Case @unnumberedsec Pragma Test_Case @cindex Test cases @findex Test_Case @noindent Syntax: @smallexample @c ada pragma Test_Case ( [Name =>] static_string_Expression ,[Mode =>] (Nominal | Robustness) [, Requires => Boolean_Expression] [, Ensures => Boolean_Expression]); @end smallexample @noindent The @code{Test_Case} pragma allows defining fine-grain specifications for use by testing tools. The compiler checks the validity of the @code{Test_Case} pragma, but its presence does not lead to any modification of the code generated by the compiler. @code{Test_Case} pragmas may only appear immediately following the (separate) declaration of a subprogram in a package declaration, inside a package spec unit. Only other pragmas may intervene (that is appear between the subprogram declaration and a test case). The compiler checks that boolean expressions given in @code{Requires} and @code{Ensures} are valid, where the rules for @code{Requires} are the same as the rule for an expression in @code{Precondition} and the rules for @code{Ensures} are the same as the rule for an expression in @code{Postcondition}. In particular, attributes @code{'Old} and @code{'Result} can only be used within the @code{Ensures} expression. The following is an example of use within a package spec: @smallexample @c ada package Math_Functions is ... function Sqrt (Arg : Float) return Float; pragma Test_Case (Name => "Test 1", Mode => Nominal, Requires => Arg < 10000, Ensures => Sqrt'Result < 10); ... end Math_Functions; @end smallexample @noindent The meaning of a test case is that there is at least one context where @code{Requires} holds such that, if the associated subprogram is executed in that context, then @code{Ensures} holds when the subprogram returns. Mode @code{Nominal} indicates that the input context should also satisfy the precondition of the subprogram, and the output context should also satisfy its postcondition. More @code{Robustness} indicates that the precondition and postcondition of the subprogram should be ignored for this test case. @node Pragma Thread_Local_Storage @unnumberedsec Pragma Thread_Local_Storage @findex Thread_Local_Storage @cindex Task specific storage @cindex TLS (Thread Local Storage) @cindex Task_Attributes Syntax: @smallexample @c ada pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME); @end smallexample @noindent This pragma specifies that the specified entity, which must be a variable declared in a library level package, is to be marked as "Thread Local Storage" (@code{TLS}). On systems supporting this (which include Solaris, GNU/Linux and VxWorks 6), this causes each thread (and hence each Ada task) to see a distinct copy of the variable. The variable may not have default initialization, and if there is an explicit initialization, it must be either @code{null} for an access variable, or a static expression for a scalar variable. This provides a low level mechanism similar to that provided by the @code{Ada.Task_Attributes} package, but much more efficient and is also useful in writing interface code that will interact with foreign threads. If this pragma is used on a system where @code{TLS} is not supported, then an error message will be generated and the program will be rejected. @node Pragma Time_Slice @unnumberedsec Pragma Time_Slice @findex Time_Slice @noindent Syntax: @smallexample @c ada pragma Time_Slice (static_duration_EXPRESSION); @end smallexample @noindent For implementations of GNAT on operating systems where it is possible to supply a time slice value, this pragma may be used for this purpose. It is ignored if it is used in a system that does not allow this control, or if it appears in other than the main program unit. @cindex OpenVMS Note that the effect of this pragma is identical to the effect of the DEC Ada 83 pragma of the same name when operating under OpenVMS systems. @node Pragma Title @unnumberedsec Pragma Title @findex Title @noindent Syntax: @smallexample @c ada pragma Title (TITLING_OPTION [, TITLING OPTION]); TITLING_OPTION ::= [Title =>] STRING_LITERAL, | [Subtitle =>] STRING_LITERAL @end smallexample @noindent Syntax checked but otherwise ignored by GNAT@. This is a listing control pragma used in DEC Ada 83 implementations to provide a title and/or subtitle for the program listing. The program listing generated by GNAT does not have titles or subtitles. Unlike other pragmas, the full flexibility of named notation is allowed for this pragma, i.e.@: the parameters may be given in any order if named notation is used, and named and positional notation can be mixed following the normal rules for procedure calls in Ada. @node Pragma Type_Invariant @unnumberedsec Pragma Type_Invariant @findex Invariant @findex Type_Invariant pragma @noindent Syntax: @smallexample @c ada pragma Type_Invariant ([Entity =>] type_LOCAL_NAME, [Check =>] EXPRESSION); @end smallexample @noindent The @code{Type_Invariant} pragma is intended to be an exact replacement for the language-defined @code{Type_Invariant} aspect, and shares its restrictions and semantics. It differs from the language defined @code{Invariant} pragma in that it does not permit a string parameter, and it is controlled by the assertion identifier @code{Type_Invariant} rather than @code{Invariant}. @node Pragma Type_Invariant_Class @unnumberedsec Pragma Type_Invariant_Class @findex Invariant @findex Type_Invariant_Class pragma @noindent Syntax: @smallexample @c ada pragma Type_Invariant_Class ([Entity =>] type_LOCAL_NAME, [Check =>] EXPRESSION); @end smallexample @noindent The @code{Type_Invariant_Class} pragma is intended to be an exact replacement for the language-defined @code{Type_Invariant'Class} aspect, and shares its restrictions and semantics. Note: This pragma is called @code{Type_Invariant_Class} rather than @code{Type_Invariant'Class} because the latter would not be strictly conforming to the allowed syntax for pragmas. The motivation for providing pragmas equivalent to the aspects is to allow a program to be written using the pragmas, and then compiled if necessary using an Ada compiler that does not recognize the pragmas or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this pragma is @code{Type_Invariant'Class}, not @code{Type_Invariant_Class}. @node Pragma Unchecked_Union @unnumberedsec Pragma Unchecked_Union @cindex Unions in C @findex Unchecked_Union @noindent Syntax: @smallexample @c ada pragma Unchecked_Union (first_subtype_LOCAL_NAME); @end smallexample @noindent This pragma is used to specify a representation of a record type that is equivalent to a C union. It was introduced as a GNAT implementation defined pragma in the GNAT Ada 95 mode. Ada 2005 includes an extended version of this pragma, making it language defined, and GNAT fully implements this extended version in all language modes (Ada 83, Ada 95, and Ada 2005). For full details, consult the Ada 2012 Reference Manual, section B.3.3. @node Pragma Unimplemented_Unit @unnumberedsec Pragma Unimplemented_Unit @findex Unimplemented_Unit @noindent Syntax: @smallexample @c ada pragma Unimplemented_Unit; @end smallexample @noindent If this pragma occurs in a unit that is processed by the compiler, GNAT aborts with the message @samp{@var{xxx} not implemented}, where @var{xxx} is the name of the current compilation unit. This pragma is intended to allow the compiler to handle unimplemented library units in a clean manner. The abort only happens if code is being generated. Thus you can use specs of unimplemented packages in syntax or semantic checking mode. @node Pragma Universal_Aliasing @unnumberedsec Pragma Universal_Aliasing @findex Universal_Aliasing @noindent Syntax: @smallexample @c ada pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)]; @end smallexample @noindent @var{type_LOCAL_NAME} must refer to a type declaration in the current declarative part. The effect is to inhibit strict type-based aliasing optimization for the given type. In other words, the effect is as though access types designating this type were subject to pragma No_Strict_Aliasing. For a detailed description of the strict aliasing optimization, and the situations in which it must be suppressed, @xref{Optimization and Strict Aliasing,,, gnat_ugn, @value{EDITION} User's Guide}. @node Pragma Universal_Data @unnumberedsec Pragma Universal_Data @findex Universal_Data @noindent Syntax: @smallexample @c ada pragma Universal_Data [(library_unit_Name)]; @end smallexample @noindent This pragma is supported only for the AAMP target and is ignored for other targets. The pragma specifies that all library-level objects (Counter 0 data) associated with the library unit are to be accessed and updated using universal addressing (24-bit addresses for AAMP5) rather than the default of 16-bit Data Environment (DENV) addressing. Use of this pragma will generally result in less efficient code for references to global data associated with the library unit, but allows such data to be located anywhere in memory. This pragma is a library unit pragma, but can also be used as a configuration pragma (including use in the @file{gnat.adc} file). The functionality of this pragma is also available by applying the -univ switch on the compilations of units where universal addressing of the data is desired. @node Pragma Unmodified @unnumberedsec Pragma Unmodified @findex Unmodified @cindex Warnings, unmodified @noindent Syntax: @smallexample @c ada pragma Unmodified (LOCAL_NAME @{, LOCAL_NAME@}); @end smallexample @noindent This pragma signals that the assignable entities (variables, @code{out} parameters, @code{in out} parameters) whose names are listed are deliberately not assigned in the current source unit. This suppresses warnings about the entities being referenced but not assigned, and in addition a warning will be generated if one of these entities is in fact assigned in the same unit as the pragma (or in the corresponding body, or one of its subunits). This is particularly useful for clearly signaling that a particular parameter is not modified, even though the spec suggests that it might be. For the variable case, warnings are never given for unreferenced variables whose name contains one of the substrings @code{DISCARD, DUMMY, IGNORE, JUNK, UNUSED} in any casing. Such names are typically to be used in cases where such warnings are expected. Thus it is never necessary to use @code{pragma Unmodified} for such variables, though it is harmless to do so. @node Pragma Unreferenced @unnumberedsec Pragma Unreferenced @findex Unreferenced @cindex Warnings, unreferenced @noindent Syntax: @smallexample @c ada pragma Unreferenced (LOCAL_NAME @{, LOCAL_NAME@}); pragma Unreferenced (library_unit_NAME @{, library_unit_NAME@}); @end smallexample @noindent This pragma signals that the entities whose names are listed are deliberately not referenced in the current source unit. This suppresses warnings about the entities being unreferenced, and in addition a warning will be generated if one of these entities is in fact subsequently referenced in the same unit as the pragma (or in the corresponding body, or one of its subunits). This is particularly useful for clearly signaling that a particular parameter is not referenced in some particular subprogram implementation and that this is deliberate. It can also be useful in the case of objects declared only for their initialization or finalization side effects. If @code{LOCAL_NAME} identifies more than one matching homonym in the current scope, then the entity most recently declared is the one to which the pragma applies. Note that in the case of accept formals, the pragma Unreferenced may appear immediately after the keyword @code{do} which allows the indication of whether or not accept formals are referenced or not to be given individually for each accept statement. The left hand side of an assignment does not count as a reference for the purpose of this pragma. Thus it is fine to assign to an entity for which pragma Unreferenced is given. Note that if a warning is desired for all calls to a given subprogram, regardless of whether they occur in the same unit as the subprogram declaration, then this pragma should not be used (calls from another unit would not be flagged); pragma Obsolescent can be used instead for this purpose, see @xref{Pragma Obsolescent}. The second form of pragma @code{Unreferenced} is used within a context clause. In this case the arguments must be unit names of units previously mentioned in @code{with} clauses (similar to the usage of pragma @code{Elaborate_All}. The effect is to suppress warnings about unreferenced units and unreferenced entities within these units. For the variable case, warnings are never given for unreferenced variables whose name contains one of the substrings @code{DISCARD, DUMMY, IGNORE, JUNK, UNUSED} in any casing. Such names are typically to be used in cases where such warnings are expected. Thus it is never necessary to use @code{pragma Unreferenced} for such variables, though it is harmless to do so. @node Pragma Unreferenced_Objects @unnumberedsec Pragma Unreferenced_Objects @findex Unreferenced_Objects @cindex Warnings, unreferenced @noindent Syntax: @smallexample @c ada pragma Unreferenced_Objects (local_subtype_NAME @{, local_subtype_NAME@}); @end smallexample @noindent This pragma signals that for the types or subtypes whose names are listed, objects which are declared with one of these types or subtypes may not be referenced, and if no references appear, no warnings are given. This is particularly useful for objects which are declared solely for their initialization and finalization effect. Such variables are sometimes referred to as RAII variables (Resource Acquisition Is Initialization). Using this pragma on the relevant type (most typically a limited controlled type), the compiler will automatically suppress unwanted warnings about these variables not being referenced. @node Pragma Unreserve_All_Interrupts @unnumberedsec Pragma Unreserve_All_Interrupts @findex Unreserve_All_Interrupts @noindent Syntax: @smallexample @c ada pragma Unreserve_All_Interrupts; @end smallexample @noindent Normally certain interrupts are reserved to the implementation. Any attempt to attach an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical example is the @code{SIGINT} interrupt used in many systems for a @kbd{Ctrl-C} interrupt. Normally this interrupt is reserved to the implementation, so that @kbd{Ctrl-C} can be used to interrupt execution. If the pragma @code{Unreserve_All_Interrupts} appears anywhere in any unit in a program, then all such interrupts are unreserved. This allows the program to handle these interrupts, but disables their standard functions. For example, if this pragma is used, then pressing @kbd{Ctrl-C} will not automatically interrupt execution. However, a program can then handle the @code{SIGINT} interrupt as it chooses. For a full list of the interrupts handled in a specific implementation, see the source code for the spec of @code{Ada.Interrupts.Names} in file @file{a-intnam.ads}. This is a target dependent file that contains the list of interrupts recognized for a given target. The documentation in this file also specifies what interrupts are affected by the use of the @code{Unreserve_All_Interrupts} pragma. For a more general facility for controlling what interrupts can be handled, see pragma @code{Interrupt_State}, which subsumes the functionality of the @code{Unreserve_All_Interrupts} pragma. @node Pragma Unsuppress @unnumberedsec Pragma Unsuppress @findex Unsuppress @noindent Syntax: @smallexample @c ada pragma Unsuppress (IDENTIFIER [, [On =>] NAME]); @end smallexample @noindent This pragma undoes the effect of a previous pragma @code{Suppress}. If there is no corresponding pragma @code{Suppress} in effect, it has no effect. The range of the effect is the same as for pragma @code{Suppress}. The meaning of the arguments is identical to that used in pragma @code{Suppress}. One important application is to ensure that checks are on in cases where code depends on the checks for its correct functioning, so that the code will compile correctly even if the compiler switches are set to suppress checks. This pragma is standard in Ada 2005. It is available in all earlier versions of Ada as an implementation-defined pragma. Note that in addition to the checks defined in the Ada RM, GNAT recogizes a number of implementation-defined check names. See description of pragma @code{Suppress} for full details. @node Pragma Use_VADS_Size @unnumberedsec Pragma Use_VADS_Size @cindex @code{Size}, VADS compatibility @cindex Rational profile @findex Use_VADS_Size @noindent Syntax: @smallexample @c ada pragma Use_VADS_Size; @end smallexample @noindent This is a configuration pragma. In a unit to which it applies, any use of the 'Size attribute is automatically interpreted as a use of the 'VADS_Size attribute. Note that this may result in incorrect semantic processing of valid Ada 95 or Ada 2005 programs. This is intended to aid in the handling of existing code which depends on the interpretation of Size as implemented in the VADS compiler. See description of the VADS_Size attribute for further details. @node Pragma Validity_Checks @unnumberedsec Pragma Validity_Checks @findex Validity_Checks @noindent Syntax: @smallexample @c ada pragma Validity_Checks (string_LITERAL | ALL_CHECKS | On | Off); @end smallexample @noindent This pragma is used in conjunction with compiler switches to control the built-in validity checking provided by GNAT@. The compiler switches, if set provide an initial setting for the switches, and this pragma may be used to modify these settings, or the settings may be provided entirely by the use of the pragma. This pragma can be used anywhere that a pragma is legal, including use as a configuration pragma (including use in the @file{gnat.adc} file). The form with a string literal specifies which validity options are to be activated. The validity checks are first set to include only the default reference manual settings, and then a string of letters in the string specifies the exact set of options required. The form of this string is exactly as described for the @option{-gnatVx} compiler switch (see the @value{EDITION} User's Guide for details). For example the following two methods can be used to enable validity checking for mode @code{in} and @code{in out} subprogram parameters: @itemize @bullet @item @smallexample @c ada pragma Validity_Checks ("im"); @end smallexample @item @smallexample gcc -c -gnatVim @dots{} @end smallexample @end itemize @noindent The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of the @code{gnatva} switch. The forms with @code{Off} and @code{On} can be used to temporarily disable validity checks as shown in the following example: @smallexample @c ada @iftex @leftskip=0cm @end iftex pragma Validity_Checks ("c"); -- validity checks for copies pragma Validity_Checks (Off); -- turn off validity checks A := B; -- B will not be validity checked pragma Validity_Checks (On); -- turn validity checks back on A := C; -- C will be validity checked @end smallexample @node Pragma Volatile @unnumberedsec Pragma Volatile @findex Volatile @noindent Syntax: @smallexample @c ada pragma Volatile (LOCAL_NAME); @end smallexample @noindent This pragma is defined by the Ada Reference Manual, and the GNAT implementation is fully conformant with this definition. The reason it is mentioned in this section is that a pragma of the same name was supplied in some Ada 83 compilers, including DEC Ada 83. The Ada 95 / Ada 2005 implementation of pragma Volatile is upwards compatible with the implementation in DEC Ada 83. @node Pragma Warning_As_Error @unnumberedsec Pragma Warning_As_Error @findex Warning_As_Error @noindent Syntax: @smallexample @c ada pragma Warning_As_Error (static_string_EXPRESSION); @end smallexample @noindent This configuration pragma allows the programmer to specify a set of warnings that will be treated as errors. Any warning which matches the pattern given by the pragma argument will be treated as an error. This gives much more precise control that -gnatwe which treats all warnings as errors. The pattern may contain asterisks, which match zero or more characters in the message. For example, you can use @code{pragma Warning_As_Error ("*bits of*unused")} to treat the warning message @code{warning: 960 bits of "a" unused} as an error. No other regular expression notations are permitted. All characters other than asterisk in these three specific cases are treated as literal characters in the match. The match is case insensitive, for example XYZ matches xyz. Another possibility for the static_string_EXPRESSION which works whether or not error tags are enabled (@option{-gnatw.d}) is to use the @option{-gnatw} tag string, enclosed in brackets, as shown in the example below, to treat a class of warnings as errors. The above use of patterns to match the message applies only to warning messages generated by the front end. This pragma can also be applied to warnings provided by the back end and mentioned in @ref{Pragma Warnings}. By using a single full @option{-Wxxx} switch in the pragma, such warnings can also be treated as errors. The pragma can appear either in a global configuration pragma file (e.g. @file{gnat.adc}), or at the start of a file. Given a global configuration pragma file containing: @smallexample @c ada pragma Warning_As_Error ("[-gnatwj]"); @end smallexample @noindent which will treat all obsolescent feature warnings as errors, the following program compiles as shown (compile options here are @option{-gnatwa.d -gnatl -gnatj55}). @smallexample @c ada 1. pragma Warning_As_Error ("*never assigned*"); 2. function Warnerr return String is 3. X : Integer; | >>> error: variable "X" is never read and never assigned [-gnatwv] [warning-as-error] 4. Y : Integer; | >>> warning: variable "Y" is assigned but never read [-gnatwu] 5. begin 6. Y := 0; 7. return %ABC%; | >>> error: use of "%" is an obsolescent feature (RM J.2(4)), use """ instead [-gnatwj] [warning-as-error] 8. end; 8 lines: No errors, 3 warnings (2 treated as errors) @end smallexample @noindent Note that this pragma does not affect the set of warnings issued in any way, it merely changes the effect of a matching warning if one is produced as a result of other warnings options. As shown in this example, if the pragma results in a warning being treated as an error, the tag is changed from "warning:" to "error:" and the string "[warning-as-error]" is appended to the end of the message. @node Pragma Warnings @unnumberedsec Pragma Warnings @findex Warnings @noindent Syntax: @smallexample @c ada pragma Warnings (On | Off [,REASON]); pragma Warnings (On | Off, LOCAL_NAME [,REASON]); pragma Warnings (static_string_EXPRESSION [,REASON]); pragma Warnings (On | Off, static_string_EXPRESSION [,REASON]); REASON ::= Reason => STRING_LITERAL @{& STRING_LITERAL@} @end smallexample @noindent Normally warnings are enabled, with the output being controlled by the command line switch. Warnings (@code{Off}) turns off generation of warnings until a Warnings (@code{On}) is encountered or the end of the current unit. If generation of warnings is turned off using this pragma, then some or all of the warning messages are suppressed, regardless of the setting of the command line switches. The @code{Reason} parameter may optionally appear as the last argument in any of the forms of this pragma. It is intended purely for the purposes of documenting the reason for the @code{Warnings} pragma. The compiler will check that the argument is a static string but otherwise ignore this argument. Other tools may provide specialized processing for this string. The form with a single argument (or two arguments if Reason present), where the first argument is @code{ON} or @code{OFF} may be used as a configuration pragma. If the @var{LOCAL_NAME} parameter is present, warnings are suppressed for the specified entity. This suppression is effective from the point where it occurs till the end of the extended scope of the variable (similar to the scope of @code{Suppress}). This form cannot be used as a configuration pragma. The form with a single static_string_EXPRESSION argument (and possible reason) provides more precise control over which warnings are active. The string is a list of letters specifying which warnings are to be activated and which deactivated. The code for these letters is the same as the string used in the command line switch controlling warnings. For a brief summary, use the gnatmake command with no arguments, which will generate usage information containing the list of warnings switches supported. For full details see @ref{Warning Message Control,,, gnat_ugn, @value{EDITION} User's Guide}. This form can also be used as a configuration pragma. @noindent The warnings controlled by the @option{-gnatw} switch are generated by the front end of the compiler. The GCC back end can provide additional warnings and they are controlled by the @option{-W} switch. Such warnings can be identified by the appearance of a string of the form @code{[-Wxxx]} in the message which designates the @option{-Wxxx} switch that controls the message. The form with a single static_string_EXPRESSION argument also works for these warnings, but the string must be a single full @option{-Wxxx} switch in this case. The above reference lists a few examples of these additional warnings. @noindent The specified warnings will be in effect until the end of the program or another pragma Warnings is encountered. The effect of the pragma is cumulative. Initially the set of warnings is the standard default set as possibly modified by compiler switches. Then each pragma Warning modifies this set of warnings as specified. This form of the pragma may also be used as a configuration pragma. The fourth form, with an @code{On|Off} parameter and a string, is used to control individual messages, based on their text. The string argument is a pattern that is used to match against the text of individual warning messages (not including the initial "warning: " tag). The pattern may contain asterisks, which match zero or more characters in the message. For example, you can use @code{pragma Warnings (Off, "*bits of*unused")} to suppress the warning message @code{warning: 960 bits of "a" unused}. No other regular expression notations are permitted. All characters other than asterisk in these three specific cases are treated as literal characters in the match. The match is case insensitive, for example XYZ matches xyz. The above use of patterns to match the message applies only to warning messages generated by the front end. This form of the pragma with a string argument can also be used to control warnings provided by the back end and mentioned above. By using a single full @option{-Wxxx} switch in the pragma, such warnings can be turned on and off. There are two ways to use the pragma in this form. The OFF form can be used as a configuration pragma. The effect is to suppress all warnings (if any) that match the pattern string throughout the compilation (or match the -W switch in the back end case). The second usage is to suppress a warning locally, and in this case, two pragmas must appear in sequence: @smallexample @c ada pragma Warnings (Off, Pattern); @dots{} code where given warning is to be suppressed pragma Warnings (On, Pattern); @end smallexample @noindent In this usage, the pattern string must match in the Off and On pragmas, and at least one matching warning must be suppressed. Note: to write a string that will match any warning, use the string @code{"***"}. It will not work to use a single asterisk or two asterisks since this looks like an operator name. This form with three asterisks is similar in effect to specifying @code{pragma Warnings (Off)} except that a matching @code{pragma Warnings (On, "***")} will be required. This can be helpful in avoiding forgetting to turn warnings back on. Note: the debug flag -gnatd.i (@code{/NOWARNINGS_PRAGMAS} in VMS) can be used to cause the compiler to entirely ignore all WARNINGS pragmas. This can be useful in checking whether obsolete pragmas in existing programs are hiding real problems. Note: pragma Warnings does not affect the processing of style messages. See separate entry for pragma Style_Checks for control of style messages. @node Pragma Weak_External @unnumberedsec Pragma Weak_External @findex Weak_External @noindent Syntax: @smallexample @c ada pragma Weak_External ([Entity =>] LOCAL_NAME); @end smallexample @noindent @var{LOCAL_NAME} must refer to an object that is declared at the library level. This pragma specifies that the given entity should be marked as a weak symbol for the linker. It is equivalent to @code{__attribute__((weak))} in GNU C and causes @var{LOCAL_NAME} to be emitted as a weak symbol instead of a regular symbol, that is to say a symbol that does not have to be resolved by the linker if used in conjunction with a pragma Import. When a weak symbol is not resolved by the linker, its address is set to zero. This is useful in writing interfaces to external modules that may or may not be linked in the final executable, for example depending on configuration settings. If a program references at run time an entity to which this pragma has been applied, and the corresponding symbol was not resolved at link time, then the execution of the program is erroneous. It is not erroneous to take the Address of such an entity, for example to guard potential references, as shown in the example below. Some file formats do not support weak symbols so not all target machines support this pragma. @smallexample @c ada -- Example of the use of pragma Weak_External package External_Module is key : Integer; pragma Import (C, key); pragma Weak_External (key); function Present return boolean; end External_Module; with System; use System; package body External_Module is function Present return boolean is begin return key'Address /= System.Null_Address; end Present; end External_Module; @end smallexample @node Pragma Wide_Character_Encoding @unnumberedsec Pragma Wide_Character_Encoding @findex Wide_Character_Encoding @noindent Syntax: @smallexample @c ada pragma Wide_Character_Encoding (IDENTIFIER | CHARACTER_LITERAL); @end smallexample @noindent This pragma specifies the wide character encoding to be used in program source text appearing subsequently. It is a configuration pragma, but may also be used at any point that a pragma is allowed, and it is permissible to have more than one such pragma in a file, allowing multiple encodings to appear within the same file. The argument can be an identifier or a character literal. In the identifier case, it is one of @code{HEX}, @code{UPPER}, @code{SHIFT_JIS}, @code{EUC}, @code{UTF8}, or @code{BRACKETS}. In the character literal case it is correspondingly one of the characters @samp{h}, @samp{u}, @samp{s}, @samp{e}, @samp{8}, or @samp{b}. Note that when the pragma is used within a file, it affects only the encoding within that file, and does not affect withed units, specs, or subunits. @node Implementation Defined Aspects @chapter Implementation Defined Aspects Ada defines (throughout the Ada 2012 reference manual, summarized in Annex K) a set of aspects that can be specified for certain entities. These language defined aspects are implemented in GNAT in Ada 2012 mode and work as described in the Ada 2012 Reference Manual. In addition, Ada 2012 allows implementations to define additional aspects whose meaning is defined by the implementation. GNAT provides a number of these implementation-defined aspects which can be used to extend and enhance the functionality of the compiler. This section of the GNAT reference manual describes these additional aspects. Note that any program using these aspects may not be portable to other compilers (although GNAT implements this set of aspects on all platforms). Therefore if portability to other compilers is an important consideration, you should minimize the use of these aspects. Note that for many of these aspects, the effect is essentially similar to the use of a pragma or attribute specification with the same name applied to the entity. For example, if we write: @smallexample @c ada type R is range 1 .. 100 with Value_Size => 10; @end smallexample @noindent then the effect is the same as: @smallexample @c ada type R is range 1 .. 100; for R'Value_Size use 10; @end smallexample @noindent and if we write: @smallexample @c ada type R is new Integer with Shared => True; @end smallexample @noindent then the effect is the same as: @smallexample @c ada type R is new Integer; pragma Shared (R); @end smallexample @noindent In the documentation below, such cases are simply marked as being equivalent to the corresponding pragma or attribute definition clause. @menu * Aspect Abstract_State:: * Aspect Contract_Cases:: * Aspect Depends:: * Aspect Dimension:: * Aspect Dimension_System:: * Aspect Favor_Top_Level:: * Aspect Global:: * Aspect Initial_Condition:: * Aspect Initializes:: * Aspect Inline_Always:: * Aspect Invariant:: * Aspect Linker_Section:: * Aspect Lock_Free:: * Aspect Object_Size:: * Aspect Persistent_BSS:: * Aspect Predicate:: * Aspect Preelaborate_05:: * Aspect Pure_05:: * Aspect Pure_12:: * Aspect Pure_Function:: * Aspect Refined_State:: * Aspect Remote_Access_Type:: * Aspect Scalar_Storage_Order:: * Aspect Shared:: * Aspect Simple_Storage_Pool:: * Aspect Simple_Storage_Pool_Type:: * Aspect SPARK_Mode:: * Aspect Suppress_Debug_Info:: * Aspect Test_Case:: * Aspect Universal_Aliasing:: * Aspect Universal_Data:: * Aspect Unmodified:: * Aspect Unreferenced:: * Aspect Unreferenced_Objects:: * Aspect Value_Size:: * Aspect Warnings:: @end menu @node Aspect Abstract_State @unnumberedsec Aspect Abstract_State @findex Abstract_State @noindent This aspect is equivalent to pragma @code{Abstract_State}. @node Aspect Contract_Cases @unnumberedsec Aspect Contract_Cases @findex Contract_Cases @noindent This aspect is equivalent to pragma @code{Contract_Cases}, the sequence of clauses being enclosed in parentheses so that syntactically it is an aggregate. @node Aspect Depends @unnumberedsec Aspect Depends @findex Depends @noindent This aspect is equivalent to pragma @code{Depends}. @node Aspect Dimension @unnumberedsec Aspect Dimension @findex Dimension @noindent The @code{Dimension} aspect is used to specify the dimensions of a given subtype of a dimensioned numeric type. The aspect also specifies a symbol used when doing formatted output of dimensioned quantities. The syntax is: @smallexample @c ada with Dimension => ([Symbol =>] SYMBOL, DIMENSION_VALUE @{, DIMENSION_Value@}) SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL DIMENSION_VALUE ::= RATIONAL | others => RATIONAL | DISCRETE_CHOICE_LIST => RATIONAL RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL] @end smallexample @noindent This aspect can only be applied to a subtype whose parent type has a @code{Dimension_Systen} aspect. The aspect must specify values for all dimensions of the system. The rational values are the powers of the corresponding dimensions that are used by the compiler to verify that physical (numeric) computations are dimensionally consistent. For example, the computation of a force must result in dimensions (L => 1, M => 1, T => -2). For further examples of the usage of this aspect, see package @code{System.Dim.Mks}. Note that when the dimensioned type is an integer type, then any dimension value must be an integer literal. @node Aspect Dimension_System @unnumberedsec Aspect Dimension_System @findex Dimension_System @noindent The @code{Dimension_System} aspect is used to define a system of dimensions that will be used in subsequent subtype declarations with @code{Dimension} aspects that reference this system. The syntax is: @smallexample @c ada with Dimension_System => (DIMENSION @{, DIMENSION@}); DIMENSION ::= ([Unit_Name =>] IDENTIFIER, [Unit_Symbol =>] SYMBOL, [Dim_Symbol =>] SYMBOL) SYMBOL ::= CHARACTER_LITERAL | STRING_LITERAL @end smallexample @noindent This aspect is applied to a type, which must be a numeric derived type (typically a floating-point type), that will represent values within the dimension system. Each @code{DIMENSION} corresponds to one particular dimension. A maximum of 7 dimensions may be specified. @code{Unit_Name} is the name of the dimension (for example @code{Meter}). @code{Unit_Symbol} is the shorthand used for quantities of this dimension (for example @code{m} for @code{Meter}). @code{Dim_Symbol} gives the identification within the dimension system (typically this is a single letter, e.g. @code{L} standing for length for unit name @code{Meter}). The @code{Unit_Symbol} is used in formatted output of dimensioned quantities. The @code{Dim_Symbol} is used in error messages when numeric operations have inconsistent dimensions. GNAT provides the standard definition of the International MKS system in the run-time package @code{System.Dim.Mks}. You can easily define similar packages for cgs units or British units, and define conversion factors between values in different systems. The MKS system is characterized by the following aspect: @smallexample @c ada type Mks_Type is new Long_Long_Float with Dimension_System => ( (Unit_Name => Meter, Unit_Symbol => 'm', Dim_Symbol => 'L'), (Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => 'M'), (Unit_Name => Second, Unit_Symbol => 's', Dim_Symbol => 'T'), (Unit_Name => Ampere, Unit_Symbol => 'A', Dim_Symbol => 'I'), (Unit_Name => Kelvin, Unit_Symbol => 'K', Dim_Symbol => "Theta"), (Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => 'N'), (Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => 'J')); @end smallexample @noindent See section ``Performing Dimensionality Analysis in GNAT'' in the GNAT Users Guide for detailed examples of use of the dimension system. @node Aspect Favor_Top_Level @unnumberedsec Aspect Favor_Top_Level @findex Favor_Top_Level @noindent This aspect is equivalent to pragma @code{Favor_Top_Level}. @node Aspect Global @unnumberedsec Aspect Global @findex Global @noindent This aspect is equivalent to pragma @code{Global}. @node Aspect Initial_Condition @unnumberedsec Aspect Initial_Condition @findex Initial_Condition @noindent This aspect is equivalent to pragma @code{Initial_Condition}. @node Aspect Initializes @unnumberedsec Aspect Initializes @findex Initializes @noindent This aspect is equivalent to pragma @code{Initializes}. @node Aspect Inline_Always @unnumberedsec Aspect Inline_Always @findex Inline_Always @noindent This aspect is equivalent to pragma @code{Inline_Always}. @node Aspect Invariant @unnumberedsec Aspect Invariant @findex Invariant @noindent This aspect is equivalent to pragma @code{Invariant}. It is a synonym for the language defined aspect @code{Type_Invariant} except that it is separately controllable using pragma @code{Assertion_Policy}. @node Aspect Linker_Section @unnumberedsec Aspect Linker_Section @findex Linker_Section @noindent This aspect is equivalent to an @code{Linker_Section} pragma. @node Aspect Lock_Free @unnumberedsec Aspect Lock_Free @findex Lock_Free @noindent This aspect is equivalent to pragma @code{Lock_Free}. @node Aspect Object_Size @unnumberedsec Aspect Object_Size @findex Object_Size @noindent This aspect is equivalent to an @code{Object_Size} attribute definition clause. @node Aspect Persistent_BSS @unnumberedsec Aspect Persistent_BSS @findex Persistent_BSS @noindent This aspect is equivalent to pragma @code{Persistent_BSS}. @node Aspect Predicate @unnumberedsec Aspect Predicate @findex Predicate @noindent This aspect is equivalent to pragma @code{Predicate}. It is thus similar to the language defined aspects @code{Dynamic_Predicate} and @code{Static_Predicate} except that whether the resulting predicate is static or dynamic is controlled by the form of the expression. It is also separately controllable using pragma @code{Assertion_Policy}. @node Aspect Preelaborate_05 @unnumberedsec Aspect Preelaborate_05 @findex Preelaborate_05 @noindent This aspect is equivalent to pragma @code{Preelaborate_05}. @node Aspect Pure_05 @unnumberedsec Aspect Pure_05 @findex Pure_05 @noindent This aspect is equivalent to pragma @code{Pure_05}. @node Aspect Pure_12 @unnumberedsec Aspect Pure_12 @findex Pure_12 @noindent This aspect is equivalent to pragma @code{Pure_12}. @node Aspect Pure_Function @unnumberedsec Aspect Pure_Function @findex Pure_Function @noindent This aspect is equivalent to pragma @code{Pure_Function}. @node Aspect Refined_State @unnumberedsec Aspect Refined_State @findex Refined_State @noindent This aspect is equivalent to pragma @code{Refined_State}. @node Aspect Remote_Access_Type @unnumberedsec Aspect Remote_Access_Type @findex Remote_Access_Type @noindent This aspect is equivalent to pragma @code{Remote_Access_Type}. @node Aspect Scalar_Storage_Order @unnumberedsec Aspect Scalar_Storage_Order @findex Scalar_Storage_Order @noindent This aspect is equivalent to a @code{Scalar_Storage_Order} attribute definition clause. @node Aspect Shared @unnumberedsec Aspect Shared @findex Shared @noindent This aspect is equivalent to pragma @code{Shared}, and is thus a synonym for aspect @code{Atomic}. @node Aspect Simple_Storage_Pool @unnumberedsec Aspect Simple_Storage_Pool @findex Simple_Storage_Pool @noindent This aspect is equivalent to a @code{Simple_Storage_Pool} attribute definition clause. @node Aspect Simple_Storage_Pool_Type @unnumberedsec Aspect Simple_Storage_Pool_Type @findex Simple_Storage_Pool_Type @noindent This aspect is equivalent to pragma @code{Simple_Storage_Pool_Type}. @node Aspect SPARK_Mode @unnumberedsec Aspect SPARK_Mode @findex SPARK_Mode @noindent This aspect is equivalent to pragma @code{SPARK_Mode} and may be specified for either or both of the specification and body of a subprogram or package. @node Aspect Suppress_Debug_Info @unnumberedsec Aspect Suppress_Debug_Info @findex Suppress_Debug_Info @noindent This aspect is equivalent to pragma @code{Suppress_Debug_Info}. @node Aspect Test_Case @unnumberedsec Aspect Test_Case @findex Test_Case @noindent This aspect is equivalent to pragma @code{Test_Case}. @node Aspect Universal_Aliasing @unnumberedsec Aspect Universal_Aliasing @findex Universal_Aliasing @noindent This aspect is equivalent to pragma @code{Universal_Aliasing}. @node Aspect Universal_Data @unnumberedsec Aspect Universal_Data @findex Universal_Data @noindent This aspect is equivalent to pragma @code{Universal_Data}. @node Aspect Unmodified @unnumberedsec Aspect Unmodified @findex Unmodified @noindent This aspect is equivalent to pragma @code{Unmodified}. @node Aspect Unreferenced @unnumberedsec Aspect Unreferenced @findex Unreferenced @noindent This aspect is equivalent to pragma @code{Unreferenced}. @node Aspect Unreferenced_Objects @unnumberedsec Aspect Unreferenced_Objects @findex Unreferenced_Objects @noindent This aspect is equivalent to pragma @code{Unreferenced_Objects}. @node Aspect Value_Size @unnumberedsec Aspect Value_Size @findex Value_Size @noindent This aspect is equivalent to a @code{Value_Size} attribute definition clause. @node Aspect Warnings @unnumberedsec Aspect Warnings @findex Warnings @noindent This aspect is equivalent to the two argument form of pragma @code{Warnings}, where the first argument is @code{ON} or @code{OFF} and the second argument is the entity. @node Implementation Defined Attributes @chapter Implementation Defined Attributes Ada defines (throughout the Ada reference manual, summarized in Annex K), a set of attributes that provide useful additional functionality in all areas of the language. These language defined attributes are implemented in GNAT and work as described in the Ada Reference Manual. In addition, Ada allows implementations to define additional attributes whose meaning is defined by the implementation. GNAT provides a number of these implementation-dependent attributes which can be used to extend and enhance the functionality of the compiler. This section of the GNAT reference manual describes these additional attributes. Note that any program using these attributes may not be portable to other compilers (although GNAT implements this set of attributes on all platforms). Therefore if portability to other compilers is an important consideration, you should minimize the use of these attributes. @menu * Attribute Abort_Signal:: * Attribute Address_Size:: * Attribute Asm_Input:: * Attribute Asm_Output:: * Attribute AST_Entry:: * Attribute Bit:: * Attribute Bit_Position:: * Attribute Compiler_Version:: * Attribute Code_Address:: * Attribute Default_Bit_Order:: * Attribute Descriptor_Size:: * Attribute Elaborated:: * Attribute Elab_Body:: * Attribute Elab_Spec:: * Attribute Elab_Subp_Body:: * Attribute Emax:: * Attribute Enabled:: * Attribute Enum_Rep:: * Attribute Enum_Val:: * Attribute Epsilon:: * Attribute Fixed_Value:: * Attribute Has_Access_Values:: * Attribute Has_Discriminants:: * Attribute Img:: * Attribute Integer_Value:: * Attribute Invalid_Value:: * Attribute Large:: * Attribute Library_Level:: * Attribute Loop_Entry:: * Attribute Machine_Size:: * Attribute Mantissa:: * Attribute Max_Interrupt_Priority:: * Attribute Max_Priority:: * Attribute Maximum_Alignment:: * Attribute Mechanism_Code:: * Attribute Null_Parameter:: * Attribute Object_Size:: * Attribute Passed_By_Reference:: * Attribute Pool_Address:: * Attribute Range_Length:: * Attribute Ref:: * Attribute Restriction_Set:: * Attribute Result:: * Attribute Safe_Emax:: * Attribute Safe_Large:: * Attribute Scalar_Storage_Order:: * Attribute Simple_Storage_Pool:: * Attribute Small:: * Attribute Storage_Unit:: * Attribute Stub_Type:: * Attribute System_Allocator_Alignment:: * Attribute Target_Name:: * Attribute Tick:: * Attribute To_Address:: * Attribute Type_Class:: * Attribute UET_Address:: * Attribute Unconstrained_Array:: * Attribute Universal_Literal_String:: * Attribute Unrestricted_Access:: * Attribute Update:: * Attribute Valid_Scalars:: * Attribute VADS_Size:: * Attribute Value_Size:: * Attribute Wchar_T_Size:: * Attribute Word_Size:: @end menu @node Attribute Abort_Signal @unnumberedsec Attribute Abort_Signal @findex Abort_Signal @noindent @code{Standard'Abort_Signal} (@code{Standard} is the only allowed prefix) provides the entity for the special exception used to signal task abort or asynchronous transfer of control. Normally this attribute should only be used in the tasking runtime (it is highly peculiar, and completely outside the normal semantics of Ada, for a user program to intercept the abort exception). @node Attribute Address_Size @unnumberedsec Attribute Address_Size @cindex Size of @code{Address} @findex Address_Size @noindent @code{Standard'Address_Size} (@code{Standard} is the only allowed prefix) is a static constant giving the number of bits in an @code{Address}. It is the same value as System.Address'Size, but has the advantage of being static, while a direct reference to System.Address'Size is non-static because Address is a private type. @node Attribute Asm_Input @unnumberedsec Attribute Asm_Input @findex Asm_Input @noindent The @code{Asm_Input} attribute denotes a function that takes two parameters. The first is a string, the second is an expression of the type designated by the prefix. The first (string) argument is required to be a static expression, and is the constraint for the parameter, (e.g.@: what kind of register is required). The second argument is the value to be used as the input argument. The possible values for the constant are the same as those used in the RTL, and are dependent on the configuration file used to built the GCC back end. @ref{Machine Code Insertions} @node Attribute Asm_Output @unnumberedsec Attribute Asm_Output @findex Asm_Output @noindent The @code{Asm_Output} attribute denotes a function that takes two parameters. The first is a string, the second is the name of a variable of the type designated by the attribute prefix. The first (string) argument is required to be a static expression and designates the constraint for the parameter (e.g.@: what kind of register is required). The second argument is the variable to be updated with the result. The possible values for constraint are the same as those used in the RTL, and are dependent on the configuration file used to build the GCC back end. If there are no output operands, then this argument may either be omitted, or explicitly given as @code{No_Output_Operands}. @ref{Machine Code Insertions} @node Attribute AST_Entry @unnumberedsec Attribute AST_Entry @cindex OpenVMS @findex AST_Entry @noindent This attribute is implemented only in OpenVMS versions of GNAT@. Applied to the name of an entry, it yields a value of the predefined type AST_Handler (declared in the predefined package System, as extended by the use of pragma @code{Extend_System (Aux_DEC)}). This value enables the given entry to be called when an AST occurs. For further details, refer to the @cite{DEC Ada Language Reference Manual}, section 9.12a. @node Attribute Bit @unnumberedsec Attribute Bit @findex Bit @code{@var{obj}'Bit}, where @var{obj} is any object, yields the bit offset within the storage unit (byte) that contains the first bit of storage allocated for the object. The value of this attribute is of the type @code{Universal_Integer}, and is always a non-negative number not exceeding the value of @code{System.Storage_Unit}. For an object that is a variable or a constant allocated in a register, the value is zero. (The use of this attribute does not force the allocation of a variable to memory). For an object that is a formal parameter, this attribute applies to either the matching actual parameter or to a copy of the matching actual parameter. For an access object the value is zero. Note that @code{@var{obj}.all'Bit} is subject to an @code{Access_Check} for the designated object. Similarly for a record component @code{@var{X}.@var{C}'Bit} is subject to a discriminant check and @code{@var{X}(@var{I}).Bit} and @code{@var{X}(@var{I1}..@var{I2})'Bit} are subject to index checks. This attribute is designed to be compatible with the DEC Ada 83 definition and implementation of the @code{Bit} attribute. @node Attribute Bit_Position @unnumberedsec Attribute Bit_Position @findex Bit_Position @noindent @code{@var{R.C}'Bit_Position}, where @var{R} is a record object and C is one of the fields of the record type, yields the bit offset within the record contains the first bit of storage allocated for the object. The value of this attribute is of the type @code{Universal_Integer}. The value depends only on the field @var{C} and is independent of the alignment of the containing record @var{R}. @node Attribute Compiler_Version @unnumberedsec Attribute Compiler_Version @findex Compiler_Version @noindent @code{Standard'Compiler_Version} (@code{Standard} is the only allowed prefix) yields a static string identifying the version of the compiler being used to compile the unit containing the attribute reference. A typical result would be something like "@value{EDITION} @i{version} (20090221)". @node Attribute Code_Address @unnumberedsec Attribute Code_Address @findex Code_Address @cindex Subprogram address @cindex Address of subprogram code @noindent The @code{'Address} attribute may be applied to subprograms in Ada 95 and Ada 2005, but the intended effect seems to be to provide an address value which can be used to call the subprogram by means of an address clause as in the following example: @smallexample @c ada procedure K is @dots{} procedure L; for L'Address use K'Address; pragma Import (Ada, L); @end smallexample @noindent A call to @code{L} is then expected to result in a call to @code{K}@. In Ada 83, where there were no access-to-subprogram values, this was a common work-around for getting the effect of an indirect call. GNAT implements the above use of @code{Address} and the technique illustrated by the example code works correctly. However, for some purposes, it is useful to have the address of the start of the generated code for the subprogram. On some architectures, this is not necessarily the same as the @code{Address} value described above. For example, the @code{Address} value may reference a subprogram descriptor rather than the subprogram itself. The @code{'Code_Address} attribute, which can only be applied to subprogram entities, always returns the address of the start of the generated code of the specified subprogram, which may or may not be the same value as is returned by the corresponding @code{'Address} attribute. @node Attribute Default_Bit_Order @unnumberedsec Attribute Default_Bit_Order @cindex Big endian @cindex Little endian @findex Default_Bit_Order @noindent @code{Standard'Default_Bit_Order} (@code{Standard} is the only permissible prefix), provides the value @code{System.Default_Bit_Order} as a @code{Pos} value (0 for @code{High_Order_First}, 1 for @code{Low_Order_First}). This is used to construct the definition of @code{Default_Bit_Order} in package @code{System}. @node Attribute Descriptor_Size @unnumberedsec Attribute Descriptor_Size @cindex Descriptor @cindex Dope vector @findex Descriptor_Size @noindent Non-static attribute @code{Descriptor_Size} returns the size in bits of the descriptor allocated for a type. The result is non-zero only for unconstrained array types and the returned value is of type universal integer. In GNAT, an array descriptor contains bounds information and is located immediately before the first element of the array. @smallexample @c ada type Unconstr_Array is array (Positive range <>) of Boolean; Put_Line ("Descriptor size = " & Unconstr_Array'Descriptor_Size'Img); @end smallexample @noindent The attribute takes into account any additional padding due to type alignment. In the example above, the descriptor contains two values of type @code{Positive} representing the low and high bound. Since @code{Positive} has a size of 31 bits and an alignment of 4, the descriptor size is @code{2 * Positive'Size + 2} or 64 bits. @node Attribute Elaborated @unnumberedsec Attribute Elaborated @findex Elaborated @noindent The prefix of the @code{'Elaborated} attribute must be a unit name. The value is a Boolean which indicates whether or not the given unit has been elaborated. This attribute is primarily intended for internal use by the generated code for dynamic elaboration checking, but it can also be used in user programs. The value will always be True once elaboration of all units has been completed. An exception is for units which need no elaboration, the value is always False for such units. @node Attribute Elab_Body @unnumberedsec Attribute Elab_Body @findex Elab_Body @noindent This attribute can only be applied to a program unit name. It returns the entity for the corresponding elaboration procedure for elaborating the body of the referenced unit. This is used in the main generated elaboration procedure by the binder and is not normally used in any other context. However, there may be specialized situations in which it is useful to be able to call this elaboration procedure from Ada code, e.g.@: if it is necessary to do selective re-elaboration to fix some error. @node Attribute Elab_Spec @unnumberedsec Attribute Elab_Spec @findex Elab_Spec @noindent This attribute can only be applied to a program unit name. It returns the entity for the corresponding elaboration procedure for elaborating the spec of the referenced unit. This is used in the main generated elaboration procedure by the binder and is not normally used in any other context. However, there may be specialized situations in which it is useful to be able to call this elaboration procedure from Ada code, e.g.@: if it is necessary to do selective re-elaboration to fix some error. @node Attribute Elab_Subp_Body @unnumberedsec Attribute Elab_Subp_Body @findex Elab_Subp_Body @noindent This attribute can only be applied to a library level subprogram name and is only allowed in CodePeer mode. It returns the entity for the corresponding elaboration procedure for elaborating the body of the referenced subprogram unit. This is used in the main generated elaboration procedure by the binder in CodePeer mode only and is unrecognized otherwise. @node Attribute Emax @unnumberedsec Attribute Emax @cindex Ada 83 attributes @findex Emax @noindent The @code{Emax} attribute is provided for compatibility with Ada 83. See the Ada 83 reference manual for an exact description of the semantics of this attribute. @node Attribute Enabled @unnumberedsec Attribute Enabled @findex Enabled @noindent The @code{Enabled} attribute allows an application program to check at compile time to see if the designated check is currently enabled. The prefix is a simple identifier, referencing any predefined check name (other than @code{All_Checks}) or a check name introduced by pragma Check_Name. If no argument is given for the attribute, the check is for the general state of the check, if an argument is given, then it is an entity name, and the check indicates whether an @code{Suppress} or @code{Unsuppress} has been given naming the entity (if not, then the argument is ignored). Note that instantiations inherit the check status at the point of the instantiation, so a useful idiom is to have a library package that introduces a check name with @code{pragma Check_Name}, and then contains generic packages or subprograms which use the @code{Enabled} attribute to see if the check is enabled. A user of this package can then issue a @code{pragma Suppress} or @code{pragma Unsuppress} before instantiating the package or subprogram, controlling whether the check will be present. @node Attribute Enum_Rep @unnumberedsec Attribute Enum_Rep @cindex Representation of enums @findex Enum_Rep @noindent For every enumeration subtype @var{S}, @code{@var{S}'Enum_Rep} denotes a function with the following spec: @smallexample @c ada function @var{S}'Enum_Rep (Arg : @var{S}'Base) return @i{Universal_Integer}; @end smallexample @noindent It is also allowable to apply @code{Enum_Rep} directly to an object of an enumeration type or to a non-overloaded enumeration literal. In this case @code{@var{S}'Enum_Rep} is equivalent to @code{@var{typ}'Enum_Rep(@var{S})} where @var{typ} is the type of the enumeration literal or object. The function returns the representation value for the given enumeration value. This will be equal to value of the @code{Pos} attribute in the absence of an enumeration representation clause. This is a static attribute (i.e.@: the result is static if the argument is static). @code{@var{S}'Enum_Rep} can also be used with integer types and objects, in which case it simply returns the integer value. The reason for this is to allow it to be used for @code{(<>)} discrete formal arguments in a generic unit that can be instantiated with either enumeration types or integer types. Note that if @code{Enum_Rep} is used on a modular type whose upper bound exceeds the upper bound of the largest signed integer type, and the argument is a variable, so that the universal integer calculation is done at run time, then the call to @code{Enum_Rep} may raise @code{Constraint_Error}. @node Attribute Enum_Val @unnumberedsec Attribute Enum_Val @cindex Representation of enums @findex Enum_Val @noindent For every enumeration subtype @var{S}, @code{@var{S}'Enum_Val} denotes a function with the following spec: @smallexample @c ada function @var{S}'Enum_Val (Arg : @i{Universal_Integer) return @var{S}'Base}; @end smallexample @noindent The function returns the enumeration value whose representation matches the argument, or raises Constraint_Error if no enumeration literal of the type has the matching value. This will be equal to value of the @code{Val} attribute in the absence of an enumeration representation clause. This is a static attribute (i.e.@: the result is static if the argument is static). @node Attribute Epsilon @unnumberedsec Attribute Epsilon @cindex Ada 83 attributes @findex Epsilon @noindent The @code{Epsilon} attribute is provided for compatibility with Ada 83. See the Ada 83 reference manual for an exact description of the semantics of this attribute. @node Attribute Fixed_Value @unnumberedsec Attribute Fixed_Value @findex Fixed_Value @noindent For every fixed-point type @var{S}, @code{@var{S}'Fixed_Value} denotes a function with the following specification: @smallexample @c ada function @var{S}'Fixed_Value (Arg : @i{Universal_Integer}) return @var{S}; @end smallexample @noindent The value returned is the fixed-point value @var{V} such that @smallexample @c ada @var{V} = Arg * @var{S}'Small @end smallexample @noindent The effect is thus similar to first converting the argument to the integer type used to represent @var{S}, and then doing an unchecked conversion to the fixed-point type. The difference is that there are full range checks, to ensure that the result is in range. This attribute is primarily intended for use in implementation of the input-output functions for fixed-point values. @node Attribute Has_Access_Values @unnumberedsec Attribute Has_Access_Values @cindex Access values, testing for @findex Has_Access_Values @noindent The prefix of the @code{Has_Access_Values} attribute is a type. The result is a Boolean value which is True if the is an access type, or is a composite type with a component (at any nesting depth) that is an access type, and is False otherwise. The intended use of this attribute is in conjunction with generic definitions. If the attribute is applied to a generic private type, it indicates whether or not the corresponding actual type has access values. @node Attribute Has_Discriminants @unnumberedsec Attribute Has_Discriminants @cindex Discriminants, testing for @findex Has_Discriminants @noindent The prefix of the @code{Has_Discriminants} attribute is a type. The result is a Boolean value which is True if the type has discriminants, and False otherwise. The intended use of this attribute is in conjunction with generic definitions. If the attribute is applied to a generic private type, it indicates whether or not the corresponding actual type has discriminants. @node Attribute Img @unnumberedsec Attribute Img @findex Img @noindent The @code{Img} attribute differs from @code{Image} in that it is applied directly to an object, and yields the same result as @code{Image} for the subtype of the object. This is convenient for debugging: @smallexample @c ada Put_Line ("X = " & X'Img); @end smallexample @noindent has the same meaning as the more verbose: @smallexample @c ada Put_Line ("X = " & @var{T}'Image (X)); @end smallexample @noindent where @var{T} is the (sub)type of the object @code{X}. Note that technically, in analogy to @code{Image}, @code{X'Img} returns a parameterless function that returns the appropriate string when called. This means that @code{X'Img} can be renamed as a function-returning-string, or used in an instantiation as a function parameter. @node Attribute Integer_Value @unnumberedsec Attribute Integer_Value @findex Integer_Value @noindent For every integer type @var{S}, @code{@var{S}'Integer_Value} denotes a function with the following spec: @smallexample @c ada function @var{S}'Integer_Value (Arg : @i{Universal_Fixed}) return @var{S}; @end smallexample @noindent The value returned is the integer value @var{V}, such that @smallexample @c ada Arg = @var{V} * @var{T}'Small @end smallexample @noindent where @var{T} is the type of @code{Arg}. The effect is thus similar to first doing an unchecked conversion from the fixed-point type to its corresponding implementation type, and then converting the result to the target integer type. The difference is that there are full range checks, to ensure that the result is in range. This attribute is primarily intended for use in implementation of the standard input-output functions for fixed-point values. @node Attribute Invalid_Value @unnumberedsec Attribute Invalid_Value @findex Invalid_Value @noindent For every scalar type S, S'Invalid_Value returns an undefined value of the type. If possible this value is an invalid representation for the type. The value returned is identical to the value used to initialize an otherwise uninitialized value of the type if pragma Initialize_Scalars is used, including the ability to modify the value with the binder -Sxx flag and relevant environment variables at run time. @node Attribute Large @unnumberedsec Attribute Large @cindex Ada 83 attributes @findex Large @noindent The @code{Large} attribute is provided for compatibility with Ada 83. See the Ada 83 reference manual for an exact description of the semantics of this attribute. @node Attribute Library_Level @unnumberedsec Attribute Library_Level @findex Library_Level @noindent @noindent @code{P'Library_Level}, where P is an entity name, returns a Boolean value which is True if the entity is declared at the library level, and False otherwise. Note that within a generic instantition, the name of the generic unit denotes the instance, which means that this attribute can be used to test if a generic is instantiated at the library level, as shown in this example: @smallexample @c ada generic ... package Gen is pragma Compile_Time_Error (not Gen'Library_Level, "Gen can only be instantiated at library level"); ... end Gen; @end smallexample @node Attribute Loop_Entry @unnumberedsec Attribute Loop_Entry @findex Loop_Entry @noindent Syntax: @smallexample @c ada X'Loop_Entry [(loop_name)] @end smallexample @noindent The @code{Loop_Entry} attribute is used to refer to the value that an expression had upon entry to a given loop in much the same way that the @code{Old} attribute in a subprogram postcondition can be used to refer to the value an expression had upon entry to the subprogram. The relevant loop is either identified by the given loop name, or it is the innermost enclosing loop when no loop name is given. @noindent A @code{Loop_Entry} attribute can only occur within a @code{Loop_Variant} or @code{Loop_Invariant} pragma. A common use of @code{Loop_Entry} is to compare the current value of objects with their initial value at loop entry, in a @code{Loop_Invariant} pragma. @noindent The effect of using @code{X'Loop_Entry} is the same as declaring a constant initialized with the initial value of @code{X} at loop entry. This copy is not performed if the loop is not entered, or if the corresponding pragmas are ignored or disabled. @node Attribute Machine_Size @unnumberedsec Attribute Machine_Size @findex Machine_Size @noindent This attribute is identical to the @code{Object_Size} attribute. It is provided for compatibility with the DEC Ada 83 attribute of this name. @node Attribute Mantissa @unnumberedsec Attribute Mantissa @cindex Ada 83 attributes @findex Mantissa @noindent The @code{Mantissa} attribute is provided for compatibility with Ada 83. See the Ada 83 reference manual for an exact description of the semantics of this attribute. @node Attribute Max_Interrupt_Priority @unnumberedsec Attribute Max_Interrupt_Priority @cindex Interrupt priority, maximum @findex Max_Interrupt_Priority @noindent @code{Standard'Max_Interrupt_Priority} (@code{Standard} is the only permissible prefix), provides the same value as @code{System.Max_Interrupt_Priority}. @node Attribute Max_Priority @unnumberedsec Attribute Max_Priority @cindex Priority, maximum @findex Max_Priority @noindent @code{Standard'Max_Priority} (@code{Standard} is the only permissible prefix) provides the same value as @code{System.Max_Priority}. @node Attribute Maximum_Alignment @unnumberedsec Attribute Maximum_Alignment @cindex Alignment, maximum @findex Maximum_Alignment @noindent @code{Standard'Maximum_Alignment} (@code{Standard} is the only permissible prefix) provides the maximum useful alignment value for the target. This is a static value that can be used to specify the alignment for an object, guaranteeing that it is properly aligned in all cases. @node Attribute Mechanism_Code @unnumberedsec Attribute Mechanism_Code @cindex Return values, passing mechanism @cindex Parameters, passing mechanism @findex Mechanism_Code @noindent @code{@var{function}'Mechanism_Code} yields an integer code for the mechanism used for the result of function, and @code{@var{subprogram}'Mechanism_Code (@var{n})} yields the mechanism used for formal parameter number @var{n} (a static integer value with 1 meaning the first parameter) of @var{subprogram}. The code returned is: @table @asis @item 1 by copy (value) @item 2 by reference @item 3 by descriptor (default descriptor class) @item 4 by descriptor (UBS: unaligned bit string) @item 5 by descriptor (UBSB: aligned bit string with arbitrary bounds) @item 6 by descriptor (UBA: unaligned bit array) @item 7 by descriptor (S: string, also scalar access type parameter) @item 8 by descriptor (SB: string with arbitrary bounds) @item 9 by descriptor (A: contiguous array) @item 10 by descriptor (NCA: non-contiguous array) @end table @noindent Values from 3 through 10 are only relevant to Digital OpenVMS implementations. @cindex OpenVMS @node Attribute Null_Parameter @unnumberedsec Attribute Null_Parameter @cindex Zero address, passing @findex Null_Parameter @noindent A reference @code{@var{T}'Null_Parameter} denotes an imaginary object of type or subtype @var{T} allocated at machine address zero. The attribute is allowed only as the default expression of a formal parameter, or as an actual expression of a subprogram call. In either case, the subprogram must be imported. The identity of the object is represented by the address zero in the argument list, independent of the passing mechanism (explicit or default). This capability is needed to specify that a zero address should be passed for a record or other composite object passed by reference. There is no way of indicating this without the @code{Null_Parameter} attribute. @node Attribute Object_Size @unnumberedsec Attribute Object_Size @cindex Size, used for objects @findex Object_Size @noindent The size of an object is not necessarily the same as the size of the type of an object. This is because by default object sizes are increased to be a multiple of the alignment of the object. For example, @code{Natural'Size} is 31, but by default objects of type @code{Natural} will have a size of 32 bits. Similarly, a record containing an integer and a character: @smallexample @c ada type Rec is record I : Integer; C : Character; end record; @end smallexample @noindent will have a size of 40 (that is @code{Rec'Size} will be 40). The alignment will be 4, because of the integer field, and so the default size of record objects for this type will be 64 (8 bytes). If the alignment of the above record is specified to be 1, then the object size will be 40 (5 bytes). This is true by default, and also an object size of 40 can be explicitly specified in this case. A consequence of this capability is that different object sizes can be given to subtypes that would otherwise be considered in Ada to be statically matching. But it makes no sense to consider such subtypes as statically matching. Consequently, in @code{GNAT} we add a rule to the static matching rules that requires object sizes to match. Consider this example: @smallexample @c ada 1. procedure BadAVConvert is 2. type R is new Integer; 3. subtype R1 is R range 1 .. 10; 4. subtype R2 is R range 1 .. 10; 5. for R1'Object_Size use 8; 6. for R2'Object_Size use 16; 7. type R1P is access all R1; 8. type R2P is access all R2; 9. R1PV : R1P := new R1'(4); 10. R2PV : R2P; 11. begin 12. R2PV := R2P (R1PV); | >>> target designated subtype not compatible with type "R1" defined at line 3 13. end; @end smallexample @noindent In the absence of lines 5 and 6, types @code{R1} and @code{R2} statically match and hence the conversion on line 12 is legal. But since lines 5 and 6 cause the object sizes to differ, @code{GNAT} considers that types @code{R1} and @code{R2} are not statically matching, and line 12 generates the diagnostic shown above. @noindent Similar additional checks are performed in other contexts requiring statically matching subtypes. @node Attribute Passed_By_Reference @unnumberedsec Attribute Passed_By_Reference @cindex Parameters, when passed by reference @findex Passed_By_Reference @noindent @code{@var{type}'Passed_By_Reference} for any subtype @var{type} returns a value of type @code{Boolean} value that is @code{True} if the type is normally passed by reference and @code{False} if the type is normally passed by copy in calls. For scalar types, the result is always @code{False} and is static. For non-scalar types, the result is non-static. @node Attribute Pool_Address @unnumberedsec Attribute Pool_Address @cindex Parameters, when passed by reference @findex Pool_Address @noindent @code{@var{X}'Pool_Address} for any object @var{X} returns the address of X within its storage pool. This is the same as @code{@var{X}'Address}, except that for an unconstrained array whose bounds are allocated just before the first component, @code{@var{X}'Pool_Address} returns the address of those bounds, whereas @code{@var{X}'Address} returns the address of the first component. Here, we are interpreting ``storage pool'' broadly to mean ``wherever the object is allocated'', which could be a user-defined storage pool, the global heap, on the stack, or in a static memory area. For an object created by @code{new}, @code{@var{Ptr.all}'Pool_Address} is what is passed to @code{Allocate} and returned from @code{Deallocate}. @node Attribute Range_Length @unnumberedsec Attribute Range_Length @findex Range_Length @noindent @code{@var{type}'Range_Length} for any discrete type @var{type} yields the number of values represented by the subtype (zero for a null range). The result is static for static subtypes. @code{Range_Length} applied to the index subtype of a one dimensional array always gives the same result as @code{Length} applied to the array itself. @node Attribute Ref @unnumberedsec Attribute Ref @findex Ref @noindent @node Attribute Restriction_Set @unnumberedsec Attribute Restriction_Set @findex Restriction_Set @cindex Restrictions @noindent This attribute allows compile time testing of restrictions that are currently in effect. It is primarily intended for specializing code in the run-time based on restrictions that are active (e.g. don't need to save fpt registers if restriction No_Floating_Point is known to be in effect), but can be used anywhere. There are two forms: @smallexample @c ada System'Restriction_Set (partition_boolean_restriction_NAME) System'Restriction_Set (No_Dependence => library_unit_NAME); @end smallexample @noindent In the case of the first form, the only restriction names allowed are parameterless restrictions that are checked for consistency at bind time. For a complete list see the subtype @code{System.Rident.Partition_Boolean_Restrictions}. The result returned is True if the restriction is known to be in effect, and False if the restriction is known not to be in effect. An important guarantee is that the value of a Restriction_Set attribute is known to be consistent throughout all the code of a partition. This is trivially achieved if the entire partition is compiled with a consistent set of restriction pragmas. However, the compilation model does not require this. It is possible to compile one set of units with one set of pragmas, and another set of units with another set of pragmas. It is even possible to compile a spec with one set of pragmas, and then WITH the same spec with a different set of pragmas. Inconsistencies in the actual use of the restriction are checked at bind time. In order to achieve the guarantee of consistency for the Restriction_Set pragma, we consider that a use of the pragma that yields False is equivalent to a violation of the restriction. So for example if you write @smallexample @c ada if System'Restriction_Set (No_Floating_Point) then ... else ... end if; @end smallexample @noindent And the result is False, so that the else branch is executed, you can assume that this restriction is not set for any unit in the partition. This is checked by considering this use of the restriction pragma to be a violation of the restriction No_Floating_Point. This means that no other unit can attempt to set this restriction (if some unit does attempt to set it, the binder will refuse to bind the partition). Technical note: The restriction name and the unit name are intepreted entirely syntactically, as in the corresponding Restrictions pragma, they are not analyzed semantically, so they do not have a type. @node Attribute Result @unnumberedsec Attribute Result @findex Result @noindent @code{@var{function}'Result} can only be used with in a Postcondition pragma for a function. The prefix must be the name of the corresponding function. This is used to refer to the result of the function in the postcondition expression. For a further discussion of the use of this attribute and examples of its use, see the description of pragma Postcondition. @node Attribute Safe_Emax @unnumberedsec Attribute Safe_Emax @cindex Ada 83 attributes @findex Safe_Emax @noindent The @code{Safe_Emax} attribute is provided for compatibility with Ada 83. See the Ada 83 reference manual for an exact description of the semantics of this attribute. @node Attribute Safe_Large @unnumberedsec Attribute Safe_Large @cindex Ada 83 attributes @findex Safe_Large @noindent The @code{Safe_Large} attribute is provided for compatibility with Ada 83. See the Ada 83 reference manual for an exact description of the semantics of this attribute. @node Attribute Scalar_Storage_Order @unnumberedsec Attribute Scalar_Storage_Order @cindex Endianness @cindex Scalar storage order @findex Scalar_Storage_Order @noindent For every array or record type @var{S}, the representation attribute @code{Scalar_Storage_Order} denotes the order in which storage elements that make up scalar components are ordered within S: @smallexample @c ada -- Component type definitions subtype Yr_Type is Natural range 0 .. 127; subtype Mo_Type is Natural range 1 .. 12; subtype Da_Type is Natural range 1 .. 31; -- Record declaration type Date is record Years_Since_1980 : Yr_Type; Month : Mo_Type; Day_Of_Month : Da_Type; end record; -- Record representation clause for Date use record Years_Since_1980 at 0 range 0 .. 6; Month at 0 range 7 .. 10; Day_Of_Month at 0 range 11 .. 15; end record; -- Attribute definition clauses for Date'Bit_Order use System.High_Order_First; for Date'Scalar_Storage_Order use System.High_Order_First; -- If Scalar_Storage_Order is specified, it must be consistent with -- Bit_Order, so it's best to always define the latter explicitly if -- the former is used. @end smallexample Other properties are as for standard representation attribute @code{Bit_Order}, as defined by Ada RM 13.5.3(4). The default is @code{System.Default_Bit_Order}. For a record type @var{S}, if @code{@var{S}'Scalar_Storage_Order} is specified explicitly, it shall be equal to @code{@var{S}'Bit_Order}. Note: this means that if a @code{Scalar_Storage_Order} attribute definition clause is not confirming, then the type's @code{Bit_Order} shall be specified explicitly and set to the same value. For a record extension, the derived type shall have the same scalar storage order as the parent type. If a component of @var{S} has itself a record or array type, then it shall also have a @code{Scalar_Storage_Order} attribute definition clause. In addition, if the component is a packed array, or does not start on a byte boundary, then the scalar storage order specified for S and for the nested component type shall be identical. If @var{S} appears as the type of a record or array component, the enclosing record or array shall also have a @code{Scalar_Storage_Order} attribute definition clause. No component of a type that has a @code{Scalar_Storage_Order} attribute definition may be aliased. A confirming @code{Scalar_Storage_Order} attribute definition clause (i.e. with a value equal to @code{System.Default_Bit_Order}) has no effect. If the opposite storage order is specified, then whenever the value of a scalar component of an object of type @var{S} is read, the storage elements of the enclosing machine scalar are first reversed (before retrieving the component value, possibly applying some shift and mask operatings on the enclosing machine scalar), and the opposite operation is done for writes. In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar components are relaxed. Instead, the following rules apply: @itemize @bullet @item the underlying storage elements are those at positions @code{(position + first_bit / storage_element_size) .. (position + (last_bit + storage_element_size - 1) / storage_element_size)} @item the sequence of underlying storage elements shall have a size no greater than the largest machine scalar @item the enclosing machine scalar is defined as the smallest machine scalar starting at a position no greater than @code{position + first_bit / storage_element_size} and covering storage elements at least up to @code{position + (last_bit + storage_element_size - 1) / storage_element_size} @item the position of the component is interpreted relative to that machine scalar. @end itemize @node Attribute Simple_Storage_Pool @unnumberedsec Attribute Simple_Storage_Pool @cindex Storage pool, simple @cindex Simple storage pool @findex Simple_Storage_Pool @noindent For every nonformal, nonderived access-to-object type @var{Acc}, the representation attribute @code{Simple_Storage_Pool} may be specified via an attribute_definition_clause (or by specifying the equivalent aspect): @smallexample @c ada My_Pool : My_Simple_Storage_Pool_Type; type Acc is access My_Data_Type; for Acc'Simple_Storage_Pool use My_Pool; @end smallexample @noindent The name given in an attribute_definition_clause for the @code{Simple_Storage_Pool} attribute shall denote a variable of a ``simple storage pool type'' (see pragma @code{Simple_Storage_Pool_Type}). The use of this attribute is only allowed for a prefix denoting a type for which it has been specified. The type of the attribute is the type of the variable specified as the simple storage pool of the access type, and the attribute denotes that variable. It is illegal to specify both @code{Storage_Pool} and @code{Simple_Storage_Pool} for the same access type. If the @code{Simple_Storage_Pool} attribute has been specified for an access type, then applying the @code{Storage_Pool} attribute to the type is flagged with a warning and its evaluation raises the exception @code{Program_Error}. If the Simple_Storage_Pool attribute has been specified for an access type @var{S}, then the evaluation of the attribute @code{@var{S}'Storage_Size} returns the result of calling @code{Storage_Size (@var{S}'Simple_Storage_Pool)}, which is intended to indicate the number of storage elements reserved for the simple storage pool. If the Storage_Size function has not been defined for the simple storage pool type, then this attribute returns zero. If an access type @var{S} has a specified simple storage pool of type @var{SSP}, then the evaluation of an allocator for that access type calls the primitive @code{Allocate} procedure for type @var{SSP}, passing @code{@var{S}'Simple_Storage_Pool} as the pool parameter. The detailed semantics of such allocators is the same as those defined for allocators in section 13.11 of the Ada Reference Manual, with the term ``simple storage pool'' substituted for ``storage pool''. If an access type @var{S} has a specified simple storage pool of type @var{SSP}, then a call to an instance of the @code{Ada.Unchecked_Deallocation} for that access type invokes the primitive @code{Deallocate} procedure for type @var{SSP}, passing @code{@var{S}'Simple_Storage_Pool} as the pool parameter. The detailed semantics of such unchecked deallocations is the same as defined in section 13.11.2 of the Ada Reference Manual, except that the term ``simple storage pool'' is substituted for ``storage pool''. @node Attribute Small @unnumberedsec Attribute Small @cindex Ada 83 attributes @findex Small @noindent The @code{Small} attribute is defined in Ada 95 (and Ada 2005) only for fixed-point types. GNAT also allows this attribute to be applied to floating-point types for compatibility with Ada 83. See the Ada 83 reference manual for an exact description of the semantics of this attribute when applied to floating-point types. @node Attribute Storage_Unit @unnumberedsec Attribute Storage_Unit @findex Storage_Unit @noindent @code{Standard'Storage_Unit} (@code{Standard} is the only permissible prefix) provides the same value as @code{System.Storage_Unit}. @node Attribute Stub_Type @unnumberedsec Attribute Stub_Type @findex Stub_Type @noindent The GNAT implementation of remote access-to-classwide types is organized as described in AARM section E.4 (20.t): a value of an RACW type (designating a remote object) is represented as a normal access value, pointing to a "stub" object which in turn contains the necessary information to contact the designated remote object. A call on any dispatching operation of such a stub object does the remote call, if necessary, using the information in the stub object to locate the target partition, etc. For a prefix @code{T} that denotes a remote access-to-classwide type, @code{T'Stub_Type} denotes the type of the corresponding stub objects. By construction, the layout of @code{T'Stub_Type} is identical to that of type @code{RACW_Stub_Type} declared in the internal implementation-defined unit @code{System.Partition_Interface}. Use of this attribute will create an implicit dependency on this unit. @node Attribute System_Allocator_Alignment @unnumberedsec Attribute System_Allocator_Alignment @cindex Alignment, allocator @findex System_Allocator_Alignment @noindent @code{Standard'System_Allocator_Alignment} (@code{Standard} is the only permissible prefix) provides the observable guaranted to be honored by the system allocator (malloc). This is a static value that can be used in user storage pools based on malloc either to reject allocation with alignment too large or to enable a realignment circuitry if the alignment request is larger than this value. @node Attribute Target_Name @unnumberedsec Attribute Target_Name @findex Target_Name @noindent @code{Standard'Target_Name} (@code{Standard} is the only permissible prefix) provides a static string value that identifies the target for the current compilation. For GCC implementations, this is the standard gcc target name without the terminating slash (for example, GNAT 5.0 on windows yields "i586-pc-mingw32msv"). @node Attribute Tick @unnumberedsec Attribute Tick @findex Tick @noindent @code{Standard'Tick} (@code{Standard} is the only permissible prefix) provides the same value as @code{System.Tick}, @node Attribute To_Address @unnumberedsec Attribute To_Address @findex To_Address @noindent The @code{System'To_Address} (@code{System} is the only permissible prefix) denotes a function identical to @code{System.Storage_Elements.To_Address} except that it is a static attribute. This means that if its argument is a static expression, then the result of the attribute is a static expression. This means that such an expression can be used in contexts (e.g.@: preelaborable packages) which require a static expression and where the function call could not be used (since the function call is always non-static, even if its argument is static). The argument must be in the range -(2**(m-1) .. 2**m-1, where m is the memory size (typically 32 or 64). Negative values are intepreted in a modular manner (e.g. -1 means the same as 16#FFFF_FFFF# on a 32 bits machine). @node Attribute Type_Class @unnumberedsec Attribute Type_Class @findex Type_Class @noindent @code{@var{type}'Type_Class} for any type or subtype @var{type} yields the value of the type class for the full type of @var{type}. If @var{type} is a generic formal type, the value is the value for the corresponding actual subtype. The value of this attribute is of type @code{System.Aux_DEC.Type_Class}, which has the following definition: @smallexample @c ada type Type_Class is (Type_Class_Enumeration, Type_Class_Integer, Type_Class_Fixed_Point, Type_Class_Floating_Point, Type_Class_Array, Type_Class_Record, Type_Class_Access, Type_Class_Task, Type_Class_Address); @end smallexample @noindent Protected types yield the value @code{Type_Class_Task}, which thus applies to all concurrent types. This attribute is designed to be compatible with the DEC Ada 83 attribute of the same name. @node Attribute UET_Address @unnumberedsec Attribute UET_Address @findex UET_Address @noindent The @code{UET_Address} attribute can only be used for a prefix which denotes a library package. It yields the address of the unit exception table when zero cost exception handling is used. This attribute is intended only for use within the GNAT implementation. See the unit @code{Ada.Exceptions} in files @file{a-except.ads} and @file{a-except.adb} for details on how this attribute is used in the implementation. @node Attribute Unconstrained_Array @unnumberedsec Attribute Unconstrained_Array @findex Unconstrained_Array @noindent The @code{Unconstrained_Array} attribute can be used with a prefix that denotes any type or subtype. It is a static attribute that yields @code{True} if the prefix designates an unconstrained array, and @code{False} otherwise. In a generic instance, the result is still static, and yields the result of applying this test to the generic actual. @node Attribute Universal_Literal_String @unnumberedsec Attribute Universal_Literal_String @cindex Named numbers, representation of @findex Universal_Literal_String @noindent The prefix of @code{Universal_Literal_String} must be a named number. The static result is the string consisting of the characters of the number as defined in the original source. This allows the user program to access the actual text of named numbers without intermediate conversions and without the need to enclose the strings in quotes (which would preclude their use as numbers). For example, the following program prints the first 50 digits of pi: @smallexample @c ada with Text_IO; use Text_IO; with Ada.Numerics; procedure Pi is begin Put (Ada.Numerics.Pi'Universal_Literal_String); end; @end smallexample @node Attribute Unrestricted_Access @unnumberedsec Attribute Unrestricted_Access @cindex @code{Access}, unrestricted @findex Unrestricted_Access @noindent The @code{Unrestricted_Access} attribute is similar to @code{Access} except that all accessibility and aliased view checks are omitted. This is a user-beware attribute. It is similar to @code{Address}, for which it is a desirable replacement where the value desired is an access type. In other words, its effect is identical to first applying the @code{Address} attribute and then doing an unchecked conversion to a desired access type. In GNAT, but not necessarily in other implementations, the use of static chains for inner level subprograms means that @code{Unrestricted_Access} applied to a subprogram yields a value that can be called as long as the subprogram is in scope (normal Ada accessibility rules restrict this usage). It is possible to use @code{Unrestricted_Access} for any type, but care must be exercised if it is used to create pointers to unconstrained objects. In this case, the resulting pointer has the same scope as the context of the attribute, and may not be returned to some enclosing scope. For instance, a function cannot use @code{Unrestricted_Access} to create a unconstrained pointer and then return that value to the caller. @node Attribute Update @unnumberedsec Attribute Update @findex Update @noindent The @code{Update} attribute creates a copy of an array or record value with one or more modified components. The syntax is: @smallexample @c ada PREFIX'Update ( RECORD_COMPONENT_ASSOCIATION_LIST ) PREFIX'Update ( ARRAY_COMPONENT_ASSOCIATION @{, ARRAY_COMPONENT_ASSOCIATION @} ) PREFIX'Update ( MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION @{, MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION @} ) MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION ::= INDEX_EXPRESSION_LIST_LIST => EXPRESSION INDEX_EXPRESSION_LIST_LIST ::= INDEX_EXPRESSION_LIST @{| INDEX_EXPRESSION_LIST @} INDEX_EXPRESSION_LIST ::= ( EXPRESSION @{, EXPRESSION @} ) @end smallexample @noindent where @code{PREFIX} is the name of an array or record object, and the association list in parentheses does not contain an @code{others} choice. The effect is to yield a copy of the array or record value which is unchanged apart from the components mentioned in the association list, which are changed to the indicated value. The original value of the array or record value is not affected. For example: @smallexample @c ada type Arr is Array (1 .. 5) of Integer; ... Avar1 : Arr := (1,2,3,4,5); Avar2 : Arr := Avar1'Update (2 => 10, 3 .. 4 => 20); @end smallexample @noindent yields a value for @code{Avar2} of 1,10,20,20,5 with @code{Avar1} begin unmodified. Similarly: @smallexample @c ada type Rec is A, B, C : Integer; ... Rvar1 : Rec := (A => 1, B => 2, C => 3); Rvar2 : Rec := Rvar1'Update (B => 20); @end smallexample @noindent yields a value for @code{Rvar2} of (A => 1, B => 20, C => 3), with @code{Rvar1} being unmodifed. Note that the value of the attribute reference is computed completely before it is used. This means that if you write: @smallexample @c ada Avar1 := Avar1'Update (1 => 10, 2 => Function_Call); @end smallexample @noindent then the value of @code{Avar1} is not modified if @code{Function_Call} raises an exception, unlike the effect of a series of direct assignments to elements of @code{Avar1}. In general this requires that two extra complete copies of the object are required, which should be kept in mind when considering efficiency. The @code{Update} attribute cannot be applied to prefixes of a limited type, and cannot reference discriminants in the case of a record type. The accessibility level of an Update attribute result object is defined as for an aggregate. In the record case, no component can be mentioned more than once. In the array case, two overlapping ranges can appear in the association list, in which case the modifications are processed left to right. Multi-dimensional arrays can be modified, as shown by this example: @smallexample @c ada A : array (1 .. 10, 1 .. 10) of Integer; .. A := A'Update ((1, 2) => 20, (3, 4) => 30); @end smallexample @noindent which changes element (1,2) to 20 and (3,4) to 30. @node Attribute Valid_Scalars @unnumberedsec Attribute Valid_Scalars @findex Valid_Scalars @noindent The @code{'Valid_Scalars} attribute is intended to make it easier to check the validity of scalar subcomponents of composite objects. It is defined for any prefix @code{X} that denotes an object. The value of this attribute is of the predefined type Boolean. @code{X'Valid_Scalars} yields True if and only if evaluation of @code{P'Valid} yields True for every scalar part P of X or if X has no scalar parts. It is not specified in what order the scalar parts are checked, nor whether any more are checked after any one of them is determined to be invalid. If the prefix @code{X} is of a class-wide type @code{T'Class} (where @code{T} is the associated specific type), or if the prefix @code{X} is of a specific tagged type @code{T}, then only the scalar parts of components of @code{T} are traversed; in other words, components of extensions of @code{T} are not traversed even if @code{T'Class (X)'Tag /= T'Tag} . The compiler will issue a warning if it can be determined at compile time that the prefix of the attribute has no scalar parts (e.g., if the prefix is of an access type, an interface type, an undiscriminated task type, or an undiscriminated protected type). @node Attribute VADS_Size @unnumberedsec Attribute VADS_Size @cindex @code{Size}, VADS compatibility @findex VADS_Size @noindent The @code{'VADS_Size} attribute is intended to make it easier to port legacy code which relies on the semantics of @code{'Size} as implemented by the VADS Ada 83 compiler. GNAT makes a best effort at duplicating the same semantic interpretation. In particular, @code{'VADS_Size} applied to a predefined or other primitive type with no Size clause yields the Object_Size (for example, @code{Natural'Size} is 32 rather than 31 on typical machines). In addition @code{'VADS_Size} applied to an object gives the result that would be obtained by applying the attribute to the corresponding type. @node Attribute Value_Size @unnumberedsec Attribute Value_Size @cindex @code{Size}, setting for not-first subtype @findex Value_Size @code{@var{type}'Value_Size} is the number of bits required to represent a value of the given subtype. It is the same as @code{@var{type}'Size}, but, unlike @code{Size}, may be set for non-first subtypes. @node Attribute Wchar_T_Size @unnumberedsec Attribute Wchar_T_Size @findex Wchar_T_Size @code{Standard'Wchar_T_Size} (@code{Standard} is the only permissible prefix) provides the size in bits of the C @code{wchar_t} type primarily for constructing the definition of this type in package @code{Interfaces.C}. @node Attribute Word_Size @unnumberedsec Attribute Word_Size @findex Word_Size @code{Standard'Word_Size} (@code{Standard} is the only permissible prefix) provides the value @code{System.Word_Size}. @node Standard and Implementation Defined Restrictions @chapter Standard and Implementation Defined Restrictions @noindent All RM defined Restriction identifiers are implemented: @itemize @bullet @item language-defined restrictions (see 13.12.1) @item tasking restrictions (see D.7) @item high integrity restrictions (see H.4) @end itemize @noindent GNAT implements additional restriction identifiers. All restrictions, whether language defined or GNAT-specific, are listed in the following. @menu * Partition-Wide Restrictions:: * Program Unit Level Restrictions:: @end menu @node Partition-Wide Restrictions @section Partition-Wide Restrictions There are two separate lists of restriction identifiers. The first set requires consistency throughout a partition (in other words, if the restriction identifier is used for any compilation unit in the partition, then all compilation units in the partition must obey the restriction). @menu * Immediate_Reclamation:: * Max_Asynchronous_Select_Nesting:: * Max_Entry_Queue_Length:: * Max_Protected_Entries:: * Max_Select_Alternatives:: * Max_Storage_At_Blocking:: * Max_Task_Entries:: * Max_Tasks:: * No_Abort_Statements:: * No_Access_Parameter_Allocators:: * No_Access_Subprograms:: * No_Allocators:: * No_Anonymous_Allocators:: * No_Calendar:: * No_Coextensions:: * No_Default_Initialization:: * No_Delay:: * No_Dependence:: * No_Direct_Boolean_Operators:: * No_Dispatch:: * No_Dispatching_Calls:: * No_Dynamic_Attachment:: * No_Dynamic_Priorities:: * No_Entry_Calls_In_Elaboration_Code:: * No_Enumeration_Maps:: * No_Exception_Handlers:: * No_Exception_Propagation:: * No_Exception_Registration:: * No_Exceptions:: * No_Finalization:: * No_Fixed_Point:: * No_Floating_Point:: * No_Implicit_Conditionals:: * No_Implicit_Dynamic_Code:: * No_Implicit_Heap_Allocations:: * No_Implicit_Loops:: * No_Initialize_Scalars:: * No_IO:: * No_Local_Allocators:: * No_Local_Protected_Objects:: * No_Local_Timing_Events:: * No_Nested_Finalization:: * No_Protected_Type_Allocators:: * No_Protected_Types:: * No_Recursion:: * No_Reentrancy:: * No_Relative_Delay:: * No_Requeue_Statements:: * No_Secondary_Stack:: * No_Select_Statements:: * No_Specific_Termination_Handlers:: * No_Specification_of_Aspect:: * No_Standard_Allocators_After_Elaboration:: * No_Standard_Storage_Pools:: * No_Stream_Optimizations:: * No_Streams:: * No_Task_Allocators:: * No_Task_Attributes_Package:: * No_Task_Hierarchy:: * No_Task_Termination:: * No_Tasking:: * No_Terminate_Alternatives:: * No_Unchecked_Access:: * Simple_Barriers:: * Static_Priorities:: * Static_Storage_Size:: @end menu @node Immediate_Reclamation @unnumberedsubsec Immediate_Reclamation @findex Immediate_Reclamation [RM H.4] This restriction ensures that, except for storage occupied by objects created by allocators and not deallocated via unchecked deallocation, any storage reserved at run time for an object is immediately reclaimed when the object no longer exists. @node Max_Asynchronous_Select_Nesting @unnumberedsubsec Max_Asynchronous_Select_Nesting @findex Max_Asynchronous_Select_Nesting [RM D.7] Specifies the maximum dynamic nesting level of asynchronous selects. Violations of this restriction with a value of zero are detected at compile time. Violations of this restriction with values other than zero cause Storage_Error to be raised. @node Max_Entry_Queue_Length @unnumberedsubsec Max_Entry_Queue_Length @findex Max_Entry_Queue_Length [RM D.7] This restriction is a declaration that any protected entry compiled in the scope of the restriction has at most the specified number of tasks waiting on the entry at any one time, and so no queue is required. Note that this restriction is checked at run time. Violation of this restriction results in the raising of Program_Error exception at the point of the call. @findex Max_Entry_Queue_Depth The restriction @code{Max_Entry_Queue_Depth} is recognized as a synonym for @code{Max_Entry_Queue_Length}. This is retained for historical compatibility purposes (and a warning will be generated for its use if warnings on obsolescent features are activated). @node Max_Protected_Entries @unnumberedsubsec Max_Protected_Entries @findex Max_Protected_Entries [RM D.7] Specifies the maximum number of entries per protected type. The bounds of every entry family of a protected unit shall be static, or shall be defined by a discriminant of a subtype whose corresponding bound is static. @node Max_Select_Alternatives @unnumberedsubsec Max_Select_Alternatives @findex Max_Select_Alternatives [RM D.7] Specifies the maximum number of alternatives in a selective accept. @node Max_Storage_At_Blocking @unnumberedsubsec Max_Storage_At_Blocking @findex Max_Storage_At_Blocking [RM D.7] Specifies the maximum portion (in storage elements) of a task's Storage_Size that can be retained by a blocked task. A violation of this restriction causes Storage_Error to be raised. @node Max_Task_Entries @unnumberedsubsec Max_Task_Entries @findex Max_Task_Entries [RM D.7] Specifies the maximum number of entries per task. The bounds of every entry family of a task unit shall be static, or shall be defined by a discriminant of a subtype whose corresponding bound is static. @node Max_Tasks @unnumberedsubsec Max_Tasks @findex Max_Tasks [RM D.7] Specifies the maximum number of task that may be created, not counting the creation of the environment task. Violations of this restriction with a value of zero are detected at compile time. Violations of this restriction with values other than zero cause Storage_Error to be raised. @node No_Abort_Statements @unnumberedsubsec No_Abort_Statements @findex No_Abort_Statements [RM D.7] There are no abort_statements, and there are no calls to Task_Identification.Abort_Task. @node No_Access_Parameter_Allocators @unnumberedsubsec No_Access_Parameter_Allocators @findex No_Access_Parameter_Allocators [RM H.4] This restriction ensures at compile time that there are no occurrences of an allocator as the actual parameter to an access parameter. @node No_Access_Subprograms @unnumberedsubsec No_Access_Subprograms @findex No_Access_Subprograms [RM H.4] This restriction ensures at compile time that there are no declarations of access-to-subprogram types. @node No_Allocators @unnumberedsubsec No_Allocators @findex No_Allocators [RM H.4] This restriction ensures at compile time that there are no occurrences of an allocator. @node No_Anonymous_Allocators @unnumberedsubsec No_Anonymous_Allocators @findex No_Anonymous_Allocators [RM H.4] This restriction ensures at compile time that there are no occurrences of an allocator of anonymous access type. @node No_Calendar @unnumberedsubsec No_Calendar @findex No_Calendar [GNAT] This restriction ensures at compile time that there is no implicit or explicit dependence on the package @code{Ada.Calendar}. @node No_Coextensions @unnumberedsubsec No_Coextensions @findex No_Coextensions [RM H.4] This restriction ensures at compile time that there are no coextensions. See 3.10.2. @node No_Default_Initialization @unnumberedsubsec No_Default_Initialization @findex No_Default_Initialization [GNAT] This restriction prohibits any instance of default initialization of variables. The binder implements a consistency rule which prevents any unit compiled without the restriction from with'ing a unit with the restriction (this allows the generation of initialization procedures to be skipped, since you can be sure that no call is ever generated to an initialization procedure in a unit with the restriction active). If used in conjunction with Initialize_Scalars or Normalize_Scalars, the effect is to prohibit all cases of variables declared without a specific initializer (including the case of OUT scalar parameters). @node No_Delay @unnumberedsubsec No_Delay @findex No_Delay [RM H.4] This restriction ensures at compile time that there are no delay statements and no dependences on package Calendar. @node No_Dependence @unnumberedsubsec No_Dependence @findex No_Dependence [RM 13.12.1] This restriction checks at compile time that there are no dependence on a library unit. @node No_Direct_Boolean_Operators @unnumberedsubsec No_Direct_Boolean_Operators @findex No_Direct_Boolean_Operators [GNAT] This restriction ensures that no logical operators (and/or/xor) are used on operands of type Boolean (or any type derived from Boolean). This is intended for use in safety critical programs where the certification protocol requires the use of short-circuit (and then, or else) forms for all composite boolean operations. @node No_Dispatch @unnumberedsubsec No_Dispatch @findex No_Dispatch [RM H.4] This restriction ensures at compile time that there are no occurrences of @code{T'Class}, for any (tagged) subtype @code{T}. @node No_Dispatching_Calls @unnumberedsubsec No_Dispatching_Calls @findex No_Dispatching_Calls [GNAT] This restriction ensures at compile time that the code generated by the compiler involves no dispatching calls. The use of this restriction allows the safe use of record extensions, classwide membership tests and other classwide features not involving implicit dispatching. This restriction ensures that the code contains no indirect calls through a dispatching mechanism. Note that this includes internally-generated calls created by the compiler, for example in the implementation of class-wide objects assignments. The membership test is allowed in the presence of this restriction, because its implementation requires no dispatching. This restriction is comparable to the official Ada restriction @code{No_Dispatch} except that it is a bit less restrictive in that it allows all classwide constructs that do not imply dispatching. The following example indicates constructs that violate this restriction. @smallexample package Pkg is type T is tagged record Data : Natural; end record; procedure P (X : T); type DT is new T with record More_Data : Natural; end record; procedure Q (X : DT); end Pkg; with Pkg; use Pkg; procedure Example is procedure Test (O : T'Class) is N : Natural := O'Size;-- Error: Dispatching call C : T'Class := O; -- Error: implicit Dispatching Call begin if O in DT'Class then -- OK : Membership test Q (DT (O)); -- OK : Type conversion plus direct call else P (O); -- Error: Dispatching call end if; end Test; Obj : DT; begin P (Obj); -- OK : Direct call P (T (Obj)); -- OK : Type conversion plus direct call P (T'Class (Obj)); -- Error: Dispatching call Test (Obj); -- OK : Type conversion if Obj in T'Class then -- OK : Membership test null; end if; end Example; @end smallexample @node No_Dynamic_Attachment @unnumberedsubsec No_Dynamic_Attachment @findex No_Dynamic_Attachment [RM D.7] This restriction ensures that there is no call to any of the operations defined in package Ada.Interrupts (Is_Reserved, Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler, Detach_Handler, and Reference). @findex No_Dynamic_Interrupts The restriction @code{No_Dynamic_Interrupts} is recognized as a synonym for @code{No_Dynamic_Attachment}. This is retained for historical compatibility purposes (and a warning will be generated for its use if warnings on obsolescent features are activated). @node No_Dynamic_Priorities @unnumberedsubsec No_Dynamic_Priorities @findex No_Dynamic_Priorities [RM D.7] There are no semantic dependencies on the package Dynamic_Priorities. @node No_Entry_Calls_In_Elaboration_Code @unnumberedsubsec No_Entry_Calls_In_Elaboration_Code @findex No_Entry_Calls_In_Elaboration_Code [GNAT] This restriction ensures at compile time that no task or protected entry calls are made during elaboration code. As a result of the use of this restriction, the compiler can assume that no code past an accept statement in a task can be executed at elaboration time. @node No_Enumeration_Maps @unnumberedsubsec No_Enumeration_Maps @findex No_Enumeration_Maps [GNAT] This restriction ensures at compile time that no operations requiring enumeration maps are used (that is Image and Value attributes applied to enumeration types). @node No_Exception_Handlers @unnumberedsubsec No_Exception_Handlers @findex No_Exception_Handlers [GNAT] This restriction ensures at compile time that there are no explicit exception handlers. It also indicates that no exception propagation will be provided. In this mode, exceptions may be raised but will result in an immediate call to the last chance handler, a routine that the user must define with the following profile: @smallexample @c ada procedure Last_Chance_Handler (Source_Location : System.Address; Line : Integer); pragma Export (C, Last_Chance_Handler, "__gnat_last_chance_handler"); @end smallexample The parameter is a C null-terminated string representing a message to be associated with the exception (typically the source location of the raise statement generated by the compiler). The Line parameter when nonzero represents the line number in the source program where the raise occurs. @node No_Exception_Propagation @unnumberedsubsec No_Exception_Propagation @findex No_Exception_Propagation [GNAT] This restriction guarantees that exceptions are never propagated to an outer subprogram scope. The only case in which an exception may be raised is when the handler is statically in the same subprogram, so that the effect of a raise is essentially like a goto statement. Any other raise statement (implicit or explicit) will be considered unhandled. Exception handlers are allowed, but may not contain an exception occurrence identifier (exception choice). In addition, use of the package GNAT.Current_Exception is not permitted, and reraise statements (raise with no operand) are not permitted. @node No_Exception_Registration @unnumberedsubsec No_Exception_Registration @findex No_Exception_Registration [GNAT] This restriction ensures at compile time that no stream operations for types Exception_Id or Exception_Occurrence are used. This also makes it impossible to pass exceptions to or from a partition with this restriction in a distributed environment. If this exception is active, then the generated code is simplified by omitting the otherwise-required global registration of exceptions when they are declared. @node No_Exceptions @unnumberedsubsec No_Exceptions @findex No_Exceptions [RM H.4] This restriction ensures at compile time that there are no raise statements and no exception handlers. @node No_Finalization @unnumberedsubsec No_Finalization @findex No_Finalization [GNAT] This restriction disables the language features described in chapter 7.6 of the Ada 2005 RM as well as all form of code generation performed by the compiler to support these features. The following types are no longer considered controlled when this restriction is in effect: @itemize @bullet @item @code{Ada.Finalization.Controlled} @item @code{Ada.Finalization.Limited_Controlled} @item Derivations from @code{Controlled} or @code{Limited_Controlled} @item Class-wide types @item Protected types @item Task types @item Array and record types with controlled components @end itemize The compiler no longer generates code to initialize, finalize or adjust an object or a nested component, either declared on the stack or on the heap. The deallocation of a controlled object no longer finalizes its contents. @node No_Fixed_Point @unnumberedsubsec No_Fixed_Point @findex No_Fixed_Point [RM H.4] This restriction ensures at compile time that there are no occurrences of fixed point types and operations. @node No_Floating_Point @unnumberedsubsec No_Floating_Point @findex No_Floating_Point [RM H.4] This restriction ensures at compile time that there are no occurrences of floating point types and operations. @node No_Implicit_Conditionals @unnumberedsubsec No_Implicit_Conditionals @findex No_Implicit_Conditionals [GNAT] This restriction ensures that the generated code does not contain any implicit conditionals, either by modifying the generated code where possible, or by rejecting any construct that would otherwise generate an implicit conditional. Note that this check does not include run time constraint checks, which on some targets may generate implicit conditionals as well. To control the latter, constraint checks can be suppressed in the normal manner. Constructs generating implicit conditionals include comparisons of composite objects and the Max/Min attributes. @node No_Implicit_Dynamic_Code @unnumberedsubsec No_Implicit_Dynamic_Code @findex No_Implicit_Dynamic_Code @cindex trampoline [GNAT] This restriction prevents the compiler from building ``trampolines''. This is a structure that is built on the stack and contains dynamic code to be executed at run time. On some targets, a trampoline is built for the following features: @code{Access}, @code{Unrestricted_Access}, or @code{Address} of a nested subprogram; nested task bodies; primitive operations of nested tagged types. Trampolines do not work on machines that prevent execution of stack data. For example, on windows systems, enabling DEP (data execution protection) will cause trampolines to raise an exception. Trampolines are also quite slow at run time. On many targets, trampolines have been largely eliminated. Look at the version of system.ads for your target --- if it has Always_Compatible_Rep equal to False, then trampolines are largely eliminated. In particular, a trampoline is built for the following features: @code{Address} of a nested subprogram; @code{Access} or @code{Unrestricted_Access} of a nested subprogram, but only if pragma Favor_Top_Level applies, or the access type has a foreign-language convention; primitive operations of nested tagged types. @node No_Implicit_Heap_Allocations @unnumberedsubsec No_Implicit_Heap_Allocations @findex No_Implicit_Heap_Allocations [RM D.7] No constructs are allowed to cause implicit heap allocation. @node No_Implicit_Loops @unnumberedsubsec No_Implicit_Loops @findex No_Implicit_Loops [GNAT] This restriction ensures that the generated code does not contain any implicit @code{for} loops, either by modifying the generated code where possible, or by rejecting any construct that would otherwise generate an implicit @code{for} loop. If this restriction is active, it is possible to build large array aggregates with all static components without generating an intermediate temporary, and without generating a loop to initialize individual components. Otherwise, a loop is created for arrays larger than about 5000 scalar components. @node No_Initialize_Scalars @unnumberedsubsec No_Initialize_Scalars @findex No_Initialize_Scalars [GNAT] This restriction ensures that no unit in the partition is compiled with pragma Initialize_Scalars. This allows the generation of more efficient code, and in particular eliminates dummy null initialization routines that are otherwise generated for some record and array types. @node No_IO @unnumberedsubsec No_IO @findex No_IO [RM H.4] This restriction ensures at compile time that there are no dependences on any of the library units Sequential_IO, Direct_IO, Text_IO, Wide_Text_IO, Wide_Wide_Text_IO, or Stream_IO. @node No_Local_Allocators @unnumberedsubsec No_Local_Allocators @findex No_Local_Allocators [RM H.4] This restriction ensures at compile time that there are no occurrences of an allocator in subprograms, generic subprograms, tasks, and entry bodies. @node No_Local_Protected_Objects @unnumberedsubsec No_Local_Protected_Objects @findex No_Local_Protected_Objects [RM D.7] This restriction ensures at compile time that protected objects are only declared at the library level. @node No_Local_Timing_Events @unnumberedsubsec No_Local_Timing_Events @findex No_Local_Timing_Events [RM D.7] All objects of type Ada.Timing_Events.Timing_Event are declared at the library level. @node No_Nested_Finalization @unnumberedsubsec No_Nested_Finalization @findex No_Nested_Finalization [RM D.7] All objects requiring finalization are declared at the library level. @node No_Protected_Type_Allocators @unnumberedsubsec No_Protected_Type_Allocators @findex No_Protected_Type_Allocators [RM D.7] This restriction ensures at compile time that there are no allocator expressions that attempt to allocate protected objects. @node No_Protected_Types @unnumberedsubsec No_Protected_Types @findex No_Protected_Types [RM H.4] This restriction ensures at compile time that there are no declarations of protected types or protected objects. @node No_Recursion @unnumberedsubsec No_Recursion @findex No_Recursion [RM H.4] A program execution is erroneous if a subprogram is invoked as part of its execution. @node No_Reentrancy @unnumberedsubsec No_Reentrancy @findex No_Reentrancy [RM H.4] A program execution is erroneous if a subprogram is executed by two tasks at the same time. @node No_Relative_Delay @unnumberedsubsec No_Relative_Delay @findex No_Relative_Delay [RM D.7] This restriction ensures at compile time that there are no delay relative statements and prevents expressions such as @code{delay 1.23;} from appearing in source code. @node No_Requeue_Statements @unnumberedsubsec No_Requeue_Statements @findex No_Requeue_Statements [RM D.7] This restriction ensures at compile time that no requeue statements are permitted and prevents keyword @code{requeue} from being used in source code. @findex No_Requeue The restriction @code{No_Requeue} is recognized as a synonym for @code{No_Requeue_Statements}. This is retained for historical compatibility purposes (and a warning will be generated for its use if warnings on oNobsolescent features are activated). @node No_Secondary_Stack @unnumberedsubsec No_Secondary_Stack @findex No_Secondary_Stack [GNAT] This restriction ensures at compile time that the generated code does not contain any reference to the secondary stack. The secondary stack is used to implement functions returning unconstrained objects (arrays or records) on some targets. @node No_Select_Statements @unnumberedsubsec No_Select_Statements @findex No_Select_Statements [RM D.7] This restriction ensures at compile time no select statements of any kind are permitted, that is the keyword @code{select} may not appear. @node No_Specific_Termination_Handlers @unnumberedsubsec No_Specific_Termination_Handlers @findex No_Specific_Termination_Handlers [RM D.7] There are no calls to Ada.Task_Termination.Set_Specific_Handler or to Ada.Task_Termination.Specific_Handler. @node No_Specification_of_Aspect @unnumberedsubsec No_Specification_of_Aspect @findex No_Specification_of_Aspect [RM 13.12.1] This restriction checks at compile time that no aspect specification, attribute definition clause, or pragma is given for a given aspect. @node No_Standard_Allocators_After_Elaboration @unnumberedsubsec No_Standard_Allocators_After_Elaboration @findex No_Standard_Allocators_After_Elaboration [RM D.7] Specifies that an allocator using a standard storage pool should never be evaluated at run time after the elaboration of the library items of the partition has completed. Otherwise, Storage_Error is raised. @node No_Standard_Storage_Pools @unnumberedsubsec No_Standard_Storage_Pools @findex No_Standard_Storage_Pools [GNAT] This restriction ensures at compile time that no access types use the standard default storage pool. Any access type declared must have an explicit Storage_Pool attribute defined specifying a user-defined storage pool. @node No_Stream_Optimizations @unnumberedsubsec No_Stream_Optimizations @findex No_Stream_Optimizations [GNAT] This restriction affects the performance of stream operations on types @code{String}, @code{Wide_String} and @code{Wide_Wide_String}. By default, the compiler uses block reads and writes when manipulating @code{String} objects due to their supperior performance. When this restriction is in effect, the compiler performs all IO operations on a per-character basis. @node No_Streams @unnumberedsubsec No_Streams @findex No_Streams [GNAT] This restriction ensures at compile/bind time that there are no stream objects created and no use of stream attributes. This restriction does not forbid dependences on the package @code{Ada.Streams}. So it is permissible to with @code{Ada.Streams} (or another package that does so itself) as long as no actual stream objects are created and no stream attributes are used. Note that the use of restriction allows optimization of tagged types, since they do not need to worry about dispatching stream operations. To take maximum advantage of this space-saving optimization, any unit declaring a tagged type should be compiled with the restriction, though this is not required. @node No_Task_Allocators @unnumberedsubsec No_Task_Allocators @findex No_Task_Allocators [RM D.7] There are no allocators for task types or types containing task subcomponents. @node No_Task_Attributes_Package @unnumberedsubsec No_Task_Attributes_Package @findex No_Task_Attributes_Package [GNAT] This restriction ensures at compile time that there are no implicit or explicit dependencies on the package @code{Ada.Task_Attributes}. @findex No_Task_Attributes The restriction @code{No_Task_Attributes} is recognized as a synonym for @code{No_Task_Attributes_Package}. This is retained for historical compatibility purposes (and a warning will be generated for its use if warnings on obsolescent features are activated). @node No_Task_Hierarchy @unnumberedsubsec No_Task_Hierarchy @findex No_Task_Hierarchy [RM D.7] All (non-environment) tasks depend directly on the environment task of the partition. @node No_Task_Termination @unnumberedsubsec No_Task_Termination @findex No_Task_Termination [RM D.7] Tasks which terminate are erroneous. @node No_Tasking @unnumberedsubsec No_Tasking @findex No_Tasking [GNAT] This restriction prevents the declaration of tasks or task types throughout the partition. It is similar in effect to the use of @code{Max_Tasks => 0} except that violations are caught at compile time and cause an error message to be output either by the compiler or binder. @node No_Terminate_Alternatives @unnumberedsubsec No_Terminate_Alternatives @findex No_Terminate_Alternatives [RM D.7] There are no selective accepts with terminate alternatives. @node No_Unchecked_Access @unnumberedsubsec No_Unchecked_Access @findex No_Unchecked_Access [RM H.4] This restriction ensures at compile time that there are no occurrences of the Unchecked_Access attribute. @node Simple_Barriers @unnumberedsubsec Simple_Barriers @findex Simple_Barriers [RM D.7] This restriction ensures at compile time that barriers in entry declarations for protected types are restricted to either static boolean expressions or references to simple boolean variables defined in the private part of the protected type. No other form of entry barriers is permitted. @findex Boolean_Entry_Barriers The restriction @code{Boolean_Entry_Barriers} is recognized as a synonym for @code{Simple_Barriers}. This is retained for historical compatibility purposes (and a warning will be generated for its use if warnings on obsolescent features are activated). @node Static_Priorities @unnumberedsubsec Static_Priorities @findex Static_Priorities [GNAT] This restriction ensures at compile time that all priority expressions are static, and that there are no dependences on the package @code{Ada.Dynamic_Priorities}. @node Static_Storage_Size @unnumberedsubsec Static_Storage_Size @findex Static_Storage_Size [GNAT] This restriction ensures at compile time that any expression appearing in a Storage_Size pragma or attribute definition clause is static. @node Program Unit Level Restrictions @section Program Unit Level Restrictions @noindent The second set of restriction identifiers does not require partition-wide consistency. The restriction may be enforced for a single compilation unit without any effect on any of the other compilation units in the partition. @menu * No_Elaboration_Code:: * No_Entry_Queue:: * No_Implementation_Aspect_Specifications:: * No_Implementation_Attributes:: * No_Implementation_Identifiers:: * No_Implementation_Pragmas:: * No_Implementation_Restrictions:: * No_Implementation_Units:: * No_Implicit_Aliasing:: * No_Obsolescent_Features:: * No_Wide_Characters:: * SPARK_05:: @end menu @node No_Elaboration_Code @unnumberedsubsec No_Elaboration_Code @findex No_Elaboration_Code [GNAT] This restriction ensures at compile time that no elaboration code is generated. Note that this is not the same condition as is enforced by pragma @code{Preelaborate}. There are cases in which pragma @code{Preelaborate} still permits code to be generated (e.g.@: code to initialize a large array to all zeroes), and there are cases of units which do not meet the requirements for pragma @code{Preelaborate}, but for which no elaboration code is generated. Generally, it is the case that preelaborable units will meet the restrictions, with the exception of large aggregates initialized with an others_clause, and exception declarations (which generate calls to a run-time registry procedure). This restriction is enforced on a unit by unit basis, it need not be obeyed consistently throughout a partition. In the case of aggregates with others, if the aggregate has a dynamic size, there is no way to eliminate the elaboration code (such dynamic bounds would be incompatible with @code{Preelaborate} in any case). If the bounds are static, then use of this restriction actually modifies the code choice of the compiler to avoid generating a loop, and instead generate the aggregate statically if possible, no matter how many times the data for the others clause must be repeatedly generated. It is not possible to precisely document the constructs which are compatible with this restriction, since, unlike most other restrictions, this is not a restriction on the source code, but a restriction on the generated object code. For example, if the source contains a declaration: @smallexample Val : constant Integer := X; @end smallexample @noindent where X is not a static constant, it may be possible, depending on complex optimization circuitry, for the compiler to figure out the value of X at compile time, in which case this initialization can be done by the loader, and requires no initialization code. It is not possible to document the precise conditions under which the optimizer can figure this out. Note that this the implementation of this restriction requires full code generation. If it is used in conjunction with "semantics only" checking, then some cases of violations may be missed. @node No_Entry_Queue @unnumberedsubsec No_Entry_Queue @findex No_Entry_Queue [GNAT] This restriction is a declaration that any protected entry compiled in the scope of the restriction has at most one task waiting on the entry at any one time, and so no queue is required. This restriction is not checked at compile time. A program execution is erroneous if an attempt is made to queue a second task on such an entry. @node No_Implementation_Aspect_Specifications @unnumberedsubsec No_Implementation_Aspect_Specifications @findex No_Implementation_Aspect_Specifications [RM 13.12.1] This restriction checks at compile time that no GNAT-defined aspects are present. With this restriction, the only aspects that can be used are those defined in the Ada Reference Manual. @node No_Implementation_Attributes @unnumberedsubsec No_Implementation_Attributes @findex No_Implementation_Attributes [RM 13.12.1] This restriction checks at compile time that no GNAT-defined attributes are present. With this restriction, the only attributes that can be used are those defined in the Ada Reference Manual. @node No_Implementation_Identifiers @unnumberedsubsec No_Implementation_Identifiers @findex No_Implementation_Identifiers [RM 13.12.1] This restriction checks at compile time that no implementation-defined identifiers (marked with pragma Implementation_Defined) occur within language-defined packages. @node No_Implementation_Pragmas @unnumberedsubsec No_Implementation_Pragmas @findex No_Implementation_Pragmas [RM 13.12.1] This restriction checks at compile time that no GNAT-defined pragmas are present. With this restriction, the only pragmas that can be used are those defined in the Ada Reference Manual. @node No_Implementation_Restrictions @unnumberedsubsec No_Implementation_Restrictions @findex No_Implementation_Restrictions [GNAT] This restriction checks at compile time that no GNAT-defined restriction identifiers (other than @code{No_Implementation_Restrictions} itself) are present. With this restriction, the only other restriction identifiers that can be used are those defined in the Ada Reference Manual. @node No_Implementation_Units @unnumberedsubsec No_Implementation_Units @findex No_Implementation_Units [RM 13.12.1] This restriction checks at compile time that there is no mention in the context clause of any implementation-defined descendants of packages Ada, Interfaces, or System. @node No_Implicit_Aliasing @unnumberedsubsec No_Implicit_Aliasing @findex No_Implicit_Aliasing [GNAT] This restriction, which is not required to be partition-wide consistent, requires an explicit aliased keyword for an object to which 'Access, 'Unchecked_Access, or 'Address is applied, and forbids entirely the use of the 'Unrestricted_Access attribute for objects. Note: the reason that Unrestricted_Access is forbidden is that it would require the prefix to be aliased, and in such cases, it can always be replaced by the standard attribute Unchecked_Access which is preferable. @node No_Obsolescent_Features @unnumberedsubsec No_Obsolescent_Features @findex No_Obsolescent_Features [RM 13.12.1] This restriction checks at compile time that no obsolescent features are used, as defined in Annex J of the Ada Reference Manual. @node No_Wide_Characters @unnumberedsubsec No_Wide_Characters @findex No_Wide_Characters [GNAT] This restriction ensures at compile time that no uses of the types @code{Wide_Character} or @code{Wide_String} or corresponding wide wide types appear, and that no wide or wide wide string or character literals appear in the program (that is literals representing characters not in type @code{Character}). @node SPARK_05 @unnumberedsubsec SPARK_05 @findex SPARK_05 [GNAT] This restriction checks at compile time that some constructs forbidden in SPARK 2005 are not present. Error messages related to SPARK restriction have the form: @findex SPARK The restriction @code{SPARK} is recognized as a synonym for @code{SPARK_05}. This is retained for historical compatibility purposes (and an unconditional warning will be generated for its use, advising replacement by @code{SPARK}. @smallexample violation of restriction "SPARK" at @end smallexample This is not a replacement for the semantic checks performed by the SPARK Examiner tool, as the compiler only deals currently with code, not at all with SPARK 2005 annotations and does not guarantee catching all cases of constructs forbidden by SPARK 2005. Thus it may well be the case that code which passes the compiler with the SPARK restriction is rejected by the SPARK Examiner, e.g. due to the different visibility rules of the Examiner based on SPARK 2005 @code{inherit} annotations. This restriction can be useful in providing an initial filter for code developed using SPARK 2005, or in examining legacy code to see how far it is from meeting SPARK restrictions. Note that if a unit is compiled in Ada 95 mode with SPARK restriction, violations will be reported for constructs forbidden in SPARK 95, instead of SPARK 2005. @c ------------------------ @node Implementation Advice @chapter Implementation Advice @noindent The main text of the Ada Reference Manual describes the required behavior of all Ada compilers, and the GNAT compiler conforms to these requirements. In addition, there are sections throughout the Ada Reference Manual headed by the phrase ``Implementation advice''. These sections are not normative, i.e., they do not specify requirements that all compilers must follow. Rather they provide advice on generally desirable behavior. You may wonder why they are not requirements. The most typical answer is that they describe behavior that seems generally desirable, but cannot be provided on all systems, or which may be undesirable on some systems. As far as practical, GNAT follows the implementation advice sections in the Ada Reference Manual. This chapter contains a table giving the reference manual section number, paragraph number and several keywords for each advice. Each entry consists of the text of the advice followed by the GNAT interpretation of this advice. Most often, this simply says ``followed'', which means that GNAT follows the advice. However, in a number of cases, GNAT deliberately deviates from this advice, in which case the text describes what GNAT does and why. @cindex Error detection @unnumberedsec 1.1.3(20): Error Detection @sp 1 @cartouche If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time, it should raise @code{Program_Error} if feasible. @end cartouche Not relevant. All specialized needs annex features are either supported, or diagnosed at compile time. @cindex Child Units @unnumberedsec 1.1.3(31): Child Units @sp 1 @cartouche If an implementation wishes to provide implementation-defined extensions to the functionality of a language-defined library unit, it should normally do so by adding children to the library unit. @end cartouche Followed. @cindex Bounded errors @unnumberedsec 1.1.5(12): Bounded Errors @sp 1 @cartouche If an implementation detects a bounded error or erroneous execution, it should raise @code{Program_Error}. @end cartouche Followed in all cases in which the implementation detects a bounded error or erroneous execution. Not all such situations are detected at runtime. @cindex Pragmas @unnumberedsec 2.8(16): Pragmas @sp 1 @cartouche Normally, implementation-defined pragmas should have no semantic effect for error-free programs; that is, if the implementation-defined pragmas are removed from a working program, the program should still be legal, and should still have the same semantics. @end cartouche The following implementation defined pragmas are exceptions to this rule: @table @code @item Abort_Defer Affects semantics @item Ada_83 Affects legality @item Assert Affects semantics @item CPP_Class Affects semantics @item CPP_Constructor Affects semantics @item Debug Affects semantics @item Interface_Name Affects semantics @item Machine_Attribute Affects semantics @item Unimplemented_Unit Affects legality @item Unchecked_Union Affects semantics @end table @noindent In each of the above cases, it is essential to the purpose of the pragma that this advice not be followed. For details see the separate section on implementation defined pragmas. @unnumberedsec 2.8(17-19): Pragmas @sp 1 @cartouche Normally, an implementation should not define pragmas that can make an illegal program legal, except as follows: @end cartouche @sp 1 @cartouche A pragma used to complete a declaration, such as a pragma @code{Import}; @end cartouche @sp 1 @cartouche A pragma used to configure the environment by adding, removing, or replacing @code{library_items}. @end cartouche See response to paragraph 16 of this same section. @cindex Character Sets @cindex Alternative Character Sets @unnumberedsec 3.5.2(5): Alternative Character Sets @sp 1 @cartouche If an implementation supports a mode with alternative interpretations for @code{Character} and @code{Wide_Character}, the set of graphic characters of @code{Character} should nevertheless remain a proper subset of the set of graphic characters of @code{Wide_Character}. Any character set ``localizations'' should be reflected in the results of the subprograms defined in the language-defined package @code{Characters.Handling} (see A.3) available in such a mode. In a mode with an alternative interpretation of @code{Character}, the implementation should also support a corresponding change in what is a legal @code{identifier_letter}. @end cartouche Not all wide character modes follow this advice, in particular the JIS and IEC modes reflect standard usage in Japan, and in these encoding, the upper half of the Latin-1 set is not part of the wide-character subset, since the most significant bit is used for wide character encoding. However, this only applies to the external forms. Internally there is no such restriction. @cindex Integer types @unnumberedsec 3.5.4(28): Integer Types @sp 1 @cartouche An implementation should support @code{Long_Integer} in addition to @code{Integer} if the target machine supports 32-bit (or longer) arithmetic. No other named integer subtypes are recommended for package @code{Standard}. Instead, appropriate named integer subtypes should be provided in the library package @code{Interfaces} (see B.2). @end cartouche @code{Long_Integer} is supported. Other standard integer types are supported so this advice is not fully followed. These types are supported for convenient interface to C, and so that all hardware types of the machine are easily available. @unnumberedsec 3.5.4(29): Integer Types @sp 1 @cartouche An implementation for a two's complement machine should support modular types with a binary modulus up to @code{System.Max_Int*2+2}. An implementation should support a non-binary modules up to @code{Integer'Last}. @end cartouche Followed. @cindex Enumeration values @unnumberedsec 3.5.5(8): Enumeration Values @sp 1 @cartouche For the evaluation of a call on @code{@var{S}'Pos} for an enumeration subtype, if the value of the operand does not correspond to the internal code for any enumeration literal of its type (perhaps due to an un-initialized variable), then the implementation should raise @code{Program_Error}. This is particularly important for enumeration types with noncontiguous internal codes specified by an enumeration_representation_clause. @end cartouche Followed. @cindex Float types @unnumberedsec 3.5.7(17): Float Types @sp 1 @cartouche An implementation should support @code{Long_Float} in addition to @code{Float} if the target machine supports 11 or more digits of precision. No other named floating point subtypes are recommended for package @code{Standard}. Instead, appropriate named floating point subtypes should be provided in the library package @code{Interfaces} (see B.2). @end cartouche @code{Short_Float} and @code{Long_Long_Float} are also provided. The former provides improved compatibility with other implementations supporting this type. The latter corresponds to the highest precision floating-point type supported by the hardware. On most machines, this will be the same as @code{Long_Float}, but on some machines, it will correspond to the IEEE extended form. The notable case is all ia32 (x86) implementations, where @code{Long_Long_Float} corresponds to the 80-bit extended precision format supported in hardware on this processor. Note that the 128-bit format on SPARC is not supported, since this is a software rather than a hardware format. @cindex Multidimensional arrays @cindex Arrays, multidimensional @unnumberedsec 3.6.2(11): Multidimensional Arrays @sp 1 @cartouche An implementation should normally represent multidimensional arrays in row-major order, consistent with the notation used for multidimensional array aggregates (see 4.3.3). However, if a pragma @code{Convention} (@code{Fortran}, @dots{}) applies to a multidimensional array type, then column-major order should be used instead (see B.5, ``Interfacing with Fortran''). @end cartouche Followed. @findex Duration'Small @unnumberedsec 9.6(30-31): Duration'Small @sp 1 @cartouche Whenever possible in an implementation, the value of @code{Duration'Small} should be no greater than 100 microseconds. @end cartouche Followed. (@code{Duration'Small} = 10**(@minus{}9)). @sp 1 @cartouche The time base for @code{delay_relative_statements} should be monotonic; it need not be the same time base as used for @code{Calendar.Clock}. @end cartouche Followed. @unnumberedsec 10.2.1(12): Consistent Representation @sp 1 @cartouche In an implementation, a type declared in a pre-elaborated package should have the same representation in every elaboration of a given version of the package, whether the elaborations occur in distinct executions of the same program, or in executions of distinct programs or partitions that include the given version. @end cartouche Followed, except in the case of tagged types. Tagged types involve implicit pointers to a local copy of a dispatch table, and these pointers have representations which thus depend on a particular elaboration of the package. It is not easy to see how it would be possible to follow this advice without severely impacting efficiency of execution. @cindex Exception information @unnumberedsec 11.4.1(19): Exception Information @sp 1 @cartouche @code{Exception_Message} by default and @code{Exception_Information} should produce information useful for debugging. @code{Exception_Message} should be short, about one line. @code{Exception_Information} can be long. @code{Exception_Message} should not include the @code{Exception_Name}. @code{Exception_Information} should include both the @code{Exception_Name} and the @code{Exception_Message}. @end cartouche Followed. For each exception that doesn't have a specified @code{Exception_Message}, the compiler generates one containing the location of the raise statement. This location has the form ``file:line'', where file is the short file name (without path information) and line is the line number in the file. Note that in the case of the Zero Cost Exception mechanism, these messages become redundant with the Exception_Information that contains a full backtrace of the calling sequence, so they are disabled. To disable explicitly the generation of the source location message, use the Pragma @code{Discard_Names}. @cindex Suppression of checks @cindex Checks, suppression of @unnumberedsec 11.5(28): Suppression of Checks @sp 1 @cartouche The implementation should minimize the code executed for checks that have been suppressed. @end cartouche Followed. @cindex Representation clauses @unnumberedsec 13.1 (21-24): Representation Clauses @sp 1 @cartouche The recommended level of support for all representation items is qualified as follows: @end cartouche @sp 1 @cartouche An implementation need not support representation items containing non-static expressions, except that an implementation should support a representation item for a given entity if each non-static expression in the representation item is a name that statically denotes a constant declared before the entity. @end cartouche Followed. In fact, GNAT goes beyond the recommended level of support by allowing nonstatic expressions in some representation clauses even without the need to declare constants initialized with the values of such expressions. For example: @smallexample @c ada X : Integer; Y : Float; for Y'Address use X'Address;>> @end smallexample @sp 1 @cartouche An implementation need not support a specification for the @code{Size} for a given composite subtype, nor the size or storage place for an object (including a component) of a given composite subtype, unless the constraints on the subtype and its composite subcomponents (if any) are all static constraints. @end cartouche Followed. Size Clauses are not permitted on non-static components, as described above. @sp 1 @cartouche An aliased component, or a component whose type is by-reference, should always be allocated at an addressable location. @end cartouche Followed. @cindex Packed types @unnumberedsec 13.2(6-8): Packed Types @sp 1 @cartouche If a type is packed, then the implementation should try to minimize storage allocated to objects of the type, possibly at the expense of speed of accessing components, subject to reasonable complexity in addressing calculations. @end cartouche @sp 1 @cartouche The recommended level of support pragma @code{Pack} is: For a packed record type, the components should be packed as tightly as possible subject to the Sizes of the component subtypes, and subject to any @code{record_representation_clause} that applies to the type; the implementation may, but need not, reorder components or cross aligned word boundaries to improve the packing. A component whose @code{Size} is greater than the word size may be allocated an integral number of words. @end cartouche Followed. Tight packing of arrays is supported for all component sizes up to 64-bits. If the array component size is 1 (that is to say, if the component is a boolean type or an enumeration type with two values) then values of the type are implicitly initialized to zero. This happens both for objects of the packed type, and for objects that have a subcomponent of the packed type. @sp 1 @cartouche An implementation should support Address clauses for imported subprograms. @end cartouche Followed. @cindex @code{Address} clauses @unnumberedsec 13.3(14-19): Address Clauses @sp 1 @cartouche For an array @var{X}, @code{@var{X}'Address} should point at the first component of the array, and not at the array bounds. @end cartouche Followed. @sp 1 @cartouche The recommended level of support for the @code{Address} attribute is: @code{@var{X}'Address} should produce a useful result if @var{X} is an object that is aliased or of a by-reference type, or is an entity whose @code{Address} has been specified. @end cartouche Followed. A valid address will be produced even if none of those conditions have been met. If necessary, the object is forced into memory to ensure the address is valid. @sp 1 @cartouche An implementation should support @code{Address} clauses for imported subprograms. @end cartouche Followed. @sp 1 @cartouche Objects (including subcomponents) that are aliased or of a by-reference type should be allocated on storage element boundaries. @end cartouche Followed. @sp 1 @cartouche If the @code{Address} of an object is specified, or it is imported or exported, then the implementation should not perform optimizations based on assumptions of no aliases. @end cartouche Followed. @cindex @code{Alignment} clauses @unnumberedsec 13.3(29-35): Alignment Clauses @sp 1 @cartouche The recommended level of support for the @code{Alignment} attribute for subtypes is: An implementation should support specified Alignments that are factors and multiples of the number of storage elements per word, subject to the following: @end cartouche Followed. @sp 1 @cartouche An implementation need not support specified @code{Alignment}s for combinations of @code{Size}s and @code{Alignment}s that cannot be easily loaded and stored by available machine instructions. @end cartouche Followed. @sp 1 @cartouche An implementation need not support specified @code{Alignment}s that are greater than the maximum @code{Alignment} the implementation ever returns by default. @end cartouche Followed. @sp 1 @cartouche The recommended level of support for the @code{Alignment} attribute for objects is: Same as above, for subtypes, but in addition: @end cartouche Followed. @sp 1 @cartouche For stand-alone library-level objects of statically constrained subtypes, the implementation should support all @code{Alignment}s supported by the target linker. For example, page alignment is likely to be supported for such objects, but not for subtypes. @end cartouche Followed. @cindex @code{Size} clauses @unnumberedsec 13.3(42-43): Size Clauses @sp 1 @cartouche The recommended level of support for the @code{Size} attribute of objects is: A @code{Size} clause should be supported for an object if the specified @code{Size} is at least as large as its subtype's @code{Size}, and corresponds to a size in storage elements that is a multiple of the object's @code{Alignment} (if the @code{Alignment} is nonzero). @end cartouche Followed. @unnumberedsec 13.3(50-56): Size Clauses @sp 1 @cartouche If the @code{Size} of a subtype is specified, and allows for efficient independent addressability (see 9.10) on the target architecture, then the @code{Size} of the following objects of the subtype should equal the @code{Size} of the subtype: Aliased objects (including components). @end cartouche Followed. @sp 1 @cartouche @code{Size} clause on a composite subtype should not affect the internal layout of components. @end cartouche Followed. But note that this can be overridden by use of the implementation pragma Implicit_Packing in the case of packed arrays. @sp 1 @cartouche The recommended level of support for the @code{Size} attribute of subtypes is: @end cartouche @sp 1 @cartouche The @code{Size} (if not specified) of a static discrete or fixed point subtype should be the number of bits needed to represent each value belonging to the subtype using an unbiased representation, leaving space for a sign bit only if the subtype contains negative values. If such a subtype is a first subtype, then an implementation should support a specified @code{Size} for it that reflects this representation. @end cartouche Followed. @sp 1 @cartouche For a subtype implemented with levels of indirection, the @code{Size} should include the size of the pointers, but not the size of what they point at. @end cartouche Followed. @cindex @code{Component_Size} clauses @unnumberedsec 13.3(71-73): Component Size Clauses @sp 1 @cartouche The recommended level of support for the @code{Component_Size} attribute is: @end cartouche @sp 1 @cartouche An implementation need not support specified @code{Component_Sizes} that are less than the @code{Size} of the component subtype. @end cartouche Followed. @sp 1 @cartouche An implementation should support specified @code{Component_Size}s that are factors and multiples of the word size. For such @code{Component_Size}s, the array should contain no gaps between components. For other @code{Component_Size}s (if supported), the array should contain no gaps between components when packing is also specified; the implementation should forbid this combination in cases where it cannot support a no-gaps representation. @end cartouche Followed. @cindex Enumeration representation clauses @cindex Representation clauses, enumeration @unnumberedsec 13.4(9-10): Enumeration Representation Clauses @sp 1 @cartouche The recommended level of support for enumeration representation clauses is: An implementation need not support enumeration representation clauses for boolean types, but should at minimum support the internal codes in the range @code{System.Min_Int.System.Max_Int}. @end cartouche Followed. @cindex Record representation clauses @cindex Representation clauses, records @unnumberedsec 13.5.1(17-22): Record Representation Clauses @sp 1 @cartouche The recommended level of support for @*@code{record_representation_clauses} is: An implementation should support storage places that can be extracted with a load, mask, shift sequence of machine code, and set with a load, shift, mask, store sequence, given the available machine instructions and run-time model. @end cartouche Followed. @sp 1 @cartouche A storage place should be supported if its size is equal to the @code{Size} of the component subtype, and it starts and ends on a boundary that obeys the @code{Alignment} of the component subtype. @end cartouche Followed. @sp 1 @cartouche If the default bit ordering applies to the declaration of a given type, then for a component whose subtype's @code{Size} is less than the word size, any storage place that does not cross an aligned word boundary should be supported. @end cartouche Followed. @sp 1 @cartouche An implementation may reserve a storage place for the tag field of a tagged type, and disallow other components from overlapping that place. @end cartouche Followed. The storage place for the tag field is the beginning of the tagged record, and its size is Address'Size. GNAT will reject an explicit component clause for the tag field. @sp 1 @cartouche An implementation need not support a @code{component_clause} for a component of an extension part if the storage place is not after the storage places of all components of the parent type, whether or not those storage places had been specified. @end cartouche Followed. The above advice on record representation clauses is followed, and all mentioned features are implemented. @cindex Storage place attributes @unnumberedsec 13.5.2(5): Storage Place Attributes @sp 1 @cartouche If a component is represented using some form of pointer (such as an offset) to the actual data of the component, and this data is contiguous with the rest of the object, then the storage place attributes should reflect the place of the actual data, not the pointer. If a component is allocated discontinuously from the rest of the object, then a warning should be generated upon reference to one of its storage place attributes. @end cartouche Followed. There are no such components in GNAT@. @cindex Bit ordering @unnumberedsec 13.5.3(7-8): Bit Ordering @sp 1 @cartouche The recommended level of support for the non-default bit ordering is: @end cartouche @sp 1 @cartouche If @code{Word_Size} = @code{Storage_Unit}, then the implementation should support the non-default bit ordering in addition to the default bit ordering. @end cartouche Followed. Word size does not equal storage size in this implementation. Thus non-default bit ordering is not supported. @cindex @code{Address}, as private type @unnumberedsec 13.7(37): Address as Private @sp 1 @cartouche @code{Address} should be of a private type. @end cartouche Followed. @cindex Operations, on @code{Address} @cindex @code{Address}, operations of @unnumberedsec 13.7.1(16): Address Operations @sp 1 @cartouche Operations in @code{System} and its children should reflect the target environment semantics as closely as is reasonable. For example, on most machines, it makes sense for address arithmetic to ``wrap around''. Operations that do not make sense should raise @code{Program_Error}. @end cartouche Followed. Address arithmetic is modular arithmetic that wraps around. No operation raises @code{Program_Error}, since all operations make sense. @cindex Unchecked conversion @unnumberedsec 13.9(14-17): Unchecked Conversion @sp 1 @cartouche The @code{Size} of an array object should not include its bounds; hence, the bounds should not be part of the converted data. @end cartouche Followed. @sp 1 @cartouche The implementation should not generate unnecessary run-time checks to ensure that the representation of @var{S} is a representation of the target type. It should take advantage of the permission to return by reference when possible. Restrictions on unchecked conversions should be avoided unless required by the target environment. @end cartouche Followed. There are no restrictions on unchecked conversion. A warning is generated if the source and target types do not have the same size since the semantics in this case may be target dependent. @sp 1 @cartouche The recommended level of support for unchecked conversions is: @end cartouche @sp 1 @cartouche Unchecked conversions should be supported and should be reversible in the cases where this clause defines the result. To enable meaningful use of unchecked conversion, a contiguous representation should be used for elementary subtypes, for statically constrained array subtypes whose component subtype is one of the subtypes described in this paragraph, and for record subtypes without discriminants whose component subtypes are described in this paragraph. @end cartouche Followed. @cindex Heap usage, implicit @unnumberedsec 13.11(23-25): Implicit Heap Usage @sp 1 @cartouche An implementation should document any cases in which it dynamically allocates heap storage for a purpose other than the evaluation of an allocator. @end cartouche Followed, the only other points at which heap storage is dynamically allocated are as follows: @itemize @bullet @item At initial elaboration time, to allocate dynamically sized global objects. @item To allocate space for a task when a task is created. @item To extend the secondary stack dynamically when needed. The secondary stack is used for returning variable length results. @end itemize @sp 1 @cartouche A default (implementation-provided) storage pool for an access-to-constant type should not have overhead to support deallocation of individual objects. @end cartouche Followed. @sp 1 @cartouche A storage pool for an anonymous access type should be created at the point of an allocator for the type, and be reclaimed when the designated object becomes inaccessible. @end cartouche Followed. @cindex Unchecked deallocation @unnumberedsec 13.11.2(17): Unchecked De-allocation @sp 1 @cartouche For a standard storage pool, @code{Free} should actually reclaim the storage. @end cartouche Followed. @cindex Stream oriented attributes @unnumberedsec 13.13.2(17): Stream Oriented Attributes @sp 1 @cartouche If a stream element is the same size as a storage element, then the normal in-memory representation should be used by @code{Read} and @code{Write} for scalar objects. Otherwise, @code{Read} and @code{Write} should use the smallest number of stream elements needed to represent all values in the base range of the scalar type. @end cartouche Followed. By default, GNAT uses the interpretation suggested by AI-195, which specifies using the size of the first subtype. However, such an implementation is based on direct binary representations and is therefore target- and endianness-dependent. To address this issue, GNAT also supplies an alternate implementation of the stream attributes @code{Read} and @code{Write}, which uses the target-independent XDR standard representation for scalar types. @cindex XDR representation @cindex @code{Read} attribute @cindex @code{Write} attribute @cindex Stream oriented attributes The XDR implementation is provided as an alternative body of the @code{System.Stream_Attributes} package, in the file @file{s-stratt-xdr.adb} in the GNAT library. There is no @file{s-stratt-xdr.ads} file. In order to install the XDR implementation, do the following: @enumerate @item Replace the default implementation of the @code{System.Stream_Attributes} package with the XDR implementation. For example on a Unix platform issue the commands: @smallexample $ mv s-stratt.adb s-stratt-default.adb $ mv s-stratt-xdr.adb s-stratt.adb @end smallexample @item Rebuild the GNAT run-time library as documented in @ref{GNAT and Libraries,,, gnat_ugn, @value{EDITION} User's Guide}. @end enumerate @unnumberedsec A.1(52): Names of Predefined Numeric Types @sp 1 @cartouche If an implementation provides additional named predefined integer types, then the names should end with @samp{Integer} as in @samp{Long_Integer}. If an implementation provides additional named predefined floating point types, then the names should end with @samp{Float} as in @samp{Long_Float}. @end cartouche Followed. @findex Ada.Characters.Handling @unnumberedsec A.3.2(49): @code{Ada.Characters.Handling} @sp 1 @cartouche If an implementation provides a localized definition of @code{Character} or @code{Wide_Character}, then the effects of the subprograms in @code{Characters.Handling} should reflect the localizations. See also 3.5.2. @end cartouche Followed. GNAT provides no such localized definitions. @cindex Bounded-length strings @unnumberedsec A.4.4(106): Bounded-Length String Handling @sp 1 @cartouche Bounded string objects should not be implemented by implicit pointers and dynamic allocation. @end cartouche Followed. No implicit pointers or dynamic allocation are used. @cindex Random number generation @unnumberedsec A.5.2(46-47): Random Number Generation @sp 1 @cartouche Any storage associated with an object of type @code{Generator} should be reclaimed on exit from the scope of the object. @end cartouche Followed. @sp 1 @cartouche If the generator period is sufficiently long in relation to the number of distinct initiator values, then each possible value of @code{Initiator} passed to @code{Reset} should initiate a sequence of random numbers that does not, in a practical sense, overlap the sequence initiated by any other value. If this is not possible, then the mapping between initiator values and generator states should be a rapidly varying function of the initiator value. @end cartouche Followed. The generator period is sufficiently long for the first condition here to hold true. @findex Get_Immediate @unnumberedsec A.10.7(23): @code{Get_Immediate} @sp 1 @cartouche The @code{Get_Immediate} procedures should be implemented with unbuffered input. For a device such as a keyboard, input should be @dfn{available} if a key has already been typed, whereas for a disk file, input should always be available except at end of file. For a file associated with a keyboard-like device, any line-editing features of the underlying operating system should be disabled during the execution of @code{Get_Immediate}. @end cartouche Followed on all targets except VxWorks. For VxWorks, there is no way to provide this functionality that does not result in the input buffer being flushed before the @code{Get_Immediate} call. A special unit @code{Interfaces.Vxworks.IO} is provided that contains routines to enable this functionality. @findex Export @unnumberedsec B.1(39-41): Pragma @code{Export} @sp 1 @cartouche If an implementation supports pragma @code{Export} to a given language, then it should also allow the main subprogram to be written in that language. It should support some mechanism for invoking the elaboration of the Ada library units included in the system, and for invoking the finalization of the environment task. On typical systems, the recommended mechanism is to provide two subprograms whose link names are @code{adainit} and @code{adafinal}. @code{adainit} should contain the elaboration code for library units. @code{adafinal} should contain the finalization code. These subprograms should have no effect the second and subsequent time they are called. @end cartouche Followed. @sp 1 @cartouche Automatic elaboration of pre-elaborated packages should be provided when pragma @code{Export} is supported. @end cartouche Followed when the main program is in Ada. If the main program is in a foreign language, then @code{adainit} must be called to elaborate pre-elaborated packages. @sp 1 @cartouche For each supported convention @var{L} other than @code{Intrinsic}, an implementation should support @code{Import} and @code{Export} pragmas for objects of @var{L}-compatible types and for subprograms, and pragma @code{Convention} for @var{L}-eligible types and for subprograms, presuming the other language has corresponding features. Pragma @code{Convention} need not be supported for scalar types. @end cartouche Followed. @cindex Package @code{Interfaces} @findex Interfaces @unnumberedsec B.2(12-13): Package @code{Interfaces} @sp 1 @cartouche For each implementation-defined convention identifier, there should be a child package of package Interfaces with the corresponding name. This package should contain any declarations that would be useful for interfacing to the language (implementation) represented by the convention. Any declarations useful for interfacing to any language on the given hardware architecture should be provided directly in @code{Interfaces}. @end cartouche Followed. An additional package not defined in the Ada Reference Manual is @code{Interfaces.CPP}, used for interfacing to C++. @sp 1 @cartouche An implementation supporting an interface to C, COBOL, or Fortran should provide the corresponding package or packages described in the following clauses. @end cartouche Followed. GNAT provides all the packages described in this section. @cindex C, interfacing with @unnumberedsec B.3(63-71): Interfacing with C @sp 1 @cartouche An implementation should support the following interface correspondences between Ada and C@. @end cartouche Followed. @sp 1 @cartouche An Ada procedure corresponds to a void-returning C function. @end cartouche Followed. @sp 1 @cartouche An Ada function corresponds to a non-void C function. @end cartouche Followed. @sp 1 @cartouche An Ada @code{in} scalar parameter is passed as a scalar argument to a C function. @end cartouche Followed. @sp 1 @cartouche An Ada @code{in} parameter of an access-to-object type with designated type @var{T} is passed as a @code{@var{t}*} argument to a C function, where @var{t} is the C type corresponding to the Ada type @var{T}. @end cartouche Followed. @sp 1 @cartouche An Ada access @var{T} parameter, or an Ada @code{out} or @code{in out} parameter of an elementary type @var{T}, is passed as a @code{@var{t}*} argument to a C function, where @var{t} is the C type corresponding to the Ada type @var{T}. In the case of an elementary @code{out} or @code{in out} parameter, a pointer to a temporary copy is used to preserve by-copy semantics. @end cartouche Followed. @sp 1 @cartouche An Ada parameter of a record type @var{T}, of any mode, is passed as a @code{@var{t}*} argument to a C function, where @var{t} is the C structure corresponding to the Ada type @var{T}. @end cartouche Followed. This convention may be overridden by the use of the C_Pass_By_Copy pragma, or Convention, or by explicitly specifying the mechanism for a given call using an extended import or export pragma. @sp 1 @cartouche An Ada parameter of an array type with component type @var{T}, of any mode, is passed as a @code{@var{t}*} argument to a C function, where @var{t} is the C type corresponding to the Ada type @var{T}. @end cartouche Followed. @sp 1 @cartouche An Ada parameter of an access-to-subprogram type is passed as a pointer to a C function whose prototype corresponds to the designated subprogram's specification. @end cartouche Followed. @cindex COBOL, interfacing with @unnumberedsec B.4(95-98): Interfacing with COBOL @sp 1 @cartouche An Ada implementation should support the following interface correspondences between Ada and COBOL@. @end cartouche Followed. @sp 1 @cartouche An Ada access @var{T} parameter is passed as a @samp{BY REFERENCE} data item of the COBOL type corresponding to @var{T}. @end cartouche Followed. @sp 1 @cartouche An Ada in scalar parameter is passed as a @samp{BY CONTENT} data item of the corresponding COBOL type. @end cartouche Followed. @sp 1 @cartouche Any other Ada parameter is passed as a @samp{BY REFERENCE} data item of the COBOL type corresponding to the Ada parameter type; for scalars, a local copy is used if necessary to ensure by-copy semantics. @end cartouche Followed. @cindex Fortran, interfacing with @unnumberedsec B.5(22-26): Interfacing with Fortran @sp 1 @cartouche An Ada implementation should support the following interface correspondences between Ada and Fortran: @end cartouche Followed. @sp 1 @cartouche An Ada procedure corresponds to a Fortran subroutine. @end cartouche Followed. @sp 1 @cartouche An Ada function corresponds to a Fortran function. @end cartouche Followed. @sp 1 @cartouche An Ada parameter of an elementary, array, or record type @var{T} is passed as a @var{T} argument to a Fortran procedure, where @var{T} is the Fortran type corresponding to the Ada type @var{T}, and where the INTENT attribute of the corresponding dummy argument matches the Ada formal parameter mode; the Fortran implementation's parameter passing conventions are used. For elementary types, a local copy is used if necessary to ensure by-copy semantics. @end cartouche Followed. @sp 1 @cartouche An Ada parameter of an access-to-subprogram type is passed as a reference to a Fortran procedure whose interface corresponds to the designated subprogram's specification. @end cartouche Followed. @cindex Machine operations @unnumberedsec C.1(3-5): Access to Machine Operations @sp 1 @cartouche The machine code or intrinsic support should allow access to all operations normally available to assembly language programmers for the target environment, including privileged instructions, if any. @end cartouche Followed. @sp 1 @cartouche The interfacing pragmas (see Annex B) should support interface to assembler; the default assembler should be associated with the convention identifier @code{Assembler}. @end cartouche Followed. @sp 1 @cartouche If an entity is exported to assembly language, then the implementation should allocate it at an addressable location, and should ensure that it is retained by the linking process, even if not otherwise referenced from the Ada code. The implementation should assume that any call to a machine code or assembler subprogram is allowed to read or update every object that is specified as exported. @end cartouche Followed. @unnumberedsec C.1(10-16): Access to Machine Operations @sp 1 @cartouche The implementation should ensure that little or no overhead is associated with calling intrinsic and machine-code subprograms. @end cartouche Followed for both intrinsics and machine-code subprograms. @sp 1 @cartouche It is recommended that intrinsic subprograms be provided for convenient access to any machine operations that provide special capabilities or efficiency and that are not otherwise available through the language constructs. @end cartouche Followed. A full set of machine operation intrinsic subprograms is provided. @sp 1 @cartouche Atomic read-modify-write operations---e.g.@:, test and set, compare and swap, decrement and test, enqueue/dequeue. @end cartouche Followed on any target supporting such operations. @sp 1 @cartouche Standard numeric functions---e.g.@:, sin, log. @end cartouche Followed on any target supporting such operations. @sp 1 @cartouche String manipulation operations---e.g.@:, translate and test. @end cartouche Followed on any target supporting such operations. @sp 1 @cartouche Vector operations---e.g.@:, compare vector against thresholds. @end cartouche Followed on any target supporting such operations. @sp 1 @cartouche Direct operations on I/O ports. @end cartouche Followed on any target supporting such operations. @cindex Interrupt support @unnumberedsec C.3(28): Interrupt Support @sp 1 @cartouche If the @code{Ceiling_Locking} policy is not in effect, the implementation should provide means for the application to specify which interrupts are to be blocked during protected actions, if the underlying system allows for a finer-grain control of interrupt blocking. @end cartouche Followed. The underlying system does not allow for finer-grain control of interrupt blocking. @cindex Protected procedure handlers @unnumberedsec C.3.1(20-21): Protected Procedure Handlers @sp 1 @cartouche Whenever possible, the implementation should allow interrupt handlers to be called directly by the hardware. @end cartouche Followed on any target where the underlying operating system permits such direct calls. @sp 1 @cartouche Whenever practical, violations of any implementation-defined restrictions should be detected before run time. @end cartouche Followed. Compile time warnings are given when possible. @cindex Package @code{Interrupts} @findex Interrupts @unnumberedsec C.3.2(25): Package @code{Interrupts} @sp 1 @cartouche If implementation-defined forms of interrupt handler procedures are supported, such as protected procedures with parameters, then for each such form of a handler, a type analogous to @code{Parameterless_Handler} should be specified in a child package of @code{Interrupts}, with the same operations as in the predefined package Interrupts. @end cartouche Followed. @cindex Pre-elaboration requirements @unnumberedsec C.4(14): Pre-elaboration Requirements @sp 1 @cartouche It is recommended that pre-elaborated packages be implemented in such a way that there should be little or no code executed at run time for the elaboration of entities not already covered by the Implementation Requirements. @end cartouche Followed. Executable code is generated in some cases, e.g.@: loops to initialize large arrays. @unnumberedsec C.5(8): Pragma @code{Discard_Names} @sp 1 @cartouche If the pragma applies to an entity, then the implementation should reduce the amount of storage used for storing names associated with that entity. @end cartouche Followed. @cindex Package @code{Task_Attributes} @findex Task_Attributes @unnumberedsec C.7.2(30): The Package Task_Attributes @sp 1 @cartouche Some implementations are targeted to domains in which memory use at run time must be completely deterministic. For such implementations, it is recommended that the storage for task attributes will be pre-allocated statically and not from the heap. This can be accomplished by either placing restrictions on the number and the size of the task's attributes, or by using the pre-allocated storage for the first @var{N} attribute objects, and the heap for the others. In the latter case, @var{N} should be documented. @end cartouche Not followed. This implementation is not targeted to such a domain. @cindex Locking Policies @unnumberedsec D.3(17): Locking Policies @sp 1 @cartouche The implementation should use names that end with @samp{_Locking} for locking policies defined by the implementation. @end cartouche Followed. Two implementation-defined locking policies are defined, whose names (@code{Inheritance_Locking} and @code{Concurrent_Readers_Locking}) follow this suggestion. @cindex Entry queuing policies @unnumberedsec D.4(16): Entry Queuing Policies @sp 1 @cartouche Names that end with @samp{_Queuing} should be used for all implementation-defined queuing policies. @end cartouche Followed. No such implementation-defined queuing policies exist. @cindex Preemptive abort @unnumberedsec D.6(9-10): Preemptive Abort @sp 1 @cartouche Even though the @code{abort_statement} is included in the list of potentially blocking operations (see 9.5.1), it is recommended that this statement be implemented in a way that never requires the task executing the @code{abort_statement} to block. @end cartouche Followed. @sp 1 @cartouche On a multi-processor, the delay associated with aborting a task on another processor should be bounded; the implementation should use periodic polling, if necessary, to achieve this. @end cartouche Followed. @cindex Tasking restrictions @unnumberedsec D.7(21): Tasking Restrictions @sp 1 @cartouche When feasible, the implementation should take advantage of the specified restrictions to produce a more efficient implementation. @end cartouche GNAT currently takes advantage of these restrictions by providing an optimized run time when the Ravenscar profile and the GNAT restricted run time set of restrictions are specified. See pragma @code{Profile (Ravenscar)} and pragma @code{Profile (Restricted)} for more details. @cindex Time, monotonic @unnumberedsec D.8(47-49): Monotonic Time @sp 1 @cartouche When appropriate, implementations should provide configuration mechanisms to change the value of @code{Tick}. @end cartouche Such configuration mechanisms are not appropriate to this implementation and are thus not supported. @sp 1 @cartouche It is recommended that @code{Calendar.Clock} and @code{Real_Time.Clock} be implemented as transformations of the same time base. @end cartouche Followed. @sp 1 @cartouche It is recommended that the @dfn{best} time base which exists in the underlying system be available to the application through @code{Clock}. @dfn{Best} may mean highest accuracy or largest range. @end cartouche Followed. @cindex Partition communication subsystem @cindex PCS @unnumberedsec E.5(28-29): Partition Communication Subsystem @sp 1 @cartouche Whenever possible, the PCS on the called partition should allow for multiple tasks to call the RPC-receiver with different messages and should allow them to block until the corresponding subprogram body returns. @end cartouche Followed by GLADE, a separately supplied PCS that can be used with GNAT. @sp 1 @cartouche The @code{Write} operation on a stream of type @code{Params_Stream_Type} should raise @code{Storage_Error} if it runs out of space trying to write the @code{Item} into the stream. @end cartouche Followed by GLADE, a separately supplied PCS that can be used with GNAT@. @cindex COBOL support @unnumberedsec F(7): COBOL Support @sp 1 @cartouche If COBOL (respectively, C) is widely supported in the target environment, implementations supporting the Information Systems Annex should provide the child package @code{Interfaces.COBOL} (respectively, @code{Interfaces.C}) specified in Annex B and should support a @code{convention_identifier} of COBOL (respectively, C) in the interfacing pragmas (see Annex B), thus allowing Ada programs to interface with programs written in that language. @end cartouche Followed. @cindex Decimal radix support @unnumberedsec F.1(2): Decimal Radix Support @sp 1 @cartouche Packed decimal should be used as the internal representation for objects of subtype @var{S} when @var{S}'Machine_Radix = 10. @end cartouche Not followed. GNAT ignores @var{S}'Machine_Radix and always uses binary representations. @cindex Numerics @unnumberedsec G: Numerics @sp 2 @cartouche If Fortran (respectively, C) is widely supported in the target environment, implementations supporting the Numerics Annex should provide the child package @code{Interfaces.Fortran} (respectively, @code{Interfaces.C}) specified in Annex B and should support a @code{convention_identifier} of Fortran (respectively, C) in the interfacing pragmas (see Annex B), thus allowing Ada programs to interface with programs written in that language. @end cartouche Followed. @cindex Complex types @unnumberedsec G.1.1(56-58): Complex Types @sp 2 @cartouche Because the usual mathematical meaning of multiplication of a complex operand and a real operand is that of the scaling of both components of the former by the latter, an implementation should not perform this operation by first promoting the real operand to complex type and then performing a full complex multiplication. In systems that, in the future, support an Ada binding to IEC 559:1989, the latter technique will not generate the required result when one of the components of the complex operand is infinite. (Explicit multiplication of the infinite component by the zero component obtained during promotion yields a NaN that propagates into the final result.) Analogous advice applies in the case of multiplication of a complex operand and a pure-imaginary operand, and in the case of division of a complex operand by a real or pure-imaginary operand. @end cartouche Not followed. @sp 1 @cartouche Similarly, because the usual mathematical meaning of addition of a complex operand and a real operand is that the imaginary operand remains unchanged, an implementation should not perform this operation by first promoting the real operand to complex type and then performing a full complex addition. In implementations in which the @code{Signed_Zeros} attribute of the component type is @code{True} (and which therefore conform to IEC 559:1989 in regard to the handling of the sign of zero in predefined arithmetic operations), the latter technique will not generate the required result when the imaginary component of the complex operand is a negatively signed zero. (Explicit addition of the negative zero to the zero obtained during promotion yields a positive zero.) Analogous advice applies in the case of addition of a complex operand and a pure-imaginary operand, and in the case of subtraction of a complex operand and a real or pure-imaginary operand. @end cartouche Not followed. @sp 1 @cartouche Implementations in which @code{Real'Signed_Zeros} is @code{True} should attempt to provide a rational treatment of the signs of zero results and result components. As one example, the result of the @code{Argument} function should have the sign of the imaginary component of the parameter @code{X} when the point represented by that parameter lies on the positive real axis; as another, the sign of the imaginary component of the @code{Compose_From_Polar} function should be the same as (respectively, the opposite of) that of the @code{Argument} parameter when that parameter has a value of zero and the @code{Modulus} parameter has a nonnegative (respectively, negative) value. @end cartouche Followed. @cindex Complex elementary functions @unnumberedsec G.1.2(49): Complex Elementary Functions @sp 1 @cartouche Implementations in which @code{Complex_Types.Real'Signed_Zeros} is @code{True} should attempt to provide a rational treatment of the signs of zero results and result components. For example, many of the complex elementary functions have components that are odd functions of one of the parameter components; in these cases, the result component should have the sign of the parameter component at the origin. Other complex elementary functions have zero components whose sign is opposite that of a parameter component at the origin, or is always positive or always negative. @end cartouche Followed. @cindex Accuracy requirements @unnumberedsec G.2.4(19): Accuracy Requirements @sp 1 @cartouche The versions of the forward trigonometric functions without a @code{Cycle} parameter should not be implemented by calling the corresponding version with a @code{Cycle} parameter of @code{2.0*Numerics.Pi}, since this will not provide the required accuracy in some portions of the domain. For the same reason, the version of @code{Log} without a @code{Base} parameter should not be implemented by calling the corresponding version with a @code{Base} parameter of @code{Numerics.e}. @end cartouche Followed. @cindex Complex arithmetic accuracy @cindex Accuracy, complex arithmetic @unnumberedsec G.2.6(15): Complex Arithmetic Accuracy @sp 1 @cartouche The version of the @code{Compose_From_Polar} function without a @code{Cycle} parameter should not be implemented by calling the corresponding version with a @code{Cycle} parameter of @code{2.0*Numerics.Pi}, since this will not provide the required accuracy in some portions of the domain. @end cartouche Followed. @cindex Sequential elaboration policy @unnumberedsec H.6(15/2): Pragma Partition_Elaboration_Policy @sp 1 @cartouche If the partition elaboration policy is @code{Sequential} and the Environment task becomes permanently blocked during elaboration then the partition is deadlocked and it is recommended that the partition be immediately terminated. @end cartouche Not followed. @c ----------------------------------------- @node Implementation Defined Characteristics @chapter Implementation Defined Characteristics @noindent In addition to the implementation dependent pragmas and attributes, and the implementation advice, there are a number of other Ada features that are potentially implementation dependent and are designated as implementation-defined. These are mentioned throughout the Ada Reference Manual, and are summarized in Annex M@. A requirement for conforming Ada compilers is that they provide documentation describing how the implementation deals with each of these issues. In this chapter, you will find each point in Annex M listed followed by a description in italic font of how GNAT handles the implementation dependence. You can use this chapter as a guide to minimizing implementation dependent features in your programs if portability to other compilers and other operating systems is an important consideration. The numbers in each section below correspond to the paragraph number in the Ada Reference Manual. @sp 1 @cartouche @noindent @strong{2}. Whether or not each recommendation given in Implementation Advice is followed. See 1.1.2(37). @end cartouche @noindent @xref{Implementation Advice}. @sp 1 @cartouche @noindent @strong{3}. Capacity limitations of the implementation. See 1.1.3(3). @end cartouche @noindent The complexity of programs that can be processed is limited only by the total amount of available virtual memory, and disk space for the generated object files. @sp 1 @cartouche @noindent @strong{4}. Variations from the standard that are impractical to avoid given the implementation's execution environment. See 1.1.3(6). @end cartouche @noindent There are no variations from the standard. @sp 1 @cartouche @noindent @strong{5}. Which @code{code_statement}s cause external interactions. See 1.1.3(10). @end cartouche @noindent Any @code{code_statement} can potentially cause external interactions. @sp 1 @cartouche @noindent @strong{6}. The coded representation for the text of an Ada program. See 2.1(4). @end cartouche @noindent See separate section on source representation. @sp 1 @cartouche @noindent @strong{7}. The control functions allowed in comments. See 2.1(14). @end cartouche @noindent See separate section on source representation. @sp 1 @cartouche @noindent @strong{8}. The representation for an end of line. See 2.2(2). @end cartouche @noindent See separate section on source representation. @sp 1 @cartouche @noindent @strong{9}. Maximum supported line length and lexical element length. See 2.2(15). @end cartouche @noindent The maximum line length is 255 characters and the maximum length of a lexical element is also 255 characters. This is the default setting if not overridden by the use of compiler switch @option{-gnaty} (which sets the maximum to 79) or @option{-gnatyMnn} which allows the maximum line length to be specified to be any value up to 32767. The maximum length of a lexical element is the same as the maximum line length. @sp 1 @cartouche @noindent @strong{10}. Implementation defined pragmas. See 2.8(14). @end cartouche @noindent @xref{Implementation Defined Pragmas}. @sp 1 @cartouche @noindent @strong{11}. Effect of pragma @code{Optimize}. See 2.8(27). @end cartouche @noindent Pragma @code{Optimize}, if given with a @code{Time} or @code{Space} parameter, checks that the optimization flag is set, and aborts if it is not. @sp 1 @cartouche @noindent @strong{12}. The sequence of characters of the value returned by @code{@var{S}'Image} when some of the graphic characters of @code{@var{S}'Wide_Image} are not defined in @code{Character}. See 3.5(37). @end cartouche @noindent The sequence of characters is as defined by the wide character encoding method used for the source. See section on source representation for further details. @sp 1 @cartouche @noindent @strong{13}. The predefined integer types declared in @code{Standard}. See 3.5.4(25). @end cartouche @noindent @table @code @item Short_Short_Integer 8 bit signed @item Short_Integer (Short) 16 bit signed @item Integer 32 bit signed @item Long_Integer 64 bit signed (on most 64 bit targets, depending on the C definition of long). 32 bit signed (all other targets) @item Long_Long_Integer 64 bit signed @end table @sp 1 @cartouche @noindent @strong{14}. Any nonstandard integer types and the operators defined for them. See 3.5.4(26). @end cartouche @noindent There are no nonstandard integer types. @sp 1 @cartouche @noindent @strong{15}. Any nonstandard real types and the operators defined for them. See 3.5.6(8). @end cartouche @noindent There are no nonstandard real types. @sp 1 @cartouche @noindent @strong{16}. What combinations of requested decimal precision and range are supported for floating point types. See 3.5.7(7). @end cartouche @noindent The precision and range is as defined by the IEEE standard. @sp 1 @cartouche @noindent @strong{17}. The predefined floating point types declared in @code{Standard}. See 3.5.7(16). @end cartouche @noindent @table @code @item Short_Float 32 bit IEEE short @item Float (Short) 32 bit IEEE short @item Long_Float 64 bit IEEE long @item Long_Long_Float 64 bit IEEE long (80 bit IEEE long on x86 processors) @end table @sp 1 @cartouche @noindent @strong{18}. The small of an ordinary fixed point type. See 3.5.9(8). @end cartouche @noindent @code{Fine_Delta} is 2**(@minus{}63) @sp 1 @cartouche @noindent @strong{19}. What combinations of small, range, and digits are supported for fixed point types. See 3.5.9(10). @end cartouche @noindent Any combinations are permitted that do not result in a small less than @code{Fine_Delta} and do not result in a mantissa larger than 63 bits. If the mantissa is larger than 53 bits on machines where Long_Long_Float is 64 bits (true of all architectures except ia32), then the output from Text_IO is accurate to only 53 bits, rather than the full mantissa. This is because floating-point conversions are used to convert fixed point. @sp 1 @cartouche @noindent @strong{20}. The result of @code{Tags.Expanded_Name} for types declared within an unnamed @code{block_statement}. See 3.9(10). @end cartouche @noindent Block numbers of the form @code{B@var{nnn}}, where @var{nnn} is a decimal integer are allocated. @sp 1 @cartouche @noindent @strong{21}. Implementation-defined attributes. See 4.1.4(12). @end cartouche @noindent @xref{Implementation Defined Attributes}. @sp 1 @cartouche @noindent @strong{22}. Any implementation-defined time types. See 9.6(6). @end cartouche @noindent There are no implementation-defined time types. @sp 1 @cartouche @noindent @strong{23}. The time base associated with relative delays. @end cartouche @noindent See 9.6(20). The time base used is that provided by the C library function @code{gettimeofday}. @sp 1 @cartouche @noindent @strong{24}. The time base of the type @code{Calendar.Time}. See 9.6(23). @end cartouche @noindent The time base used is that provided by the C library function @code{gettimeofday}. @sp 1 @cartouche @noindent @strong{25}. The time zone used for package @code{Calendar} operations. See 9.6(24). @end cartouche @noindent The time zone used by package @code{Calendar} is the current system time zone setting for local time, as accessed by the C library function @code{localtime}. @sp 1 @cartouche @noindent @strong{26}. Any limit on @code{delay_until_statements} of @code{select_statements}. See 9.6(29). @end cartouche @noindent There are no such limits. @sp 1 @cartouche @noindent @strong{27}. Whether or not two non-overlapping parts of a composite object are independently addressable, in the case where packing, record layout, or @code{Component_Size} is specified for the object. See 9.10(1). @end cartouche @noindent Separate components are independently addressable if they do not share overlapping storage units. @sp 1 @cartouche @noindent @strong{28}. The representation for a compilation. See 10.1(2). @end cartouche @noindent A compilation is represented by a sequence of files presented to the compiler in a single invocation of the @command{gcc} command. @sp 1 @cartouche @noindent @strong{29}. Any restrictions on compilations that contain multiple compilation_units. See 10.1(4). @end cartouche @noindent No single file can contain more than one compilation unit, but any sequence of files can be presented to the compiler as a single compilation. @sp 1 @cartouche @noindent @strong{30}. The mechanisms for creating an environment and for adding and replacing compilation units. See 10.1.4(3). @end cartouche @noindent See separate section on compilation model. @sp 1 @cartouche @noindent @strong{31}. The manner of explicitly assigning library units to a partition. See 10.2(2). @end cartouche @noindent If a unit contains an Ada main program, then the Ada units for the partition are determined by recursive application of the rules in the Ada Reference Manual section 10.2(2-6). In other words, the Ada units will be those that are needed by the main program, and then this definition of need is applied recursively to those units, and the partition contains the transitive closure determined by this relationship. In short, all the necessary units are included, with no need to explicitly specify the list. If additional units are required, e.g.@: by foreign language units, then all units must be mentioned in the context clause of one of the needed Ada units. If the partition contains no main program, or if the main program is in a language other than Ada, then GNAT provides the binder options @option{-z} and @option{-n} respectively, and in this case a list of units can be explicitly supplied to the binder for inclusion in the partition (all units needed by these units will also be included automatically). For full details on the use of these options, refer to @ref{The GNAT Make Program gnatmake,,, gnat_ugn, @value{EDITION} User's Guide}. @sp 1 @cartouche @noindent @strong{32}. The implementation-defined means, if any, of specifying which compilation units are needed by a given compilation unit. See 10.2(2). @end cartouche @noindent The units needed by a given compilation unit are as defined in the Ada Reference Manual section 10.2(2-6). There are no implementation-defined pragmas or other implementation-defined means for specifying needed units. @sp 1 @cartouche @noindent @strong{33}. The manner of designating the main subprogram of a partition. See 10.2(7). @end cartouche @noindent The main program is designated by providing the name of the corresponding @file{ALI} file as the input parameter to the binder. @sp 1 @cartouche @noindent @strong{34}. The order of elaboration of @code{library_items}. See 10.2(18). @end cartouche @noindent The first constraint on ordering is that it meets the requirements of Chapter 10 of the Ada Reference Manual. This still leaves some implementation dependent choices, which are resolved by first elaborating bodies as early as possible (i.e., in preference to specs where there is a choice), and second by evaluating the immediate with clauses of a unit to determine the probably best choice, and third by elaborating in alphabetical order of unit names where a choice still remains. @sp 1 @cartouche @noindent @strong{35}. Parameter passing and function return for the main subprogram. See 10.2(21). @end cartouche @noindent The main program has no parameters. It may be a procedure, or a function returning an integer type. In the latter case, the returned integer value is the return code of the program (overriding any value that may have been set by a call to @code{Ada.Command_Line.Set_Exit_Status}). @sp 1 @cartouche @noindent @strong{36}. The mechanisms for building and running partitions. See 10.2(24). @end cartouche @noindent GNAT itself supports programs with only a single partition. The GNATDIST tool provided with the GLADE package (which also includes an implementation of the PCS) provides a completely flexible method for building and running programs consisting of multiple partitions. See the separate GLADE manual for details. @sp 1 @cartouche @noindent @strong{37}. The details of program execution, including program termination. See 10.2(25). @end cartouche @noindent See separate section on compilation model. @sp 1 @cartouche @noindent @strong{38}. The semantics of any non-active partitions supported by the implementation. See 10.2(28). @end cartouche @noindent Passive partitions are supported on targets where shared memory is provided by the operating system. See the GLADE reference manual for further details. @sp 1 @cartouche @noindent @strong{39}. The information returned by @code{Exception_Message}. See 11.4.1(10). @end cartouche @noindent Exception message returns the null string unless a specific message has been passed by the program. @sp 1 @cartouche @noindent @strong{40}. The result of @code{Exceptions.Exception_Name} for types declared within an unnamed @code{block_statement}. See 11.4.1(12). @end cartouche @noindent Blocks have implementation defined names of the form @code{B@var{nnn}} where @var{nnn} is an integer. @sp 1 @cartouche @noindent @strong{41}. The information returned by @code{Exception_Information}. See 11.4.1(13). @end cartouche @noindent @code{Exception_Information} returns a string in the following format: @smallexample @emph{Exception_Name:} nnnnn @emph{Message:} mmmmm @emph{PID:} ppp @emph{Load address:} 0xhhhh @emph{Call stack traceback locations:} 0xhhhh 0xhhhh 0xhhhh ... 0xhhh @end smallexample @noindent where @itemize @bullet @item @code{nnnn} is the fully qualified name of the exception in all upper case letters. This line is always present. @item @code{mmmm} is the message (this line present only if message is non-null) @item @code{ppp} is the Process Id value as a decimal integer (this line is present only if the Process Id is nonzero). Currently we are not making use of this field. @item The Load address line, the Call stack traceback locations line and the following values are present only if at least one traceback location was recorded. The Load address indicates the address at which the main executable was loaded; this line may not be present if operating system hasn't relocated the main executable. The values are given in C style format, with lower case letters for a-f, and only as many digits present as are necessary. @end itemize @noindent The line terminator sequence at the end of each line, including the last line is a single @code{LF} character (@code{16#0A#}). @sp 1 @cartouche @noindent @strong{42}. Implementation-defined check names. See 11.5(27). @end cartouche @noindent The implementation defined check name Alignment_Check controls checking of address clause values for proper alignment (that is, the address supplied must be consistent with the alignment of the type). The implementation defined check name Predicate_Check controls whether predicate checks are generated. The implementation defined check name Validity_Check controls whether validity checks are generated. In addition, a user program can add implementation-defined check names by means of the pragma Check_Name. @sp 1 @cartouche @noindent @strong{43}. The interpretation of each aspect of representation. See 13.1(20). @end cartouche @noindent See separate section on data representations. @sp 1 @cartouche @noindent @strong{44}. Any restrictions placed upon representation items. See 13.1(20). @end cartouche @noindent See separate section on data representations. @sp 1 @cartouche @noindent @strong{45}. The meaning of @code{Size} for indefinite subtypes. See 13.3(48). @end cartouche @noindent Size for an indefinite subtype is the maximum possible size, except that for the case of a subprogram parameter, the size of the parameter object is the actual size. @sp 1 @cartouche @noindent @strong{46}. The default external representation for a type tag. See 13.3(75). @end cartouche @noindent The default external representation for a type tag is the fully expanded name of the type in upper case letters. @sp 1 @cartouche @noindent @strong{47}. What determines whether a compilation unit is the same in two different partitions. See 13.3(76). @end cartouche @noindent A compilation unit is the same in two different partitions if and only if it derives from the same source file. @sp 1 @cartouche @noindent @strong{48}. Implementation-defined components. See 13.5.1(15). @end cartouche @noindent The only implementation defined component is the tag for a tagged type, which contains a pointer to the dispatching table. @sp 1 @cartouche @noindent @strong{49}. If @code{Word_Size} = @code{Storage_Unit}, the default bit ordering. See 13.5.3(5). @end cartouche @noindent @code{Word_Size} (32) is not the same as @code{Storage_Unit} (8) for this implementation, so no non-default bit ordering is supported. The default bit ordering corresponds to the natural endianness of the target architecture. @sp 1 @cartouche @noindent @strong{50}. The contents of the visible part of package @code{System} and its language-defined children. See 13.7(2). @end cartouche @noindent See the definition of these packages in files @file{system.ads} and @file{s-stoele.ads}. @sp 1 @cartouche @noindent @strong{51}. The contents of the visible part of package @code{System.Machine_Code}, and the meaning of @code{code_statements}. See 13.8(7). @end cartouche @noindent See the definition and documentation in file @file{s-maccod.ads}. @sp 1 @cartouche @noindent @strong{52}. The effect of unchecked conversion. See 13.9(11). @end cartouche @noindent Unchecked conversion between types of the same size results in an uninterpreted transmission of the bits from one type to the other. If the types are of unequal sizes, then in the case of discrete types, a shorter source is first zero or sign extended as necessary, and a shorter target is simply truncated on the left. For all non-discrete types, the source is first copied if necessary to ensure that the alignment requirements of the target are met, then a pointer is constructed to the source value, and the result is obtained by dereferencing this pointer after converting it to be a pointer to the target type. Unchecked conversions where the target subtype is an unconstrained array are not permitted. If the target alignment is greater than the source alignment, then a copy of the result is made with appropriate alignment @sp 1 @cartouche @noindent @strong{53}. The semantics of operations on invalid representations. See 13.9.2(10-11). @end cartouche @noindent For assignments and other operations where the use of invalid values cannot result in erroneous behavior, the compiler ignores the possibility of invalid values. An exception is raised at the point where an invalid value would result in erroneous behavior. For example executing: @smallexample @c ada procedure invalidvals is X : Integer := -1; Y : Natural range 1 .. 10; for Y'Address use X'Address; Z : Natural range 1 .. 10; A : array (Natural range 1 .. 10) of Integer; begin Z := Y; -- no exception A (Z) := 3; -- exception raised; end; @end smallexample @noindent As indicated, an exception is raised on the array assignment, but not on the simple assignment of the invalid negative value from Y to Z. @sp 1 @cartouche @noindent @strong{53}. The manner of choosing a storage pool for an access type when @code{Storage_Pool} is not specified for the type. See 13.11(17). @end cartouche @noindent There are 3 different standard pools used by the compiler when @code{Storage_Pool} is not specified depending whether the type is local to a subprogram or defined at the library level and whether @code{Storage_Size}is specified or not. See documentation in the runtime library units @code{System.Pool_Global}, @code{System.Pool_Size} and @code{System.Pool_Local} in files @file{s-poosiz.ads}, @file{s-pooglo.ads} and @file{s-pooloc.ads} for full details on the default pools used. @sp 1 @cartouche @noindent @strong{54}. Whether or not the implementation provides user-accessible names for the standard pool type(s). See 13.11(17). @end cartouche @noindent See documentation in the sources of the run time mentioned in paragraph @strong{53} . All these pools are accessible by means of @code{with}'ing these units. @sp 1 @cartouche @noindent @strong{55}. The meaning of @code{Storage_Size}. See 13.11(18). @end cartouche @noindent @code{Storage_Size} is measured in storage units, and refers to the total space available for an access type collection, or to the primary stack space for a task. @sp 1 @cartouche @noindent @strong{56}. Implementation-defined aspects of storage pools. See 13.11(22). @end cartouche @noindent See documentation in the sources of the run time mentioned in paragraph @strong{53} for details on GNAT-defined aspects of storage pools. @sp 1 @cartouche @noindent @strong{57}. The set of restrictions allowed in a pragma @code{Restrictions}. See 13.12(7). @end cartouche @noindent @xref{Standard and Implementation Defined Restrictions}. @sp 1 @cartouche @noindent @strong{58}. The consequences of violating limitations on @code{Restrictions} pragmas. See 13.12(9). @end cartouche @noindent Restrictions that can be checked at compile time result in illegalities if violated. Currently there are no other consequences of violating restrictions. @sp 1 @cartouche @noindent @strong{59}. The representation used by the @code{Read} and @code{Write} attributes of elementary types in terms of stream elements. See 13.13.2(9). @end cartouche @noindent The representation is the in-memory representation of the base type of the type, using the number of bits corresponding to the @code{@var{type}'Size} value, and the natural ordering of the machine. @sp 1 @cartouche @noindent @strong{60}. The names and characteristics of the numeric subtypes declared in the visible part of package @code{Standard}. See A.1(3). @end cartouche @noindent See items describing the integer and floating-point types supported. @sp 1 @cartouche @noindent @strong{61}. The string returned by @code{Character_Set_Version}. See A.3.5(3). @end cartouche @noindent @code{Ada.Wide_Characters.Handling.Character_Set_Version} returns the string "Unicode 4.0", referring to version 4.0 of the Unicode specification. @sp 1 @cartouche @noindent @strong{62}. The accuracy actually achieved by the elementary functions. See A.5.1(1). @end cartouche @noindent The elementary functions correspond to the functions available in the C library. Only fast math mode is implemented. @sp 1 @cartouche @noindent @strong{63}. The sign of a zero result from some of the operators or functions in @code{Numerics.Generic_Elementary_Functions}, when @code{Float_Type'Signed_Zeros} is @code{True}. See A.5.1(46). @end cartouche @noindent The sign of zeroes follows the requirements of the IEEE 754 standard on floating-point. @sp 1 @cartouche @noindent @strong{64}. The value of @code{Numerics.Float_Random.Max_Image_Width}. See A.5.2(27). @end cartouche @noindent Maximum image width is 6864, see library file @file{s-rannum.ads}. @sp 1 @cartouche @noindent @strong{65}. The value of @code{Numerics.Discrete_Random.Max_Image_Width}. See A.5.2(27). @end cartouche @noindent Maximum image width is 6864, see library file @file{s-rannum.ads}. @sp 1 @cartouche @noindent @strong{66}. The algorithms for random number generation. See A.5.2(32). @end cartouche @noindent The algorithm is the Mersenne Twister, as documented in the source file @file{s-rannum.adb}. This version of the algorithm has a period of 2**19937-1. @sp 1 @cartouche @noindent @strong{67}. The string representation of a random number generator's state. See A.5.2(38). @end cartouche @noindent The value returned by the Image function is the concatenation of the fixed-width decimal representations of the 624 32-bit integers of the state vector. @sp 1 @cartouche @noindent @strong{68}. The minimum time interval between calls to the time-dependent Reset procedure that are guaranteed to initiate different random number sequences. See A.5.2(45). @end cartouche @noindent The minimum period between reset calls to guarantee distinct series of random numbers is one microsecond. @sp 1 @cartouche @noindent @strong{69}. The values of the @code{Model_Mantissa}, @code{Model_Emin}, @code{Model_Epsilon}, @code{Model}, @code{Safe_First}, and @code{Safe_Last} attributes, if the Numerics Annex is not supported. See A.5.3(72). @end cartouche @noindent Run the compiler with @option{-gnatS} to produce a listing of package @code{Standard}, has the values of all numeric attributes. @sp 1 @cartouche @noindent @strong{70}. Any implementation-defined characteristics of the input-output packages. See A.7(14). @end cartouche @noindent There are no special implementation defined characteristics for these packages. @sp 1 @cartouche @noindent @strong{71}. The value of @code{Buffer_Size} in @code{Storage_IO}. See A.9(10). @end cartouche @noindent All type representations are contiguous, and the @code{Buffer_Size} is the value of @code{@var{type}'Size} rounded up to the next storage unit boundary. @sp 1 @cartouche @noindent @strong{72}. External files for standard input, standard output, and standard error See A.10(5). @end cartouche @noindent These files are mapped onto the files provided by the C streams libraries. See source file @file{i-cstrea.ads} for further details. @sp 1 @cartouche @noindent @strong{73}. The accuracy of the value produced by @code{Put}. See A.10.9(36). @end cartouche @noindent If more digits are requested in the output than are represented by the precision of the value, zeroes are output in the corresponding least significant digit positions. @sp 1 @cartouche @noindent @strong{74}. The meaning of @code{Argument_Count}, @code{Argument}, and @code{Command_Name}. See A.15(1). @end cartouche @noindent These are mapped onto the @code{argv} and @code{argc} parameters of the main program in the natural manner. @sp 1 @cartouche @noindent @strong{75}. The interpretation of the @code{Form} parameter in procedure @code{Create_Directory}. See A.16(56). @end cartouche @noindent The @code{Form} parameter is not used. @sp 1 @cartouche @noindent @strong{76}. The interpretation of the @code{Form} parameter in procedure @code{Create_Path}. See A.16(60). @end cartouche @noindent The @code{Form} parameter is not used. @sp 1 @cartouche @noindent @strong{77}. The interpretation of the @code{Form} parameter in procedure @code{Copy_File}. See A.16(68). @end cartouche @noindent The @code{Form} parameter is case-insensitive. Two fields are recognized in the @code{Form} parameter: @table @code @item preserve= @item mode= @end table @noindent starts immediately after the character '=' and ends with the character immediately preceding the next comma (',') or with the last character of the parameter. The only possible values for preserve= are: @table @code @item no_attributes Do not try to preserve any file attributes. This is the default if no preserve= is found in Form. @item all_attributes Try to preserve all file attributes (timestamps, access rights). @item timestamps Preserve the timestamp of the copied file, but not the other file attributes. @end table @noindent The only possible values for mode= are: @table @code @item copy Only do the copy if the destination file does not already exist. If it already exists, Copy_File fails. @item overwrite Copy the file in all cases. Overwrite an already existing destination file. @item append Append the original file to the destination file. If the destination file does not exist, the destination file is a copy of the source file. When mode=append, the field preserve=, if it exists, is not taken into account. @end table @noindent If the Form parameter includes one or both of the fields and the value or values are incorrect, Copy_file fails with Use_Error. Examples of correct Forms: @smallexample Form => "preserve=no_attributes,mode=overwrite" (the default) Form => "mode=append" Form => "mode=copy, preserve=all_attributes" @end smallexample @noindent Examples of incorrect Forms @smallexample Form => "preserve=junk" Form => "mode=internal, preserve=timestamps" @end smallexample @sp 1 @cartouche @noindent @strong{78}. Implementation-defined convention names. See B.1(11). @end cartouche @noindent The following convention names are supported @table @code @item Ada Ada @item Ada_Pass_By_Copy Allowed for any types except by-reference types such as limited records. Compatible with convention Ada, but causes any parameters with this convention to be passed by copy. @item Ada_Pass_By_Reference Allowed for any types except by-copy types such as scalars. Compatible with convention Ada, but causes any parameters with this convention to be passed by reference. @item Assembler Assembly language @item Asm Synonym for Assembler @item Assembly Synonym for Assembler @item C C @item C_Pass_By_Copy Allowed only for record types, like C, but also notes that record is to be passed by copy rather than reference. @item COBOL COBOL @item C_Plus_Plus (or CPP) C++ @item Default Treated the same as C @item External Treated the same as C @item Fortran Fortran @item Intrinsic For support of pragma @code{Import} with convention Intrinsic, see separate section on Intrinsic Subprograms. @item Stdcall Stdcall (used for Windows implementations only). This convention correspond to the WINAPI (previously called Pascal convention) C/C++ convention under Windows. A routine with this convention cleans the stack before exit. This pragma cannot be applied to a dispatching call. @item DLL Synonym for Stdcall @item Win32 Synonym for Stdcall @item Stubbed Stubbed is a special convention used to indicate that the body of the subprogram will be entirely ignored. Any call to the subprogram is converted into a raise of the @code{Program_Error} exception. If a pragma @code{Import} specifies convention @code{stubbed} then no body need be present at all. This convention is useful during development for the inclusion of subprograms whose body has not yet been written. @end table @noindent In addition, all otherwise unrecognized convention names are also treated as being synonymous with convention C@. In all implementations except for VMS, use of such other names results in a warning. In VMS implementations, these names are accepted silently. @sp 1 @cartouche @noindent @strong{79}. The meaning of link names. See B.1(36). @end cartouche @noindent Link names are the actual names used by the linker. @sp 1 @cartouche @noindent @strong{80}. The manner of choosing link names when neither the link name nor the address of an imported or exported entity is specified. See B.1(36). @end cartouche @noindent The default linker name is that which would be assigned by the relevant external language, interpreting the Ada name as being in all lower case letters. @sp 1 @cartouche @noindent @strong{81}. The effect of pragma @code{Linker_Options}. See B.1(37). @end cartouche @noindent The string passed to @code{Linker_Options} is presented uninterpreted as an argument to the link command, unless it contains ASCII.NUL characters. NUL characters if they appear act as argument separators, so for example @smallexample @c ada pragma Linker_Options ("-labc" & ASCII.NUL & "-ldef"); @end smallexample @noindent causes two separate arguments @code{-labc} and @code{-ldef} to be passed to the linker. The order of linker options is preserved for a given unit. The final list of options passed to the linker is in reverse order of the elaboration order. For example, linker options for a body always appear before the options from the corresponding package spec. @sp 1 @cartouche @noindent @strong{82}. The contents of the visible part of package @code{Interfaces} and its language-defined descendants. See B.2(1). @end cartouche @noindent See files with prefix @file{i-} in the distributed library. @sp 1 @cartouche @noindent @strong{83}. Implementation-defined children of package @code{Interfaces}. The contents of the visible part of package @code{Interfaces}. See B.2(11). @end cartouche @noindent See files with prefix @file{i-} in the distributed library. @sp 1 @cartouche @noindent @strong{84}. The types @code{Floating}, @code{Long_Floating}, @code{Binary}, @code{Long_Binary}, @code{Decimal_ Element}, and @code{COBOL_Character}; and the initialization of the variables @code{Ada_To_COBOL} and @code{COBOL_To_Ada}, in @code{Interfaces.COBOL}. See B.4(50). @end cartouche @noindent @table @code @item Floating Float @item Long_Floating (Floating) Long_Float @item Binary Integer @item Long_Binary Long_Long_Integer @item Decimal_Element Character @item COBOL_Character Character @end table @noindent For initialization, see the file @file{i-cobol.ads} in the distributed library. @sp 1 @cartouche @noindent @strong{85}. Support for access to machine instructions. See C.1(1). @end cartouche @noindent See documentation in file @file{s-maccod.ads} in the distributed library. @sp 1 @cartouche @noindent @strong{86}. Implementation-defined aspects of access to machine operations. See C.1(9). @end cartouche @noindent See documentation in file @file{s-maccod.ads} in the distributed library. @sp 1 @cartouche @noindent @strong{87}. Implementation-defined aspects of interrupts. See C.3(2). @end cartouche @noindent Interrupts are mapped to signals or conditions as appropriate. See definition of unit @code{Ada.Interrupt_Names} in source file @file{a-intnam.ads} for details on the interrupts supported on a particular target. @sp 1 @cartouche @noindent @strong{88}. Implementation-defined aspects of pre-elaboration. See C.4(13). @end cartouche @noindent GNAT does not permit a partition to be restarted without reloading, except under control of the debugger. @sp 1 @cartouche @noindent @strong{89}. The semantics of pragma @code{Discard_Names}. See C.5(7). @end cartouche @noindent Pragma @code{Discard_Names} causes names of enumeration literals to be suppressed. In the presence of this pragma, the Image attribute provides the image of the Pos of the literal, and Value accepts Pos values. @sp 1 @cartouche @noindent @strong{90}. The result of the @code{Task_Identification.Image} attribute. See C.7.1(7). @end cartouche @noindent The result of this attribute is a string that identifies the object or component that denotes a given task. If a variable @code{Var} has a task type, the image for this task will have the form @code{Var_@var{XXXXXXXX}}, where the suffix is the hexadecimal representation of the virtual address of the corresponding task control block. If the variable is an array of tasks, the image of each task will have the form of an indexed component indicating the position of a given task in the array, e.g.@: @code{Group(5)_@var{XXXXXXX}}. If the task is a component of a record, the image of the task will have the form of a selected component. These rules are fully recursive, so that the image of a task that is a subcomponent of a composite object corresponds to the expression that designates this task. @noindent If a task is created by an allocator, its image depends on the context. If the allocator is part of an object declaration, the rules described above are used to construct its image, and this image is not affected by subsequent assignments. If the allocator appears within an expression, the image includes only the name of the task type. @noindent If the configuration pragma Discard_Names is present, or if the restriction No_Implicit_Heap_Allocation is in effect, the image reduces to the numeric suffix, that is to say the hexadecimal representation of the virtual address of the control block of the task. @sp 1 @cartouche @noindent @strong{91}. The value of @code{Current_Task} when in a protected entry or interrupt handler. See C.7.1(17). @end cartouche @noindent Protected entries or interrupt handlers can be executed by any convenient thread, so the value of @code{Current_Task} is undefined. @sp 1 @cartouche @noindent @strong{92}. The effect of calling @code{Current_Task} from an entry body or interrupt handler. See C.7.1(19). @end cartouche @noindent The effect of calling @code{Current_Task} from an entry body or interrupt handler is to return the identification of the task currently executing the code. @sp 1 @cartouche @noindent @strong{93}. Implementation-defined aspects of @code{Task_Attributes}. See C.7.2(19). @end cartouche @noindent There are no implementation-defined aspects of @code{Task_Attributes}. @sp 1 @cartouche @noindent @strong{94}. Values of all @code{Metrics}. See D(2). @end cartouche @noindent The metrics information for GNAT depends on the performance of the underlying operating system. The sources of the run-time for tasking implementation, together with the output from @option{-gnatG} can be used to determine the exact sequence of operating systems calls made to implement various tasking constructs. Together with appropriate information on the performance of the underlying operating system, on the exact target in use, this information can be used to determine the required metrics. @sp 1 @cartouche @noindent @strong{95}. The declarations of @code{Any_Priority} and @code{Priority}. See D.1(11). @end cartouche @noindent See declarations in file @file{system.ads}. @sp 1 @cartouche @noindent @strong{96}. Implementation-defined execution resources. See D.1(15). @end cartouche @noindent There are no implementation-defined execution resources. @sp 1 @cartouche @noindent @strong{97}. Whether, on a multiprocessor, a task that is waiting for access to a protected object keeps its processor busy. See D.2.1(3). @end cartouche @noindent On a multi-processor, a task that is waiting for access to a protected object does not keep its processor busy. @sp 1 @cartouche @noindent @strong{98}. The affect of implementation defined execution resources on task dispatching. See D.2.1(9). @end cartouche @noindent Tasks map to threads in the threads package used by GNAT@. Where possible and appropriate, these threads correspond to native threads of the underlying operating system. @sp 1 @cartouche @noindent @strong{99}. Implementation-defined @code{policy_identifiers} allowed in a pragma @code{Task_Dispatching_Policy}. See D.2.2(3). @end cartouche @noindent There are no implementation-defined policy-identifiers allowed in this pragma. @sp 1 @cartouche @noindent @strong{100}. Implementation-defined aspects of priority inversion. See D.2.2(16). @end cartouche @noindent Execution of a task cannot be preempted by the implementation processing of delay expirations for lower priority tasks. @sp 1 @cartouche @noindent @strong{101}. Implementation-defined task dispatching. See D.2.2(18). @end cartouche @noindent The policy is the same as that of the underlying threads implementation. @sp 1 @cartouche @noindent @strong{102}. Implementation-defined @code{policy_identifiers} allowed in a pragma @code{Locking_Policy}. See D.3(4). @end cartouche @noindent The two implementation defined policies permitted in GNAT are @code{Inheritance_Locking} and @code{Conccurent_Readers_Locking}. On targets that support the @code{Inheritance_Locking} policy, locking is implemented by inheritance, i.e.@: the task owning the lock operates at a priority equal to the highest priority of any task currently requesting the lock. On targets that support the @code{Conccurent_Readers_Locking} policy, locking is implemented with a read/write lock allowing multiple propected object functions to enter concurrently. @sp 1 @cartouche @noindent @strong{103}. Default ceiling priorities. See D.3(10). @end cartouche @noindent The ceiling priority of protected objects of the type @code{System.Interrupt_Priority'Last} as described in the Ada Reference Manual D.3(10), @sp 1 @cartouche @noindent @strong{104}. The ceiling of any protected object used internally by the implementation. See D.3(16). @end cartouche @noindent The ceiling priority of internal protected objects is @code{System.Priority'Last}. @sp 1 @cartouche @noindent @strong{105}. Implementation-defined queuing policies. See D.4(1). @end cartouche @noindent There are no implementation-defined queuing policies. @sp 1 @cartouche @noindent @strong{106}. On a multiprocessor, any conditions that cause the completion of an aborted construct to be delayed later than what is specified for a single processor. See D.6(3). @end cartouche @noindent The semantics for abort on a multi-processor is the same as on a single processor, there are no further delays. @sp 1 @cartouche @noindent @strong{107}. Any operations that implicitly require heap storage allocation. See D.7(8). @end cartouche @noindent The only operation that implicitly requires heap storage allocation is task creation. @sp 1 @cartouche @noindent @strong{108}. Implementation-defined aspects of pragma @code{Restrictions}. See D.7(20). @end cartouche @noindent There are no such implementation-defined aspects. @sp 1 @cartouche @noindent @strong{109}. Implementation-defined aspects of package @code{Real_Time}. See D.8(17). @end cartouche @noindent There are no implementation defined aspects of package @code{Real_Time}. @sp 1 @cartouche @noindent @strong{110}. Implementation-defined aspects of @code{delay_statements}. See D.9(8). @end cartouche @noindent Any difference greater than one microsecond will cause the task to be delayed (see D.9(7)). @sp 1 @cartouche @noindent @strong{111}. The upper bound on the duration of interrupt blocking caused by the implementation. See D.12(5). @end cartouche @noindent The upper bound is determined by the underlying operating system. In no cases is it more than 10 milliseconds. @sp 1 @cartouche @noindent @strong{112}. The means for creating and executing distributed programs. See E(5). @end cartouche @noindent The GLADE package provides a utility GNATDIST for creating and executing distributed programs. See the GLADE reference manual for further details. @sp 1 @cartouche @noindent @strong{113}. Any events that can result in a partition becoming inaccessible. See E.1(7). @end cartouche @noindent See the GLADE reference manual for full details on such events. @sp 1 @cartouche @noindent @strong{114}. The scheduling policies, treatment of priorities, and management of shared resources between partitions in certain cases. See E.1(11). @end cartouche @noindent See the GLADE reference manual for full details on these aspects of multi-partition execution. @sp 1 @cartouche @noindent @strong{115}. Events that cause the version of a compilation unit to change. See E.3(5). @end cartouche @noindent Editing the source file of a compilation unit, or the source files of any units on which it is dependent in a significant way cause the version to change. No other actions cause the version number to change. All changes are significant except those which affect only layout, capitalization or comments. @sp 1 @cartouche @noindent @strong{116}. Whether the execution of the remote subprogram is immediately aborted as a result of cancellation. See E.4(13). @end cartouche @noindent See the GLADE reference manual for details on the effect of abort in a distributed application. @sp 1 @cartouche @noindent @strong{117}. Implementation-defined aspects of the PCS@. See E.5(25). @end cartouche @noindent See the GLADE reference manual for a full description of all implementation defined aspects of the PCS@. @sp 1 @cartouche @noindent @strong{118}. Implementation-defined interfaces in the PCS@. See E.5(26). @end cartouche @noindent See the GLADE reference manual for a full description of all implementation defined interfaces. @sp 1 @cartouche @noindent @strong{119}. The values of named numbers in the package @code{Decimal}. See F.2(7). @end cartouche @noindent @table @code @item Max_Scale +18 @item Min_Scale -18 @item Min_Delta 1.0E-18 @item Max_Delta 1.0E+18 @item Max_Decimal_Digits 18 @end table @sp 1 @cartouche @noindent @strong{120}. The value of @code{Max_Picture_Length} in the package @code{Text_IO.Editing}. See F.3.3(16). @end cartouche @noindent 64 @sp 1 @cartouche @noindent @strong{121}. The value of @code{Max_Picture_Length} in the package @code{Wide_Text_IO.Editing}. See F.3.4(5). @end cartouche @noindent 64 @sp 1 @cartouche @noindent @strong{122}. The accuracy actually achieved by the complex elementary functions and by other complex arithmetic operations. See G.1(1). @end cartouche @noindent Standard library functions are used for the complex arithmetic operations. Only fast math mode is currently supported. @sp 1 @cartouche @noindent @strong{123}. The sign of a zero result (or a component thereof) from any operator or function in @code{Numerics.Generic_Complex_Types}, when @code{Real'Signed_Zeros} is True. See G.1.1(53). @end cartouche @noindent The signs of zero values are as recommended by the relevant implementation advice. @sp 1 @cartouche @noindent @strong{124}. The sign of a zero result (or a component thereof) from any operator or function in @code{Numerics.Generic_Complex_Elementary_Functions}, when @code{Real'Signed_Zeros} is @code{True}. See G.1.2(45). @end cartouche @noindent The signs of zero values are as recommended by the relevant implementation advice. @sp 1 @cartouche @noindent @strong{125}. Whether the strict mode or the relaxed mode is the default. See G.2(2). @end cartouche @noindent The strict mode is the default. There is no separate relaxed mode. GNAT provides a highly efficient implementation of strict mode. @sp 1 @cartouche @noindent @strong{126}. The result interval in certain cases of fixed-to-float conversion. See G.2.1(10). @end cartouche @noindent For cases where the result interval is implementation dependent, the accuracy is that provided by performing all operations in 64-bit IEEE floating-point format. @sp 1 @cartouche @noindent @strong{127}. The result of a floating point arithmetic operation in overflow situations, when the @code{Machine_Overflows} attribute of the result type is @code{False}. See G.2.1(13). @end cartouche @noindent Infinite and NaN values are produced as dictated by the IEEE floating-point standard. Note that on machines that are not fully compliant with the IEEE floating-point standard, such as Alpha, the @option{-mieee} compiler flag must be used for achieving IEEE conforming behavior (although at the cost of a significant performance penalty), so infinite and NaN values are properly generated. @sp 1 @cartouche @noindent @strong{128}. The result interval for division (or exponentiation by a negative exponent), when the floating point hardware implements division as multiplication by a reciprocal. See G.2.1(16). @end cartouche @noindent Not relevant, division is IEEE exact. @sp 1 @cartouche @noindent @strong{129}. The definition of close result set, which determines the accuracy of certain fixed point multiplications and divisions. See G.2.3(5). @end cartouche @noindent Operations in the close result set are performed using IEEE long format floating-point arithmetic. The input operands are converted to floating-point, the operation is done in floating-point, and the result is converted to the target type. @sp 1 @cartouche @noindent @strong{130}. Conditions on a @code{universal_real} operand of a fixed point multiplication or division for which the result shall be in the perfect result set. See G.2.3(22). @end cartouche @noindent The result is only defined to be in the perfect result set if the result can be computed by a single scaling operation involving a scale factor representable in 64-bits. @sp 1 @cartouche @noindent @strong{131}. The result of a fixed point arithmetic operation in overflow situations, when the @code{Machine_Overflows} attribute of the result type is @code{False}. See G.2.3(27). @end cartouche @noindent Not relevant, @code{Machine_Overflows} is @code{True} for fixed-point types. @sp 1 @cartouche @noindent @strong{132}. The result of an elementary function reference in overflow situations, when the @code{Machine_Overflows} attribute of the result type is @code{False}. See G.2.4(4). @end cartouche @noindent IEEE infinite and Nan values are produced as appropriate. @sp 1 @cartouche @noindent @strong{133}. The value of the angle threshold, within which certain elementary functions, complex arithmetic operations, and complex elementary functions yield results conforming to a maximum relative error bound. See G.2.4(10). @end cartouche @noindent Information on this subject is not yet available. @sp 1 @cartouche @noindent @strong{134}. The accuracy of certain elementary functions for parameters beyond the angle threshold. See G.2.4(10). @end cartouche @noindent Information on this subject is not yet available. @sp 1 @cartouche @noindent @strong{135}. The result of a complex arithmetic operation or complex elementary function reference in overflow situations, when the @code{Machine_Overflows} attribute of the corresponding real type is @code{False}. See G.2.6(5). @end cartouche @noindent IEEE infinite and Nan values are produced as appropriate. @sp 1 @cartouche @noindent @strong{136}. The accuracy of certain complex arithmetic operations and certain complex elementary functions for parameters (or components thereof) beyond the angle threshold. See G.2.6(8). @end cartouche @noindent Information on those subjects is not yet available. @sp 1 @cartouche @noindent @strong{137}. Information regarding bounded errors and erroneous execution. See H.2(1). @end cartouche @noindent Information on this subject is not yet available. @sp 1 @cartouche @noindent @strong{138}. Implementation-defined aspects of pragma @code{Inspection_Point}. See H.3.2(8). @end cartouche @noindent Pragma @code{Inspection_Point} ensures that the variable is live and can be examined by the debugger at the inspection point. @sp 1 @cartouche @noindent @strong{139}. Implementation-defined aspects of pragma @code{Restrictions}. See H.4(25). @end cartouche @noindent There are no implementation-defined aspects of pragma @code{Restrictions}. The use of pragma @code{Restrictions [No_Exceptions]} has no effect on the generated code. Checks must suppressed by use of pragma @code{Suppress}. @sp 1 @cartouche @noindent @strong{140}. Any restrictions on pragma @code{Restrictions}. See H.4(27). @end cartouche @noindent There are no restrictions on pragma @code{Restrictions}. @node Intrinsic Subprograms @chapter Intrinsic Subprograms @cindex Intrinsic Subprograms @menu * Intrinsic Operators:: * Enclosing_Entity:: * Exception_Information:: * Exception_Message:: * Exception_Name:: * File:: * Line:: * Shifts and Rotates:: * Source_Location:: @end menu @noindent GNAT allows a user application program to write the declaration: @smallexample @c ada pragma Import (Intrinsic, name); @end smallexample @noindent providing that the name corresponds to one of the implemented intrinsic subprograms in GNAT, and that the parameter profile of the referenced subprogram meets the requirements. This chapter describes the set of implemented intrinsic subprograms, and the requirements on parameter profiles. Note that no body is supplied; as with other uses of pragma Import, the body is supplied elsewhere (in this case by the compiler itself). Note that any use of this feature is potentially non-portable, since the Ada standard does not require Ada compilers to implement this feature. @node Intrinsic Operators @section Intrinsic Operators @cindex Intrinsic operator @noindent All the predefined numeric operators in package Standard in @code{pragma Import (Intrinsic,..)} declarations. In the binary operator case, the operands must have the same size. The operand or operands must also be appropriate for the operator. For example, for addition, the operands must both be floating-point or both be fixed-point, and the right operand for @code{"**"} must have a root type of @code{Standard.Integer'Base}. You can use an intrinsic operator declaration as in the following example: @smallexample @c ada type Int1 is new Integer; type Int2 is new Integer; function "+" (X1 : Int1; X2 : Int2) return Int1; function "+" (X1 : Int1; X2 : Int2) return Int2; pragma Import (Intrinsic, "+"); @end smallexample @noindent This declaration would permit ``mixed mode'' arithmetic on items of the differing types @code{Int1} and @code{Int2}. It is also possible to specify such operators for private types, if the full views are appropriate arithmetic types. @node Enclosing_Entity @section Enclosing_Entity @cindex Enclosing_Entity @noindent This intrinsic subprogram is used in the implementation of the library routine @code{GNAT.Source_Info}. The only useful use of the intrinsic import in this case is the one in this unit, so an application program should simply call the function @code{GNAT.Source_Info.Enclosing_Entity} to obtain the name of the current subprogram, package, task, entry, or protected subprogram. @node Exception_Information @section Exception_Information @cindex Exception_Information' @noindent This intrinsic subprogram is used in the implementation of the library routine @code{GNAT.Current_Exception}. The only useful use of the intrinsic import in this case is the one in this unit, so an application program should simply call the function @code{GNAT.Current_Exception.Exception_Information} to obtain the exception information associated with the current exception. @node Exception_Message @section Exception_Message @cindex Exception_Message @noindent This intrinsic subprogram is used in the implementation of the library routine @code{GNAT.Current_Exception}. The only useful use of the intrinsic import in this case is the one in this unit, so an application program should simply call the function @code{GNAT.Current_Exception.Exception_Message} to obtain the message associated with the current exception. @node Exception_Name @section Exception_Name @cindex Exception_Name @noindent This intrinsic subprogram is used in the implementation of the library routine @code{GNAT.Current_Exception}. The only useful use of the intrinsic import in this case is the one in this unit, so an application program should simply call the function @code{GNAT.Current_Exception.Exception_Name} to obtain the name of the current exception. @node File @section File @cindex File @noindent This intrinsic subprogram is used in the implementation of the library routine @code{GNAT.Source_Info}. The only useful use of the intrinsic import in this case is the one in this unit, so an application program should simply call the function @code{GNAT.Source_Info.File} to obtain the name of the current file. @node Line @section Line @cindex Line @noindent This intrinsic subprogram is used in the implementation of the library routine @code{GNAT.Source_Info}. The only useful use of the intrinsic import in this case is the one in this unit, so an application program should simply call the function @code{GNAT.Source_Info.Line} to obtain the number of the current source line. @node Shifts and Rotates @section Shifts and Rotates @cindex Shift_Left @cindex Shift_Right @cindex Shift_Right_Arithmetic @cindex Rotate_Left @cindex Rotate_Right @noindent In standard Ada, the shift and rotate functions are available only for the predefined modular types in package @code{Interfaces}. However, in GNAT it is possible to define these functions for any integer type (signed or modular), as in this example: @smallexample @c ada function Shift_Left (Value : T; Amount : Natural) return T; @end smallexample @noindent The function name must be one of Shift_Left, Shift_Right, Shift_Right_Arithmetic, Rotate_Left, or Rotate_Right. T must be an integer type. T'Size must be 8, 16, 32 or 64 bits; if T is modular, the modulus must be 2**8, 2**16, 2**32 or 2**64. The result type must be the same as the type of @code{Value}. The shift amount must be Natural. The formal parameter names can be anything. A more convenient way of providing these shift operators is to use the Provide_Shift_Operators pragma, which provides the function declarations and corresponding pragma Import's for all five shift functions. @node Source_Location @section Source_Location @cindex Source_Location @noindent This intrinsic subprogram is used in the implementation of the library routine @code{GNAT.Source_Info}. The only useful use of the intrinsic import in this case is the one in this unit, so an application program should simply call the function @code{GNAT.Source_Info.Source_Location} to obtain the current source file location. @node Representation Clauses and Pragmas @chapter Representation Clauses and Pragmas @cindex Representation Clauses @menu * Alignment Clauses:: * Size Clauses:: * Storage_Size Clauses:: * Size of Variant Record Objects:: * Biased Representation :: * Value_Size and Object_Size Clauses:: * Component_Size Clauses:: * Bit_Order Clauses:: * Effect of Bit_Order on Byte Ordering:: * Pragma Pack for Arrays:: * Pragma Pack for Records:: * Record Representation Clauses:: * Handling of Records with Holes:: * Enumeration Clauses:: * Address Clauses:: * Effect of Convention on Representation:: * Conventions and Anonymous Access Types:: * Determining the Representations chosen by GNAT:: @end menu @noindent @cindex Representation Clause @cindex Representation Pragma @cindex Pragma, representation This section describes the representation clauses accepted by GNAT, and their effect on the representation of corresponding data objects. GNAT fully implements Annex C (Systems Programming). This means that all the implementation advice sections in chapter 13 are fully implemented. However, these sections only require a minimal level of support for representation clauses. GNAT provides much more extensive capabilities, and this section describes the additional capabilities provided. @node Alignment Clauses @section Alignment Clauses @cindex Alignment Clause @noindent GNAT requires that all alignment clauses specify a power of 2, and all default alignments are always a power of 2. The default alignment values are as follows: @itemize @bullet @item @emph{Primitive Types}. For primitive types, the alignment is the minimum of the actual size of objects of the type divided by @code{Storage_Unit}, and the maximum alignment supported by the target. (This maximum alignment is given by the GNAT-specific attribute @code{Standard'Maximum_Alignment}; see @ref{Attribute Maximum_Alignment}.) @cindex @code{Maximum_Alignment} attribute For example, for type @code{Long_Float}, the object size is 8 bytes, and the default alignment will be 8 on any target that supports alignments this large, but on some targets, the maximum alignment may be smaller than 8, in which case objects of type @code{Long_Float} will be maximally aligned. @item @emph{Arrays}. For arrays, the alignment is equal to the alignment of the component type for the normal case where no packing or component size is given. If the array is packed, and the packing is effective (see separate section on packed arrays), then the alignment will be one for long packed arrays, or arrays whose length is not known at compile time. For short packed arrays, which are handled internally as modular types, the alignment will be as described for primitive types, e.g.@: a packed array of length 31 bits will have an object size of four bytes, and an alignment of 4. @item @emph{Records}. For the normal non-packed case, the alignment of a record is equal to the maximum alignment of any of its components. For tagged records, this includes the implicit access type used for the tag. If a pragma @code{Pack} is used and all components are packable (see separate section on pragma @code{Pack}), then the resulting alignment is 1, unless the layout of the record makes it profitable to increase it. A special case is when: @itemize @bullet @item the size of the record is given explicitly, or a full record representation clause is given, and @item the size of the record is 2, 4, or 8 bytes. @end itemize @noindent In this case, an alignment is chosen to match the size of the record. For example, if we have: @smallexample @c ada type Small is record A, B : Character; end record; for Small'Size use 16; @end smallexample @noindent then the default alignment of the record type @code{Small} is 2, not 1. This leads to more efficient code when the record is treated as a unit, and also allows the type to specified as @code{Atomic} on architectures requiring strict alignment. @end itemize @noindent An alignment clause may specify a larger alignment than the default value up to some maximum value dependent on the target (obtainable by using the attribute reference @code{Standard'Maximum_Alignment}). It may also specify a smaller alignment than the default value for enumeration, integer and fixed point types, as well as for record types, for example @smallexample @c ada type V is record A : Integer; end record; for V'alignment use 1; @end smallexample @noindent @cindex Alignment, default The default alignment for the type @code{V} is 4, as a result of the Integer field in the record, but it is permissible, as shown, to override the default alignment of the record with a smaller value. @cindex Alignment, subtypes Note that according to the Ada standard, an alignment clause applies only to the first named subtype. If additional subtypes are declared, then the compiler is allowed to choose any alignment it likes, and there is no way to control this choice. Consider: @smallexample @c ada type R is range 1 .. 10_000; for R'Alignment use 1; subtype RS is R range 1 .. 1000; @end smallexample @noindent The alignment clause specifies an alignment of 1 for the first named subtype @code{R} but this does not necessarily apply to @code{RS}. When writing portable Ada code, you should avoid writing code that explicitly or implicitly relies on the alignment of such subtypes. For the GNAT compiler, if an explicit alignment clause is given, this value is also used for any subsequent subtypes. So for GNAT, in the above example, you can count on the alignment of @code{RS} being 1. But this assumption is non-portable, and other compilers may choose different alignments for the subtype @code{RS}. @node Size Clauses @section Size Clauses @cindex Size Clause @noindent The default size for a type @code{T} is obtainable through the language-defined attribute @code{T'Size} and also through the equivalent GNAT-defined attribute @code{T'Value_Size}. For objects of type @code{T}, GNAT will generally increase the type size so that the object size (obtainable through the GNAT-defined attribute @code{T'Object_Size}) is a multiple of @code{T'Alignment * Storage_Unit}. For example @smallexample @c ada type Smallint is range 1 .. 6; type Rec is record Y1 : integer; Y2 : boolean; end record; @end smallexample @noindent In this example, @code{Smallint'Size} = @code{Smallint'Value_Size} = 3, as specified by the RM rules, but objects of this type will have a size of 8 (@code{Smallint'Object_Size} = 8), since objects by default occupy an integral number of storage units. On some targets, notably older versions of the Digital Alpha, the size of stand alone objects of this type may be 32, reflecting the inability of the hardware to do byte load/stores. Similarly, the size of type @code{Rec} is 40 bits (@code{Rec'Size} = @code{Rec'Value_Size} = 40), but the alignment is 4, so objects of this type will have their size increased to 64 bits so that it is a multiple of the alignment (in bits). This decision is in accordance with the specific Implementation Advice in RM 13.3(43): @quotation A @code{Size} clause should be supported for an object if the specified @code{Size} is at least as large as its subtype's @code{Size}, and corresponds to a size in storage elements that is a multiple of the object's @code{Alignment} (if the @code{Alignment} is nonzero). @end quotation @noindent An explicit size clause may be used to override the default size by increasing it. For example, if we have: @smallexample @c ada type My_Boolean is new Boolean; for My_Boolean'Size use 32; @end smallexample @noindent then values of this type will always be 32 bits long. In the case of discrete types, the size can be increased up to 64 bits, with the effect that the entire specified field is used to hold the value, sign- or zero-extended as appropriate. If more than 64 bits is specified, then padding space is allocated after the value, and a warning is issued that there are unused bits. Similarly the size of records and arrays may be increased, and the effect is to add padding bits after the value. This also causes a warning message to be generated. The largest Size value permitted in GNAT is 2**31@minus{}1. Since this is a Size in bits, this corresponds to an object of size 256 megabytes (minus one). This limitation is true on all targets. The reason for this limitation is that it improves the quality of the code in many cases if it is known that a Size value can be accommodated in an object of type Integer. @node Storage_Size Clauses @section Storage_Size Clauses @cindex Storage_Size Clause @noindent For tasks, the @code{Storage_Size} clause specifies the amount of space to be allocated for the task stack. This cannot be extended, and if the stack is exhausted, then @code{Storage_Error} will be raised (if stack checking is enabled). Use a @code{Storage_Size} attribute definition clause, or a @code{Storage_Size} pragma in the task definition to set the appropriate required size. A useful technique is to include in every task definition a pragma of the form: @smallexample @c ada pragma Storage_Size (Default_Stack_Size); @end smallexample @noindent Then @code{Default_Stack_Size} can be defined in a global package, and modified as required. Any tasks requiring stack sizes different from the default can have an appropriate alternative reference in the pragma. You can also use the @option{-d} binder switch to modify the default stack size. For access types, the @code{Storage_Size} clause specifies the maximum space available for allocation of objects of the type. If this space is exceeded then @code{Storage_Error} will be raised by an allocation attempt. In the case where the access type is declared local to a subprogram, the use of a @code{Storage_Size} clause triggers automatic use of a special predefined storage pool (@code{System.Pool_Size}) that ensures that all space for the pool is automatically reclaimed on exit from the scope in which the type is declared. A special case recognized by the compiler is the specification of a @code{Storage_Size} of zero for an access type. This means that no items can be allocated from the pool, and this is recognized at compile time, and all the overhead normally associated with maintaining a fixed size storage pool is eliminated. Consider the following example: @smallexample @c ada procedure p is type R is array (Natural) of Character; type P is access all R; for P'Storage_Size use 0; -- Above access type intended only for interfacing purposes y : P; procedure g (m : P); pragma Import (C, g); -- @dots{} begin -- @dots{} y := new R; end; @end smallexample @noindent As indicated in this example, these dummy storage pools are often useful in connection with interfacing where no object will ever be allocated. If you compile the above example, you get the warning: @smallexample p.adb:16:09: warning: allocation from empty storage pool p.adb:16:09: warning: Storage_Error will be raised at run time @end smallexample @noindent Of course in practice, there will not be any explicit allocators in the case of such an access declaration. @node Size of Variant Record Objects @section Size of Variant Record Objects @cindex Size, variant record objects @cindex Variant record objects, size @noindent In the case of variant record objects, there is a question whether Size gives information about a particular variant, or the maximum size required for any variant. Consider the following program @smallexample @c ada with Text_IO; use Text_IO; procedure q is type R1 (A : Boolean := False) is record case A is when True => X : Character; when False => null; end case; end record; V1 : R1 (False); V2 : R1; begin Put_Line (Integer'Image (V1'Size)); Put_Line (Integer'Image (V2'Size)); end q; @end smallexample @noindent Here we are dealing with a variant record, where the True variant requires 16 bits, and the False variant requires 8 bits. In the above example, both V1 and V2 contain the False variant, which is only 8 bits long. However, the result of running the program is: @smallexample 8 16 @end smallexample @noindent The reason for the difference here is that the discriminant value of V1 is fixed, and will always be False. It is not possible to assign a True variant value to V1, therefore 8 bits is sufficient. On the other hand, in the case of V2, the initial discriminant value is False (from the default), but it is possible to assign a True variant value to V2, therefore 16 bits must be allocated for V2 in the general case, even fewer bits may be needed at any particular point during the program execution. As can be seen from the output of this program, the @code{'Size} attribute applied to such an object in GNAT gives the actual allocated size of the variable, which is the largest size of any of the variants. The Ada Reference Manual is not completely clear on what choice should be made here, but the GNAT behavior seems most consistent with the language in the RM@. In some cases, it may be desirable to obtain the size of the current variant, rather than the size of the largest variant. This can be achieved in GNAT by making use of the fact that in the case of a subprogram parameter, GNAT does indeed return the size of the current variant (because a subprogram has no way of knowing how much space is actually allocated for the actual). Consider the following modified version of the above program: @smallexample @c ada with Text_IO; use Text_IO; procedure q is type R1 (A : Boolean := False) is record case A is when True => X : Character; when False => null; end case; end record; V2 : R1; function Size (V : R1) return Integer is begin return V'Size; end Size; begin Put_Line (Integer'Image (V2'Size)); Put_Line (Integer'IMage (Size (V2))); V2 := (True, 'x'); Put_Line (Integer'Image (V2'Size)); Put_Line (Integer'IMage (Size (V2))); end q; @end smallexample @noindent The output from this program is @smallexample 16 8 16 16 @end smallexample @noindent Here we see that while the @code{'Size} attribute always returns the maximum size, regardless of the current variant value, the @code{Size} function does indeed return the size of the current variant value. @node Biased Representation @section Biased Representation @cindex Size for biased representation @cindex Biased representation @noindent In the case of scalars with a range starting at other than zero, it is possible in some cases to specify a size smaller than the default minimum value, and in such cases, GNAT uses an unsigned biased representation, in which zero is used to represent the lower bound, and successive values represent successive values of the type. For example, suppose we have the declaration: @smallexample @c ada type Small is range -7 .. -4; for Small'Size use 2; @end smallexample @noindent Although the default size of type @code{Small} is 4, the @code{Size} clause is accepted by GNAT and results in the following representation scheme: @smallexample -7 is represented as 2#00# -6 is represented as 2#01# -5 is represented as 2#10# -4 is represented as 2#11# @end smallexample @noindent Biased representation is only used if the specified @code{Size} clause cannot be accepted in any other manner. These reduced sizes that force biased representation can be used for all discrete types except for enumeration types for which a representation clause is given. @node Value_Size and Object_Size Clauses @section Value_Size and Object_Size Clauses @findex Value_Size @findex Object_Size @cindex Size, of objects @noindent In Ada 95 and Ada 2005, @code{T'Size} for a type @code{T} is the minimum number of bits required to hold values of type @code{T}. Although this interpretation was allowed in Ada 83, it was not required, and this requirement in practice can cause some significant difficulties. For example, in most Ada 83 compilers, @code{Natural'Size} was 32. However, in Ada 95 and Ada 2005, @code{Natural'Size} is typically 31. This means that code may change in behavior when moving from Ada 83 to Ada 95 or Ada 2005. For example, consider: @smallexample @c ada type Rec is record; A : Natural; B : Natural; end record; for Rec use record at 0 range 0 .. Natural'Size - 1; at 0 range Natural'Size .. 2 * Natural'Size - 1; end record; @end smallexample @noindent In the above code, since the typical size of @code{Natural} objects is 32 bits and @code{Natural'Size} is 31, the above code can cause unexpected inefficient packing in Ada 95 and Ada 2005, and in general there are cases where the fact that the object size can exceed the size of the type causes surprises. To help get around this problem GNAT provides two implementation defined attributes, @code{Value_Size} and @code{Object_Size}. When applied to a type, these attributes yield the size of the type (corresponding to the RM defined size attribute), and the size of objects of the type respectively. The @code{Object_Size} is used for determining the default size of objects and components. This size value can be referred to using the @code{Object_Size} attribute. The phrase ``is used'' here means that it is the basis of the determination of the size. The backend is free to pad this up if necessary for efficiency, e.g.@: an 8-bit stand-alone character might be stored in 32 bits on a machine with no efficient byte access instructions such as the Alpha. The default rules for the value of @code{Object_Size} for discrete types are as follows: @itemize @bullet @item The @code{Object_Size} for base subtypes reflect the natural hardware size in bits (run the compiler with @option{-gnatS} to find those values for numeric types). Enumeration types and fixed-point base subtypes have 8, 16, 32 or 64 bits for this size, depending on the range of values to be stored. @item The @code{Object_Size} of a subtype is the same as the @code{Object_Size} of the type from which it is obtained. @item The @code{Object_Size} of a derived base type is copied from the parent base type, and the @code{Object_Size} of a derived first subtype is copied from the parent first subtype. @end itemize @noindent The @code{Value_Size} attribute is the (minimum) number of bits required to store a value of the type. This value is used to determine how tightly to pack records or arrays with components of this type, and also affects the semantics of unchecked conversion (unchecked conversions where the @code{Value_Size} values differ generate a warning, and are potentially target dependent). The default rules for the value of @code{Value_Size} are as follows: @itemize @bullet @item The @code{Value_Size} for a base subtype is the minimum number of bits required to store all values of the type (including the sign bit only if negative values are possible). @item If a subtype statically matches the first subtype of a given type, then it has by default the same @code{Value_Size} as the first subtype. This is a consequence of RM 13.1(14) (``if two subtypes statically match, then their subtype-specific aspects are the same''.) @item All other subtypes have a @code{Value_Size} corresponding to the minimum number of bits required to store all values of the subtype. For dynamic bounds, it is assumed that the value can range down or up to the corresponding bound of the ancestor @end itemize @noindent The RM defined attribute @code{Size} corresponds to the @code{Value_Size} attribute. The @code{Size} attribute may be defined for a first-named subtype. This sets the @code{Value_Size} of the first-named subtype to the given value, and the @code{Object_Size} of this first-named subtype to the given value padded up to an appropriate boundary. It is a consequence of the default rules above that this @code{Object_Size} will apply to all further subtypes. On the other hand, @code{Value_Size} is affected only for the first subtype, any dynamic subtypes obtained from it directly, and any statically matching subtypes. The @code{Value_Size} of any other static subtypes is not affected. @code{Value_Size} and @code{Object_Size} may be explicitly set for any subtype using an attribute definition clause. Note that the use of these attributes can cause the RM 13.1(14) rule to be violated. If two access types reference aliased objects whose subtypes have differing @code{Object_Size} values as a result of explicit attribute definition clauses, then it is illegal to convert from one access subtype to the other. For a more complete description of this additional legality rule, see the description of the @code{Object_Size} attribute. At the implementation level, Esize stores the Object_Size and the RM_Size field stores the @code{Value_Size} (and hence the value of the @code{Size} attribute, which, as noted above, is equivalent to @code{Value_Size}). To get a feel for the difference, consider the following examples (note that in each case the base is @code{Short_Short_Integer} with a size of 8): @smallexample Object_Size Value_Size type x1 is range 0 .. 5; 8 3 type x2 is range 0 .. 5; for x2'size use 12; 16 12 subtype x3 is x2 range 0 .. 3; 16 2 subtype x4 is x2'base range 0 .. 10; 8 4 subtype x5 is x2 range 0 .. dynamic; 16 3* subtype x6 is x2'base range 0 .. dynamic; 8 3* @end smallexample @noindent Note: the entries marked ``3*'' are not actually specified by the Ada Reference Manual, but it seems in the spirit of the RM rules to allocate the minimum number of bits (here 3, given the range for @code{x2}) known to be large enough to hold the given range of values. So far, so good, but GNAT has to obey the RM rules, so the question is under what conditions must the RM @code{Size} be used. The following is a list of the occasions on which the RM @code{Size} must be used: @itemize @bullet @item Component size for packed arrays or records @item Value of the attribute @code{Size} for a type @item Warning about sizes not matching for unchecked conversion @end itemize @noindent For record types, the @code{Object_Size} is always a multiple of the alignment of the type (this is true for all types). In some cases the @code{Value_Size} can be smaller. Consider: @smallexample type R is record X : Integer; Y : Character; end record; @end smallexample @noindent On a typical 32-bit architecture, the X component will be four bytes, and require four-byte alignment, and the Y component will be one byte. In this case @code{R'Value_Size} will be 40 (bits) since this is the minimum size required to store a value of this type, and for example, it is permissible to have a component of type R in an outer array whose component size is specified to be 48 bits. However, @code{R'Object_Size} will be 64 (bits), since it must be rounded up so that this value is a multiple of the alignment (4 bytes = 32 bits). @noindent For all other types, the @code{Object_Size} and Value_Size are the same (and equivalent to the RM attribute @code{Size}). Only @code{Size} may be specified for such types. Note that @code{Value_Size} can be used to force biased representation for a particular subtype. Consider this example: @smallexample type R is (A, B, C, D, E, F); subtype RAB is R range A .. B; subtype REF is R range E .. F; @end smallexample @noindent By default, @code{RAB} has a size of 1 (sufficient to accommodate the representation of @code{A} and @code{B}, 0 and 1), and @code{REF} has a size of 3 (sufficient to accommodate the representation of @code{E} and @code{F}, 4 and 5). But if we add the following @code{Value_Size} attribute definition clause: @smallexample for REF'Value_Size use 1; @end smallexample @noindent then biased representation is forced for @code{REF}, and 0 will represent @code{E} and 1 will represent @code{F}. A warning is issued when a @code{Value_Size} attribute definition clause forces biased representation. This warning can be turned off using @code{-gnatw.B}. @node Component_Size Clauses @section Component_Size Clauses @cindex Component_Size Clause @noindent Normally, the value specified in a component size clause must be consistent with the subtype of the array component with regard to size and alignment. In other words, the value specified must be at least equal to the size of this subtype, and must be a multiple of the alignment value. In addition, component size clauses are allowed which cause the array to be packed, by specifying a smaller value. A first case is for component size values in the range 1 through 63. The value specified must not be smaller than the Size of the subtype. GNAT will accurately honor all packing requests in this range. For example, if we have: @smallexample @c ada type r is array (1 .. 8) of Natural; for r'Component_Size use 31; @end smallexample @noindent then the resulting array has a length of 31 bytes (248 bits = 8 * 31). Of course access to the components of such an array is considerably less efficient than if the natural component size of 32 is used. A second case is when the subtype of the component is a record type padded because of its default alignment. For example, if we have: @smallexample @c ada type r is record i : Integer; j : Integer; b : Boolean; end record; type a is array (1 .. 8) of r; for a'Component_Size use 72; @end smallexample @noindent then the resulting array has a length of 72 bytes, instead of 96 bytes if the alignment of the record (4) was obeyed. Note that there is no point in giving both a component size clause and a pragma Pack for the same array type. if such duplicate clauses are given, the pragma Pack will be ignored. @node Bit_Order Clauses @section Bit_Order Clauses @cindex Bit_Order Clause @cindex bit ordering @cindex ordering, of bits @noindent For record subtypes, GNAT permits the specification of the @code{Bit_Order} attribute. The specification may either correspond to the default bit order for the target, in which case the specification has no effect and places no additional restrictions, or it may be for the non-standard setting (that is the opposite of the default). In the case where the non-standard value is specified, the effect is to renumber bits within each byte, but the ordering of bytes is not affected. There are certain restrictions placed on component clauses as follows: @itemize @bullet @item Components fitting within a single storage unit. @noindent These are unrestricted, and the effect is merely to renumber bits. For example if we are on a little-endian machine with @code{Low_Order_First} being the default, then the following two declarations have exactly the same effect: @smallexample @c ada type R1 is record A : Boolean; B : Integer range 1 .. 120; end record; for R1 use record A at 0 range 0 .. 0; B at 0 range 1 .. 7; end record; type R2 is record A : Boolean; B : Integer range 1 .. 120; end record; for R2'Bit_Order use High_Order_First; for R2 use record A at 0 range 7 .. 7; B at 0 range 0 .. 6; end record; @end smallexample @noindent The useful application here is to write the second declaration with the @code{Bit_Order} attribute definition clause, and know that it will be treated the same, regardless of whether the target is little-endian or big-endian. @item Components occupying an integral number of bytes. @noindent These are components that exactly fit in two or more bytes. Such component declarations are allowed, but have no effect, since it is important to realize that the @code{Bit_Order} specification does not affect the ordering of bytes. In particular, the following attempt at getting an endian-independent integer does not work: @smallexample @c ada type R2 is record A : Integer; end record; for R2'Bit_Order use High_Order_First; for R2 use record A at 0 range 0 .. 31; end record; @end smallexample @noindent This declaration will result in a little-endian integer on a little-endian machine, and a big-endian integer on a big-endian machine. If byte flipping is required for interoperability between big- and little-endian machines, this must be explicitly programmed. This capability is not provided by @code{Bit_Order}. @item Components that are positioned across byte boundaries @noindent but do not occupy an integral number of bytes. Given that bytes are not reordered, such fields would occupy a non-contiguous sequence of bits in memory, requiring non-trivial code to reassemble. They are for this reason not permitted, and any component clause specifying such a layout will be flagged as illegal by GNAT@. @end itemize @noindent Since the misconception that Bit_Order automatically deals with all endian-related incompatibilities is a common one, the specification of a component field that is an integral number of bytes will always generate a warning. This warning may be suppressed using @code{pragma Warnings (Off)} if desired. The following section contains additional details regarding the issue of byte ordering. @node Effect of Bit_Order on Byte Ordering @section Effect of Bit_Order on Byte Ordering @cindex byte ordering @cindex ordering, of bytes @noindent In this section we will review the effect of the @code{Bit_Order} attribute definition clause on byte ordering. Briefly, it has no effect at all, but a detailed example will be helpful. Before giving this example, let us review the precise definition of the effect of defining @code{Bit_Order}. The effect of a non-standard bit order is described in section 15.5.3 of the Ada Reference Manual: @quotation 2 A bit ordering is a method of interpreting the meaning of the storage place attributes. @end quotation @noindent To understand the precise definition of storage place attributes in this context, we visit section 13.5.1 of the manual: @quotation 13 A record_representation_clause (without the mod_clause) specifies the layout. The storage place attributes (see 13.5.2) are taken from the values of the position, first_bit, and last_bit expressions after normalizing those values so that first_bit is less than Storage_Unit. @end quotation @noindent The critical point here is that storage places are taken from the values after normalization, not before. So the @code{Bit_Order} interpretation applies to normalized values. The interpretation is described in the later part of the 15.5.3 paragraph: @quotation 2 A bit ordering is a method of interpreting the meaning of the storage place attributes. High_Order_First (known in the vernacular as ``big endian'') means that the first bit of a storage element (bit 0) is the most significant bit (interpreting the sequence of bits that represent a component as an unsigned integer value). Low_Order_First (known in the vernacular as ``little endian'') means the opposite: the first bit is the least significant. @end quotation @noindent Note that the numbering is with respect to the bits of a storage unit. In other words, the specification affects only the numbering of bits within a single storage unit. We can make the effect clearer by giving an example. Suppose that we have an external device which presents two bytes, the first byte presented, which is the first (low addressed byte) of the two byte record is called Master, and the second byte is called Slave. The left most (most significant bit is called Control for each byte, and the remaining 7 bits are called V1, V2, @dots{} V7, where V7 is the rightmost (least significant) bit. On a big-endian machine, we can write the following representation clause @smallexample @c ada type Data is record Master_Control : Bit; Master_V1 : Bit; Master_V2 : Bit; Master_V3 : Bit; Master_V4 : Bit; Master_V5 : Bit; Master_V6 : Bit; Master_V7 : Bit; Slave_Control : Bit; Slave_V1 : Bit; Slave_V2 : Bit; Slave_V3 : Bit; Slave_V4 : Bit; Slave_V5 : Bit; Slave_V6 : Bit; Slave_V7 : Bit; end record; for Data use record Master_Control at 0 range 0 .. 0; Master_V1 at 0 range 1 .. 1; Master_V2 at 0 range 2 .. 2; Master_V3 at 0 range 3 .. 3; Master_V4 at 0 range 4 .. 4; Master_V5 at 0 range 5 .. 5; Master_V6 at 0 range 6 .. 6; Master_V7 at 0 range 7 .. 7; Slave_Control at 1 range 0 .. 0; Slave_V1 at 1 range 1 .. 1; Slave_V2 at 1 range 2 .. 2; Slave_V3 at 1 range 3 .. 3; Slave_V4 at 1 range 4 .. 4; Slave_V5 at 1 range 5 .. 5; Slave_V6 at 1 range 6 .. 6; Slave_V7 at 1 range 7 .. 7; end record; @end smallexample @noindent Now if we move this to a little endian machine, then the bit ordering within the byte is backwards, so we have to rewrite the record rep clause as: @smallexample @c ada for Data use record Master_Control at 0 range 7 .. 7; Master_V1 at 0 range 6 .. 6; Master_V2 at 0 range 5 .. 5; Master_V3 at 0 range 4 .. 4; Master_V4 at 0 range 3 .. 3; Master_V5 at 0 range 2 .. 2; Master_V6 at 0 range 1 .. 1; Master_V7 at 0 range 0 .. 0; Slave_Control at 1 range 7 .. 7; Slave_V1 at 1 range 6 .. 6; Slave_V2 at 1 range 5 .. 5; Slave_V3 at 1 range 4 .. 4; Slave_V4 at 1 range 3 .. 3; Slave_V5 at 1 range 2 .. 2; Slave_V6 at 1 range 1 .. 1; Slave_V7 at 1 range 0 .. 0; end record; @end smallexample @noindent It is a nuisance to have to rewrite the clause, especially if the code has to be maintained on both machines. However, this is a case that we can handle with the @code{Bit_Order} attribute if it is implemented. Note that the implementation is not required on byte addressed machines, but it is indeed implemented in GNAT. This means that we can simply use the first record clause, together with the declaration @smallexample @c ada for Data'Bit_Order use High_Order_First; @end smallexample @noindent and the effect is what is desired, namely the layout is exactly the same, independent of whether the code is compiled on a big-endian or little-endian machine. The important point to understand is that byte ordering is not affected. A @code{Bit_Order} attribute definition never affects which byte a field ends up in, only where it ends up in that byte. To make this clear, let us rewrite the record rep clause of the previous example as: @smallexample @c ada for Data'Bit_Order use High_Order_First; for Data use record Master_Control at 0 range 0 .. 0; Master_V1 at 0 range 1 .. 1; Master_V2 at 0 range 2 .. 2; Master_V3 at 0 range 3 .. 3; Master_V4 at 0 range 4 .. 4; Master_V5 at 0 range 5 .. 5; Master_V6 at 0 range 6 .. 6; Master_V7 at 0 range 7 .. 7; Slave_Control at 0 range 8 .. 8; Slave_V1 at 0 range 9 .. 9; Slave_V2 at 0 range 10 .. 10; Slave_V3 at 0 range 11 .. 11; Slave_V4 at 0 range 12 .. 12; Slave_V5 at 0 range 13 .. 13; Slave_V6 at 0 range 14 .. 14; Slave_V7 at 0 range 15 .. 15; end record; @end smallexample @noindent This is exactly equivalent to saying (a repeat of the first example): @smallexample @c ada for Data'Bit_Order use High_Order_First; for Data use record Master_Control at 0 range 0 .. 0; Master_V1 at 0 range 1 .. 1; Master_V2 at 0 range 2 .. 2; Master_V3 at 0 range 3 .. 3; Master_V4 at 0 range 4 .. 4; Master_V5 at 0 range 5 .. 5; Master_V6 at 0 range 6 .. 6; Master_V7 at 0 range 7 .. 7; Slave_Control at 1 range 0 .. 0; Slave_V1 at 1 range 1 .. 1; Slave_V2 at 1 range 2 .. 2; Slave_V3 at 1 range 3 .. 3; Slave_V4 at 1 range 4 .. 4; Slave_V5 at 1 range 5 .. 5; Slave_V6 at 1 range 6 .. 6; Slave_V7 at 1 range 7 .. 7; end record; @end smallexample @noindent Why are they equivalent? Well take a specific field, the @code{Slave_V2} field. The storage place attributes are obtained by normalizing the values given so that the @code{First_Bit} value is less than 8. After normalizing the values (0,10,10) we get (1,2,2) which is exactly what we specified in the other case. Now one might expect that the @code{Bit_Order} attribute might affect bit numbering within the entire record component (two bytes in this case, thus affecting which byte fields end up in), but that is not the way this feature is defined, it only affects numbering of bits, not which byte they end up in. Consequently it never makes sense to specify a starting bit number greater than 7 (for a byte addressable field) if an attribute definition for @code{Bit_Order} has been given, and indeed it may be actively confusing to specify such a value, so the compiler generates a warning for such usage. If you do need to control byte ordering then appropriate conditional values must be used. If in our example, the slave byte came first on some machines we might write: @smallexample @c ada Master_Byte_First constant Boolean := @dots{}; Master_Byte : constant Natural := 1 - Boolean'Pos (Master_Byte_First); Slave_Byte : constant Natural := Boolean'Pos (Master_Byte_First); for Data'Bit_Order use High_Order_First; for Data use record Master_Control at Master_Byte range 0 .. 0; Master_V1 at Master_Byte range 1 .. 1; Master_V2 at Master_Byte range 2 .. 2; Master_V3 at Master_Byte range 3 .. 3; Master_V4 at Master_Byte range 4 .. 4; Master_V5 at Master_Byte range 5 .. 5; Master_V6 at Master_Byte range 6 .. 6; Master_V7 at Master_Byte range 7 .. 7; Slave_Control at Slave_Byte range 0 .. 0; Slave_V1 at Slave_Byte range 1 .. 1; Slave_V2 at Slave_Byte range 2 .. 2; Slave_V3 at Slave_Byte range 3 .. 3; Slave_V4 at Slave_Byte range 4 .. 4; Slave_V5 at Slave_Byte range 5 .. 5; Slave_V6 at Slave_Byte range 6 .. 6; Slave_V7 at Slave_Byte range 7 .. 7; end record; @end smallexample @noindent Now to switch between machines, all that is necessary is to set the boolean constant @code{Master_Byte_First} in an appropriate manner. @node Pragma Pack for Arrays @section Pragma Pack for Arrays @cindex Pragma Pack (for arrays) @noindent Pragma @code{Pack} applied to an array has no effect unless the component type is packable. For a component type to be packable, it must be one of the following cases: @itemize @bullet @item Any scalar type @item Any type whose size is specified with a size clause @item Any packed array type with a static size @item Any record type padded because of its default alignment @end itemize @noindent For all these cases, if the component subtype size is in the range 1 through 63, then the effect of the pragma @code{Pack} is exactly as though a component size were specified giving the component subtype size. For example if we have: @smallexample @c ada type r is range 0 .. 17; type ar is array (1 .. 8) of r; pragma Pack (ar); @end smallexample @noindent Then the component size of @code{ar} will be set to 5 (i.e.@: to @code{r'size}, and the size of the array @code{ar} will be exactly 40 bits. Note that in some cases this rather fierce approach to packing can produce unexpected effects. For example, in Ada 95 and Ada 2005, subtype @code{Natural} typically has a size of 31, meaning that if you pack an array of @code{Natural}, you get 31-bit close packing, which saves a few bits, but results in far less efficient access. Since many other Ada compilers will ignore such a packing request, GNAT will generate a warning on some uses of pragma @code{Pack} that it guesses might not be what is intended. You can easily remove this warning by using an explicit @code{Component_Size} setting instead, which never generates a warning, since the intention of the programmer is clear in this case. GNAT treats packed arrays in one of two ways. If the size of the array is known at compile time and is less than 64 bits, then internally the array is represented as a single modular type, of exactly the appropriate number of bits. If the length is greater than 63 bits, or is not known at compile time, then the packed array is represented as an array of bytes, and the length is always a multiple of 8 bits. Note that to represent a packed array as a modular type, the alignment must be suitable for the modular type involved. For example, on typical machines a 32-bit packed array will be represented by a 32-bit modular integer with an alignment of four bytes. If you explicitly override the default alignment with an alignment clause that is too small, the modular representation cannot be used. For example, consider the following set of declarations: @smallexample @c ada type R is range 1 .. 3; type S is array (1 .. 31) of R; for S'Component_Size use 2; for S'Size use 62; for S'Alignment use 1; @end smallexample @noindent If the alignment clause were not present, then a 62-bit modular representation would be chosen (typically with an alignment of 4 or 8 bytes depending on the target). But the default alignment is overridden with the explicit alignment clause. This means that the modular representation cannot be used, and instead the array of bytes representation must be used, meaning that the length must be a multiple of 8. Thus the above set of declarations will result in a diagnostic rejecting the size clause and noting that the minimum size allowed is 64. @cindex Pragma Pack (for type Natural) @cindex Pragma Pack warning One special case that is worth noting occurs when the base type of the component size is 8/16/32 and the subtype is one bit less. Notably this occurs with subtype @code{Natural}. Consider: @smallexample @c ada type Arr is array (1 .. 32) of Natural; pragma Pack (Arr); @end smallexample @noindent In all commonly used Ada 83 compilers, this pragma Pack would be ignored, since typically @code{Natural'Size} is 32 in Ada 83, and in any case most Ada 83 compilers did not attempt 31 bit packing. In Ada 95 and Ada 2005, @code{Natural'Size} is required to be 31. Furthermore, GNAT really does pack 31-bit subtype to 31 bits. This may result in a substantial unintended performance penalty when porting legacy Ada 83 code. To help prevent this, GNAT generates a warning in such cases. If you really want 31 bit packing in a case like this, you can set the component size explicitly: @smallexample @c ada type Arr is array (1 .. 32) of Natural; for Arr'Component_Size use 31; @end smallexample @noindent Here 31-bit packing is achieved as required, and no warning is generated, since in this case the programmer intention is clear. @node Pragma Pack for Records @section Pragma Pack for Records @cindex Pragma Pack (for records) @noindent Pragma @code{Pack} applied to a record will pack the components to reduce wasted space from alignment gaps and by reducing the amount of space taken by components. We distinguish between @emph{packable} components and @emph{non-packable} components. Components of the following types are considered packable: @itemize @bullet @item All primitive types are packable. @item Small packed arrays, whose size does not exceed 64 bits, and where the size is statically known at compile time, are represented internally as modular integers, and so they are also packable. @end itemize @noindent All packable components occupy the exact number of bits corresponding to their @code{Size} value, and are packed with no padding bits, i.e.@: they can start on an arbitrary bit boundary. All other types are non-packable, they occupy an integral number of storage units, and are placed at a boundary corresponding to their alignment requirements. For example, consider the record @smallexample @c ada type Rb1 is array (1 .. 13) of Boolean; pragma Pack (rb1); type Rb2 is array (1 .. 65) of Boolean; pragma Pack (rb2); type x2 is record l1 : Boolean; l2 : Duration; l3 : Float; l4 : Boolean; l5 : Rb1; l6 : Rb2; end record; pragma Pack (x2); @end smallexample @noindent The representation for the record x2 is as follows: @smallexample @c ada for x2'Size use 224; for x2 use record l1 at 0 range 0 .. 0; l2 at 0 range 1 .. 64; l3 at 12 range 0 .. 31; l4 at 16 range 0 .. 0; l5 at 16 range 1 .. 13; l6 at 18 range 0 .. 71; end record; @end smallexample @noindent Studying this example, we see that the packable fields @code{l1} and @code{l2} are of length equal to their sizes, and placed at specific bit boundaries (and not byte boundaries) to eliminate padding. But @code{l3} is of a non-packable float type, so it is on the next appropriate alignment boundary. The next two fields are fully packable, so @code{l4} and @code{l5} are minimally packed with no gaps. However, type @code{Rb2} is a packed array that is longer than 64 bits, so it is itself non-packable. Thus the @code{l6} field is aligned to the next byte boundary, and takes an integral number of bytes, i.e.@: 72 bits. @node Record Representation Clauses @section Record Representation Clauses @cindex Record Representation Clause @noindent Record representation clauses may be given for all record types, including types obtained by record extension. Component clauses are allowed for any static component. The restrictions on component clauses depend on the type of the component. @cindex Component Clause For all components of an elementary type, the only restriction on component clauses is that the size must be at least the 'Size value of the type (actually the Value_Size). There are no restrictions due to alignment, and such components may freely cross storage boundaries. Packed arrays with a size up to and including 64 bits are represented internally using a modular type with the appropriate number of bits, and thus the same lack of restriction applies. For example, if you declare: @smallexample @c ada type R is array (1 .. 49) of Boolean; pragma Pack (R); for R'Size use 49; @end smallexample @noindent then a component clause for a component of type R may start on any specified bit boundary, and may specify a value of 49 bits or greater. For packed bit arrays that are longer than 64 bits, there are two cases. If the component size is a power of 2 (1,2,4,8,16,32 bits), including the important case of single bits or boolean values, then there are no limitations on placement of such components, and they may start and end at arbitrary bit boundaries. If the component size is not a power of 2 (e.g.@: 3 or 5), then an array of this type longer than 64 bits must always be placed on on a storage unit (byte) boundary and occupy an integral number of storage units (bytes). Any component clause that does not meet this requirement will be rejected. Any aliased component, or component of an aliased type, must have its normal alignment and size. A component clause that does not meet this requirement will be rejected. The tag field of a tagged type always occupies an address sized field at the start of the record. No component clause may attempt to overlay this tag. When a tagged type appears as a component, the tag field must have proper alignment In the case of a record extension T1, of a type T, no component clause applied to the type T1 can specify a storage location that would overlap the first T'Size bytes of the record. For all other component types, including non-bit-packed arrays, the component can be placed at an arbitrary bit boundary, so for example, the following is permitted: @smallexample @c ada type R is array (1 .. 10) of Boolean; for R'Size use 80; type Q is record G, H : Boolean; L, M : R; end record; for Q use record G at 0 range 0 .. 0; H at 0 range 1 .. 1; L at 0 range 2 .. 81; R at 0 range 82 .. 161; end record; @end smallexample @noindent Note: the above rules apply to recent releases of GNAT 5. In GNAT 3, there are more severe restrictions on larger components. For non-primitive types, including packed arrays with a size greater than 64 bits, component clauses must respect the alignment requirement of the type, in particular, always starting on a byte boundary, and the length must be a multiple of the storage unit. @node Handling of Records with Holes @section Handling of Records with Holes @cindex Handling of Records with Holes As a result of alignment considerations, records may contain "holes" or gaps which do not correspond to the data bits of any of the components. Record representation clauses can also result in holes in records. GNAT does not attempt to clear these holes, so in record objects, they should be considered to hold undefined rubbish. The generated equality routine just tests components so does not access these undefined bits, and assignment and copy operations may or may not preserve the contents of these holes (for assignments, the holes in the target will in practice contain either the bits that are present in the holes in the source, or the bits that were present in the target before the assignment). If it is necessary to ensure that holes in records have all zero bits, then record objects for which this initialization is desired should be explicitly set to all zero values using Unchecked_Conversion or address overlays. For example @smallexample @c ada type HRec is record C : Character; I : Integer; end record; @end smallexample @noindent On typical machines, integers need to be aligned on a four-byte boundary, resulting in three bytes of undefined rubbish following the 8-bit field for C. To ensure that the hole in a variable of type HRec is set to all zero bits, you could for example do: @smallexample @c ada type Base is record Dummy1, Dummy2 : Integer := 0; end record; BaseVar : Base; RealVar : Hrec; for RealVar'Address use BaseVar'Address; @end smallexample @noindent Now the 8-bytes of the value of RealVar start out containing all zero bits. A safer approach is to just define dummy fields, avoiding the holes, as in: @smallexample @c ada type HRec is record C : Character; Dummy1 : Short_Short_Integer := 0; Dummy2 : Short_Short_Integer := 0; Dummy3 : Short_Short_Integer := 0; I : Integer; end record; @end smallexample @noindent And to make absolutely sure that the intent of this is followed, you can use representation clauses: @smallexample @c ada for Hrec use record C at 0 range 0 .. 7; Dummy1 at 1 range 0 .. 7; Dummy2 at 2 range 0 .. 7; Dummy3 at 3 range 0 .. 7; I at 4 range 0 .. 31; end record; for Hrec'Size use 64; @end smallexample @node Enumeration Clauses @section Enumeration Clauses The only restriction on enumeration clauses is that the range of values must be representable. For the signed case, if one or more of the representation values are negative, all values must be in the range: @smallexample @c ada System.Min_Int .. System.Max_Int @end smallexample @noindent For the unsigned case, where all values are nonnegative, the values must be in the range: @smallexample @c ada 0 .. System.Max_Binary_Modulus; @end smallexample @noindent A @emph{confirming} representation clause is one in which the values range from 0 in sequence, i.e.@: a clause that confirms the default representation for an enumeration type. Such a confirming representation is permitted by these rules, and is specially recognized by the compiler so that no extra overhead results from the use of such a clause. If an array has an index type which is an enumeration type to which an enumeration clause has been applied, then the array is stored in a compact manner. Consider the declarations: @smallexample @c ada type r is (A, B, C); for r use (A => 1, B => 5, C => 10); type t is array (r) of Character; @end smallexample @noindent The array type t corresponds to a vector with exactly three elements and has a default size equal to @code{3*Character'Size}. This ensures efficient use of space, but means that accesses to elements of the array will incur the overhead of converting representation values to the corresponding positional values, (i.e.@: the value delivered by the @code{Pos} attribute). @node Address Clauses @section Address Clauses @cindex Address Clause The reference manual allows a general restriction on representation clauses, as found in RM 13.1(22): @quotation An implementation need not support representation items containing nonstatic expressions, except that an implementation should support a representation item for a given entity if each nonstatic expression in the representation item is a name that statically denotes a constant declared before the entity. @end quotation @noindent In practice this is applicable only to address clauses, since this is the only case in which a non-static expression is permitted by the syntax. As the AARM notes in sections 13.1 (22.a-22.h): @display 22.a Reason: This is to avoid the following sort of thing: 22.b X : Integer := F(@dots{}); Y : Address := G(@dots{}); for X'Address use Y; 22.c In the above, we have to evaluate the initialization expression for X before we know where to put the result. This seems like an unreasonable implementation burden. 22.d The above code should instead be written like this: 22.e Y : constant Address := G(@dots{}); X : Integer := F(@dots{}); for X'Address use Y; 22.f This allows the expression ``Y'' to be safely evaluated before X is created. 22.g The constant could be a formal parameter of mode in. 22.h An implementation can support other nonstatic expressions if it wants to. Expressions of type Address are hardly ever static, but their value might be known at compile time anyway in many cases. @end display @noindent GNAT does indeed permit many additional cases of non-static expressions. In particular, if the type involved is elementary there are no restrictions (since in this case, holding a temporary copy of the initialization value, if one is present, is inexpensive). In addition, if there is no implicit or explicit initialization, then there are no restrictions. GNAT will reject only the case where all three of these conditions hold: @itemize @bullet @item The type of the item is non-elementary (e.g.@: a record or array). @item There is explicit or implicit initialization required for the object. Note that access values are always implicitly initialized. @item The address value is non-static. Here GNAT is more permissive than the RM, and allows the address value to be the address of a previously declared stand-alone variable, as long as it does not itself have an address clause. @smallexample @c ada Anchor : Some_Initialized_Type; Overlay : Some_Initialized_Type; for Overlay'Address use Anchor'Address; @end smallexample @noindent However, the prefix of the address clause cannot be an array component, or a component of a discriminated record. @end itemize @noindent As noted above in section 22.h, address values are typically non-static. In particular the To_Address function, even if applied to a literal value, is a non-static function call. To avoid this minor annoyance, GNAT provides the implementation defined attribute 'To_Address. The following two expressions have identical values: @findex Attribute @findex To_Address @smallexample @c ada To_Address (16#1234_0000#) System'To_Address (16#1234_0000#); @end smallexample @noindent except that the second form is considered to be a static expression, and thus when used as an address clause value is always permitted. @noindent Additionally, GNAT treats as static an address clause that is an unchecked_conversion of a static integer value. This simplifies the porting of legacy code, and provides a portable equivalent to the GNAT attribute @code{To_Address}. Another issue with address clauses is the interaction with alignment requirements. When an address clause is given for an object, the address value must be consistent with the alignment of the object (which is usually the same as the alignment of the type of the object). If an address clause is given that specifies an inappropriately aligned address value, then the program execution is erroneous. Since this source of erroneous behavior can have unfortunate effects, GNAT checks (at compile time if possible, generating a warning, or at execution time with a run-time check) that the alignment is appropriate. If the run-time check fails, then @code{Program_Error} is raised. This run-time check is suppressed if range checks are suppressed, or if the special GNAT check Alignment_Check is suppressed, or if @code{pragma Restrictions (No_Elaboration_Code)} is in effect. Finally, GNAT does not permit overlaying of objects of controlled types or composite types containing a controlled component. In most cases, the compiler can detect an attempt at such overlays and will generate a warning at compile time and a Program_Error exception at run time. @findex Export An address clause cannot be given for an exported object. More understandably the real restriction is that objects with an address clause cannot be exported. This is because such variables are not defined by the Ada program, so there is no external object to export. @findex Import It is permissible to give an address clause and a pragma Import for the same object. In this case, the variable is not really defined by the Ada program, so there is no external symbol to be linked. The link name and the external name are ignored in this case. The reason that we allow this combination is that it provides a useful idiom to avoid unwanted initializations on objects with address clauses. When an address clause is given for an object that has implicit or explicit initialization, then by default initialization takes place. This means that the effect of the object declaration is to overwrite the memory at the specified address. This is almost always not what the programmer wants, so GNAT will output a warning: @smallexample with System; package G is type R is record M : Integer := 0; end record; Ext : R; for Ext'Address use System'To_Address (16#1234_1234#); | >>> warning: implicit initialization of "Ext" may modify overlaid storage >>> warning: use pragma Import for "Ext" to suppress initialization (RM B(24)) end G; @end smallexample @noindent As indicated by the warning message, the solution is to use a (dummy) pragma Import to suppress this initialization. The pragma tell the compiler that the object is declared and initialized elsewhere. The following package compiles without warnings (and the initialization is suppressed): @smallexample @c ada with System; package G is type R is record M : Integer := 0; end record; Ext : R; for Ext'Address use System'To_Address (16#1234_1234#); pragma Import (Ada, Ext); end G; @end smallexample @noindent A final issue with address clauses involves their use for overlaying variables, as in the following example: @cindex Overlaying of objects @smallexample @c ada A : Integer; B : Integer; for B'Address use A'Address; @end smallexample @noindent or alternatively, using the form recommended by the RM: @smallexample @c ada A : Integer; Addr : constant Address := A'Address; B : Integer; for B'Address use Addr; @end smallexample @noindent In both of these cases, @code{A} and @code{B} become aliased to one another via the address clause. This use of address clauses to overlay variables, achieving an effect similar to unchecked conversion was erroneous in Ada 83, but in Ada 95 and Ada 2005 the effect is implementation defined. Furthermore, the Ada RM specifically recommends that in a situation like this, @code{B} should be subject to the following implementation advice (RM 13.3(19)): @quotation 19 If the Address of an object is specified, or it is imported or exported, then the implementation should not perform optimizations based on assumptions of no aliases. @end quotation @noindent GNAT follows this recommendation, and goes further by also applying this recommendation to the overlaid variable (@code{A} in the above example) in this case. This means that the overlay works "as expected", in that a modification to one of the variables will affect the value of the other. Note that when address clause overlays are used in this way, there is an issue of unintentional initialization, as shown by this example: @smallexample @c ada package Overwrite_Record is type R is record A : Character := 'C'; B : Character := 'A'; end record; X : Short_Integer := 3; Y : R; for Y'Address use X'Address; | >>> warning: default initialization of "Y" may modify "X", use pragma Import for "Y" to suppress initialization (RM B.1(24)) end Overwrite_Record; @end smallexample @noindent Here the default initialization of @code{Y} will clobber the value of @code{X}, which justifies the warning. The warning notes that this effect can be eliminated by adding a @code{pragma Import} which suppresses the initialization: @smallexample @c ada package Overwrite_Record is type R is record A : Character := 'C'; B : Character := 'A'; end record; X : Short_Integer := 3; Y : R; for Y'Address use X'Address; pragma Import (Ada, Y); end Overwrite_Record; @end smallexample @noindent Note that the use of @code{pragma Initialize_Scalars} may cause variables to be initialized when they would not otherwise have been in the absence of the use of this pragma. This may cause an overlay to have this unintended clobbering effect. The compiler avoids this for scalar types, but not for composite objects (where in general the effect of @code{Initialize_Scalars} is part of the initialization routine for the composite object: @smallexample @c ada pragma Initialize_Scalars; with Ada.Text_IO; use Ada.Text_IO; procedure Overwrite_Array is type Arr is array (1 .. 5) of Integer; X : Arr := (others => 1); A : Arr; for A'Address use X'Address; | >>> warning: default initialization of "A" may modify "X", use pragma Import for "A" to suppress initialization (RM B.1(24)) begin if X /= Arr'(others => 1) then Put_Line ("X was clobbered"); else Put_Line ("X was not clobbered"); end if; end Overwrite_Array; @end smallexample @noindent The above program generates the warning as shown, and at execution time, prints @code{X was clobbered}. If the @code{pragma Import} is added as suggested: @smallexample @c ada pragma Initialize_Scalars; with Ada.Text_IO; use Ada.Text_IO; procedure Overwrite_Array is type Arr is array (1 .. 5) of Integer; X : Arr := (others => 1); A : Arr; for A'Address use X'Address; pragma Import (Ada, A); begin if X /= Arr'(others => 1) then Put_Line ("X was clobbered"); else Put_Line ("X was not clobbered"); end if; end Overwrite_Array; @end smallexample @noindent then the program compiles without the waraning and when run will generate the output @code{X was not clobbered}. @node Effect of Convention on Representation @section Effect of Convention on Representation @cindex Convention, effect on representation @noindent Normally the specification of a foreign language convention for a type or an object has no effect on the chosen representation. In particular, the representation chosen for data in GNAT generally meets the standard system conventions, and for example records are laid out in a manner that is consistent with C@. This means that specifying convention C (for example) has no effect. There are four exceptions to this general rule: @itemize @bullet @item Convention Fortran and array subtypes If pragma Convention Fortran is specified for an array subtype, then in accordance with the implementation advice in section 3.6.2(11) of the Ada Reference Manual, the array will be stored in a Fortran-compatible column-major manner, instead of the normal default row-major order. @item Convention C and enumeration types GNAT normally stores enumeration types in 8, 16, or 32 bits as required to accommodate all values of the type. For example, for the enumeration type declared by: @smallexample @c ada type Color is (Red, Green, Blue); @end smallexample @noindent 8 bits is sufficient to store all values of the type, so by default, objects of type @code{Color} will be represented using 8 bits. However, normal C convention is to use 32 bits for all enum values in C, since enum values are essentially of type int. If pragma @code{Convention C} is specified for an Ada enumeration type, then the size is modified as necessary (usually to 32 bits) to be consistent with the C convention for enum values. Note that this treatment applies only to types. If Convention C is given for an enumeration object, where the enumeration type is not Convention C, then Object_Size bits are allocated. For example, for a normal enumeration type, with less than 256 elements, only 8 bits will be allocated for the object. Since this may be a surprise in terms of what C expects, GNAT will issue a warning in this situation. The warning can be suppressed by giving an explicit size clause specifying the desired size. @item Convention C/Fortran and Boolean types In C, the usual convention for boolean values, that is values used for conditions, is that zero represents false, and nonzero values represent true. In Ada, the normal convention is that two specific values, typically 0/1, are used to represent false/true respectively. Fortran has a similar convention for @code{LOGICAL} values (any nonzero value represents true). To accommodate the Fortran and C conventions, if a pragma Convention specifies C or Fortran convention for a derived Boolean, as in the following example: @smallexample @c ada type C_Switch is new Boolean; pragma Convention (C, C_Switch); @end smallexample @noindent then the GNAT generated code will treat any nonzero value as true. For truth values generated by GNAT, the conventional value 1 will be used for True, but when one of these values is read, any nonzero value is treated as True. @item Access types on OpenVMS For 64-bit OpenVMS systems, access types (other than those for unconstrained arrays) are 64-bits long. An exception to this rule is for the case of C-convention access types where there is no explicit size clause present (or inherited for derived types). In this case, GNAT chooses to make these pointers 32-bits, which provides an easier path for migration of 32-bit legacy code. size clause specifying 64-bits must be used to obtain a 64-bit pointer. @end itemize @node Conventions and Anonymous Access Types @section Conventions and Anonymous Access Types @cindex Anonymous access types @cindex Convention for anonymous access types The RM is not entirely clear on convention handling in a number of cases, and in particular, it is not clear on the convention to be given to anonymous access types in general, and in particular what is to be done for the case of anonymous access-to-subprogram. In GNAT, we decide that if an explicit Convention is applied to an object or component, and its type is such an anonymous type, then the convention will apply to this anonymous type as well. This seems to make sense since it is anomolous in any case to have a different convention for an object and its type, and there is clearly no way to explicitly specify a convention for an anonymous type, since it doesn't have a name to specify! Furthermore, we decide that if a convention is applied to a record type, then this convention is inherited by any of its components that are of an anonymous access type which do not have an explicitly specified convention. The following program shows these conventions in action: @smallexample @c ada package ConvComp is type Foo is range 1 .. 10; type T1 is record A : access function (X : Foo) return Integer; B : Integer; end record; pragma Convention (C, T1); type T2 is record A : access function (X : Foo) return Integer; pragma Convention (C, A); B : Integer; end record; pragma Convention (COBOL, T2); type T3 is record A : access function (X : Foo) return Integer; pragma Convention (COBOL, A); B : Integer; end record; pragma Convention (C, T3); type T4 is record A : access function (X : Foo) return Integer; B : Integer; end record; pragma Convention (COBOL, T4); function F (X : Foo) return Integer; pragma Convention (C, F); function F (X : Foo) return Integer is (13); TV1 : T1 := (F'Access, 12); -- OK TV2 : T2 := (F'Access, 13); -- OK TV3 : T3 := (F'Access, 13); -- ERROR | >>> subprogram "F" has wrong convention >>> does not match access to subprogram declared at line 17 38. TV4 : T4 := (F'Access, 13); -- ERROR | >>> subprogram "F" has wrong convention >>> does not match access to subprogram declared at line 24 39. end ConvComp; @end smallexample @node Determining the Representations chosen by GNAT @section Determining the Representations chosen by GNAT @cindex Representation, determination of @cindex @option{-gnatR} switch @noindent Although the descriptions in this section are intended to be complete, it is often easier to simply experiment to see what GNAT accepts and what the effect is on the layout of types and objects. As required by the Ada RM, if a representation clause is not accepted, then it must be rejected as illegal by the compiler. However, when a representation clause or pragma is accepted, there can still be questions of what the compiler actually does. For example, if a partial record representation clause specifies the location of some components and not others, then where are the non-specified components placed? Or if pragma @code{Pack} is used on a record, then exactly where are the resulting fields placed? The section on pragma @code{Pack} in this chapter can be used to answer the second question, but it is often easier to just see what the compiler does. For this purpose, GNAT provides the option @option{-gnatR}. If you compile with this option, then the compiler will output information on the actual representations chosen, in a format similar to source representation clauses. For example, if we compile the package: @smallexample @c ada package q is type r (x : boolean) is tagged record case x is when True => S : String (1 .. 100); when False => null; end case; end record; type r2 is new r (false) with record y2 : integer; end record; for r2 use record y2 at 16 range 0 .. 31; end record; type x is record y : character; end record; type x1 is array (1 .. 10) of x; for x1'component_size use 11; type ia is access integer; type Rb1 is array (1 .. 13) of Boolean; pragma Pack (rb1); type Rb2 is array (1 .. 65) of Boolean; pragma Pack (rb2); type x2 is record l1 : Boolean; l2 : Duration; l3 : Float; l4 : Boolean; l5 : Rb1; l6 : Rb2; end record; pragma Pack (x2); end q; @end smallexample @noindent using the switch @option{-gnatR} we obtain the following output: @smallexample Representation information for unit q ------------------------------------- for r'Size use ??; for r'Alignment use 4; for r use record x at 4 range 0 .. 7; _tag at 0 range 0 .. 31; s at 5 range 0 .. 799; end record; for r2'Size use 160; for r2'Alignment use 4; for r2 use record x at 4 range 0 .. 7; _tag at 0 range 0 .. 31; _parent at 0 range 0 .. 63; y2 at 16 range 0 .. 31; end record; for x'Size use 8; for x'Alignment use 1; for x use record y at 0 range 0 .. 7; end record; for x1'Size use 112; for x1'Alignment use 1; for x1'Component_Size use 11; for rb1'Size use 13; for rb1'Alignment use 2; for rb1'Component_Size use 1; for rb2'Size use 72; for rb2'Alignment use 1; for rb2'Component_Size use 1; for x2'Size use 224; for x2'Alignment use 4; for x2 use record l1 at 0 range 0 .. 0; l2 at 0 range 1 .. 64; l3 at 12 range 0 .. 31; l4 at 16 range 0 .. 0; l5 at 16 range 1 .. 13; l6 at 18 range 0 .. 71; end record; @end smallexample @noindent The Size values are actually the Object_Size, i.e.@: the default size that will be allocated for objects of the type. The ?? size for type r indicates that we have a variant record, and the actual size of objects will depend on the discriminant value. The Alignment values show the actual alignment chosen by the compiler for each record or array type. The record representation clause for type r shows where all fields are placed, including the compiler generated tag field (whose location cannot be controlled by the programmer). The record representation clause for the type extension r2 shows all the fields present, including the parent field, which is a copy of the fields of the parent type of r2, i.e.@: r1. The component size and size clauses for types rb1 and rb2 show the exact effect of pragma @code{Pack} on these arrays, and the record representation clause for type x2 shows how pragma @code{Pack} affects this record type. In some cases, it may be useful to cut and paste the representation clauses generated by the compiler into the original source to fix and guarantee the actual representation to be used. @node Standard Library Routines @chapter Standard Library Routines @noindent The Ada Reference Manual contains in Annex A a full description of an extensive set of standard library routines that can be used in any Ada program, and which must be provided by all Ada compilers. They are analogous to the standard C library used by C programs. GNAT implements all of the facilities described in annex A, and for most purposes the description in the Ada Reference Manual, or appropriate Ada text book, will be sufficient for making use of these facilities. In the case of the input-output facilities, @xref{The Implementation of Standard I/O}, gives details on exactly how GNAT interfaces to the file system. For the remaining packages, the Ada Reference Manual should be sufficient. The following is a list of the packages included, together with a brief description of the functionality that is provided. For completeness, references are included to other predefined library routines defined in other sections of the Ada Reference Manual (these are cross-indexed from Annex A). For further details see the relevant package declarations in the run-time library. In particular, a few units are not implemented, as marked by the presence of pragma Unimplemented_Unit, and in this case the package declaration contains comments explaining why the unit is not implemented. @table @code @item Ada (A.2) This is a parent package for all the standard library packages. It is usually included implicitly in your program, and itself contains no useful data or routines. @item Ada.Assertions (11.4.2) @code{Assertions} provides the @code{Assert} subprograms, and also the declaration of the @code{Assertion_Error} exception. @item Ada.Asynchronous_Task_Control (D.11) @code{Asynchronous_Task_Control} provides low level facilities for task synchronization. It is typically not implemented. See package spec for details. @item Ada.Calendar (9.6) @code{Calendar} provides time of day access, and routines for manipulating times and durations. @item Ada.Calendar.Arithmetic (9.6.1) This package provides additional arithmetic operations for @code{Calendar}. @item Ada.Calendar.Formatting (9.6.1) This package provides formatting operations for @code{Calendar}. @item Ada.Calendar.Time_Zones (9.6.1) This package provides additional @code{Calendar} facilities for handling time zones. @item Ada.Characters (A.3.1) This is a dummy parent package that contains no useful entities @item Ada.Characters.Conversions (A.3.2) This package provides character conversion functions. @item Ada.Characters.Handling (A.3.2) This package provides some basic character handling capabilities, including classification functions for classes of characters (e.g.@: test for letters, or digits). @item Ada.Characters.Latin_1 (A.3.3) This package includes a complete set of definitions of the characters that appear in type CHARACTER@. It is useful for writing programs that will run in international environments. For example, if you want an upper case E with an acute accent in a string, it is often better to use the definition of @code{UC_E_Acute} in this package. Then your program will print in an understandable manner even if your environment does not support these extended characters. @item Ada.Command_Line (A.15) This package provides access to the command line parameters and the name of the current program (analogous to the use of @code{argc} and @code{argv} in C), and also allows the exit status for the program to be set in a system-independent manner. @item Ada.Complex_Text_IO (G.1.3) This package provides text input and output of complex numbers. @item Ada.Containers (A.18.1) A top level package providing a few basic definitions used by all the following specific child packages that provide specific kinds of containers. @item Ada.Containers.Bounded_Priority_Queues (A.18.31) @item Ada.Containers.Bounded_Synchronized_Queues (A.18.29) @item Ada.Containers.Doubly_Linked_Lists (A.18.3) @item Ada.Containers.Generic_Array_Sort (A.18.26) @item Ada.Containers.Generic_Constrained_Array_Sort (A.18.26) @item Ada.Containers.Generic_Sort (A.18.26) @item Ada.Containers.Hashed_Maps (A.18.5) @item Ada.Containers.Hashed_Sets (A.18.8) @item Ada.Containers.Indefinite_Doubly_Linked_Lists (A.18.12) @item Ada.Containers.Indefinite_Hashed_Maps (A.18.13) @item Ada.Containers.Indefinite_Hashed_Sets (A.18.15) @item Ada.Containers.Indefinite_Holders (A.18.18) @item Ada.Containers.Indefinite_Multiway_Trees (A.18.17) @item Ada.Containers.Indefinite_Ordered_Maps (A.18.14) @item Ada.Containers.Indefinite_Ordered_Sets (A.18.16) @item Ada.Containers.Indefinite_Vectors (A.18.11) @item Ada.Containers.Multiway_Trees (A.18.10) @item Ada.Containers.Ordered_Maps (A.18.6) @item Ada.Containers.Ordered_Sets (A.18.9) @item Ada.Containers.Synchronized_Queue_Interfaces (A.18.27) @item Ada.Containers.Unbounded_Priority_Queues (A.18.30) @item Ada.Containers.Unbounded_Synchronized_Queues (A.18.28) @item Ada.Containers.Vectors (A.18.2) @item Ada.Directories (A.16) This package provides operations on directories. @item Ada.Directories.Hierarchical_File_Names (A.16.1) This package provides additional directory operations handling hiearchical file names. @item Ada.Directories.Information (A.16) This is an implementation defined package for additional directory operations, which is not implemented in GNAT. @item Ada.Decimal (F.2) This package provides constants describing the range of decimal numbers implemented, and also a decimal divide routine (analogous to the COBOL verb DIVIDE @dots{} GIVING @dots{} REMAINDER @dots{}) @item Ada.Direct_IO (A.8.4) This package provides input-output using a model of a set of records of fixed-length, containing an arbitrary definite Ada type, indexed by an integer record number. @item Ada.Dispatching (D.2.1) A parent package containing definitions for task dispatching operations. @item Ada.Dispatching.EDF (D.2.6) Not implemented in GNAT. @item Ada.Dispatching.Non_Preemptive (D.2.4) Not implemented in GNAT. @item Ada.Dispatching.Round_Robin (D.2.5) Not implemented in GNAT. @item Ada.Dynamic_Priorities (D.5) This package allows the priorities of a task to be adjusted dynamically as the task is running. @item Ada.Environment_Variables (A.17) This package provides facilities for accessing environment variables. @item Ada.Exceptions (11.4.1) This package provides additional information on exceptions, and also contains facilities for treating exceptions as data objects, and raising exceptions with associated messages. @item Ada.Execution_Time (D.14) Not implemented in GNAT. @item Ada.Execution_Time.Group_Budgets (D.14.2) Not implemented in GNAT. @item Ada.Execution_Time.Timers (D.14.1)' Not implemented in GNAT. @item Ada.Finalization (7.6) This package contains the declarations and subprograms to support the use of controlled types, providing for automatic initialization and finalization (analogous to the constructors and destructors of C++). @item Ada.Float_Text_IO (A.10.9) A library level instantiation of Text_IO.Float_IO for type Float. @item Ada.Float_Wide_Text_IO (A.10.9) A library level instantiation of Wide_Text_IO.Float_IO for type Float. @item Ada.Float_Wide_Wide_Text_IO (A.10.9) A library level instantiation of Wide_Wide_Text_IO.Float_IO for type Float. @item Ada.Integer_Text_IO (A.10.9) A library level instantiation of Text_IO.Integer_IO for type Integer. @item Ada.Integer_Wide_Text_IO (A.10.9) A library level instantiation of Wide_Text_IO.Integer_IO for type Integer. @item Ada.Integer_Wide_Wide_Text_IO (A.10.9) A library level instantiation of Wide_Wide_Text_IO.Integer_IO for type Integer. @item Ada.Interrupts (C.3.2) This package provides facilities for interfacing to interrupts, which includes the set of signals or conditions that can be raised and recognized as interrupts. @item Ada.Interrupts.Names (C.3.2) This package provides the set of interrupt names (actually signal or condition names) that can be handled by GNAT@. @item Ada.IO_Exceptions (A.13) This package defines the set of exceptions that can be raised by use of the standard IO packages. @item Ada.Iterator_Interfaces (5.5.1) This package provides a generic interface to generalized iterators. @item Ada.Locales (A.19) This package provides declarations providing information (Language and Country) about the current locale. @item Ada.Numerics This package contains some standard constants and exceptions used throughout the numerics packages. Note that the constants pi and e are defined here, and it is better to use these definitions than rolling your own. @item Ada.Numerics.Complex_Arrays (G.3.2) Provides operations on arrays of complex numbers. @item Ada.Numerics.Complex_Elementary_Functions Provides the implementation of standard elementary functions (such as log and trigonometric functions) operating on complex numbers using the standard @code{Float} and the @code{Complex} and @code{Imaginary} types created by the package @code{Numerics.Complex_Types}. @item Ada.Numerics.Complex_Types This is a predefined instantiation of @code{Numerics.Generic_Complex_Types} using @code{Standard.Float} to build the type @code{Complex} and @code{Imaginary}. @item Ada.Numerics.Discrete_Random This generic package provides a random number generator suitable for generating uniformly distributed values of a specified discrete subtype. @item Ada.Numerics.Float_Random This package provides a random number generator suitable for generating uniformly distributed floating point values in the unit interval. @item Ada.Numerics.Generic_Complex_Elementary_Functions This is a generic version of the package that provides the implementation of standard elementary functions (such as log and trigonometric functions) for an arbitrary complex type. The following predefined instantiations of this package are provided: @table @code @item Short_Float @code{Ada.Numerics.Short_Complex_Elementary_Functions} @item Float @code{Ada.Numerics.Complex_Elementary_Functions} @item Long_Float @code{Ada.Numerics.Long_Complex_Elementary_Functions} @end table @item Ada.Numerics.Generic_Complex_Types This is a generic package that allows the creation of complex types, with associated complex arithmetic operations. The following predefined instantiations of this package exist @table @code @item Short_Float @code{Ada.Numerics.Short_Complex_Complex_Types} @item Float @code{Ada.Numerics.Complex_Complex_Types} @item Long_Float @code{Ada.Numerics.Long_Complex_Complex_Types} @end table @item Ada.Numerics.Generic_Elementary_Functions This is a generic package that provides the implementation of standard elementary functions (such as log an trigonometric functions) for an arbitrary float type. The following predefined instantiations of this package exist @table @code @item Short_Float @code{Ada.Numerics.Short_Elementary_Functions} @item Float @code{Ada.Numerics.Elementary_Functions} @item Long_Float @code{Ada.Numerics.Long_Elementary_Functions} @end table @item Ada.Numerics.Generic_Real_Arrays (G.3.1) Generic operations on arrays of reals @item Ada.Numerics.Real_Arrays (G.3.1) Preinstantiation of Ada.Numerics.Generic_Real_Arrays (Float). @item Ada.Real_Time (D.8) This package provides facilities similar to those of @code{Calendar}, but operating with a finer clock suitable for real time control. Note that annex D requires that there be no backward clock jumps, and GNAT generally guarantees this behavior, but of course if the external clock on which the GNAT runtime depends is deliberately reset by some external event, then such a backward jump may occur. @item Ada.Real_Time.Timing_Events (D.15) Not implemented in GNAT. @item Ada.Sequential_IO (A.8.1) This package provides input-output facilities for sequential files, which can contain a sequence of values of a single type, which can be any Ada type, including indefinite (unconstrained) types. @item Ada.Storage_IO (A.9) This package provides a facility for mapping arbitrary Ada types to and from a storage buffer. It is primarily intended for the creation of new IO packages. @item Ada.Streams (13.13.1) This is a generic package that provides the basic support for the concept of streams as used by the stream attributes (@code{Input}, @code{Output}, @code{Read} and @code{Write}). @item Ada.Streams.Stream_IO (A.12.1) This package is a specialization of the type @code{Streams} defined in package @code{Streams} together with a set of operations providing Stream_IO capability. The Stream_IO model permits both random and sequential access to a file which can contain an arbitrary set of values of one or more Ada types. @item Ada.Strings (A.4.1) This package provides some basic constants used by the string handling packages. @item Ada.Strings.Bounded (A.4.4) This package provides facilities for handling variable length strings. The bounded model requires a maximum length. It is thus somewhat more limited than the unbounded model, but avoids the use of dynamic allocation or finalization. @item Ada.Strings.Bounded.Equal_Case_Insensitive (A.4.10) Provides case-insensitive comparisons of bounded strings @item Ada.Strings.Bounded.Hash (A.4.9) This package provides a generic hash function for bounded strings @item Ada.Strings.Bounded.Hash_Case_Insensitive (A.4.9) This package provides a generic hash function for bounded strings that converts the string to be hashed to lower case. @item Ada.Strings.Bounded.Less_Case_Insensitive (A.4.10) This package provides a comparison function for bounded strings that works in a case insensitive manner by converting to lower case before the comparison. @item Ada.Strings.Fixed (A.4.3) This package provides facilities for handling fixed length strings. @item Ada.Strings.Fixed.Equal_Case_Insensitive (A.4.10) This package provides an equality function for fixed strings that compares the strings after converting both to lower case. @item Ada.Strings.Fixed.Hash_Case_Insensitive (A.4.9) This package provides a case insensitive hash function for fixed strings that converts the string to lower case before computing the hash. @item Ada.Strings.Fixed.Less_Case_Insensitive (A.4.10) This package provides a comparison function for fixed strings that works in a case insensitive manner by converting to lower case before the comparison. Ada.Strings.Hash (A.4.9) This package provides a hash function for strings. Ada.Strings.Hash_Case_Insensitive (A.4.9) This package provides a hash function for strings that is case insensitive. The string is converted to lower case before computing the hash. @item Ada.Strings.Less_Case_Insensitive (A.4.10) This package provides a comparison function for\strings that works in a case insensitive manner by converting to lower case before the comparison. @item Ada.Strings.Maps (A.4.2) This package provides facilities for handling character mappings and arbitrarily defined subsets of characters. For instance it is useful in defining specialized translation tables. @item Ada.Strings.Maps.Constants (A.4.6) This package provides a standard set of predefined mappings and predefined character sets. For example, the standard upper to lower case conversion table is found in this package. Note that upper to lower case conversion is non-trivial if you want to take the entire set of characters, including extended characters like E with an acute accent, into account. You should use the mappings in this package (rather than adding 32 yourself) to do case mappings. @item Ada.Strings.Unbounded (A.4.5) This package provides facilities for handling variable length strings. The unbounded model allows arbitrary length strings, but requires the use of dynamic allocation and finalization. @item Ada.Strings.Unbounded.Equal_Case_Insensitive (A.4.10) Provides case-insensitive comparisons of unbounded strings @item Ada.Strings.Unbounded.Hash (A.4.9) This package provides a generic hash function for unbounded strings @item Ada.Strings.Unbounded.Hash_Case_Insensitive (A.4.9) This package provides a generic hash function for unbounded strings that converts the string to be hashed to lower case. @item Ada.Strings.Unbounded.Less_Case_Insensitive (A.4.10) This package provides a comparison function for unbounded strings that works in a case insensitive manner by converting to lower case before the comparison. @item Ada.Strings.UTF_Encoding (A.4.11) This package provides basic definitions for dealing with UTF-encoded strings. @item Ada.Strings.UTF_Encoding.Conversions (A.4.11) This package provides conversion functions for UTF-encoded strings. @item Ada.Strings.UTF_Encoding.Strings (A.4.11) @itemx Ada.Strings.UTF_Encoding.Wide_Strings (A.4.11) @itemx Ada.Strings.UTF_Encoding.Wide_Wide_Strings (A.4.11) These packages provide facilities for handling UTF encodings for Strings, Wide_Strings and Wide_Wide_Strings. @item Ada.Strings.Wide_Bounded (A.4.7) @itemx Ada.Strings.Wide_Fixed (A.4.7) @itemx Ada.Strings.Wide_Maps (A.4.7) @itemx Ada.Strings.Wide_Unbounded (A.4.7) These packages provide analogous capabilities to the corresponding packages without @samp{Wide_} in the name, but operate with the types @code{Wide_String} and @code{Wide_Character} instead of @code{String} and @code{Character}. Versions of all the child packages are available. @item Ada.Strings.Wide_Wide_Bounded (A.4.7) @itemx Ada.Strings.Wide_Wide_Fixed (A.4.7) @itemx Ada.Strings.Wide_Wide_Maps (A.4.7) @itemx Ada.Strings.Wide_Wide_Unbounded (A.4.7) These packages provide analogous capabilities to the corresponding packages without @samp{Wide_} in the name, but operate with the types @code{Wide_Wide_String} and @code{Wide_Wide_Character} instead of @code{String} and @code{Character}. @item Ada.Synchronous_Barriers (D.10.1) This package provides facilities for synchronizing tasks at a low level with barriers. @item Ada.Synchronous_Task_Control (D.10) This package provides some standard facilities for controlling task communication in a synchronous manner. @item Ada.Synchronous_Task_Control.EDF (D.10) Not implemented in GNAT. @item Ada.Tags This package contains definitions for manipulation of the tags of tagged values. @item Ada.Tags.Generic_Dispatching_Constructor (3.9) This package provides a way of constructing tagged class-wide values given only the tag value. @item Ada.Task_Attributes (C.7.2) This package provides the capability of associating arbitrary task-specific data with separate tasks. @item Ada.Task_Identifification (C.7.1) This package provides capabilities for task identification. @item Ada.Task_Termination (C.7.3) This package provides control over task termination. @item Ada.Text_IO This package provides basic text input-output capabilities for character, string and numeric data. The subpackages of this package are listed next. Note that although these are defined as subpackages in the RM, they are actually transparently implemented as child packages in GNAT, meaning that they are only loaded if needed. @item Ada.Text_IO.Decimal_IO Provides input-output facilities for decimal fixed-point types @item Ada.Text_IO.Enumeration_IO Provides input-output facilities for enumeration types. @item Ada.Text_IO.Fixed_IO Provides input-output facilities for ordinary fixed-point types. @item Ada.Text_IO.Float_IO Provides input-output facilities for float types. The following predefined instantiations of this generic package are available: @table @code @item Short_Float @code{Short_Float_Text_IO} @item Float @code{Float_Text_IO} @item Long_Float @code{Long_Float_Text_IO} @end table @item Ada.Text_IO.Integer_IO Provides input-output facilities for integer types. The following predefined instantiations of this generic package are available: @table @code @item Short_Short_Integer @code{Ada.Short_Short_Integer_Text_IO} @item Short_Integer @code{Ada.Short_Integer_Text_IO} @item Integer @code{Ada.Integer_Text_IO} @item Long_Integer @code{Ada.Long_Integer_Text_IO} @item Long_Long_Integer @code{Ada.Long_Long_Integer_Text_IO} @end table @item Ada.Text_IO.Modular_IO Provides input-output facilities for modular (unsigned) types. @item Ada.Text_IO.Bounded_IO (A.10.11) Provides input-output facilities for bounded strings. @item Ada.Text_IO.Complex_IO (G.1.3) This package provides basic text input-output capabilities for complex data. @item Ada.Text_IO.Editing (F.3.3) This package contains routines for edited output, analogous to the use of pictures in COBOL@. The picture formats used by this package are a close copy of the facility in COBOL@. @item Ada.Text_IO.Text_Streams (A.12.2) This package provides a facility that allows Text_IO files to be treated as streams, so that the stream attributes can be used for writing arbitrary data, including binary data, to Text_IO files. @item Ada.Text_IO.Unbounded_IO (A.10.12) This package provides input-output facilities for unbounded strings. @item Ada.Unchecked_Conversion (13.9) This generic package allows arbitrary conversion from one type to another of the same size, providing for breaking the type safety in special circumstances. If the types have the same Size (more accurately the same Value_Size), then the effect is simply to transfer the bits from the source to the target type without any modification. This usage is well defined, and for simple types whose representation is typically the same across all implementations, gives a portable method of performing such conversions. If the types do not have the same size, then the result is implementation defined, and thus may be non-portable. The following describes how GNAT handles such unchecked conversion cases. If the types are of different sizes, and are both discrete types, then the effect is of a normal type conversion without any constraint checking. In particular if the result type has a larger size, the result will be zero or sign extended. If the result type has a smaller size, the result will be truncated by ignoring high order bits. If the types are of different sizes, and are not both discrete types, then the conversion works as though pointers were created to the source and target, and the pointer value is converted. The effect is that bits are copied from successive low order storage units and bits of the source up to the length of the target type. A warning is issued if the lengths differ, since the effect in this case is implementation dependent, and the above behavior may not match that of some other compiler. A pointer to one type may be converted to a pointer to another type using unchecked conversion. The only case in which the effect is undefined is when one or both pointers are pointers to unconstrained array types. In this case, the bounds information may get incorrectly transferred, and in particular, GNAT uses double size pointers for such types, and it is meaningless to convert between such pointer types. GNAT will issue a warning if the alignment of the target designated type is more strict than the alignment of the source designated type (since the result may be unaligned in this case). A pointer other than a pointer to an unconstrained array type may be converted to and from System.Address. Such usage is common in Ada 83 programs, but note that Ada.Address_To_Access_Conversions is the preferred method of performing such conversions in Ada 95 and Ada 2005. Neither unchecked conversion nor Ada.Address_To_Access_Conversions should be used in conjunction with pointers to unconstrained objects, since the bounds information cannot be handled correctly in this case. @item Ada.Unchecked_Deallocation (13.11.2) This generic package allows explicit freeing of storage previously allocated by use of an allocator. @item Ada.Wide_Text_IO (A.11) This package is similar to @code{Ada.Text_IO}, except that the external file supports wide character representations, and the internal types are @code{Wide_Character} and @code{Wide_String} instead of @code{Character} and @code{String}. The corresponding set of nested packages and child packages are defined. @item Ada.Wide_Wide_Text_IO (A.11) This package is similar to @code{Ada.Text_IO}, except that the external file supports wide character representations, and the internal types are @code{Wide_Character} and @code{Wide_String} instead of @code{Character} and @code{String}. The corresponding set of nested packages and child packages are defined. @end table For packages in Interfaces and System, all the RM defined packages are available in GNAT, see the Ada 2012 RM for full details. @node The Implementation of Standard I/O @chapter The Implementation of Standard I/O @noindent GNAT implements all the required input-output facilities described in A.6 through A.14. These sections of the Ada Reference Manual describe the required behavior of these packages from the Ada point of view, and if you are writing a portable Ada program that does not need to know the exact manner in which Ada maps to the outside world when it comes to reading or writing external files, then you do not need to read this chapter. As long as your files are all regular files (not pipes or devices), and as long as you write and read the files only from Ada, the description in the Ada Reference Manual is sufficient. However, if you want to do input-output to pipes or other devices, such as the keyboard or screen, or if the files you are dealing with are either generated by some other language, or to be read by some other language, then you need to know more about the details of how the GNAT implementation of these input-output facilities behaves. In this chapter we give a detailed description of exactly how GNAT interfaces to the file system. As always, the sources of the system are available to you for answering questions at an even more detailed level, but for most purposes the information in this chapter will suffice. Another reason that you may need to know more about how input-output is implemented arises when you have a program written in mixed languages where, for example, files are shared between the C and Ada sections of the same program. GNAT provides some additional facilities, in the form of additional child library packages, that facilitate this sharing, and these additional facilities are also described in this chapter. @menu * Standard I/O Packages:: * FORM Strings:: * Direct_IO:: * Sequential_IO:: * Text_IO:: * Wide_Text_IO:: * Wide_Wide_Text_IO:: * Stream_IO:: * Text Translation:: * Shared Files:: * Filenames encoding:: * Open Modes:: * Operations on C Streams:: * Interfacing to C Streams:: @end menu @node Standard I/O Packages @section Standard I/O Packages @noindent The Standard I/O packages described in Annex A for @itemize @bullet @item Ada.Text_IO @item Ada.Text_IO.Complex_IO @item Ada.Text_IO.Text_Streams @item Ada.Wide_Text_IO @item Ada.Wide_Text_IO.Complex_IO @item Ada.Wide_Text_IO.Text_Streams @item Ada.Wide_Wide_Text_IO @item Ada.Wide_Wide_Text_IO.Complex_IO @item Ada.Wide_Wide_Text_IO.Text_Streams @item Ada.Stream_IO @item Ada.Sequential_IO @item Ada.Direct_IO @end itemize @noindent are implemented using the C library streams facility; where @itemize @bullet @item All files are opened using @code{fopen}. @item All input/output operations use @code{fread}/@code{fwrite}. @end itemize @noindent There is no internal buffering of any kind at the Ada library level. The only buffering is that provided at the system level in the implementation of the library routines that support streams. This facilitates shared use of these streams by mixed language programs. Note though that system level buffering is explicitly enabled at elaboration of the standard I/O packages and that can have an impact on mixed language programs, in particular those using I/O before calling the Ada elaboration routine (e.g.@: adainit). It is recommended to call the Ada elaboration routine before performing any I/O or when impractical, flush the common I/O streams and in particular Standard_Output before elaborating the Ada code. @node FORM Strings @section FORM Strings @noindent The format of a FORM string in GNAT is: @smallexample "keyword=value,keyword=value,@dots{},keyword=value" @end smallexample @noindent where letters may be in upper or lower case, and there are no spaces between values. The order of the entries is not important. Currently the following keywords defined. @smallexample TEXT_TRANSLATION=[YES|NO] SHARED=[YES|NO] WCEM=[n|h|u|s|e|8|b] ENCODING=[UTF8|8BITS] @end smallexample @noindent The use of these parameters is described later in this section. If an unrecognized keyword appears in a form string, it is silently ignored and not considered invalid. @noindent For OpenVMS additional FORM string keywords are available for use with RMS services. The syntax is: @smallexample VMS_RMS_Keys=(keyword=value,@dots{},keyword=value) @end smallexample @noindent The following RMS keywords and values are currently defined: @smallexample Context=Force_Stream_Mode|Force_Record_Mode @end smallexample @noindent VMS RMS keys are silently ignored on non-VMS systems. On OpenVMS unimplented RMS keywords, values, or invalid syntax will raise Use_Error. @node Direct_IO @section Direct_IO @noindent Direct_IO can only be instantiated for definite types. This is a restriction of the Ada language, which means that the records are fixed length (the length being determined by @code{@var{type}'Size}, rounded up to the next storage unit boundary if necessary). The records of a Direct_IO file are simply written to the file in index sequence, with the first record starting at offset zero, and subsequent records following. There is no control information of any kind. For example, if 32-bit integers are being written, each record takes 4-bytes, so the record at index @var{K} starts at offset (@var{K}@minus{}1)*4. There is no limit on the size of Direct_IO files, they are expanded as necessary to accommodate whatever records are written to the file. @node Sequential_IO @section Sequential_IO @noindent Sequential_IO may be instantiated with either a definite (constrained) or indefinite (unconstrained) type. For the definite type case, the elements written to the file are simply the memory images of the data values with no control information of any kind. The resulting file should be read using the same type, no validity checking is performed on input. For the indefinite type case, the elements written consist of two parts. First is the size of the data item, written as the memory image of a @code{Interfaces.C.size_t} value, followed by the memory image of the data value. The resulting file can only be read using the same (unconstrained) type. Normal assignment checks are performed on these read operations, and if these checks fail, @code{Data_Error} is raised. In particular, in the array case, the lengths must match, and in the variant record case, if the variable for a particular read operation is constrained, the discriminants must match. Note that it is not possible to use Sequential_IO to write variable length array items, and then read the data back into different length arrays. For example, the following will raise @code{Data_Error}: @smallexample @c ada package IO is new Sequential_IO (String); F : IO.File_Type; S : String (1..4); @dots{} IO.Create (F) IO.Write (F, "hello!") IO.Reset (F, Mode=>In_File); IO.Read (F, S); Put_Line (S); @end smallexample @noindent On some Ada implementations, this will print @code{hell}, but the program is clearly incorrect, since there is only one element in the file, and that element is the string @code{hello!}. In Ada 95 and Ada 2005, this kind of behavior can be legitimately achieved using Stream_IO, and this is the preferred mechanism. In particular, the above program fragment rewritten to use Stream_IO will work correctly. @node Text_IO @section Text_IO @noindent Text_IO files consist of a stream of characters containing the following special control characters: @smallexample LF (line feed, 16#0A#) Line Mark FF (form feed, 16#0C#) Page Mark @end smallexample @noindent A canonical Text_IO file is defined as one in which the following conditions are met: @itemize @bullet @item The character @code{LF} is used only as a line mark, i.e.@: to mark the end of the line. @item The character @code{FF} is used only as a page mark, i.e.@: to mark the end of a page and consequently can appear only immediately following a @code{LF} (line mark) character. @item The file ends with either @code{LF} (line mark) or @code{LF}-@code{FF} (line mark, page mark). In the former case, the page mark is implicitly assumed to be present. @end itemize @noindent A file written using Text_IO will be in canonical form provided that no explicit @code{LF} or @code{FF} characters are written using @code{Put} or @code{Put_Line}. There will be no @code{FF} character at the end of the file unless an explicit @code{New_Page} operation was performed before closing the file. A canonical Text_IO file that is a regular file (i.e., not a device or a pipe) can be read using any of the routines in Text_IO@. The semantics in this case will be exactly as defined in the Ada Reference Manual, and all the routines in Text_IO are fully implemented. A text file that does not meet the requirements for a canonical Text_IO file has one of the following: @itemize @bullet @item The file contains @code{FF} characters not immediately following a @code{LF} character. @item The file contains @code{LF} or @code{FF} characters written by @code{Put} or @code{Put_Line}, which are not logically considered to be line marks or page marks. @item The file ends in a character other than @code{LF} or @code{FF}, i.e.@: there is no explicit line mark or page mark at the end of the file. @end itemize @noindent Text_IO can be used to read such non-standard text files but subprograms to do with line or page numbers do not have defined meanings. In particular, a @code{FF} character that does not follow a @code{LF} character may or may not be treated as a page mark from the point of view of page and line numbering. Every @code{LF} character is considered to end a line, and there is an implied @code{LF} character at the end of the file. @menu * Text_IO Stream Pointer Positioning:: * Text_IO Reading and Writing Non-Regular Files:: * Get_Immediate:: * Treating Text_IO Files as Streams:: * Text_IO Extensions:: * Text_IO Facilities for Unbounded Strings:: @end menu @node Text_IO Stream Pointer Positioning @subsection Stream Pointer Positioning @noindent @code{Ada.Text_IO} has a definition of current position for a file that is being read. No internal buffering occurs in Text_IO, and usually the physical position in the stream used to implement the file corresponds to this logical position defined by Text_IO@. There are two exceptions: @itemize @bullet @item After a call to @code{End_Of_Page} that returns @code{True}, the stream is positioned past the @code{LF} (line mark) that precedes the page mark. Text_IO maintains an internal flag so that subsequent read operations properly handle the logical position which is unchanged by the @code{End_Of_Page} call. @item After a call to @code{End_Of_File} that returns @code{True}, if the Text_IO file was positioned before the line mark at the end of file before the call, then the logical position is unchanged, but the stream is physically positioned right at the end of file (past the line mark, and past a possible page mark following the line mark. Again Text_IO maintains internal flags so that subsequent read operations properly handle the logical position. @end itemize @noindent These discrepancies have no effect on the observable behavior of Text_IO, but if a single Ada stream is shared between a C program and Ada program, or shared (using @samp{shared=yes} in the form string) between two Ada files, then the difference may be observable in some situations. @node Text_IO Reading and Writing Non-Regular Files @subsection Reading and Writing Non-Regular Files @noindent A non-regular file is a device (such as a keyboard), or a pipe. Text_IO can be used for reading and writing. Writing is not affected and the sequence of characters output is identical to the normal file case, but for reading, the behavior of Text_IO is modified to avoid undesirable look-ahead as follows: An input file that is not a regular file is considered to have no page marks. Any @code{Ascii.FF} characters (the character normally used for a page mark) appearing in the file are considered to be data characters. In particular: @itemize @bullet @item @code{Get_Line} and @code{Skip_Line} do not test for a page mark following a line mark. If a page mark appears, it will be treated as a data character. @item This avoids the need to wait for an extra character to be typed or entered from the pipe to complete one of these operations. @item @code{End_Of_Page} always returns @code{False} @item @code{End_Of_File} will return @code{False} if there is a page mark at the end of the file. @end itemize @noindent Output to non-regular files is the same as for regular files. Page marks may be written to non-regular files using @code{New_Page}, but as noted above they will not be treated as page marks on input if the output is piped to another Ada program. Another important discrepancy when reading non-regular files is that the end of file indication is not ``sticky''. If an end of file is entered, e.g.@: by pressing the @key{EOT} key, then end of file is signaled once (i.e.@: the test @code{End_Of_File} will yield @code{True}, or a read will raise @code{End_Error}), but then reading can resume to read data past that end of file indication, until another end of file indication is entered. @node Get_Immediate @subsection Get_Immediate @cindex Get_Immediate @noindent Get_Immediate returns the next character (including control characters) from the input file. In particular, Get_Immediate will return LF or FF characters used as line marks or page marks. Such operations leave the file positioned past the control character, and it is thus not treated as having its normal function. This means that page, line and column counts after this kind of Get_Immediate call are set as though the mark did not occur. In the case where a Get_Immediate leaves the file positioned between the line mark and page mark (which is not normally possible), it is undefined whether the FF character will be treated as a page mark. @node Treating Text_IO Files as Streams @subsection Treating Text_IO Files as Streams @cindex Stream files @noindent The package @code{Text_IO.Streams} allows a Text_IO file to be treated as a stream. Data written to a Text_IO file in this stream mode is binary data. If this binary data contains bytes 16#0A# (@code{LF}) or 16#0C# (@code{FF}), the resulting file may have non-standard format. Similarly if read operations are used to read from a Text_IO file treated as a stream, then @code{LF} and @code{FF} characters may be skipped and the effect is similar to that described above for @code{Get_Immediate}. @node Text_IO Extensions @subsection Text_IO Extensions @cindex Text_IO extensions @noindent A package GNAT.IO_Aux in the GNAT library provides some useful extensions to the standard @code{Text_IO} package: @itemize @bullet @item function File_Exists (Name : String) return Boolean; Determines if a file of the given name exists. @item function Get_Line return String; Reads a string from the standard input file. The value returned is exactly the length of the line that was read. @item function Get_Line (File : Ada.Text_IO.File_Type) return String; Similar, except that the parameter File specifies the file from which the string is to be read. @end itemize @node Text_IO Facilities for Unbounded Strings @subsection Text_IO Facilities for Unbounded Strings @cindex Text_IO for unbounded strings @cindex Unbounded_String, Text_IO operations @noindent The package @code{Ada.Strings.Unbounded.Text_IO} in library files @code{a-suteio.ads/adb} contains some GNAT-specific subprograms useful for Text_IO operations on unbounded strings: @itemize @bullet @item function Get_Line (File : File_Type) return Unbounded_String; Reads a line from the specified file and returns the result as an unbounded string. @item procedure Put (File : File_Type; U : Unbounded_String); Writes the value of the given unbounded string to the specified file Similar to the effect of @code{Put (To_String (U))} except that an extra copy is avoided. @item procedure Put_Line (File : File_Type; U : Unbounded_String); Writes the value of the given unbounded string to the specified file, followed by a @code{New_Line}. Similar to the effect of @code{Put_Line (To_String (U))} except that an extra copy is avoided. @end itemize @noindent In the above procedures, @code{File} is of type @code{Ada.Text_IO.File_Type} and is optional. If the parameter is omitted, then the standard input or output file is referenced as appropriate. The package @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} in library files @file{a-swuwti.ads} and @file{a-swuwti.adb} provides similar extended @code{Wide_Text_IO} functionality for unbounded wide strings. The package @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} in library files @file{a-szuzti.ads} and @file{a-szuzti.adb} provides similar extended @code{Wide_Wide_Text_IO} functionality for unbounded wide wide strings. @node Wide_Text_IO @section Wide_Text_IO @noindent @code{Wide_Text_IO} is similar in most respects to Text_IO, except that both input and output files may contain special sequences that represent wide character values. The encoding scheme for a given file may be specified using a FORM parameter: @smallexample WCEM=@var{x} @end smallexample @noindent as part of the FORM string (WCEM = wide character encoding method), where @var{x} is one of the following characters @table @samp @item h Hex ESC encoding @item u Upper half encoding @item s Shift-JIS encoding @item e EUC Encoding @item 8 UTF-8 encoding @item b Brackets encoding @end table @noindent The encoding methods match those that can be used in a source program, but there is no requirement that the encoding method used for the source program be the same as the encoding method used for files, and different files may use different encoding methods. The default encoding method for the standard files, and for opened files for which no WCEM parameter is given in the FORM string matches the wide character encoding specified for the main program (the default being brackets encoding if no coding method was specified with -gnatW). @table @asis @item Hex Coding In this encoding, a wide character is represented by a five character sequence: @smallexample ESC a b c d @end smallexample @noindent where @var{a}, @var{b}, @var{c}, @var{d} are the four hexadecimal characters (using upper case letters) of the wide character code. For example, ESC A345 is used to represent the wide character with code 16#A345#. This scheme is compatible with use of the full @code{Wide_Character} set. @item Upper Half Coding The wide character with encoding 16#abcd#, where the upper bit is on (i.e.@: a is in the range 8-F) is represented as two bytes 16#ab# and 16#cd#. The second byte may never be a format control character, but is not required to be in the upper half. This method can be also used for shift-JIS or EUC where the internal coding matches the external coding. @item Shift JIS Coding A wide character is represented by a two character sequence 16#ab# and 16#cd#, with the restrictions described for upper half encoding as described above. The internal character code is the corresponding JIS character according to the standard algorithm for Shift-JIS conversion. Only characters defined in the JIS code set table can be used with this encoding method. @item EUC Coding A wide character is represented by a two character sequence 16#ab# and 16#cd#, with both characters being in the upper half. The internal character code is the corresponding JIS character according to the EUC encoding algorithm. Only characters defined in the JIS code set table can be used with this encoding method. @item UTF-8 Coding A wide character is represented using UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value, the representation is a one, two, or three byte sequence: @smallexample 16#0000#-16#007f#: 2#0xxxxxxx# 16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx# 16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx# @end smallexample @noindent where the @var{xxx} bits correspond to the left-padded bits of the 16-bit character value. Note that all lower half ASCII characters are represented as ASCII bytes and all upper half characters and other wide characters are represented as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit characters as 6-byte sequences, but in this implementation, all UTF-8 sequences of four or more bytes length will raise a Constraint_Error, as will all invalid UTF-8 sequences.) @item Brackets Coding In this encoding, a wide character is represented by the following eight character sequence: @smallexample [ " a b c d " ] @end smallexample @noindent where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal characters (using uppercase letters) of the wide character code. For example, @code{["A345"]} is used to represent the wide character with code @code{16#A345#}. This scheme is compatible with use of the full Wide_Character set. On input, brackets coding can also be used for upper half characters, e.g.@: @code{["C1"]} for lower case a. However, on output, brackets notation is only used for wide characters with a code greater than @code{16#FF#}. Note that brackets coding is not normally used in the context of Wide_Text_IO or Wide_Wide_Text_IO, since it is really just designed as a portable way of encoding source files. In the context of Wide_Text_IO or Wide_Wide_Text_IO, it can only be used if the file does not contain any instance of the left bracket character other than to encode wide character values using the brackets encoding method. In practice it is expected that some standard wide character encoding method such as UTF-8 will be used for text input output. If brackets notation is used, then any occurrence of a left bracket in the input file which is not the start of a valid wide character sequence will cause Constraint_Error to be raised. It is possible to encode a left bracket as ["5B"] and Wide_Text_IO and Wide_Wide_Text_IO input will interpret this as a left bracket. However, when a left bracket is output, it will be output as a left bracket and not as ["5B"]. We make this decision because for normal use of Wide_Text_IO for outputting messages, it is unpleasant to clobber left brackets. For example, if we write: @smallexample Put_Line ("Start of output [first run]"); @end smallexample @noindent we really do not want to have the left bracket in this message clobbered so that the output reads: @smallexample Start of output ["5B"]first run] @end smallexample @noindent In practice brackets encoding is reasonably useful for normal Put_Line use since we won't get confused between left brackets and wide character sequences in the output. But for input, or when files are written out and read back in, it really makes better sense to use one of the standard encoding methods such as UTF-8. @end table @noindent For the coding schemes other than UTF-8, Hex, or Brackets encoding, not all wide character values can be represented. An attempt to output a character that cannot be represented using the encoding scheme for the file causes Constraint_Error to be raised. An invalid wide character sequence on input also causes Constraint_Error to be raised. @menu * Wide_Text_IO Stream Pointer Positioning:: * Wide_Text_IO Reading and Writing Non-Regular Files:: @end menu @node Wide_Text_IO Stream Pointer Positioning @subsection Stream Pointer Positioning @noindent @code{Ada.Wide_Text_IO} is similar to @code{Ada.Text_IO} in its handling of stream pointer positioning (@pxref{Text_IO}). There is one additional case: If @code{Ada.Wide_Text_IO.Look_Ahead} reads a character outside the normal lower ASCII set (i.e.@: a character in the range: @smallexample @c ada Wide_Character'Val (16#0080#) .. Wide_Character'Val (16#FFFF#) @end smallexample @noindent then although the logical position of the file pointer is unchanged by the @code{Look_Ahead} call, the stream is physically positioned past the wide character sequence. Again this is to avoid the need for buffering or backup, and all @code{Wide_Text_IO} routines check the internal indication that this situation has occurred so that this is not visible to a normal program using @code{Wide_Text_IO}. However, this discrepancy can be observed if the wide text file shares a stream with another file. @node Wide_Text_IO Reading and Writing Non-Regular Files @subsection Reading and Writing Non-Regular Files @noindent As in the case of Text_IO, when a non-regular file is read, it is assumed that the file contains no page marks (any form characters are treated as data characters), and @code{End_Of_Page} always returns @code{False}. Similarly, the end of file indication is not sticky, so it is possible to read beyond an end of file. @node Wide_Wide_Text_IO @section Wide_Wide_Text_IO @noindent @code{Wide_Wide_Text_IO} is similar in most respects to Text_IO, except that both input and output files may contain special sequences that represent wide wide character values. The encoding scheme for a given file may be specified using a FORM parameter: @smallexample WCEM=@var{x} @end smallexample @noindent as part of the FORM string (WCEM = wide character encoding method), where @var{x} is one of the following characters @table @samp @item h Hex ESC encoding @item u Upper half encoding @item s Shift-JIS encoding @item e EUC Encoding @item 8 UTF-8 encoding @item b Brackets encoding @end table @noindent The encoding methods match those that can be used in a source program, but there is no requirement that the encoding method used for the source program be the same as the encoding method used for files, and different files may use different encoding methods. The default encoding method for the standard files, and for opened files for which no WCEM parameter is given in the FORM string matches the wide character encoding specified for the main program (the default being brackets encoding if no coding method was specified with -gnatW). @table @asis @item UTF-8 Coding A wide character is represented using UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value, the representation is a one, two, three, or four byte sequence: @smallexample 16#000000#-16#00007f#: 2#0xxxxxxx# 16#000080#-16#0007ff#: 2#110xxxxx# 2#10xxxxxx# 16#000800#-16#00ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx# 16#010000#-16#10ffff#: 2#11110xxx# 2#10xxxxxx# 2#10xxxxxx# 2#10xxxxxx# @end smallexample @noindent where the @var{xxx} bits correspond to the left-padded bits of the 21-bit character value. Note that all lower half ASCII characters are represented as ASCII bytes and all upper half characters and other wide characters are represented as sequences of upper-half characters. @item Brackets Coding In this encoding, a wide wide character is represented by the following eight character sequence if is in wide character range @smallexample [ " a b c d " ] @end smallexample and by the following ten character sequence if not @smallexample [ " a b c d e f " ] @end smallexample @noindent where @code{a}, @code{b}, @code{c}, @code{d}, @code{e}, and @code{f} are the four or six hexadecimal characters (using uppercase letters) of the wide wide character code. For example, @code{["01A345"]} is used to represent the wide wide character with code @code{16#01A345#}. This scheme is compatible with use of the full Wide_Wide_Character set. On input, brackets coding can also be used for upper half characters, e.g.@: @code{["C1"]} for lower case a. However, on output, brackets notation is only used for wide characters with a code greater than @code{16#FF#}. @end table @noindent If is also possible to use the other Wide_Character encoding methods, such as Shift-JIS, but the other schemes cannot support the full range of wide wide characters. An attempt to output a character that cannot be represented using the encoding scheme for the file causes Constraint_Error to be raised. An invalid wide character sequence on input also causes Constraint_Error to be raised. @menu * Wide_Wide_Text_IO Stream Pointer Positioning:: * Wide_Wide_Text_IO Reading and Writing Non-Regular Files:: @end menu @node Wide_Wide_Text_IO Stream Pointer Positioning @subsection Stream Pointer Positioning @noindent @code{Ada.Wide_Wide_Text_IO} is similar to @code{Ada.Text_IO} in its handling of stream pointer positioning (@pxref{Text_IO}). There is one additional case: If @code{Ada.Wide_Wide_Text_IO.Look_Ahead} reads a character outside the normal lower ASCII set (i.e.@: a character in the range: @smallexample @c ada Wide_Wide_Character'Val (16#0080#) .. Wide_Wide_Character'Val (16#10FFFF#) @end smallexample @noindent then although the logical position of the file pointer is unchanged by the @code{Look_Ahead} call, the stream is physically positioned past the wide character sequence. Again this is to avoid the need for buffering or backup, and all @code{Wide_Wide_Text_IO} routines check the internal indication that this situation has occurred so that this is not visible to a normal program using @code{Wide_Wide_Text_IO}. However, this discrepancy can be observed if the wide text file shares a stream with another file. @node Wide_Wide_Text_IO Reading and Writing Non-Regular Files @subsection Reading and Writing Non-Regular Files @noindent As in the case of Text_IO, when a non-regular file is read, it is assumed that the file contains no page marks (any form characters are treated as data characters), and @code{End_Of_Page} always returns @code{False}. Similarly, the end of file indication is not sticky, so it is possible to read beyond an end of file. @node Stream_IO @section Stream_IO @noindent A stream file is a sequence of bytes, where individual elements are written to the file as described in the Ada Reference Manual. The type @code{Stream_Element} is simply a byte. There are two ways to read or write a stream file. @itemize @bullet @item The operations @code{Read} and @code{Write} directly read or write a sequence of stream elements with no control information. @item The stream attributes applied to a stream file transfer data in the manner described for stream attributes. @end itemize @node Text Translation @section Text Translation @noindent @samp{Text_Translation=@var{xxx}} may be used as the Form parameter passed to Text_IO.Create and Text_IO.Open: @samp{Text_Translation=@var{Yes}} is the default, which means to translate LF to/from CR/LF on Windows systems. @samp{Text_Translation=@var{No}} disables this translation; i.e. it uses binary mode. For output files, @samp{Text_Translation=@var{No}} may be used to create Unix-style files on Windows. @samp{Text_Translation=@var{xxx}} has no effect on Unix systems. @node Shared Files @section Shared Files @noindent Section A.14 of the Ada Reference Manual allows implementations to provide a wide variety of behavior if an attempt is made to access the same external file with two or more internal files. To provide a full range of functionality, while at the same time minimizing the problems of portability caused by this implementation dependence, GNAT handles file sharing as follows: @itemize @bullet @item In the absence of a @samp{shared=@var{xxx}} form parameter, an attempt to open two or more files with the same full name is considered an error and is not supported. The exception @code{Use_Error} will be raised. Note that a file that is not explicitly closed by the program remains open until the program terminates. @item If the form parameter @samp{shared=no} appears in the form string, the file can be opened or created with its own separate stream identifier, regardless of whether other files sharing the same external file are opened. The exact effect depends on how the C stream routines handle multiple accesses to the same external files using separate streams. @item If the form parameter @samp{shared=yes} appears in the form string for each of two or more files opened using the same full name, the same stream is shared between these files, and the semantics are as described in Ada Reference Manual, Section A.14. @end itemize @noindent When a program that opens multiple files with the same name is ported from another Ada compiler to GNAT, the effect will be that @code{Use_Error} is raised. The documentation of the original compiler and the documentation of the program should then be examined to determine if file sharing was expected, and @samp{shared=@var{xxx}} parameters added to @code{Open} and @code{Create} calls as required. When a program is ported from GNAT to some other Ada compiler, no special attention is required unless the @samp{shared=@var{xxx}} form parameter is used in the program. In this case, you must examine the documentation of the new compiler to see if it supports the required file sharing semantics, and form strings modified appropriately. Of course it may be the case that the program cannot be ported if the target compiler does not support the required functionality. The best approach in writing portable code is to avoid file sharing (and hence the use of the @samp{shared=@var{xxx}} parameter in the form string) completely. One common use of file sharing in Ada 83 is the use of instantiations of Sequential_IO on the same file with different types, to achieve heterogeneous input-output. Although this approach will work in GNAT if @samp{shared=yes} is specified, it is preferable in Ada to use Stream_IO for this purpose (using the stream attributes) @node Filenames encoding @section Filenames encoding @noindent An encoding form parameter can be used to specify the filename encoding @samp{encoding=@var{xxx}}. @itemize @bullet @item If the form parameter @samp{encoding=utf8} appears in the form string, the filename must be encoded in UTF-8. @item If the form parameter @samp{encoding=8bits} appears in the form string, the filename must be a standard 8bits string. @end itemize In the absence of a @samp{encoding=@var{xxx}} form parameter, the encoding is controlled by the @samp{GNAT_CODE_PAGE} environment variable. And if not set @samp{utf8} is assumed. @table @samp @item CP_ACP The current system Windows ANSI code page. @item CP_UTF8 UTF-8 encoding @end table This encoding form parameter is only supported on the Windows platform. On the other Operating Systems the run-time is supporting UTF-8 natively. @node Open Modes @section Open Modes @noindent @code{Open} and @code{Create} calls result in a call to @code{fopen} using the mode shown in the following table: @sp 2 @center @code{Open} and @code{Create} Call Modes @smallexample @b{OPEN } @b{CREATE} Append_File "r+" "w+" In_File "r" "w+" Out_File (Direct_IO) "r+" "w" Out_File (all other cases) "w" "w" Inout_File "r+" "w+" @end smallexample @noindent If text file translation is required, then either @samp{b} or @samp{t} is added to the mode, depending on the setting of Text. Text file translation refers to the mapping of CR/LF sequences in an external file to LF characters internally. This mapping only occurs in DOS and DOS-like systems, and is not relevant to other systems. A special case occurs with Stream_IO@. As shown in the above table, the file is initially opened in @samp{r} or @samp{w} mode for the @code{In_File} and @code{Out_File} cases. If a @code{Set_Mode} operation subsequently requires switching from reading to writing or vice-versa, then the file is reopened in @samp{r+} mode to permit the required operation. @node Operations on C Streams @section Operations on C Streams The package @code{Interfaces.C_Streams} provides an Ada program with direct access to the C library functions for operations on C streams: @smallexample @c adanocomment package Interfaces.C_Streams is -- Note: the reason we do not use the types that are in -- Interfaces.C is that we want to avoid dragging in the -- code in this unit if possible. subtype chars is System.Address; -- Pointer to null-terminated array of characters subtype FILEs is System.Address; -- Corresponds to the C type FILE* subtype voids is System.Address; -- Corresponds to the C type void* subtype int is Integer; subtype long is Long_Integer; -- Note: the above types are subtypes deliberately, and it -- is part of this spec that the above correspondences are -- guaranteed. This means that it is legitimate to, for -- example, use Integer instead of int. We provide these -- synonyms for clarity, but in some cases it may be -- convenient to use the underlying types (for example to -- avoid an unnecessary dependency of a spec on the spec -- of this unit). type size_t is mod 2 ** Standard'Address_Size; NULL_Stream : constant FILEs; -- Value returned (NULL in C) to indicate an -- fdopen/fopen/tmpfile error ---------------------------------- -- Constants Defined in stdio.h -- ---------------------------------- EOF : constant int; -- Used by a number of routines to indicate error or -- end of file IOFBF : constant int; IOLBF : constant int; IONBF : constant int; -- Used to indicate buffering mode for setvbuf call SEEK_CUR : constant int; SEEK_END : constant int; SEEK_SET : constant int; -- Used to indicate origin for fseek call function stdin return FILEs; function stdout return FILEs; function stderr return FILEs; -- Streams associated with standard files -------------------------- -- Standard C functions -- -------------------------- -- The functions selected below are ones that are -- available in UNIX (but not necessarily in ANSI C). -- These are very thin interfaces -- which copy exactly the C headers. For more -- documentation on these functions, see the Microsoft C -- "Run-Time Library Reference" (Microsoft Press, 1990, -- ISBN 1-55615-225-6), which includes useful information -- on system compatibility. procedure clearerr (stream : FILEs); function fclose (stream : FILEs) return int; function fdopen (handle : int; mode : chars) return FILEs; function feof (stream : FILEs) return int; function ferror (stream : FILEs) return int; function fflush (stream : FILEs) return int; function fgetc (stream : FILEs) return int; function fgets (strng : chars; n : int; stream : FILEs) return chars; function fileno (stream : FILEs) return int; function fopen (filename : chars; Mode : chars) return FILEs; -- Note: to maintain target independence, use -- text_translation_required, a boolean variable defined in -- a-sysdep.c to deal with the target dependent text -- translation requirement. If this variable is set, -- then b/t should be appended to the standard mode -- argument to set the text translation mode off or on -- as required. function fputc (C : int; stream : FILEs) return int; function fputs (Strng : chars; Stream : FILEs) return int; function fread (buffer : voids; size : size_t; count : size_t; stream : FILEs) return size_t; function freopen (filename : chars; mode : chars; stream : FILEs) return FILEs; function fseek (stream : FILEs; offset : long; origin : int) return int; function ftell (stream : FILEs) return long; function fwrite (buffer : voids; size : size_t; count : size_t; stream : FILEs) return size_t; function isatty (handle : int) return int; procedure mktemp (template : chars); -- The return value (which is just a pointer to template) -- is discarded procedure rewind (stream : FILEs); function rmtmp return int; function setvbuf (stream : FILEs; buffer : chars; mode : int; size : size_t) return int; function tmpfile return FILEs; function ungetc (c : int; stream : FILEs) return int; function unlink (filename : chars) return int; --------------------- -- Extra functions -- --------------------- -- These functions supply slightly thicker bindings than -- those above. They are derived from functions in the -- C Run-Time Library, but may do a bit more work than -- just directly calling one of the Library functions. function is_regular_file (handle : int) return int; -- Tests if given handle is for a regular file (result 1) -- or for a non-regular file (pipe or device, result 0). --------------------------------- -- Control of Text/Binary Mode -- --------------------------------- -- If text_translation_required is true, then the following -- functions may be used to dynamically switch a file from -- binary to text mode or vice versa. These functions have -- no effect if text_translation_required is false (i.e.@: in -- normal UNIX mode). Use fileno to get a stream handle. procedure set_binary_mode (handle : int); procedure set_text_mode (handle : int); ---------------------------- -- Full Path Name support -- ---------------------------- procedure full_name (nam : chars; buffer : chars); -- Given a NUL terminated string representing a file -- name, returns in buffer a NUL terminated string -- representing the full path name for the file name. -- On systems where it is relevant the drive is also -- part of the full path name. It is the responsibility -- of the caller to pass an actual parameter for buffer -- that is big enough for any full path name. Use -- max_path_len given below as the size of buffer. max_path_len : integer; -- Maximum length of an allowable full path name on the -- system, including a terminating NUL character. end Interfaces.C_Streams; @end smallexample @node Interfacing to C Streams @section Interfacing to C Streams @noindent The packages in this section permit interfacing Ada files to C Stream operations. @smallexample @c ada with Interfaces.C_Streams; package Ada.Sequential_IO.C_Streams is function C_Stream (F : File_Type) return Interfaces.C_Streams.FILEs; procedure Open (File : in out File_Type; Mode : in File_Mode; C_Stream : in Interfaces.C_Streams.FILEs; Form : in String := ""); end Ada.Sequential_IO.C_Streams; with Interfaces.C_Streams; package Ada.Direct_IO.C_Streams is function C_Stream (F : File_Type) return Interfaces.C_Streams.FILEs; procedure Open (File : in out File_Type; Mode : in File_Mode; C_Stream : in Interfaces.C_Streams.FILEs; Form : in String := ""); end Ada.Direct_IO.C_Streams; with Interfaces.C_Streams; package Ada.Text_IO.C_Streams is function C_Stream (F : File_Type) return Interfaces.C_Streams.FILEs; procedure Open (File : in out File_Type; Mode : in File_Mode; C_Stream : in Interfaces.C_Streams.FILEs; Form : in String := ""); end Ada.Text_IO.C_Streams; with Interfaces.C_Streams; package Ada.Wide_Text_IO.C_Streams is function C_Stream (F : File_Type) return Interfaces.C_Streams.FILEs; procedure Open (File : in out File_Type; Mode : in File_Mode; C_Stream : in Interfaces.C_Streams.FILEs; Form : in String := ""); end Ada.Wide_Text_IO.C_Streams; with Interfaces.C_Streams; package Ada.Wide_Wide_Text_IO.C_Streams is function C_Stream (F : File_Type) return Interfaces.C_Streams.FILEs; procedure Open (File : in out File_Type; Mode : in File_Mode; C_Stream : in Interfaces.C_Streams.FILEs; Form : in String := ""); end Ada.Wide_Wide_Text_IO.C_Streams; with Interfaces.C_Streams; package Ada.Stream_IO.C_Streams is function C_Stream (F : File_Type) return Interfaces.C_Streams.FILEs; procedure Open (File : in out File_Type; Mode : in File_Mode; C_Stream : in Interfaces.C_Streams.FILEs; Form : in String := ""); end Ada.Stream_IO.C_Streams; @end smallexample @noindent In each of these six packages, the @code{C_Stream} function obtains the @code{FILE} pointer from a currently opened Ada file. It is then possible to use the @code{Interfaces.C_Streams} package to operate on this stream, or the stream can be passed to a C program which can operate on it directly. Of course the program is responsible for ensuring that only appropriate sequences of operations are executed. One particular use of relevance to an Ada program is that the @code{setvbuf} function can be used to control the buffering of the stream used by an Ada file. In the absence of such a call the standard default buffering is used. The @code{Open} procedures in these packages open a file giving an existing C Stream instead of a file name. Typically this stream is imported from a C program, allowing an Ada file to operate on an existing C file. @node The GNAT Library @chapter The GNAT Library @noindent The GNAT library contains a number of general and special purpose packages. It represents functionality that the GNAT developers have found useful, and which is made available to GNAT users. The packages described here are fully supported, and upwards compatibility will be maintained in future releases, so you can use these facilities with the confidence that the same functionality will be available in future releases. The chapter here simply gives a brief summary of the facilities available. The full documentation is found in the spec file for the package. The full sources of these library packages, including both spec and body, are provided with all GNAT releases. For example, to find out the full specifications of the SPITBOL pattern matching capability, including a full tutorial and extensive examples, look in the @file{g-spipat.ads} file in the library. For each entry here, the package name (as it would appear in a @code{with} clause) is given, followed by the name of the corresponding spec file in parentheses. The packages are children in four hierarchies, @code{Ada}, @code{Interfaces}, @code{System}, and @code{GNAT}, the latter being a GNAT-specific hierarchy. Note that an application program should only use packages in one of these four hierarchies if the package is defined in the Ada Reference Manual, or is listed in this section of the GNAT Programmers Reference Manual. All other units should be considered internal implementation units and should not be directly @code{with}'ed by application code. The use of a @code{with} statement that references one of these internal implementation units makes an application potentially dependent on changes in versions of GNAT, and will generate a warning message. @menu * Ada.Characters.Latin_9 (a-chlat9.ads):: * Ada.Characters.Wide_Latin_1 (a-cwila1.ads):: * Ada.Characters.Wide_Latin_9 (a-cwila9.ads):: * Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads):: * Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads):: * Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads):: * Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads):: * Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads):: * Ada.Containers.Formal_Ordered_Maps (a-cforma.ads):: * Ada.Containers.Formal_Ordered_Sets (a-cforse.ads):: * Ada.Containers.Formal_Vectors (a-cofove.ads):: * Ada.Command_Line.Environment (a-colien.ads):: * Ada.Command_Line.Remove (a-colire.ads):: * Ada.Command_Line.Response_File (a-clrefi.ads):: * Ada.Direct_IO.C_Streams (a-diocst.ads):: * Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads):: * Ada.Exceptions.Last_Chance_Handler (a-elchha.ads):: * Ada.Exceptions.Traceback (a-exctra.ads):: * Ada.Sequential_IO.C_Streams (a-siocst.ads):: * Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads):: * Ada.Strings.Unbounded.Text_IO (a-suteio.ads):: * Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads):: * Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads):: * Ada.Text_IO.C_Streams (a-tiocst.ads):: * Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads):: * Ada.Wide_Characters.Unicode (a-wichun.ads):: * Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads):: * Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads):: * Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads):: * Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads):: * Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads):: * GNAT.Altivec (g-altive.ads):: * GNAT.Altivec.Conversions (g-altcon.ads):: * GNAT.Altivec.Vector_Operations (g-alveop.ads):: * GNAT.Altivec.Vector_Types (g-alvety.ads):: * GNAT.Altivec.Vector_Views (g-alvevi.ads):: * GNAT.Array_Split (g-arrspl.ads):: * GNAT.AWK (g-awk.ads):: * GNAT.Bounded_Buffers (g-boubuf.ads):: * GNAT.Bounded_Mailboxes (g-boumai.ads):: * GNAT.Bubble_Sort (g-bubsor.ads):: * GNAT.Bubble_Sort_A (g-busora.ads):: * GNAT.Bubble_Sort_G (g-busorg.ads):: * GNAT.Byte_Order_Mark (g-byorma.ads):: * GNAT.Byte_Swapping (g-bytswa.ads):: * GNAT.Calendar (g-calend.ads):: * GNAT.Calendar.Time_IO (g-catiio.ads):: * GNAT.Case_Util (g-casuti.ads):: * GNAT.CGI (g-cgi.ads):: * GNAT.CGI.Cookie (g-cgicoo.ads):: * GNAT.CGI.Debug (g-cgideb.ads):: * GNAT.Command_Line (g-comlin.ads):: * GNAT.Compiler_Version (g-comver.ads):: * GNAT.Ctrl_C (g-ctrl_c.ads):: * GNAT.CRC32 (g-crc32.ads):: * GNAT.Current_Exception (g-curexc.ads):: * GNAT.Debug_Pools (g-debpoo.ads):: * GNAT.Debug_Utilities (g-debuti.ads):: * GNAT.Decode_String (g-decstr.ads):: * GNAT.Decode_UTF8_String (g-deutst.ads):: * GNAT.Directory_Operations (g-dirope.ads):: * GNAT.Directory_Operations.Iteration (g-diopit.ads):: * GNAT.Dynamic_HTables (g-dynhta.ads):: * GNAT.Dynamic_Tables (g-dyntab.ads):: * GNAT.Encode_String (g-encstr.ads):: * GNAT.Encode_UTF8_String (g-enutst.ads):: * GNAT.Exception_Actions (g-excact.ads):: * GNAT.Exception_Traces (g-exctra.ads):: * GNAT.Exceptions (g-except.ads):: * GNAT.Expect (g-expect.ads):: * GNAT.Expect.TTY (g-exptty.ads):: * GNAT.Float_Control (g-flocon.ads):: * GNAT.Heap_Sort (g-heasor.ads):: * GNAT.Heap_Sort_A (g-hesora.ads):: * GNAT.Heap_Sort_G (g-hesorg.ads):: * GNAT.HTable (g-htable.ads):: * GNAT.IO (g-io.ads):: * GNAT.IO_Aux (g-io_aux.ads):: * GNAT.Lock_Files (g-locfil.ads):: * GNAT.MBBS_Discrete_Random (g-mbdira.ads):: * GNAT.MBBS_Float_Random (g-mbflra.ads):: * GNAT.MD5 (g-md5.ads):: * GNAT.Memory_Dump (g-memdum.ads):: * GNAT.Most_Recent_Exception (g-moreex.ads):: * GNAT.OS_Lib (g-os_lib.ads):: * GNAT.Perfect_Hash_Generators (g-pehage.ads):: * GNAT.Random_Numbers (g-rannum.ads):: * GNAT.Regexp (g-regexp.ads):: * GNAT.Registry (g-regist.ads):: * GNAT.Regpat (g-regpat.ads):: * GNAT.Secondary_Stack_Info (g-sestin.ads):: * GNAT.Semaphores (g-semaph.ads):: * GNAT.Serial_Communications (g-sercom.ads):: * GNAT.SHA1 (g-sha1.ads):: * GNAT.SHA224 (g-sha224.ads):: * GNAT.SHA256 (g-sha256.ads):: * GNAT.SHA384 (g-sha384.ads):: * GNAT.SHA512 (g-sha512.ads):: * GNAT.Signals (g-signal.ads):: * GNAT.Sockets (g-socket.ads):: * GNAT.Source_Info (g-souinf.ads):: * GNAT.Spelling_Checker (g-speche.ads):: * GNAT.Spelling_Checker_Generic (g-spchge.ads):: * GNAT.Spitbol.Patterns (g-spipat.ads):: * GNAT.Spitbol (g-spitbo.ads):: * GNAT.Spitbol.Table_Boolean (g-sptabo.ads):: * GNAT.Spitbol.Table_Integer (g-sptain.ads):: * GNAT.Spitbol.Table_VString (g-sptavs.ads):: * GNAT.SSE (g-sse.ads):: * GNAT.SSE.Vector_Types (g-ssvety.ads):: * GNAT.Strings (g-string.ads):: * GNAT.String_Split (g-strspl.ads):: * GNAT.Table (g-table.ads):: * GNAT.Task_Lock (g-tasloc.ads):: * GNAT.Threads (g-thread.ads):: * GNAT.Time_Stamp (g-timsta.ads):: * GNAT.Traceback (g-traceb.ads):: * GNAT.Traceback.Symbolic (g-trasym.ads):: * GNAT.UTF_32 (g-utf_32.ads):: * GNAT.UTF_32_Spelling_Checker (g-u3spch.ads):: * GNAT.Wide_Spelling_Checker (g-wispch.ads):: * GNAT.Wide_String_Split (g-wistsp.ads):: * GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads):: * GNAT.Wide_Wide_String_Split (g-zistsp.ads):: * Interfaces.C.Extensions (i-cexten.ads):: * Interfaces.C.Streams (i-cstrea.ads):: * Interfaces.CPP (i-cpp.ads):: * Interfaces.Packed_Decimal (i-pacdec.ads):: * Interfaces.VxWorks (i-vxwork.ads):: * Interfaces.VxWorks.IO (i-vxwoio.ads):: * System.Address_Image (s-addima.ads):: * System.Assertions (s-assert.ads):: * System.Memory (s-memory.ads):: * System.Multiprocessors (s-multip.ads):: * System.Multiprocessors.Dispatching_Domains (s-mudido.ads):: * System.Partition_Interface (s-parint.ads):: * System.Pool_Global (s-pooglo.ads):: * System.Pool_Local (s-pooloc.ads):: * System.Restrictions (s-restri.ads):: * System.Rident (s-rident.ads):: * System.Strings.Stream_Ops (s-ststop.ads):: * System.Task_Info (s-tasinf.ads):: * System.Wch_Cnv (s-wchcnv.ads):: * System.Wch_Con (s-wchcon.ads):: @end menu @node Ada.Characters.Latin_9 (a-chlat9.ads) @section @code{Ada.Characters.Latin_9} (@file{a-chlat9.ads}) @cindex @code{Ada.Characters.Latin_9} (@file{a-chlat9.ads}) @cindex Latin_9 constants for Character @noindent This child of @code{Ada.Characters} provides a set of definitions corresponding to those in the RM-defined package @code{Ada.Characters.Latin_1} but with the few modifications required for @code{Latin-9} The provision of such a package is specifically authorized by the Ada Reference Manual (RM A.3.3(27)). @node Ada.Characters.Wide_Latin_1 (a-cwila1.ads) @section @code{Ada.Characters.Wide_Latin_1} (@file{a-cwila1.ads}) @cindex @code{Ada.Characters.Wide_Latin_1} (@file{a-cwila1.ads}) @cindex Latin_1 constants for Wide_Character @noindent This child of @code{Ada.Characters} provides a set of definitions corresponding to those in the RM-defined package @code{Ada.Characters.Latin_1} but with the types of the constants being @code{Wide_Character} instead of @code{Character}. The provision of such a package is specifically authorized by the Ada Reference Manual (RM A.3.3(27)). @node Ada.Characters.Wide_Latin_9 (a-cwila9.ads) @section @code{Ada.Characters.Wide_Latin_9} (@file{a-cwila1.ads}) @cindex @code{Ada.Characters.Wide_Latin_9} (@file{a-cwila1.ads}) @cindex Latin_9 constants for Wide_Character @noindent This child of @code{Ada.Characters} provides a set of definitions corresponding to those in the GNAT defined package @code{Ada.Characters.Latin_9} but with the types of the constants being @code{Wide_Character} instead of @code{Character}. The provision of such a package is specifically authorized by the Ada Reference Manual (RM A.3.3(27)). @node Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads) @section @code{Ada.Characters.Wide_Wide_Latin_1} (@file{a-chzla1.ads}) @cindex @code{Ada.Characters.Wide_Wide_Latin_1} (@file{a-chzla1.ads}) @cindex Latin_1 constants for Wide_Wide_Character @noindent This child of @code{Ada.Characters} provides a set of definitions corresponding to those in the RM-defined package @code{Ada.Characters.Latin_1} but with the types of the constants being @code{Wide_Wide_Character} instead of @code{Character}. The provision of such a package is specifically authorized by the Ada Reference Manual (RM A.3.3(27)). @node Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads) @section @code{Ada.Characters.Wide_Wide_Latin_9} (@file{a-chzla9.ads}) @cindex @code{Ada.Characters.Wide_Wide_Latin_9} (@file{a-chzla9.ads}) @cindex Latin_9 constants for Wide_Wide_Character @noindent This child of @code{Ada.Characters} provides a set of definitions corresponding to those in the GNAT defined package @code{Ada.Characters.Latin_9} but with the types of the constants being @code{Wide_Wide_Character} instead of @code{Character}. The provision of such a package is specifically authorized by the Ada Reference Manual (RM A.3.3(27)). @node Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads) @section @code{Ada.Containers.Formal_Doubly_Linked_Lists} (@file{a-cfdlli.ads}) @cindex @code{Ada.Containers.Formal_Doubly_Linked_Lists} (@file{a-cfdlli.ads}) @cindex Formal container for doubly linked lists @noindent This child of @code{Ada.Containers} defines a modified version of the Ada 2005 container for doubly linked lists, meant to facilitate formal verification of code using such containers. The specification of this unit is compatible with SPARK 2014. Note that although this container was designed with formal verification in mind, it may well be generally useful in that it is a simplified more efficient version than the one defined in the standard. In particular it does not have the complex overhead required to detect cursor tampering. @node Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads) @section @code{Ada.Containers.Formal_Hashed_Maps} (@file{a-cfhama.ads}) @cindex @code{Ada.Containers.Formal_Hashed_Maps} (@file{a-cfhama.ads}) @cindex Formal container for hashed maps @noindent This child of @code{Ada.Containers} defines a modified version of the Ada 2005 container for hashed maps, meant to facilitate formal verification of code using such containers. The specification of this unit is compatible with SPARK 2014. Note that although this container was designed with formal verification in mind, it may well be generally useful in that it is a simplified more efficient version than the one defined in the standard. In particular it does not have the complex overhead required to detect cursor tampering. @node Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads) @section @code{Ada.Containers.Formal_Hashed_Sets} (@file{a-cfhase.ads}) @cindex @code{Ada.Containers.Formal_Hashed_Sets} (@file{a-cfhase.ads}) @cindex Formal container for hashed sets @noindent This child of @code{Ada.Containers} defines a modified version of the Ada 2005 container for hashed sets, meant to facilitate formal verification of code using such containers. The specification of this unit is compatible with SPARK 2014. Note that although this container was designed with formal verification in mind, it may well be generally useful in that it is a simplified more efficient version than the one defined in the standard. In particular it does not have the complex overhead required to detect cursor tampering. @node Ada.Containers.Formal_Ordered_Maps (a-cforma.ads) @section @code{Ada.Containers.Formal_Ordered_Maps} (@file{a-cforma.ads}) @cindex @code{Ada.Containers.Formal_Ordered_Maps} (@file{a-cforma.ads}) @cindex Formal container for ordered maps @noindent This child of @code{Ada.Containers} defines a modified version of the Ada 2005 container for ordered maps, meant to facilitate formal verification of code using such containers. The specification of this unit is compatible with SPARK 2014. Note that although this container was designed with formal verification in mind, it may well be generally useful in that it is a simplified more efficient version than the one defined in the standard. In particular it does not have the complex overhead required to detect cursor tampering. @node Ada.Containers.Formal_Ordered_Sets (a-cforse.ads) @section @code{Ada.Containers.Formal_Ordered_Sets} (@file{a-cforse.ads}) @cindex @code{Ada.Containers.Formal_Ordered_Sets} (@file{a-cforse.ads}) @cindex Formal container for ordered sets @noindent This child of @code{Ada.Containers} defines a modified version of the Ada 2005 container for ordered sets, meant to facilitate formal verification of code using such containers. The specification of this unit is compatible with SPARK 2014. Note that although this container was designed with formal verification in mind, it may well be generally useful in that it is a simplified more efficient version than the one defined in the standard. In particular it does not have the complex overhead required to detect cursor tampering. @node Ada.Containers.Formal_Vectors (a-cofove.ads) @section @code{Ada.Containers.Formal_Vectors} (@file{a-cofove.ads}) @cindex @code{Ada.Containers.Formal_Vectors} (@file{a-cofove.ads}) @cindex Formal container for vectors @noindent This child of @code{Ada.Containers} defines a modified version of the Ada 2005 container for vectors, meant to facilitate formal verification of code using such containers. The specification of this unit is compatible with SPARK 2014. Note that although this container was designed with formal verification in mind, it may well be generally useful in that it is a simplified more efficient version than the one defined in the standard. In particular it does not have the complex overhead required to detect cursor tampering. @node Ada.Command_Line.Environment (a-colien.ads) @section @code{Ada.Command_Line.Environment} (@file{a-colien.ads}) @cindex @code{Ada.Command_Line.Environment} (@file{a-colien.ads}) @cindex Environment entries @noindent This child of @code{Ada.Command_Line} provides a mechanism for obtaining environment values on systems where this concept makes sense. @node Ada.Command_Line.Remove (a-colire.ads) @section @code{Ada.Command_Line.Remove} (@file{a-colire.ads}) @cindex @code{Ada.Command_Line.Remove} (@file{a-colire.ads}) @cindex Removing command line arguments @cindex Command line, argument removal @noindent This child of @code{Ada.Command_Line} provides a mechanism for logically removing arguments from the argument list. Once removed, an argument is not visible to further calls on the subprograms in @code{Ada.Command_Line} will not see the removed argument. @node Ada.Command_Line.Response_File (a-clrefi.ads) @section @code{Ada.Command_Line.Response_File} (@file{a-clrefi.ads}) @cindex @code{Ada.Command_Line.Response_File} (@file{a-clrefi.ads}) @cindex Response file for command line @cindex Command line, response file @cindex Command line, handling long command lines @noindent This child of @code{Ada.Command_Line} provides a mechanism facilities for getting command line arguments from a text file, called a "response file". Using a response file allow passing a set of arguments to an executable longer than the maximum allowed by the system on the command line. @node Ada.Direct_IO.C_Streams (a-diocst.ads) @section @code{Ada.Direct_IO.C_Streams} (@file{a-diocst.ads}) @cindex @code{Ada.Direct_IO.C_Streams} (@file{a-diocst.ads}) @cindex C Streams, Interfacing with Direct_IO @noindent This package provides subprograms that allow interfacing between C streams and @code{Direct_IO}. The stream identifier can be extracted from a file opened on the Ada side, and an Ada file can be constructed from a stream opened on the C side. @node Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads) @section @code{Ada.Exceptions.Is_Null_Occurrence} (@file{a-einuoc.ads}) @cindex @code{Ada.Exceptions.Is_Null_Occurrence} (@file{a-einuoc.ads}) @cindex Null_Occurrence, testing for @noindent This child subprogram provides a way of testing for the null exception occurrence (@code{Null_Occurrence}) without raising an exception. @node Ada.Exceptions.Last_Chance_Handler (a-elchha.ads) @section @code{Ada.Exceptions.Last_Chance_Handler} (@file{a-elchha.ads}) @cindex @code{Ada.Exceptions.Last_Chance_Handler} (@file{a-elchha.ads}) @cindex Null_Occurrence, testing for @noindent This child subprogram is used for handling otherwise unhandled exceptions (hence the name last chance), and perform clean ups before terminating the program. Note that this subprogram never returns. @node Ada.Exceptions.Traceback (a-exctra.ads) @section @code{Ada.Exceptions.Traceback} (@file{a-exctra.ads}) @cindex @code{Ada.Exceptions.Traceback} (@file{a-exctra.ads}) @cindex Traceback for Exception Occurrence @noindent This child package provides the subprogram (@code{Tracebacks}) to give a traceback array of addresses based on an exception occurrence. @node Ada.Sequential_IO.C_Streams (a-siocst.ads) @section @code{Ada.Sequential_IO.C_Streams} (@file{a-siocst.ads}) @cindex @code{Ada.Sequential_IO.C_Streams} (@file{a-siocst.ads}) @cindex C Streams, Interfacing with Sequential_IO @noindent This package provides subprograms that allow interfacing between C streams and @code{Sequential_IO}. The stream identifier can be extracted from a file opened on the Ada side, and an Ada file can be constructed from a stream opened on the C side. @node Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads) @section @code{Ada.Streams.Stream_IO.C_Streams} (@file{a-ssicst.ads}) @cindex @code{Ada.Streams.Stream_IO.C_Streams} (@file{a-ssicst.ads}) @cindex C Streams, Interfacing with Stream_IO @noindent This package provides subprograms that allow interfacing between C streams and @code{Stream_IO}. The stream identifier can be extracted from a file opened on the Ada side, and an Ada file can be constructed from a stream opened on the C side. @node Ada.Strings.Unbounded.Text_IO (a-suteio.ads) @section @code{Ada.Strings.Unbounded.Text_IO} (@file{a-suteio.ads}) @cindex @code{Ada.Strings.Unbounded.Text_IO} (@file{a-suteio.ads}) @cindex @code{Unbounded_String}, IO support @cindex @code{Text_IO}, extensions for unbounded strings @noindent This package provides subprograms for Text_IO for unbounded strings, avoiding the necessity for an intermediate operation with ordinary strings. @node Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads) @section @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} (@file{a-swuwti.ads}) @cindex @code{Ada.Strings.Wide_Unbounded.Wide_Text_IO} (@file{a-swuwti.ads}) @cindex @code{Unbounded_Wide_String}, IO support @cindex @code{Text_IO}, extensions for unbounded wide strings @noindent This package provides subprograms for Text_IO for unbounded wide strings, avoiding the necessity for an intermediate operation with ordinary wide strings. @node Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads) @section @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} (@file{a-szuzti.ads}) @cindex @code{Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO} (@file{a-szuzti.ads}) @cindex @code{Unbounded_Wide_Wide_String}, IO support @cindex @code{Text_IO}, extensions for unbounded wide wide strings @noindent This package provides subprograms for Text_IO for unbounded wide wide strings, avoiding the necessity for an intermediate operation with ordinary wide wide strings. @node Ada.Text_IO.C_Streams (a-tiocst.ads) @section @code{Ada.Text_IO.C_Streams} (@file{a-tiocst.ads}) @cindex @code{Ada.Text_IO.C_Streams} (@file{a-tiocst.ads}) @cindex C Streams, Interfacing with @code{Text_IO} @noindent This package provides subprograms that allow interfacing between C streams and @code{Text_IO}. The stream identifier can be extracted from a file opened on the Ada side, and an Ada file can be constructed from a stream opened on the C side. @node Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads) @section @code{Ada.Text_IO.Reset_Standard_Files} (@file{a-tirsfi.ads}) @cindex @code{Ada.Text_IO.Reset_Standard_Files} (@file{a-tirsfi.ads}) @cindex @code{Text_IO} resetting standard files @noindent This procedure is used to reset the status of the standard files used by Ada.Text_IO. This is useful in a situation (such as a restart in an embedded application) where the status of the files may change during execution (for example a standard input file may be redefined to be interactive). @node Ada.Wide_Characters.Unicode (a-wichun.ads) @section @code{Ada.Wide_Characters.Unicode} (@file{a-wichun.ads}) @cindex @code{Ada.Wide_Characters.Unicode} (@file{a-wichun.ads}) @cindex Unicode categorization, Wide_Character @noindent This package provides subprograms that allow categorization of Wide_Character values according to Unicode categories. @node Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads) @section @code{Ada.Wide_Text_IO.C_Streams} (@file{a-wtcstr.ads}) @cindex @code{Ada.Wide_Text_IO.C_Streams} (@file{a-wtcstr.ads}) @cindex C Streams, Interfacing with @code{Wide_Text_IO} @noindent This package provides subprograms that allow interfacing between C streams and @code{Wide_Text_IO}. The stream identifier can be extracted from a file opened on the Ada side, and an Ada file can be constructed from a stream opened on the C side. @node Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads) @section @code{Ada.Wide_Text_IO.Reset_Standard_Files} (@file{a-wrstfi.ads}) @cindex @code{Ada.Wide_Text_IO.Reset_Standard_Files} (@file{a-wrstfi.ads}) @cindex @code{Wide_Text_IO} resetting standard files @noindent This procedure is used to reset the status of the standard files used by Ada.Wide_Text_IO. This is useful in a situation (such as a restart in an embedded application) where the status of the files may change during execution (for example a standard input file may be redefined to be interactive). @node Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads) @section @code{Ada.Wide_Wide_Characters.Unicode} (@file{a-zchuni.ads}) @cindex @code{Ada.Wide_Wide_Characters.Unicode} (@file{a-zchuni.ads}) @cindex Unicode categorization, Wide_Wide_Character @noindent This package provides subprograms that allow categorization of Wide_Wide_Character values according to Unicode categories. @node Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads) @section @code{Ada.Wide_Wide_Text_IO.C_Streams} (@file{a-ztcstr.ads}) @cindex @code{Ada.Wide_Wide_Text_IO.C_Streams} (@file{a-ztcstr.ads}) @cindex C Streams, Interfacing with @code{Wide_Wide_Text_IO} @noindent This package provides subprograms that allow interfacing between C streams and @code{Wide_Wide_Text_IO}. The stream identifier can be extracted from a file opened on the Ada side, and an Ada file can be constructed from a stream opened on the C side. @node Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads) @section @code{Ada.Wide_Wide_Text_IO.Reset_Standard_Files} (@file{a-zrstfi.ads}) @cindex @code{Ada.Wide_Wide_Text_IO.Reset_Standard_Files} (@file{a-zrstfi.ads}) @cindex @code{Wide_Wide_Text_IO} resetting standard files @noindent This procedure is used to reset the status of the standard files used by Ada.Wide_Wide_Text_IO. This is useful in a situation (such as a restart in an embedded application) where the status of the files may change during execution (for example a standard input file may be redefined to be interactive). @node GNAT.Altivec (g-altive.ads) @section @code{GNAT.Altivec} (@file{g-altive.ads}) @cindex @code{GNAT.Altivec} (@file{g-altive.ads}) @cindex AltiVec @noindent This is the root package of the GNAT AltiVec binding. It provides definitions of constants and types common to all the versions of the binding. @node GNAT.Altivec.Conversions (g-altcon.ads) @section @code{GNAT.Altivec.Conversions} (@file{g-altcon.ads}) @cindex @code{GNAT.Altivec.Conversions} (@file{g-altcon.ads}) @cindex AltiVec @noindent This package provides the Vector/View conversion routines. @node GNAT.Altivec.Vector_Operations (g-alveop.ads) @section @code{GNAT.Altivec.Vector_Operations} (@file{g-alveop.ads}) @cindex @code{GNAT.Altivec.Vector_Operations} (@file{g-alveop.ads}) @cindex AltiVec @noindent This package exposes the Ada interface to the AltiVec operations on vector objects. A soft emulation is included by default in the GNAT library. The hard binding is provided as a separate package. This unit is common to both bindings. @node GNAT.Altivec.Vector_Types (g-alvety.ads) @section @code{GNAT.Altivec.Vector_Types} (@file{g-alvety.ads}) @cindex @code{GNAT.Altivec.Vector_Types} (@file{g-alvety.ads}) @cindex AltiVec @noindent This package exposes the various vector types part of the Ada binding to AltiVec facilities. @node GNAT.Altivec.Vector_Views (g-alvevi.ads) @section @code{GNAT.Altivec.Vector_Views} (@file{g-alvevi.ads}) @cindex @code{GNAT.Altivec.Vector_Views} (@file{g-alvevi.ads}) @cindex AltiVec @noindent This package provides public 'View' data types from/to which private vector representations can be converted via GNAT.Altivec.Conversions. This allows convenient access to individual vector elements and provides a simple way to initialize vector objects. @node GNAT.Array_Split (g-arrspl.ads) @section @code{GNAT.Array_Split} (@file{g-arrspl.ads}) @cindex @code{GNAT.Array_Split} (@file{g-arrspl.ads}) @cindex Array splitter @noindent Useful array-manipulation routines: given a set of separators, split an array wherever the separators appear, and provide direct access to the resulting slices. @node GNAT.AWK (g-awk.ads) @section @code{GNAT.AWK} (@file{g-awk.ads}) @cindex @code{GNAT.AWK} (@file{g-awk.ads}) @cindex Parsing @cindex AWK @noindent Provides AWK-like parsing functions, with an easy interface for parsing one or more files containing formatted data. The file is viewed as a database where each record is a line and a field is a data element in this line. @node GNAT.Bounded_Buffers (g-boubuf.ads) @section @code{GNAT.Bounded_Buffers} (@file{g-boubuf.ads}) @cindex @code{GNAT.Bounded_Buffers} (@file{g-boubuf.ads}) @cindex Parsing @cindex Bounded Buffers @noindent Provides a concurrent generic bounded buffer abstraction. Instances are useful directly or as parts of the implementations of other abstractions, such as mailboxes. @node GNAT.Bounded_Mailboxes (g-boumai.ads) @section @code{GNAT.Bounded_Mailboxes} (@file{g-boumai.ads}) @cindex @code{GNAT.Bounded_Mailboxes} (@file{g-boumai.ads}) @cindex Parsing @cindex Mailboxes @noindent Provides a thread-safe asynchronous intertask mailbox communication facility. @node GNAT.Bubble_Sort (g-bubsor.ads) @section @code{GNAT.Bubble_Sort} (@file{g-bubsor.ads}) @cindex @code{GNAT.Bubble_Sort} (@file{g-bubsor.ads}) @cindex Sorting @cindex Bubble sort @noindent Provides a general implementation of bubble sort usable for sorting arbitrary data items. Exchange and comparison procedures are provided by passing access-to-procedure values. @node GNAT.Bubble_Sort_A (g-busora.ads) @section @code{GNAT.Bubble_Sort_A} (@file{g-busora.ads}) @cindex @code{GNAT.Bubble_Sort_A} (@file{g-busora.ads}) @cindex Sorting @cindex Bubble sort @noindent Provides a general implementation of bubble sort usable for sorting arbitrary data items. Move and comparison procedures are provided by passing access-to-procedure values. This is an older version, retained for compatibility. Usually @code{GNAT.Bubble_Sort} will be preferable. @node GNAT.Bubble_Sort_G (g-busorg.ads) @section @code{GNAT.Bubble_Sort_G} (@file{g-busorg.ads}) @cindex @code{GNAT.Bubble_Sort_G} (@file{g-busorg.ads}) @cindex Sorting @cindex Bubble sort @noindent Similar to @code{Bubble_Sort_A} except that the move and sorting procedures are provided as generic parameters, this improves efficiency, especially if the procedures can be inlined, at the expense of duplicating code for multiple instantiations. @node GNAT.Byte_Order_Mark (g-byorma.ads) @section @code{GNAT.Byte_Order_Mark} (@file{g-byorma.ads}) @cindex @code{GNAT.Byte_Order_Mark} (@file{g-byorma.ads}) @cindex UTF-8 representation @cindex Wide characte representations @noindent Provides a routine which given a string, reads the start of the string to see whether it is one of the standard byte order marks (BOM's) which signal the encoding of the string. The routine includes detection of special XML sequences for various UCS input formats. @node GNAT.Byte_Swapping (g-bytswa.ads) @section @code{GNAT.Byte_Swapping} (@file{g-bytswa.ads}) @cindex @code{GNAT.Byte_Swapping} (@file{g-bytswa.ads}) @cindex Byte swapping @cindex Endianness @noindent General routines for swapping the bytes in 2-, 4-, and 8-byte quantities. Machine-specific implementations are available in some cases. @node GNAT.Calendar (g-calend.ads) @section @code{GNAT.Calendar} (@file{g-calend.ads}) @cindex @code{GNAT.Calendar} (@file{g-calend.ads}) @cindex @code{Calendar} @noindent Extends the facilities provided by @code{Ada.Calendar} to include handling of days of the week, an extended @code{Split} and @code{Time_Of} capability. Also provides conversion of @code{Ada.Calendar.Time} values to and from the C @code{timeval} format. @node GNAT.Calendar.Time_IO (g-catiio.ads) @section @code{GNAT.Calendar.Time_IO} (@file{g-catiio.ads}) @cindex @code{Calendar} @cindex Time @cindex @code{GNAT.Calendar.Time_IO} (@file{g-catiio.ads}) @node GNAT.CRC32 (g-crc32.ads) @section @code{GNAT.CRC32} (@file{g-crc32.ads}) @cindex @code{GNAT.CRC32} (@file{g-crc32.ads}) @cindex CRC32 @cindex Cyclic Redundancy Check @noindent This package implements the CRC-32 algorithm. For a full description of this algorithm see ``Computation of Cyclic Redundancy Checks via Table Look-Up'', @cite{Communications of the ACM}, Vol.@: 31 No.@: 8, pp.@: 1008-1013, Aug.@: 1988. Sarwate, D.V@. @node GNAT.Case_Util (g-casuti.ads) @section @code{GNAT.Case_Util} (@file{g-casuti.ads}) @cindex @code{GNAT.Case_Util} (@file{g-casuti.ads}) @cindex Casing utilities @cindex Character handling (@code{GNAT.Case_Util}) @noindent A set of simple routines for handling upper and lower casing of strings without the overhead of the full casing tables in @code{Ada.Characters.Handling}. @node GNAT.CGI (g-cgi.ads) @section @code{GNAT.CGI} (@file{g-cgi.ads}) @cindex @code{GNAT.CGI} (@file{g-cgi.ads}) @cindex CGI (Common Gateway Interface) @noindent This is a package for interfacing a GNAT program with a Web server via the Common Gateway Interface (CGI)@. Basically this package parses the CGI parameters, which are a set of key/value pairs sent by the Web server. It builds a table whose index is the key and provides some services to deal with this table. @node GNAT.CGI.Cookie (g-cgicoo.ads) @section @code{GNAT.CGI.Cookie} (@file{g-cgicoo.ads}) @cindex @code{GNAT.CGI.Cookie} (@file{g-cgicoo.ads}) @cindex CGI (Common Gateway Interface) cookie support @cindex Cookie support in CGI @noindent This is a package to interface a GNAT program with a Web server via the Common Gateway Interface (CGI). It exports services to deal with Web cookies (piece of information kept in the Web client software). @node GNAT.CGI.Debug (g-cgideb.ads) @section @code{GNAT.CGI.Debug} (@file{g-cgideb.ads}) @cindex @code{GNAT.CGI.Debug} (@file{g-cgideb.ads}) @cindex CGI (Common Gateway Interface) debugging @noindent This is a package to help debugging CGI (Common Gateway Interface) programs written in Ada. @node GNAT.Command_Line (g-comlin.ads) @section @code{GNAT.Command_Line} (@file{g-comlin.ads}) @cindex @code{GNAT.Command_Line} (@file{g-comlin.ads}) @cindex Command line @noindent Provides a high level interface to @code{Ada.Command_Line} facilities, including the ability to scan for named switches with optional parameters and expand file names using wild card notations. @node GNAT.Compiler_Version (g-comver.ads) @section @code{GNAT.Compiler_Version} (@file{g-comver.ads}) @cindex @code{GNAT.Compiler_Version} (@file{g-comver.ads}) @cindex Compiler Version @cindex Version, of compiler @noindent Provides a routine for obtaining the version of the compiler used to compile the program. More accurately this is the version of the binder used to bind the program (this will normally be the same as the version of the compiler if a consistent tool set is used to compile all units of a partition). @node GNAT.Ctrl_C (g-ctrl_c.ads) @section @code{GNAT.Ctrl_C} (@file{g-ctrl_c.ads}) @cindex @code{GNAT.Ctrl_C} (@file{g-ctrl_c.ads}) @cindex Interrupt @noindent Provides a simple interface to handle Ctrl-C keyboard events. @node GNAT.Current_Exception (g-curexc.ads) @section @code{GNAT.Current_Exception} (@file{g-curexc.ads}) @cindex @code{GNAT.Current_Exception} (@file{g-curexc.ads}) @cindex Current exception @cindex Exception retrieval @noindent Provides access to information on the current exception that has been raised without the need for using the Ada 95 / Ada 2005 exception choice parameter specification syntax. This is particularly useful in simulating typical facilities for obtaining information about exceptions provided by Ada 83 compilers. @node GNAT.Debug_Pools (g-debpoo.ads) @section @code{GNAT.Debug_Pools} (@file{g-debpoo.ads}) @cindex @code{GNAT.Debug_Pools} (@file{g-debpoo.ads}) @cindex Debugging @cindex Debug pools @cindex Memory corruption debugging @noindent Provide a debugging storage pools that helps tracking memory corruption problems. @xref{The GNAT Debug Pool Facility,,, gnat_ugn, @value{EDITION} User's Guide}. @node GNAT.Debug_Utilities (g-debuti.ads) @section @code{GNAT.Debug_Utilities} (@file{g-debuti.ads}) @cindex @code{GNAT.Debug_Utilities} (@file{g-debuti.ads}) @cindex Debugging @noindent Provides a few useful utilities for debugging purposes, including conversion to and from string images of address values. Supports both C and Ada formats for hexadecimal literals. @node GNAT.Decode_String (g-decstr.ads) @section @code{GNAT.Decode_String} (@file{g-decstr.ads}) @cindex @code{GNAT.Decode_String} (@file{g-decstr.ads}) @cindex Decoding strings @cindex String decoding @cindex Wide character encoding @cindex UTF-8 @cindex Unicode @noindent A generic package providing routines for decoding wide character and wide wide character strings encoded as sequences of 8-bit characters using a specified encoding method. Includes validation routines, and also routines for stepping to next or previous encoded character in an encoded string. Useful in conjunction with Unicode character coding. Note there is a preinstantiation for UTF-8. See next entry. @node GNAT.Decode_UTF8_String (g-deutst.ads) @section @code{GNAT.Decode_UTF8_String} (@file{g-deutst.ads}) @cindex @code{GNAT.Decode_UTF8_String} (@file{g-deutst.ads}) @cindex Decoding strings @cindex Decoding UTF-8 strings @cindex UTF-8 string decoding @cindex Wide character decoding @cindex UTF-8 @cindex Unicode @noindent A preinstantiation of GNAT.Decode_Strings for UTF-8 encoding. @node GNAT.Directory_Operations (g-dirope.ads) @section @code{GNAT.Directory_Operations} (@file{g-dirope.ads}) @cindex @code{GNAT.Directory_Operations} (@file{g-dirope.ads}) @cindex Directory operations @noindent Provides a set of routines for manipulating directories, including changing the current directory, making new directories, and scanning the files in a directory. @node GNAT.Directory_Operations.Iteration (g-diopit.ads) @section @code{GNAT.Directory_Operations.Iteration} (@file{g-diopit.ads}) @cindex @code{GNAT.Directory_Operations.Iteration} (@file{g-diopit.ads}) @cindex Directory operations iteration @noindent A child unit of GNAT.Directory_Operations providing additional operations for iterating through directories. @node GNAT.Dynamic_HTables (g-dynhta.ads) @section @code{GNAT.Dynamic_HTables} (@file{g-dynhta.ads}) @cindex @code{GNAT.Dynamic_HTables} (@file{g-dynhta.ads}) @cindex Hash tables @noindent A generic implementation of hash tables that can be used to hash arbitrary data. Provided in two forms, a simple form with built in hash functions, and a more complex form in which the hash function is supplied. @noindent This package provides a facility similar to that of @code{GNAT.HTable}, except that this package declares a type that can be used to define dynamic instances of the hash table, while an instantiation of @code{GNAT.HTable} creates a single instance of the hash table. @node GNAT.Dynamic_Tables (g-dyntab.ads) @section @code{GNAT.Dynamic_Tables} (@file{g-dyntab.ads}) @cindex @code{GNAT.Dynamic_Tables} (@file{g-dyntab.ads}) @cindex Table implementation @cindex Arrays, extendable @noindent A generic package providing a single dimension array abstraction where the length of the array can be dynamically modified. @noindent This package provides a facility similar to that of @code{GNAT.Table}, except that this package declares a type that can be used to define dynamic instances of the table, while an instantiation of @code{GNAT.Table} creates a single instance of the table type. @node GNAT.Encode_String (g-encstr.ads) @section @code{GNAT.Encode_String} (@file{g-encstr.ads}) @cindex @code{GNAT.Encode_String} (@file{g-encstr.ads}) @cindex Encoding strings @cindex String encoding @cindex Wide character encoding @cindex UTF-8 @cindex Unicode @noindent A generic package providing routines for encoding wide character and wide wide character strings as sequences of 8-bit characters using a specified encoding method. Useful in conjunction with Unicode character coding. Note there is a preinstantiation for UTF-8. See next entry. @node GNAT.Encode_UTF8_String (g-enutst.ads) @section @code{GNAT.Encode_UTF8_String} (@file{g-enutst.ads}) @cindex @code{GNAT.Encode_UTF8_String} (@file{g-enutst.ads}) @cindex Encoding strings @cindex Encoding UTF-8 strings @cindex UTF-8 string encoding @cindex Wide character encoding @cindex UTF-8 @cindex Unicode @noindent A preinstantiation of GNAT.Encode_Strings for UTF-8 encoding. @node GNAT.Exception_Actions (g-excact.ads) @section @code{GNAT.Exception_Actions} (@file{g-excact.ads}) @cindex @code{GNAT.Exception_Actions} (@file{g-excact.ads}) @cindex Exception actions @noindent Provides callbacks when an exception is raised. Callbacks can be registered for specific exceptions, or when any exception is raised. This can be used for instance to force a core dump to ease debugging. @node GNAT.Exception_Traces (g-exctra.ads) @section @code{GNAT.Exception_Traces} (@file{g-exctra.ads}) @cindex @code{GNAT.Exception_Traces} (@file{g-exctra.ads}) @cindex Exception traces @cindex Debugging @noindent Provides an interface allowing to control automatic output upon exception occurrences. @node GNAT.Exceptions (g-except.ads) @section @code{GNAT.Exceptions} (@file{g-expect.ads}) @cindex @code{GNAT.Exceptions} (@file{g-expect.ads}) @cindex Exceptions, Pure @cindex Pure packages, exceptions @noindent Normally it is not possible to raise an exception with a message from a subprogram in a pure package, since the necessary types and subprograms are in @code{Ada.Exceptions} which is not a pure unit. @code{GNAT.Exceptions} provides a facility for getting around this limitation for a few predefined exceptions, and for example allow raising @code{Constraint_Error} with a message from a pure subprogram. @node GNAT.Expect (g-expect.ads) @section @code{GNAT.Expect} (@file{g-expect.ads}) @cindex @code{GNAT.Expect} (@file{g-expect.ads}) @noindent Provides a set of subprograms similar to what is available with the standard Tcl Expect tool. It allows you to easily spawn and communicate with an external process. You can send commands or inputs to the process, and compare the output with some expected regular expression. Currently @code{GNAT.Expect} is implemented on all native GNAT ports except for OpenVMS@. It is not implemented for cross ports, and in particular is not implemented for VxWorks or LynxOS@. @node GNAT.Expect.TTY (g-exptty.ads) @section @code{GNAT.Expect.TTY} (@file{g-exptty.ads}) @cindex @code{GNAT.Expect.TTY} (@file{g-exptty.ads}) @noindent As GNAT.Expect but using pseudo-terminal. Currently @code{GNAT.Expect.TTY} is implemented on all native GNAT ports except for OpenVMS@. It is not implemented for cross ports, and in particular is not implemented for VxWorks or LynxOS@. @node GNAT.Float_Control (g-flocon.ads) @section @code{GNAT.Float_Control} (@file{g-flocon.ads}) @cindex @code{GNAT.Float_Control} (@file{g-flocon.ads}) @cindex Floating-Point Processor @noindent Provides an interface for resetting the floating-point processor into the mode required for correct semantic operation in Ada. Some third party library calls may cause this mode to be modified, and the Reset procedure in this package can be used to reestablish the required mode. @node GNAT.Heap_Sort (g-heasor.ads) @section @code{GNAT.Heap_Sort} (@file{g-heasor.ads}) @cindex @code{GNAT.Heap_Sort} (@file{g-heasor.ads}) @cindex Sorting @noindent Provides a general implementation of heap sort usable for sorting arbitrary data items. Exchange and comparison procedures are provided by passing access-to-procedure values. The algorithm used is a modified heap sort that performs approximately N*log(N) comparisons in the worst case. @node GNAT.Heap_Sort_A (g-hesora.ads) @section @code{GNAT.Heap_Sort_A} (@file{g-hesora.ads}) @cindex @code{GNAT.Heap_Sort_A} (@file{g-hesora.ads}) @cindex Sorting @noindent Provides a general implementation of heap sort usable for sorting arbitrary data items. Move and comparison procedures are provided by passing access-to-procedure values. The algorithm used is a modified heap sort that performs approximately N*log(N) comparisons in the worst case. This differs from @code{GNAT.Heap_Sort} in having a less convenient interface, but may be slightly more efficient. @node GNAT.Heap_Sort_G (g-hesorg.ads) @section @code{GNAT.Heap_Sort_G} (@file{g-hesorg.ads}) @cindex @code{GNAT.Heap_Sort_G} (@file{g-hesorg.ads}) @cindex Sorting @noindent Similar to @code{Heap_Sort_A} except that the move and sorting procedures are provided as generic parameters, this improves efficiency, especially if the procedures can be inlined, at the expense of duplicating code for multiple instantiations. @node GNAT.HTable (g-htable.ads) @section @code{GNAT.HTable} (@file{g-htable.ads}) @cindex @code{GNAT.HTable} (@file{g-htable.ads}) @cindex Hash tables @noindent A generic implementation of hash tables that can be used to hash arbitrary data. Provides two approaches, one a simple static approach, and the other allowing arbitrary dynamic hash tables. @node GNAT.IO (g-io.ads) @section @code{GNAT.IO} (@file{g-io.ads}) @cindex @code{GNAT.IO} (@file{g-io.ads}) @cindex Simple I/O @cindex Input/Output facilities @noindent A simple preelaborable input-output package that provides a subset of simple Text_IO functions for reading characters and strings from Standard_Input, and writing characters, strings and integers to either Standard_Output or Standard_Error. @node GNAT.IO_Aux (g-io_aux.ads) @section @code{GNAT.IO_Aux} (@file{g-io_aux.ads}) @cindex @code{GNAT.IO_Aux} (@file{g-io_aux.ads}) @cindex Text_IO @cindex Input/Output facilities Provides some auxiliary functions for use with Text_IO, including a test for whether a file exists, and functions for reading a line of text. @node GNAT.Lock_Files (g-locfil.ads) @section @code{GNAT.Lock_Files} (@file{g-locfil.ads}) @cindex @code{GNAT.Lock_Files} (@file{g-locfil.ads}) @cindex File locking @cindex Locking using files @noindent Provides a general interface for using files as locks. Can be used for providing program level synchronization. @node GNAT.MBBS_Discrete_Random (g-mbdira.ads) @section @code{GNAT.MBBS_Discrete_Random} (@file{g-mbdira.ads}) @cindex @code{GNAT.MBBS_Discrete_Random} (@file{g-mbdira.ads}) @cindex Random number generation @noindent The original implementation of @code{Ada.Numerics.Discrete_Random}. Uses a modified version of the Blum-Blum-Shub generator. @node GNAT.MBBS_Float_Random (g-mbflra.ads) @section @code{GNAT.MBBS_Float_Random} (@file{g-mbflra.ads}) @cindex @code{GNAT.MBBS_Float_Random} (@file{g-mbflra.ads}) @cindex Random number generation @noindent The original implementation of @code{Ada.Numerics.Float_Random}. Uses a modified version of the Blum-Blum-Shub generator. @node GNAT.MD5 (g-md5.ads) @section @code{GNAT.MD5} (@file{g-md5.ads}) @cindex @code{GNAT.MD5} (@file{g-md5.ads}) @cindex Message Digest MD5 @noindent Implements the MD5 Message-Digest Algorithm as described in RFC 1321. @node GNAT.Memory_Dump (g-memdum.ads) @section @code{GNAT.Memory_Dump} (@file{g-memdum.ads}) @cindex @code{GNAT.Memory_Dump} (@file{g-memdum.ads}) @cindex Dump Memory @noindent Provides a convenient routine for dumping raw memory to either the standard output or standard error files. Uses GNAT.IO for actual output. @node GNAT.Most_Recent_Exception (g-moreex.ads) @section @code{GNAT.Most_Recent_Exception} (@file{g-moreex.ads}) @cindex @code{GNAT.Most_Recent_Exception} (@file{g-moreex.ads}) @cindex Exception, obtaining most recent @noindent Provides access to the most recently raised exception. Can be used for various logging purposes, including duplicating functionality of some Ada 83 implementation dependent extensions. @node GNAT.OS_Lib (g-os_lib.ads) @section @code{GNAT.OS_Lib} (@file{g-os_lib.ads}) @cindex @code{GNAT.OS_Lib} (@file{g-os_lib.ads}) @cindex Operating System interface @cindex Spawn capability @noindent Provides a range of target independent operating system interface functions, including time/date management, file operations, subprocess management, including a portable spawn procedure, and access to environment variables and error return codes. @node GNAT.Perfect_Hash_Generators (g-pehage.ads) @section @code{GNAT.Perfect_Hash_Generators} (@file{g-pehage.ads}) @cindex @code{GNAT.Perfect_Hash_Generators} (@file{g-pehage.ads}) @cindex Hash functions @noindent Provides a generator of static minimal perfect hash functions. No collisions occur and each item can be retrieved from the table in one probe (perfect property). The hash table size corresponds to the exact size of the key set and no larger (minimal property). The key set has to be know in advance (static property). The hash functions are also order preserving. If w2 is inserted after w1 in the generator, their hashcode are in the same order. These hashing functions are very convenient for use with realtime applications. @node GNAT.Random_Numbers (g-rannum.ads) @section @code{GNAT.Random_Numbers} (@file{g-rannum.ads}) @cindex @code{GNAT.Random_Numbers} (@file{g-rannum.ads}) @cindex Random number generation @noindent Provides random number capabilities which extend those available in the standard Ada library and are more convenient to use. @node GNAT.Regexp (g-regexp.ads) @section @code{GNAT.Regexp} (@file{g-regexp.ads}) @cindex @code{GNAT.Regexp} (@file{g-regexp.ads}) @cindex Regular expressions @cindex Pattern matching @noindent A simple implementation of regular expressions, using a subset of regular expression syntax copied from familiar Unix style utilities. This is the simples of the three pattern matching packages provided, and is particularly suitable for ``file globbing'' applications. @node GNAT.Registry (g-regist.ads) @section @code{GNAT.Registry} (@file{g-regist.ads}) @cindex @code{GNAT.Registry} (@file{g-regist.ads}) @cindex Windows Registry @noindent This is a high level binding to the Windows registry. It is possible to do simple things like reading a key value, creating a new key. For full registry API, but at a lower level of abstraction, refer to the Win32.Winreg package provided with the Win32Ada binding @node GNAT.Regpat (g-regpat.ads) @section @code{GNAT.Regpat} (@file{g-regpat.ads}) @cindex @code{GNAT.Regpat} (@file{g-regpat.ads}) @cindex Regular expressions @cindex Pattern matching @noindent A complete implementation of Unix-style regular expression matching, copied from the original V7 style regular expression library written in C by Henry Spencer (and binary compatible with this C library). @node GNAT.Secondary_Stack_Info (g-sestin.ads) @section @code{GNAT.Secondary_Stack_Info} (@file{g-sestin.ads}) @cindex @code{GNAT.Secondary_Stack_Info} (@file{g-sestin.ads}) @cindex Secondary Stack Info @noindent Provide the capability to query the high water mark of the current task's secondary stack. @node GNAT.Semaphores (g-semaph.ads) @section @code{GNAT.Semaphores} (@file{g-semaph.ads}) @cindex @code{GNAT.Semaphores} (@file{g-semaph.ads}) @cindex Semaphores @noindent Provides classic counting and binary semaphores using protected types. @node GNAT.Serial_Communications (g-sercom.ads) @section @code{GNAT.Serial_Communications} (@file{g-sercom.ads}) @cindex @code{GNAT.Serial_Communications} (@file{g-sercom.ads}) @cindex Serial_Communications @noindent Provides a simple interface to send and receive data over a serial port. This is only supported on GNU/Linux and Windows. @node GNAT.SHA1 (g-sha1.ads) @section @code{GNAT.SHA1} (@file{g-sha1.ads}) @cindex @code{GNAT.SHA1} (@file{g-sha1.ads}) @cindex Secure Hash Algorithm SHA-1 @noindent Implements the SHA-1 Secure Hash Algorithm as described in FIPS PUB 180-3 and RFC 3174. @node GNAT.SHA224 (g-sha224.ads) @section @code{GNAT.SHA224} (@file{g-sha224.ads}) @cindex @code{GNAT.SHA224} (@file{g-sha224.ads}) @cindex Secure Hash Algorithm SHA-224 @noindent Implements the SHA-224 Secure Hash Algorithm as described in FIPS PUB 180-3. @node GNAT.SHA256 (g-sha256.ads) @section @code{GNAT.SHA256} (@file{g-sha256.ads}) @cindex @code{GNAT.SHA256} (@file{g-sha256.ads}) @cindex Secure Hash Algorithm SHA-256 @noindent Implements the SHA-256 Secure Hash Algorithm as described in FIPS PUB 180-3. @node GNAT.SHA384 (g-sha384.ads) @section @code{GNAT.SHA384} (@file{g-sha384.ads}) @cindex @code{GNAT.SHA384} (@file{g-sha384.ads}) @cindex Secure Hash Algorithm SHA-384 @noindent Implements the SHA-384 Secure Hash Algorithm as described in FIPS PUB 180-3. @node GNAT.SHA512 (g-sha512.ads) @section @code{GNAT.SHA512} (@file{g-sha512.ads}) @cindex @code{GNAT.SHA512} (@file{g-sha512.ads}) @cindex Secure Hash Algorithm SHA-512 @noindent Implements the SHA-512 Secure Hash Algorithm as described in FIPS PUB 180-3. @node GNAT.Signals (g-signal.ads) @section @code{GNAT.Signals} (@file{g-signal.ads}) @cindex @code{GNAT.Signals} (@file{g-signal.ads}) @cindex Signals @noindent Provides the ability to manipulate the blocked status of signals on supported targets. @node GNAT.Sockets (g-socket.ads) @section @code{GNAT.Sockets} (@file{g-socket.ads}) @cindex @code{GNAT.Sockets} (@file{g-socket.ads}) @cindex Sockets @noindent A high level and portable interface to develop sockets based applications. This package is based on the sockets thin binding found in @code{GNAT.Sockets.Thin}. Currently @code{GNAT.Sockets} is implemented on all native GNAT ports except for OpenVMS@. It is not implemented for the LynxOS@ cross port. @node GNAT.Source_Info (g-souinf.ads) @section @code{GNAT.Source_Info} (@file{g-souinf.ads}) @cindex @code{GNAT.Source_Info} (@file{g-souinf.ads}) @cindex Source Information @noindent Provides subprograms that give access to source code information known at compile time, such as the current file name and line number. @node GNAT.Spelling_Checker (g-speche.ads) @section @code{GNAT.Spelling_Checker} (@file{g-speche.ads}) @cindex @code{GNAT.Spelling_Checker} (@file{g-speche.ads}) @cindex Spell checking @noindent Provides a function for determining whether one string is a plausible near misspelling of another string. @node GNAT.Spelling_Checker_Generic (g-spchge.ads) @section @code{GNAT.Spelling_Checker_Generic} (@file{g-spchge.ads}) @cindex @code{GNAT.Spelling_Checker_Generic} (@file{g-spchge.ads}) @cindex Spell checking @noindent Provides a generic function that can be instantiated with a string type for determining whether one string is a plausible near misspelling of another string. @node GNAT.Spitbol.Patterns (g-spipat.ads) @section @code{GNAT.Spitbol.Patterns} (@file{g-spipat.ads}) @cindex @code{GNAT.Spitbol.Patterns} (@file{g-spipat.ads}) @cindex SPITBOL pattern matching @cindex Pattern matching @noindent A complete implementation of SNOBOL4 style pattern matching. This is the most elaborate of the pattern matching packages provided. It fully duplicates the SNOBOL4 dynamic pattern construction and matching capabilities, using the efficient algorithm developed by Robert Dewar for the SPITBOL system. @node GNAT.Spitbol (g-spitbo.ads) @section @code{GNAT.Spitbol} (@file{g-spitbo.ads}) @cindex @code{GNAT.Spitbol} (@file{g-spitbo.ads}) @cindex SPITBOL interface @noindent The top level package of the collection of SPITBOL-style functionality, this package provides basic SNOBOL4 string manipulation functions, such as Pad, Reverse, Trim, Substr capability, as well as a generic table function useful for constructing arbitrary mappings from strings in the style of the SNOBOL4 TABLE function. @node GNAT.Spitbol.Table_Boolean (g-sptabo.ads) @section @code{GNAT.Spitbol.Table_Boolean} (@file{g-sptabo.ads}) @cindex @code{GNAT.Spitbol.Table_Boolean} (@file{g-sptabo.ads}) @cindex Sets of strings @cindex SPITBOL Tables @noindent A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table} for type @code{Standard.Boolean}, giving an implementation of sets of string values. @node GNAT.Spitbol.Table_Integer (g-sptain.ads) @section @code{GNAT.Spitbol.Table_Integer} (@file{g-sptain.ads}) @cindex @code{GNAT.Spitbol.Table_Integer} (@file{g-sptain.ads}) @cindex Integer maps @cindex Maps @cindex SPITBOL Tables @noindent A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table} for type @code{Standard.Integer}, giving an implementation of maps from string to integer values. @node GNAT.Spitbol.Table_VString (g-sptavs.ads) @section @code{GNAT.Spitbol.Table_VString} (@file{g-sptavs.ads}) @cindex @code{GNAT.Spitbol.Table_VString} (@file{g-sptavs.ads}) @cindex String maps @cindex Maps @cindex SPITBOL Tables @noindent A library level of instantiation of @code{GNAT.Spitbol.Patterns.Table} for a variable length string type, giving an implementation of general maps from strings to strings. @node GNAT.SSE (g-sse.ads) @section @code{GNAT.SSE} (@file{g-sse.ads}) @cindex @code{GNAT.SSE} (@file{g-sse.ads}) @noindent Root of a set of units aimed at offering Ada bindings to a subset of the Intel(r) Streaming SIMD Extensions with GNAT on the x86 family of targets. It exposes vector component types together with a general introduction to the binding contents and use. @node GNAT.SSE.Vector_Types (g-ssvety.ads) @section @code{GNAT.SSE.Vector_Types} (@file{g-ssvety.ads}) @cindex @code{GNAT.SSE.Vector_Types} (@file{g-ssvety.ads}) @noindent SSE vector types for use with SSE related intrinsics. @node GNAT.Strings (g-string.ads) @section @code{GNAT.Strings} (@file{g-string.ads}) @cindex @code{GNAT.Strings} (@file{g-string.ads}) @noindent Common String access types and related subprograms. Basically it defines a string access and an array of string access types. @node GNAT.String_Split (g-strspl.ads) @section @code{GNAT.String_Split} (@file{g-strspl.ads}) @cindex @code{GNAT.String_Split} (@file{g-strspl.ads}) @cindex String splitter @noindent Useful string manipulation routines: given a set of separators, split a string wherever the separators appear, and provide direct access to the resulting slices. This package is instantiated from @code{GNAT.Array_Split}. @node GNAT.Table (g-table.ads) @section @code{GNAT.Table} (@file{g-table.ads}) @cindex @code{GNAT.Table} (@file{g-table.ads}) @cindex Table implementation @cindex Arrays, extendable @noindent A generic package providing a single dimension array abstraction where the length of the array can be dynamically modified. @noindent This package provides a facility similar to that of @code{GNAT.Dynamic_Tables}, except that this package declares a single instance of the table type, while an instantiation of @code{GNAT.Dynamic_Tables} creates a type that can be used to define dynamic instances of the table. @node GNAT.Task_Lock (g-tasloc.ads) @section @code{GNAT.Task_Lock} (@file{g-tasloc.ads}) @cindex @code{GNAT.Task_Lock} (@file{g-tasloc.ads}) @cindex Task synchronization @cindex Task locking @cindex Locking @noindent A very simple facility for locking and unlocking sections of code using a single global task lock. Appropriate for use in situations where contention between tasks is very rarely expected. @node GNAT.Time_Stamp (g-timsta.ads) @section @code{GNAT.Time_Stamp} (@file{g-timsta.ads}) @cindex @code{GNAT.Time_Stamp} (@file{g-timsta.ads}) @cindex Time stamp @cindex Current time @noindent Provides a simple function that returns a string YYYY-MM-DD HH:MM:SS.SS that represents the current date and time in ISO 8601 format. This is a very simple routine with minimal code and there are no dependencies on any other unit. @node GNAT.Threads (g-thread.ads) @section @code{GNAT.Threads} (@file{g-thread.ads}) @cindex @code{GNAT.Threads} (@file{g-thread.ads}) @cindex Foreign threads @cindex Threads, foreign @noindent Provides facilities for dealing with foreign threads which need to be known by the GNAT run-time system. Consult the documentation of this package for further details if your program has threads that are created by a non-Ada environment which then accesses Ada code. @node GNAT.Traceback (g-traceb.ads) @section @code{GNAT.Traceback} (@file{g-traceb.ads}) @cindex @code{GNAT.Traceback} (@file{g-traceb.ads}) @cindex Trace back facilities @noindent Provides a facility for obtaining non-symbolic traceback information, useful in various debugging situations. @node GNAT.Traceback.Symbolic (g-trasym.ads) @section @code{GNAT.Traceback.Symbolic} (@file{g-trasym.ads}) @cindex @code{GNAT.Traceback.Symbolic} (@file{g-trasym.ads}) @cindex Trace back facilities @node GNAT.UTF_32 (g-utf_32.ads) @section @code{GNAT.UTF_32} (@file{g-table.ads}) @cindex @code{GNAT.UTF_32} (@file{g-table.ads}) @cindex Wide character codes @noindent This is a package intended to be used in conjunction with the @code{Wide_Character} type in Ada 95 and the @code{Wide_Wide_Character} type in Ada 2005 (available in @code{GNAT} in Ada 2005 mode). This package contains Unicode categorization routines, as well as lexical categorization routines corresponding to the Ada 2005 lexical rules for identifiers and strings, and also a lower case to upper case fold routine corresponding to the Ada 2005 rules for identifier equivalence. @node GNAT.UTF_32_Spelling_Checker (g-u3spch.ads) @section @code{GNAT.Wide_Spelling_Checker} (@file{g-u3spch.ads}) @cindex @code{GNAT.Wide_Spelling_Checker} (@file{g-u3spch.ads}) @cindex Spell checking @noindent Provides a function for determining whether one wide wide string is a plausible near misspelling of another wide wide string, where the strings are represented using the UTF_32_String type defined in System.Wch_Cnv. @node GNAT.Wide_Spelling_Checker (g-wispch.ads) @section @code{GNAT.Wide_Spelling_Checker} (@file{g-wispch.ads}) @cindex @code{GNAT.Wide_Spelling_Checker} (@file{g-wispch.ads}) @cindex Spell checking @noindent Provides a function for determining whether one wide string is a plausible near misspelling of another wide string. @node GNAT.Wide_String_Split (g-wistsp.ads) @section @code{GNAT.Wide_String_Split} (@file{g-wistsp.ads}) @cindex @code{GNAT.Wide_String_Split} (@file{g-wistsp.ads}) @cindex Wide_String splitter @noindent Useful wide string manipulation routines: given a set of separators, split a wide string wherever the separators appear, and provide direct access to the resulting slices. This package is instantiated from @code{GNAT.Array_Split}. @node GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads) @section @code{GNAT.Wide_Wide_Spelling_Checker} (@file{g-zspche.ads}) @cindex @code{GNAT.Wide_Wide_Spelling_Checker} (@file{g-zspche.ads}) @cindex Spell checking @noindent Provides a function for determining whether one wide wide string is a plausible near misspelling of another wide wide string. @node GNAT.Wide_Wide_String_Split (g-zistsp.ads) @section @code{GNAT.Wide_Wide_String_Split} (@file{g-zistsp.ads}) @cindex @code{GNAT.Wide_Wide_String_Split} (@file{g-zistsp.ads}) @cindex Wide_Wide_String splitter @noindent Useful wide wide string manipulation routines: given a set of separators, split a wide wide string wherever the separators appear, and provide direct access to the resulting slices. This package is instantiated from @code{GNAT.Array_Split}. @node Interfaces.C.Extensions (i-cexten.ads) @section @code{Interfaces.C.Extensions} (@file{i-cexten.ads}) @cindex @code{Interfaces.C.Extensions} (@file{i-cexten.ads}) @noindent This package contains additional C-related definitions, intended for use with either manually or automatically generated bindings to C libraries. @node Interfaces.C.Streams (i-cstrea.ads) @section @code{Interfaces.C.Streams} (@file{i-cstrea.ads}) @cindex @code{Interfaces.C.Streams} (@file{i-cstrea.ads}) @cindex C streams, interfacing @noindent This package is a binding for the most commonly used operations on C streams. @node Interfaces.CPP (i-cpp.ads) @section @code{Interfaces.CPP} (@file{i-cpp.ads}) @cindex @code{Interfaces.CPP} (@file{i-cpp.ads}) @cindex C++ interfacing @cindex Interfacing, to C++ @noindent This package provides facilities for use in interfacing to C++. It is primarily intended to be used in connection with automated tools for the generation of C++ interfaces. @node Interfaces.Packed_Decimal (i-pacdec.ads) @section @code{Interfaces.Packed_Decimal} (@file{i-pacdec.ads}) @cindex @code{Interfaces.Packed_Decimal} (@file{i-pacdec.ads}) @cindex IBM Packed Format @cindex Packed Decimal @noindent This package provides a set of routines for conversions to and from a packed decimal format compatible with that used on IBM mainframes. @node Interfaces.VxWorks (i-vxwork.ads) @section @code{Interfaces.VxWorks} (@file{i-vxwork.ads}) @cindex @code{Interfaces.VxWorks} (@file{i-vxwork.ads}) @cindex Interfacing to VxWorks @cindex VxWorks, interfacing @noindent This package provides a limited binding to the VxWorks API. In particular, it interfaces with the VxWorks hardware interrupt facilities. @node Interfaces.VxWorks.IO (i-vxwoio.ads) @section @code{Interfaces.VxWorks.IO} (@file{i-vxwoio.ads}) @cindex @code{Interfaces.VxWorks.IO} (@file{i-vxwoio.ads}) @cindex Interfacing to VxWorks' I/O @cindex VxWorks, I/O interfacing @cindex VxWorks, Get_Immediate @cindex Get_Immediate, VxWorks @noindent This package provides a binding to the ioctl (IO/Control) function of VxWorks, defining a set of option values and function codes. A particular use of this package is to enable the use of Get_Immediate under VxWorks. @node System.Address_Image (s-addima.ads) @section @code{System.Address_Image} (@file{s-addima.ads}) @cindex @code{System.Address_Image} (@file{s-addima.ads}) @cindex Address image @cindex Image, of an address @noindent This function provides a useful debugging function that gives an (implementation dependent) string which identifies an address. @node System.Assertions (s-assert.ads) @section @code{System.Assertions} (@file{s-assert.ads}) @cindex @code{System.Assertions} (@file{s-assert.ads}) @cindex Assertions @cindex Assert_Failure, exception @noindent This package provides the declaration of the exception raised by an run-time assertion failure, as well as the routine that is used internally to raise this assertion. @node System.Memory (s-memory.ads) @section @code{System.Memory} (@file{s-memory.ads}) @cindex @code{System.Memory} (@file{s-memory.ads}) @cindex Memory allocation @noindent This package provides the interface to the low level routines used by the generated code for allocation and freeing storage for the default storage pool (analogous to the C routines malloc and free. It also provides a reallocation interface analogous to the C routine realloc. The body of this unit may be modified to provide alternative allocation mechanisms for the default pool, and in addition, direct calls to this unit may be made for low level allocation uses (for example see the body of @code{GNAT.Tables}). @node System.Multiprocessors (s-multip.ads) @section @code{System.Multiprocessors} (@file{s-multip.ads}) @cindex @code{System.Multiprocessors} (@file{s-multip.ads}) @cindex Multiprocessor interface This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but in GNAT we also make it available in Ada 95 and Ada 2005 (where it is technically an implementation-defined addition). @node System.Multiprocessors.Dispatching_Domains (s-mudido.ads) @section @code{System.Multiprocessors.Dispatching_Domains} (@file{s-mudido.ads}) @cindex @code{System.Multiprocessors.Dispatching_Domains} (@file{s-mudido.ads}) @cindex Multiprocessor interface This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but in GNAT we also make it available in Ada 95 and Ada 2005 (where it is technically an implementation-defined addition). @node System.Partition_Interface (s-parint.ads) @section @code{System.Partition_Interface} (@file{s-parint.ads}) @cindex @code{System.Partition_Interface} (@file{s-parint.ads}) @cindex Partition interfacing functions @noindent This package provides facilities for partition interfacing. It is used primarily in a distribution context when using Annex E with @code{GLADE}. @node System.Pool_Global (s-pooglo.ads) @section @code{System.Pool_Global} (@file{s-pooglo.ads}) @cindex @code{System.Pool_Global} (@file{s-pooglo.ads}) @cindex Storage pool, global @cindex Global storage pool @noindent This package provides a storage pool that is equivalent to the default storage pool used for access types for which no pool is specifically declared. It uses malloc/free to allocate/free and does not attempt to do any automatic reclamation. @node System.Pool_Local (s-pooloc.ads) @section @code{System.Pool_Local} (@file{s-pooloc.ads}) @cindex @code{System.Pool_Local} (@file{s-pooloc.ads}) @cindex Storage pool, local @cindex Local storage pool @noindent This package provides a storage pool that is intended for use with locally defined access types. It uses malloc/free for allocate/free, and maintains a list of allocated blocks, so that all storage allocated for the pool can be freed automatically when the pool is finalized. @node System.Restrictions (s-restri.ads) @section @code{System.Restrictions} (@file{s-restri.ads}) @cindex @code{System.Restrictions} (@file{s-restri.ads}) @cindex Run-time restrictions access @noindent This package provides facilities for accessing at run time the status of restrictions specified at compile time for the partition. Information is available both with regard to actual restrictions specified, and with regard to compiler determined information on which restrictions are violated by one or more packages in the partition. @node System.Rident (s-rident.ads) @section @code{System.Rident} (@file{s-rident.ads}) @cindex @code{System.Rident} (@file{s-rident.ads}) @cindex Restrictions definitions @noindent This package provides definitions of the restrictions identifiers supported by GNAT, and also the format of the restrictions provided in package System.Restrictions. It is not normally necessary to @code{with} this generic package since the necessary instantiation is included in package System.Restrictions. @node System.Strings.Stream_Ops (s-ststop.ads) @section @code{System.Strings.Stream_Ops} (@file{s-ststop.ads}) @cindex @code{System.Strings.Stream_Ops} (@file{s-ststop.ads}) @cindex Stream operations @cindex String stream operations @noindent This package provides a set of stream subprograms for standard string types. It is intended primarily to support implicit use of such subprograms when stream attributes are applied to string types, but the subprograms in this package can be used directly by application programs. @node System.Task_Info (s-tasinf.ads) @section @code{System.Task_Info} (@file{s-tasinf.ads}) @cindex @code{System.Task_Info} (@file{s-tasinf.ads}) @cindex Task_Info pragma @noindent This package provides target dependent functionality that is used to support the @code{Task_Info} pragma @node System.Wch_Cnv (s-wchcnv.ads) @section @code{System.Wch_Cnv} (@file{s-wchcnv.ads}) @cindex @code{System.Wch_Cnv} (@file{s-wchcnv.ads}) @cindex Wide Character, Representation @cindex Wide String, Conversion @cindex Representation of wide characters @noindent This package provides routines for converting between wide and wide wide characters and a representation as a value of type @code{Standard.String}, using a specified wide character encoding method. It uses definitions in package @code{System.Wch_Con}. @node System.Wch_Con (s-wchcon.ads) @section @code{System.Wch_Con} (@file{s-wchcon.ads}) @cindex @code{System.Wch_Con} (@file{s-wchcon.ads}) @noindent This package provides definitions and descriptions of the various methods used for encoding wide characters in ordinary strings. These definitions are used by the package @code{System.Wch_Cnv}. @node Interfacing to Other Languages @chapter Interfacing to Other Languages @noindent The facilities in annex B of the Ada Reference Manual are fully implemented in GNAT, and in addition, a full interface to C++ is provided. @menu * Interfacing to C:: * Interfacing to C++:: * Interfacing to COBOL:: * Interfacing to Fortran:: * Interfacing to non-GNAT Ada code:: @end menu @node Interfacing to C @section Interfacing to C @noindent Interfacing to C with GNAT can use one of two approaches: @itemize @bullet @item The types in the package @code{Interfaces.C} may be used. @item Standard Ada types may be used directly. This may be less portable to other compilers, but will work on all GNAT compilers, which guarantee correspondence between the C and Ada types. @end itemize @noindent Pragma @code{Convention C} may be applied to Ada types, but mostly has no effect, since this is the default. The following table shows the correspondence between Ada scalar types and the corresponding C types. @table @code @item Integer @code{int} @item Short_Integer @code{short} @item Short_Short_Integer @code{signed char} @item Long_Integer @code{long} @item Long_Long_Integer @code{long long} @item Short_Float @code{float} @item Float @code{float} @item Long_Float @code{double} @item Long_Long_Float This is the longest floating-point type supported by the hardware. @end table @noindent Additionally, there are the following general correspondences between Ada and C types: @itemize @bullet @item Ada enumeration types map to C enumeration types directly if pragma @code{Convention C} is specified, which causes them to have int length. Without pragma @code{Convention C}, Ada enumeration types map to 8, 16, or 32 bits (i.e.@: C types @code{signed char}, @code{short}, @code{int}, respectively) depending on the number of values passed. This is the only case in which pragma @code{Convention C} affects the representation of an Ada type. @item Ada access types map to C pointers, except for the case of pointers to unconstrained types in Ada, which have no direct C equivalent. @item Ada arrays map directly to C arrays. @item Ada records map directly to C structures. @item Packed Ada records map to C structures where all members are bit fields of the length corresponding to the @code{@var{type}'Size} value in Ada. @end itemize @node Interfacing to C++ @section Interfacing to C++ @noindent The interface to C++ makes use of the following pragmas, which are primarily intended to be constructed automatically using a binding generator tool, although it is possible to construct them by hand. Using these pragmas it is possible to achieve complete inter-operability between Ada tagged types and C++ class definitions. See @ref{Implementation Defined Pragmas}, for more details. @table @code @item pragma CPP_Class ([Entity =>] @var{LOCAL_NAME}) The argument denotes an entity in the current declarative region that is declared as a tagged or untagged record type. It indicates that the type corresponds to an externally declared C++ class type, and is to be laid out the same way that C++ would lay out the type. Note: Pragma @code{CPP_Class} is currently obsolete. It is supported for backward compatibility but its functionality is available using pragma @code{Import} with @code{Convention} = @code{CPP}. @item pragma CPP_Constructor ([Entity =>] @var{LOCAL_NAME}) This pragma identifies an imported function (imported in the usual way with pragma @code{Import}) as corresponding to a C++ constructor. @end table A few restrictions are placed on the use of the @code{Access} attribute in conjunction with subprograms subject to convention @code{CPP}: the attribute may be used neither on primitive operations of a tagged record type with convention @code{CPP}, imported or not, nor on subprograms imported with pragma @code{CPP_Constructor}. In addition, C++ exceptions are propagated and can be handled in an @code{others} choice of an exception handler. The corresponding Ada occurrence has no message, and the simple name of the exception identity contains @samp{Foreign_Exception}. Finalization and awaiting dependent tasks works properly when such foreign exceptions are propagated. It is also possible to import a C++ exception using the following syntax: @smallexample @c ada LOCAL_NAME : exception; pragma Import (Cpp, [Entity =>] LOCAL_NAME, [External_Name =>] static_string_EXPRESSION); @end smallexample @noindent The @code{External_Name} is the name of the C++ RTTI symbol. You can then cover a specific C++ exception in an exception handler. @node Interfacing to COBOL @section Interfacing to COBOL @noindent Interfacing to COBOL is achieved as described in section B.4 of the Ada Reference Manual. @node Interfacing to Fortran @section Interfacing to Fortran @noindent Interfacing to Fortran is achieved as described in section B.5 of the Ada Reference Manual. The pragma @code{Convention Fortran}, applied to a multi-dimensional array causes the array to be stored in column-major order as required for convenient interface to Fortran. @node Interfacing to non-GNAT Ada code @section Interfacing to non-GNAT Ada code It is possible to specify the convention @code{Ada} in a pragma @code{Import} or pragma @code{Export}. However this refers to the calling conventions used by GNAT, which may or may not be similar enough to those used by some other Ada 83 / Ada 95 / Ada 2005 compiler to allow interoperation. If arguments types are kept simple, and if the foreign compiler generally follows system calling conventions, then it may be possible to integrate files compiled by other Ada compilers, provided that the elaboration issues are adequately addressed (for example by eliminating the need for any load time elaboration). In particular, GNAT running on VMS is designed to be highly compatible with the DEC Ada 83 compiler, so this is one case in which it is possible to import foreign units of this type, provided that the data items passed are restricted to simple scalar values or simple record types without variants, or simple array types with fixed bounds. @node Specialized Needs Annexes @chapter Specialized Needs Annexes @noindent Ada 95 and Ada 2005 define a number of Specialized Needs Annexes, which are not required in all implementations. However, as described in this chapter, GNAT implements all of these annexes: @table @asis @item Systems Programming (Annex C) The Systems Programming Annex is fully implemented. @item Real-Time Systems (Annex D) The Real-Time Systems Annex is fully implemented. @item Distributed Systems (Annex E) Stub generation is fully implemented in the GNAT compiler. In addition, a complete compatible PCS is available as part of the GLADE system, a separate product. When the two products are used in conjunction, this annex is fully implemented. @item Information Systems (Annex F) The Information Systems annex is fully implemented. @item Numerics (Annex G) The Numerics Annex is fully implemented. @item Safety and Security / High-Integrity Systems (Annex H) The Safety and Security Annex (termed the High-Integrity Systems Annex in Ada 2005) is fully implemented. @end table @node Implementation of Specific Ada Features @chapter Implementation of Specific Ada Features @noindent This chapter describes the GNAT implementation of several Ada language facilities. @menu * Machine Code Insertions:: * GNAT Implementation of Tasking:: * GNAT Implementation of Shared Passive Packages:: * Code Generation for Array Aggregates:: * The Size of Discriminated Records with Default Discriminants:: * Strict Conformance to the Ada Reference Manual:: @end menu @node Machine Code Insertions @section Machine Code Insertions @cindex Machine Code insertions @noindent Package @code{Machine_Code} provides machine code support as described in the Ada Reference Manual in two separate forms: @itemize @bullet @item Machine code statements, consisting of qualified expressions that fit the requirements of RM section 13.8. @item An intrinsic callable procedure, providing an alternative mechanism of including machine instructions in a subprogram. @end itemize @noindent The two features are similar, and both are closely related to the mechanism provided by the asm instruction in the GNU C compiler. Full understanding and use of the facilities in this package requires understanding the asm instruction, see @ref{Extended Asm,, Assembler Instructions with C Expression Operands, gcc, Using the GNU Compiler Collection (GCC)}. Calls to the function @code{Asm} and the procedure @code{Asm} have identical semantic restrictions and effects as described below. Both are provided so that the procedure call can be used as a statement, and the function call can be used to form a code_statement. The first example given in the GCC documentation is the C @code{asm} instruction: @smallexample asm ("fsinx %1 %0" : "=f" (result) : "f" (angle)); @end smallexample @noindent The equivalent can be written for GNAT as: @smallexample @c ada Asm ("fsinx %1 %0", My_Float'Asm_Output ("=f", result), My_Float'Asm_Input ("f", angle)); @end smallexample @noindent The first argument to @code{Asm} is the assembler template, and is identical to what is used in GNU C@. This string must be a static expression. The second argument is the output operand list. It is either a single @code{Asm_Output} attribute reference, or a list of such references enclosed in parentheses (technically an array aggregate of such references). The @code{Asm_Output} attribute denotes a function that takes two parameters. The first is a string, the second is the name of a variable of the type designated by the attribute prefix. The first (string) argument is required to be a static expression and designates the constraint for the parameter (e.g.@: what kind of register is required). The second argument is the variable to be updated with the result. The possible values for constraint are the same as those used in the RTL, and are dependent on the configuration file used to build the GCC back end. If there are no output operands, then this argument may either be omitted, or explicitly given as @code{No_Output_Operands}. The second argument of @code{@var{my_float}'Asm_Output} functions as though it were an @code{out} parameter, which is a little curious, but all names have the form of expressions, so there is no syntactic irregularity, even though normally functions would not be permitted @code{out} parameters. The third argument is the list of input operands. It is either a single @code{Asm_Input} attribute reference, or a list of such references enclosed in parentheses (technically an array aggregate of such references). The @code{Asm_Input} attribute denotes a function that takes two parameters. The first is a string, the second is an expression of the type designated by the prefix. The first (string) argument is required to be a static expression, and is the constraint for the parameter, (e.g.@: what kind of register is required). The second argument is the value to be used as the input argument. The possible values for the constant are the same as those used in the RTL, and are dependent on the configuration file used to built the GCC back end. If there are no input operands, this argument may either be omitted, or explicitly given as @code{No_Input_Operands}. The fourth argument, not present in the above example, is a list of register names, called the @dfn{clobber} argument. This argument, if given, must be a static string expression, and is a space or comma separated list of names of registers that must be considered destroyed as a result of the @code{Asm} call. If this argument is the null string (the default value), then the code generator assumes that no additional registers are destroyed. The fifth argument, not present in the above example, called the @dfn{volatile} argument, is by default @code{False}. It can be set to the literal value @code{True} to indicate to the code generator that all optimizations with respect to the instruction specified should be suppressed, and that in particular, for an instruction that has outputs, the instruction will still be generated, even if none of the outputs are used. @xref{Extended Asm,, Assembler Instructions with C Expression Operands, gcc, Using the GNU Compiler Collection (GCC)}, for the full description. Generally it is strongly advisable to use Volatile for any ASM statement that is missing either input or output operands, or when two or more ASM statements appear in sequence, to avoid unwanted optimizations. A warning is generated if this advice is not followed. The @code{Asm} subprograms may be used in two ways. First the procedure forms can be used anywhere a procedure call would be valid, and correspond to what the RM calls ``intrinsic'' routines. Such calls can be used to intersperse machine instructions with other Ada statements. Second, the function forms, which return a dummy value of the limited private type @code{Asm_Insn}, can be used in code statements, and indeed this is the only context where such calls are allowed. Code statements appear as aggregates of the form: @smallexample @c ada Asm_Insn'(Asm (@dots{})); Asm_Insn'(Asm_Volatile (@dots{})); @end smallexample @noindent In accordance with RM rules, such code statements are allowed only within subprograms whose entire body consists of such statements. It is not permissible to intermix such statements with other Ada statements. Typically the form using intrinsic procedure calls is more convenient and more flexible. The code statement form is provided to meet the RM suggestion that such a facility should be made available. The following is the exact syntax of the call to @code{Asm}. As usual, if named notation is used, the arguments may be given in arbitrary order, following the normal rules for use of positional and named arguments) @smallexample ASM_CALL ::= Asm ( [Template =>] static_string_EXPRESSION [,[Outputs =>] OUTPUT_OPERAND_LIST ] [,[Inputs =>] INPUT_OPERAND_LIST ] [,[Clobber =>] static_string_EXPRESSION ] [,[Volatile =>] static_boolean_EXPRESSION] ) OUTPUT_OPERAND_LIST ::= [PREFIX.]No_Output_Operands | OUTPUT_OPERAND_ATTRIBUTE | (OUTPUT_OPERAND_ATTRIBUTE @{,OUTPUT_OPERAND_ATTRIBUTE@}) OUTPUT_OPERAND_ATTRIBUTE ::= SUBTYPE_MARK'Asm_Output (static_string_EXPRESSION, NAME) INPUT_OPERAND_LIST ::= [PREFIX.]No_Input_Operands | INPUT_OPERAND_ATTRIBUTE | (INPUT_OPERAND_ATTRIBUTE @{,INPUT_OPERAND_ATTRIBUTE@}) INPUT_OPERAND_ATTRIBUTE ::= SUBTYPE_MARK'Asm_Input (static_string_EXPRESSION, EXPRESSION) @end smallexample @noindent The identifiers @code{No_Input_Operands} and @code{No_Output_Operands} are declared in the package @code{Machine_Code} and must be referenced according to normal visibility rules. In particular if there is no @code{use} clause for this package, then appropriate package name qualification is required. @node GNAT Implementation of Tasking @section GNAT Implementation of Tasking @noindent This chapter outlines the basic GNAT approach to tasking (in particular, a multi-layered library for portability) and discusses issues related to compliance with the Real-Time Systems Annex. @menu * Mapping Ada Tasks onto the Underlying Kernel Threads:: * Ensuring Compliance with the Real-Time Annex:: @end menu @node Mapping Ada Tasks onto the Underlying Kernel Threads @subsection Mapping Ada Tasks onto the Underlying Kernel Threads @noindent GNAT's run-time support comprises two layers: @itemize @bullet @item GNARL (GNAT Run-time Layer) @item GNULL (GNAT Low-level Library) @end itemize @noindent In GNAT, Ada's tasking services rely on a platform and OS independent layer known as GNARL@. This code is responsible for implementing the correct semantics of Ada's task creation, rendezvous, protected operations etc. GNARL decomposes Ada's tasking semantics into simpler lower level operations such as create a thread, set the priority of a thread, yield, create a lock, lock/unlock, etc. The spec for these low-level operations constitutes GNULLI, the GNULL Interface. This interface is directly inspired from the POSIX real-time API@. If the underlying executive or OS implements the POSIX standard faithfully, the GNULL Interface maps as is to the services offered by the underlying kernel. Otherwise, some target dependent glue code maps the services offered by the underlying kernel to the semantics expected by GNARL@. Whatever the underlying OS (VxWorks, UNIX, Windows, etc.) the key point is that each Ada task is mapped on a thread in the underlying kernel. For example, in the case of VxWorks, one Ada task = one VxWorks task. In addition Ada task priorities map onto the underlying thread priorities. Mapping Ada tasks onto the underlying kernel threads has several advantages: @itemize @bullet @item The underlying scheduler is used to schedule the Ada tasks. This makes Ada tasks as efficient as kernel threads from a scheduling standpoint. @item Interaction with code written in C containing threads is eased since at the lowest level Ada tasks and C threads map onto the same underlying kernel concept. @item When an Ada task is blocked during I/O the remaining Ada tasks are able to proceed. @item On multiprocessor systems Ada tasks can execute in parallel. @end itemize @noindent Some threads libraries offer a mechanism to fork a new process, with the child process duplicating the threads from the parent. GNAT does not support this functionality when the parent contains more than one task. @cindex Forking a new process @node Ensuring Compliance with the Real-Time Annex @subsection Ensuring Compliance with the Real-Time Annex @cindex Real-Time Systems Annex compliance @noindent Although mapping Ada tasks onto the underlying threads has significant advantages, it does create some complications when it comes to respecting the scheduling semantics specified in the real-time annex (Annex D). For instance the Annex D requirement for the @code{FIFO_Within_Priorities} scheduling policy states: @quotation @emph{When the active priority of a ready task that is not running changes, or the setting of its base priority takes effect, the task is removed from the ready queue for its old active priority and is added at the tail of the ready queue for its new active priority, except in the case where the active priority is lowered due to the loss of inherited priority, in which case the task is added at the head of the ready queue for its new active priority.} @end quotation @noindent While most kernels do put tasks at the end of the priority queue when a task changes its priority, (which respects the main FIFO_Within_Priorities requirement), almost none keep a thread at the beginning of its priority queue when its priority drops from the loss of inherited priority. As a result most vendors have provided incomplete Annex D implementations. The GNAT run-time, has a nice cooperative solution to this problem which ensures that accurate FIFO_Within_Priorities semantics are respected. The principle is as follows. When an Ada task T is about to start running, it checks whether some other Ada task R with the same priority as T has been suspended due to the loss of priority inheritance. If this is the case, T yields and is placed at the end of its priority queue. When R arrives at the front of the queue it executes. Note that this simple scheme preserves the relative order of the tasks that were ready to execute in the priority queue where R has been placed at the end. @node GNAT Implementation of Shared Passive Packages @section GNAT Implementation of Shared Passive Packages @cindex Shared passive packages @noindent GNAT fully implements the pragma @code{Shared_Passive} for @cindex pragma @code{Shared_Passive} the purpose of designating shared passive packages. This allows the use of passive partitions in the context described in the Ada Reference Manual; i.e., for communication between separate partitions of a distributed application using the features in Annex E. @cindex Annex E @cindex Distribution Systems Annex However, the implementation approach used by GNAT provides for more extensive usage as follows: @table @emph @item Communication between separate programs This allows separate programs to access the data in passive partitions, using protected objects for synchronization where needed. The only requirement is that the two programs have a common shared file system. It is even possible for programs running on different machines with different architectures (e.g.@: different endianness) to communicate via the data in a passive partition. @item Persistence between program runs The data in a passive package can persist from one run of a program to another, so that a later program sees the final values stored by a previous run of the same program. @end table @noindent The implementation approach used is to store the data in files. A separate stream file is created for each object in the package, and an access to an object causes the corresponding file to be read or written. The environment variable @code{SHARED_MEMORY_DIRECTORY} should be @cindex @code{SHARED_MEMORY_DIRECTORY} environment variable set to the directory to be used for these files. The files in this directory have names that correspond to their fully qualified names. For example, if we have the package @smallexample @c ada package X is pragma Shared_Passive (X); Y : Integer; Z : Float; end X; @end smallexample @noindent and the environment variable is set to @code{/stemp/}, then the files created will have the names: @smallexample /stemp/x.y /stemp/x.z @end smallexample @noindent These files are created when a value is initially written to the object, and the files are retained until manually deleted. This provides the persistence semantics. If no file exists, it means that no partition has assigned a value to the variable; in this case the initial value declared in the package will be used. This model ensures that there are no issues in synchronizing the elaboration process, since elaboration of passive packages elaborates the initial values, but does not create the files. The files are written using normal @code{Stream_IO} access. If you want to be able to communicate between programs or partitions running on different architectures, then you should use the XDR versions of the stream attribute routines, since these are architecture independent. If active synchronization is required for access to the variables in the shared passive package, then as described in the Ada Reference Manual, the package may contain protected objects used for this purpose. In this case a lock file (whose name is @file{___lock} (three underscores) is created in the shared memory directory. @cindex @file{___lock} file (for shared passive packages) This is used to provide the required locking semantics for proper protected object synchronization. As of January 2003, GNAT supports shared passive packages on all platforms except for OpenVMS. @node Code Generation for Array Aggregates @section Code Generation for Array Aggregates @menu * Static constant aggregates with static bounds:: * Constant aggregates with unconstrained nominal types:: * Aggregates with static bounds:: * Aggregates with non-static bounds:: * Aggregates in assignment statements:: @end menu @noindent Aggregates have a rich syntax and allow the user to specify the values of complex data structures by means of a single construct. As a result, the code generated for aggregates can be quite complex and involve loops, case statements and multiple assignments. In the simplest cases, however, the compiler will recognize aggregates whose components and constraints are fully static, and in those cases the compiler will generate little or no executable code. The following is an outline of the code that GNAT generates for various aggregate constructs. For further details, you will find it useful to examine the output produced by the -gnatG flag to see the expanded source that is input to the code generator. You may also want to examine the assembly code generated at various levels of optimization. The code generated for aggregates depends on the context, the component values, and the type. In the context of an object declaration the code generated is generally simpler than in the case of an assignment. As a general rule, static component values and static subtypes also lead to simpler code. @node Static constant aggregates with static bounds @subsection Static constant aggregates with static bounds @noindent For the declarations: @smallexample @c ada type One_Dim is array (1..10) of integer; ar0 : constant One_Dim := (1, 2, 3, 4, 5, 6, 7, 8, 9, 0); @end smallexample @noindent GNAT generates no executable code: the constant ar0 is placed in static memory. The same is true for constant aggregates with named associations: @smallexample @c ada Cr1 : constant One_Dim := (4 => 16, 2 => 4, 3 => 9, 1 => 1, 5 .. 10 => 0); Cr3 : constant One_Dim := (others => 7777); @end smallexample @noindent The same is true for multidimensional constant arrays such as: @smallexample @c ada type two_dim is array (1..3, 1..3) of integer; Unit : constant two_dim := ( (1,0,0), (0,1,0), (0,0,1)); @end smallexample @noindent The same is true for arrays of one-dimensional arrays: the following are static: @smallexample @c ada type ar1b is array (1..3) of boolean; type ar_ar is array (1..3) of ar1b; None : constant ar1b := (others => false); -- fully static None2 : constant ar_ar := (1..3 => None); -- fully static @end smallexample @noindent However, for multidimensional aggregates with named associations, GNAT will generate assignments and loops, even if all associations are static. The following two declarations generate a loop for the first dimension, and individual component assignments for the second dimension: @smallexample @c ada Zero1: constant two_dim := (1..3 => (1..3 => 0)); Zero2: constant two_dim := (others => (others => 0)); @end smallexample @node Constant aggregates with unconstrained nominal types @subsection Constant aggregates with unconstrained nominal types @noindent In such cases the aggregate itself establishes the subtype, so that associations with @code{others} cannot be used. GNAT determines the bounds for the actual subtype of the aggregate, and allocates the aggregate statically as well. No code is generated for the following: @smallexample @c ada type One_Unc is array (natural range <>) of integer; Cr_Unc : constant One_Unc := (12,24,36); @end smallexample @node Aggregates with static bounds @subsection Aggregates with static bounds @noindent In all previous examples the aggregate was the initial (and immutable) value of a constant. If the aggregate initializes a variable, then code is generated for it as a combination of individual assignments and loops over the target object. The declarations @smallexample @c ada Cr_Var1 : One_Dim := (2, 5, 7, 11, 0, 0, 0, 0, 0, 0); Cr_Var2 : One_Dim := (others > -1); @end smallexample @noindent generate the equivalent of @smallexample @c ada Cr_Var1 (1) := 2; Cr_Var1 (2) := 3; Cr_Var1 (3) := 5; Cr_Var1 (4) := 11; for I in Cr_Var2'range loop Cr_Var2 (I) := -1; end loop; @end smallexample @node Aggregates with non-static bounds @subsection Aggregates with non-static bounds @noindent If the bounds of the aggregate are not statically compatible with the bounds of the nominal subtype of the target, then constraint checks have to be generated on the bounds. For a multidimensional array, constraint checks may have to be applied to sub-arrays individually, if they do not have statically compatible subtypes. @node Aggregates in assignment statements @subsection Aggregates in assignment statements @noindent In general, aggregate assignment requires the construction of a temporary, and a copy from the temporary to the target of the assignment. This is because it is not always possible to convert the assignment into a series of individual component assignments. For example, consider the simple case: @smallexample @c ada A := (A(2), A(1)); @end smallexample @noindent This cannot be converted into: @smallexample @c ada A(1) := A(2); A(2) := A(1); @end smallexample @noindent So the aggregate has to be built first in a separate location, and then copied into the target. GNAT recognizes simple cases where this intermediate step is not required, and the assignments can be performed in place, directly into the target. The following sufficient criteria are applied: @itemize @bullet @item The bounds of the aggregate are static, and the associations are static. @item The components of the aggregate are static constants, names of simple variables that are not renamings, or expressions not involving indexed components whose operands obey these rules. @end itemize @noindent If any of these conditions are violated, the aggregate will be built in a temporary (created either by the front-end or the code generator) and then that temporary will be copied onto the target. @node The Size of Discriminated Records with Default Discriminants @section The Size of Discriminated Records with Default Discriminants @noindent If a discriminated type @code{T} has discriminants with default values, it is possible to declare an object of this type without providing an explicit constraint: @smallexample @c ada @group type Size is range 1..100; type Rec (D : Size := 15) is record Name : String (1..D); end T; Word : Rec; @end group @end smallexample @noindent Such an object is said to be @emph{unconstrained}. The discriminant of the object can be modified by a full assignment to the object, as long as it preserves the relation between the value of the discriminant, and the value of the components that depend on it: @smallexample @c ada @group Word := (3, "yes"); Word := (5, "maybe"); Word := (5, "no"); -- raises Constraint_Error @end group @end smallexample @noindent In order to support this behavior efficiently, an unconstrained object is given the maximum size that any value of the type requires. In the case above, @code{Word} has storage for the discriminant and for a @code{String} of length 100. It is important to note that unconstrained objects do not require dynamic allocation. It would be an improper implementation to place on the heap those components whose size depends on discriminants. (This improper implementation was used by some Ada83 compilers, where the @code{Name} component above would have been stored as a pointer to a dynamic string). Following the principle that dynamic storage management should never be introduced implicitly, an Ada compiler should reserve the full size for an unconstrained declared object, and place it on the stack. This maximum size approach has been a source of surprise to some users, who expect the default values of the discriminants to determine the size reserved for an unconstrained object: ``If the default is 15, why should the object occupy a larger size?'' The answer, of course, is that the discriminant may be later modified, and its full range of values must be taken into account. This is why the declaration: @smallexample @group type Rec (D : Positive := 15) is record Name : String (1..D); end record; Too_Large : Rec; @end group @end smallexample @noindent is flagged by the compiler with a warning: an attempt to create @code{Too_Large} will raise @code{Storage_Error}, because the required size includes @code{Positive'Last} bytes. As the first example indicates, the proper approach is to declare an index type of ``reasonable'' range so that unconstrained objects are not too large. One final wrinkle: if the object is declared to be @code{aliased}, or if it is created in the heap by means of an allocator, then it is @emph{not} unconstrained: it is constrained by the default values of the discriminants, and those values cannot be modified by full assignment. This is because in the presence of aliasing all views of the object (which may be manipulated by different tasks, say) must be consistent, so it is imperative that the object, once created, remain invariant. @node Strict Conformance to the Ada Reference Manual @section Strict Conformance to the Ada Reference Manual @noindent The dynamic semantics defined by the Ada Reference Manual impose a set of run-time checks to be generated. By default, the GNAT compiler will insert many run-time checks into the compiled code, including most of those required by the Ada Reference Manual. However, there are three checks that are not enabled in the default mode for efficiency reasons: arithmetic overflow checking for integer operations (including division by zero), checks for access before elaboration on subprogram calls, and stack overflow checking (most operating systems do not perform this check by default). Strict conformance to the Ada Reference Manual can be achieved by adding three compiler options for overflow checking for integer operations (@option{-gnato}), dynamic checks for access-before-elaboration on subprogram calls and generic instantiations (@option{-gnatE}), and stack overflow checking (@option{-fstack-check}). Note that the result of a floating point arithmetic operation in overflow and invalid situations, when the @code{Machine_Overflows} attribute of the result type is @code{False}, is to generate IEEE NaN and infinite values. This is the case for machines compliant with the IEEE floating-point standard, but on machines that are not fully compliant with this standard, such as Alpha, the @option{-mieee} compiler flag must be used for achieving IEEE confirming behavior (although at the cost of a significant performance penalty), so infinite and NaN values are properly generated. @node Implementation of Ada 2012 Features @chapter Implementation of Ada 2012 Features @cindex Ada 2012 implementation status This chapter contains a complete list of Ada 2012 features that have been implemented as of GNAT version 6.4. Generally, these features are only available if the @option{-gnat12} (Ada 2012 features enabled) flag is set @cindex @option{-gnat12} option or if the configuration pragma @code{Ada_2012} is used. @cindex pragma @code{Ada_2012} @cindex configuration pragma @code{Ada_2012} @cindex @code{Ada_2012} configuration pragma However, new pragmas, attributes, and restrictions are unconditionally available, since the Ada 95 standard allows the addition of new pragmas, attributes, and restrictions (there are exceptions, which are documented in the individual descriptions), and also certain packages were made available in earlier versions of Ada. An ISO date (YYYY-MM-DD) appears in parentheses on the description line. This date shows the implementation date of the feature. Any wavefront subsequent to this date will contain the indicated feature, as will any subsequent releases. A date of 0000-00-00 means that GNAT has always implemented the feature, or implemented it as soon as it appeared as a binding interpretation. Each feature corresponds to an Ada Issue (``AI'') approved by the Ada standardization group (ISO/IEC JTC1/SC22/WG9) for inclusion in Ada 2012. The features are ordered based on the relevant sections of the Ada Reference Manual (``RM''). When a given AI relates to multiple points in the RM, the earliest is used. A complete description of the AIs may be found in @url{www.ada-auth.org/ai05-summary.html}. @itemize @bullet @item @emph{AI-0176 Quantified expressions (2010-09-29)} @cindex AI-0176 (Ada 2012 feature) @noindent Both universally and existentially quantified expressions are implemented. They use the new syntax for iterators proposed in AI05-139-2, as well as the standard Ada loop syntax. @noindent RM References: 1.01.04 (12) 2.09 (2/2) 4.04 (7) 4.05.09 (0) @item @emph{AI-0079 Allow @i{other_format} characters in source (2010-07-10)} @cindex AI-0079 (Ada 2012 feature) @noindent Wide characters in the unicode category @i{other_format} are now allowed in source programs between tokens, but not within a token such as an identifier. @noindent RM References: 2.01 (4/2) 2.02 (7) @item @emph{AI-0091 Do not allow @i{other_format} in identifiers (0000-00-00)} @cindex AI-0091 (Ada 2012 feature) @noindent Wide characters in the unicode category @i{other_format} are not permitted within an identifier, since this can be a security problem. The error message for this case has been improved to be more specific, but GNAT has never allowed such characters to appear in identifiers. @noindent RM References: 2.03 (3.1/2) 2.03 (4/2) 2.03 (5/2) 2.03 (5.1/2) 2.03 (5.2/2) 2.03 (5.3/2) 2.09 (2/2) @item @emph{AI-0100 Placement of pragmas (2010-07-01)} @cindex AI-0100 (Ada 2012 feature) @noindent This AI is an earlier version of AI-163. It simplifies the rules for legal placement of pragmas. In the case of lists that allow pragmas, if the list may have no elements, then the list may consist solely of pragmas. @noindent RM References: 2.08 (7) @item @emph{AI-0163 Pragmas in place of null (2010-07-01)} @cindex AI-0163 (Ada 2012 feature) @noindent A statement sequence may be composed entirely of pragmas. It is no longer necessary to add a dummy @code{null} statement to make the sequence legal. @noindent RM References: 2.08 (7) 2.08 (16) @item @emph{AI-0080 ``View of'' not needed if clear from context (0000-00-00)} @cindex AI-0080 (Ada 2012 feature) @noindent This is an editorial change only, described as non-testable in the AI. @noindent RM References: 3.01 (7) @item @emph{AI-0183 Aspect specifications (2010-08-16)} @cindex AI-0183 (Ada 2012 feature) @noindent Aspect specifications have been fully implemented except for pre and post- conditions, and type invariants, which have their own separate AI's. All forms of declarations listed in the AI are supported. The following is a list of the aspects supported (with GNAT implementation aspects marked) @multitable {@code{Preelaborable_Initialization}} {--GNAT} @item @code{Ada_2005} @tab -- GNAT @item @code{Ada_2012} @tab -- GNAT @item @code{Address} @tab @item @code{Alignment} @tab @item @code{Atomic} @tab @item @code{Atomic_Components} @tab @item @code{Bit_Order} @tab @item @code{Component_Size} @tab @item @code{Contract_Cases} @tab -- GNAT @item @code{Discard_Names} @tab @item @code{External_Tag} @tab @item @code{Favor_Top_Level} @tab -- GNAT @item @code{Inline} @tab @item @code{Inline_Always} @tab -- GNAT @item @code{Invariant} @tab -- GNAT @item @code{Machine_Radix} @tab @item @code{No_Return} @tab @item @code{Object_Size} @tab -- GNAT @item @code{Pack} @tab @item @code{Persistent_BSS} @tab -- GNAT @item @code{Post} @tab @item @code{Pre} @tab @item @code{Predicate} @tab @item @code{Preelaborable_Initialization} @tab @item @code{Pure_Function} @tab -- GNAT @item @code{Remote_Access_Type} @tab -- GNAT @item @code{Shared} @tab -- GNAT @item @code{Size} @tab @item @code{Storage_Pool} @tab @item @code{Storage_Size} @tab @item @code{Stream_Size} @tab @item @code{Suppress} @tab @item @code{Suppress_Debug_Info} @tab -- GNAT @item @code{Test_Case} @tab -- GNAT @item @code{Type_Invariant} @tab @item @code{Unchecked_Union} @tab @item @code{Universal_Aliasing} @tab -- GNAT @item @code{Unmodified} @tab -- GNAT @item @code{Unreferenced} @tab -- GNAT @item @code{Unreferenced_Objects} @tab -- GNAT @item @code{Unsuppress} @tab @item @code{Value_Size} @tab -- GNAT @item @code{Volatile} @tab @item @code{Volatile_Components} @item @code{Warnings} @tab -- GNAT @end multitable @noindent Note that for aspects with an expression, e.g. @code{Size}, the expression is treated like a default expression (visibility is analyzed at the point of occurrence of the aspect, but evaluation of the expression occurs at the freeze point of the entity involved). @noindent RM References: 3.02.01 (3) 3.02.02 (2) 3.03.01 (2/2) 3.08 (6) 3.09.03 (1.1/2) 6.01 (2/2) 6.07 (2/2) 9.05.02 (2/2) 7.01 (3) 7.03 (2) 7.03 (3) 9.01 (2/2) 9.01 (3/2) 9.04 (2/2) 9.04 (3/2) 9.05.02 (2/2) 11.01 (2) 12.01 (3) 12.03 (2/2) 12.04 (2/2) 12.05 (2) 12.06 (2.1/2) 12.06 (2.2/2) 12.07 (2) 13.01 (0.1/2) 13.03 (5/1) 13.03.01 (0) @item @emph{AI-0128 Inequality is a primitive operation (0000-00-00)} @cindex AI-0128 (Ada 2012 feature) @noindent If an equality operator ("=") is declared for a type, then the implicitly declared inequality operator ("/=") is a primitive operation of the type. This is the only reasonable interpretation, and is the one always implemented by GNAT, but the RM was not entirely clear in making this point. @noindent RM References: 3.02.03 (6) 6.06 (6) @item @emph{AI-0003 Qualified expressions as names (2010-07-11)} @cindex AI-0003 (Ada 2012 feature) @noindent In Ada 2012, a qualified expression is considered to be syntactically a name, meaning that constructs such as @code{A'(F(X)).B} are now legal. This is useful in disambiguating some cases of overloading. @noindent RM References: 3.03 (11) 3.03 (21) 4.01 (2) 4.04 (7) 4.07 (3) 5.04 (7) @item @emph{AI-0120 Constant instance of protected object (0000-00-00)} @cindex AI-0120 (Ada 2012 feature) @noindent This is an RM editorial change only. The section that lists objects that are constant failed to include the current instance of a protected object within a protected function. This has always been treated as a constant in GNAT. @noindent RM References: 3.03 (21) @item @emph{AI-0008 General access to constrained objects (0000-00-00)} @cindex AI-0008 (Ada 2012 feature) @noindent The wording in the RM implied that if you have a general access to a constrained object, it could be used to modify the discriminants. This was obviously not intended. @code{Constraint_Error} should be raised, and GNAT has always done so in this situation. @noindent RM References: 3.03 (23) 3.10.02 (26/2) 4.01 (9) 6.04.01 (17) 8.05.01 (5/2) @item @emph{AI-0093 Additional rules use immutably limited (0000-00-00)} @cindex AI-0093 (Ada 2012 feature) @noindent This is an editorial change only, to make more widespread use of the Ada 2012 ``immutably limited''. @noindent RM References: 3.03 (23.4/3) @item @emph{AI-0096 Deriving from formal private types (2010-07-20)} @cindex AI-0096 (Ada 2012 feature) @noindent In general it is illegal for a type derived from a formal limited type to be nonlimited. This AI makes an exception to this rule: derivation is legal if it appears in the private part of the generic, and the formal type is not tagged. If the type is tagged, the legality check must be applied to the private part of the package. @noindent RM References: 3.04 (5.1/2) 6.02 (7) @item @emph{AI-0181 Soft hyphen is a non-graphic character (2010-07-23)} @cindex AI-0181 (Ada 2012 feature) @noindent From Ada 2005 on, soft hyphen is considered a non-graphic character, which means that it has a special name (@code{SOFT_HYPHEN}) in conjunction with the @code{Image} and @code{Value} attributes for the character types. Strictly speaking this is an inconsistency with Ada 95, but in practice the use of these attributes is so obscure that it will not cause problems. @noindent RM References: 3.05.02 (2/2) A.01 (35/2) A.03.03 (21) @item @emph{AI-0182 Additional forms for @code{Character'Value} (0000-00-00)} @cindex AI-0182 (Ada 2012 feature) @noindent This AI allows @code{Character'Value} to accept the string @code{'?'} where @code{?} is any character including non-graphic control characters. GNAT has always accepted such strings. It also allows strings such as @code{HEX_00000041} to be accepted, but GNAT does not take advantage of this permission and raises @code{Constraint_Error}, as is certainly still permitted. @noindent RM References: 3.05 (56/2) @item @emph{AI-0214 Defaulted discriminants for limited tagged (2010-10-01)} @cindex AI-0214 (Ada 2012 feature) @noindent Ada 2012 relaxes the restriction that forbids discriminants of tagged types to have default expressions by allowing them when the type is limited. It is often useful to define a default value for a discriminant even though it can't be changed by assignment. @noindent RM References: 3.07 (9.1/2) 3.07.02 (3) @item @emph{AI-0102 Some implicit conversions are illegal (0000-00-00)} @cindex AI-0102 (Ada 2012 feature) @noindent It is illegal to assign an anonymous access constant to an anonymous access variable. The RM did not have a clear rule to prevent this, but GNAT has always generated an error for this usage. @noindent RM References: 3.07 (16) 3.07.01 (9) 6.04.01 (6) 8.06 (27/2) @item @emph{AI-0158 Generalizing membership tests (2010-09-16)} @cindex AI-0158 (Ada 2012 feature) @noindent This AI extends the syntax of membership tests to simplify complex conditions that can be expressed as membership in a subset of values of any type. It introduces syntax for a list of expressions that may be used in loop contexts as well. @noindent RM References: 3.08.01 (5) 4.04 (3) 4.05.02 (3) 4.05.02 (5) 4.05.02 (27) @item @emph{AI-0173 Testing if tags represent abstract types (2010-07-03)} @cindex AI-0173 (Ada 2012 feature) @noindent The function @code{Ada.Tags.Type_Is_Abstract} returns @code{True} if invoked with the tag of an abstract type, and @code{False} otherwise. @noindent RM References: 3.09 (7.4/2) 3.09 (12.4/2) @item @emph{AI-0076 function with controlling result (0000-00-00)} @cindex AI-0076 (Ada 2012 feature) @noindent This is an editorial change only. The RM defines calls with controlling results, but uses the term ``function with controlling result'' without an explicit definition. @noindent RM References: 3.09.02 (2/2) @item @emph{AI-0126 Dispatching with no declared operation (0000-00-00)} @cindex AI-0126 (Ada 2012 feature) @noindent This AI clarifies dispatching rules, and simply confirms that dispatching executes the operation of the parent type when there is no explicitly or implicitly declared operation for the descendant type. This has always been the case in all versions of GNAT. @noindent RM References: 3.09.02 (20/2) 3.09.02 (20.1/2) 3.09.02 (20.2/2) @item @emph{AI-0097 Treatment of abstract null extension (2010-07-19)} @cindex AI-0097 (Ada 2012 feature) @noindent The RM as written implied that in some cases it was possible to create an object of an abstract type, by having an abstract extension inherit a non- abstract constructor from its parent type. This mistake has been corrected in GNAT and in the RM, and this construct is now illegal. @noindent RM References: 3.09.03 (4/2) @item @emph{AI-0203 Extended return cannot be abstract (0000-00-00)} @cindex AI-0203 (Ada 2012 feature) @noindent A return_subtype_indication cannot denote an abstract subtype. GNAT has never permitted such usage. @noindent RM References: 3.09.03 (8/3) @item @emph{AI-0198 Inheriting abstract operators (0000-00-00)} @cindex AI-0198 (Ada 2012 feature) @noindent This AI resolves a conflict between two rules involving inherited abstract operations and predefined operators. If a derived numeric type inherits an abstract operator, it overrides the predefined one. This interpretation was always the one implemented in GNAT. @noindent RM References: 3.09.03 (4/3) @item @emph{AI-0073 Functions returning abstract types (2010-07-10)} @cindex AI-0073 (Ada 2012 feature) @noindent This AI covers a number of issues regarding returning abstract types. In particular generic functions cannot have abstract result types or access result types designated an abstract type. There are some other cases which are detailed in the AI. Note that this binding interpretation has not been retrofitted to operate before Ada 2012 mode, since it caused a significant number of regressions. @noindent RM References: 3.09.03 (8) 3.09.03 (10) 6.05 (8/2) @item @emph{AI-0070 Elaboration of interface types (0000-00-00)} @cindex AI-0070 (Ada 2012 feature) @noindent This is an editorial change only, there are no testable consequences short of checking for the absence of generated code for an interface declaration. @noindent RM References: 3.09.04 (18/2) @item @emph{AI-0208 Characteristics of incomplete views (0000-00-00)} @cindex AI-0208 (Ada 2012 feature) @noindent The wording in the Ada 2005 RM concerning characteristics of incomplete views was incorrect and implied that some programs intended to be legal were now illegal. GNAT had never considered such programs illegal, so it has always implemented the intent of this AI. @noindent RM References: 3.10.01 (2.4/2) 3.10.01 (2.6/2) @item @emph{AI-0162 Incomplete type completed by partial view (2010-09-15)} @cindex AI-0162 (Ada 2012 feature) @noindent Incomplete types are made more useful by allowing them to be completed by private types and private extensions. @noindent RM References: 3.10.01 (2.5/2) 3.10.01 (2.6/2) 3.10.01 (3) 3.10.01 (4/2) @item @emph{AI-0098 Anonymous subprogram access restrictions (0000-00-00)} @cindex AI-0098 (Ada 2012 feature) @noindent An unintentional omission in the RM implied some inconsistent restrictions on the use of anonymous access to subprogram values. These restrictions were not intentional, and have never been enforced by GNAT. @noindent RM References: 3.10.01 (6) 3.10.01 (9.2/2) @item @emph{AI-0199 Aggregate with anonymous access components (2010-07-14)} @cindex AI-0199 (Ada 2012 feature) @noindent A choice list in a record aggregate can include several components of (distinct) anonymous access types as long as they have matching designated subtypes. @noindent RM References: 4.03.01 (16) @item @emph{AI-0220 Needed components for aggregates (0000-00-00)} @cindex AI-0220 (Ada 2012 feature) @noindent This AI addresses a wording problem in the RM that appears to permit some complex cases of aggregates with non-static discriminants. GNAT has always implemented the intended semantics. @noindent RM References: 4.03.01 (17) @item @emph{AI-0147 Conditional expressions (2009-03-29)} @cindex AI-0147 (Ada 2012 feature) @noindent Conditional expressions are permitted. The form of such an expression is: @smallexample (@b{if} @i{expr} @b{then} @i{expr} @{@b{elsif} @i{expr} @b{then} @i{expr}@} [@b{else} @i{expr}]) @end smallexample The parentheses can be omitted in contexts where parentheses are present anyway, such as subprogram arguments and pragma arguments. If the @b{else} clause is omitted, @b{else True} is assumed; thus @code{(@b{if} A @b{then} B)} is a way to conveniently represent @emph{(A implies B)} in standard logic. @noindent RM References: 4.03.03 (15) 4.04 (1) 4.04 (7) 4.05.07 (0) 4.07 (2) 4.07 (3) 4.09 (12) 4.09 (33) 5.03 (3) 5.03 (4) 7.05 (2.1/2) @item @emph{AI-0037 Out-of-range box associations in aggregate (0000-00-00)} @cindex AI-0037 (Ada 2012 feature) @noindent This AI confirms that an association of the form @code{Indx => <>} in an array aggregate must raise @code{Constraint_Error} if @code{Indx} is out of range. The RM specified a range check on other associations, but not when the value of the association was defaulted. GNAT has always inserted a constraint check on the index value. @noindent RM References: 4.03.03 (29) @item @emph{AI-0123 Composability of equality (2010-04-13)} @cindex AI-0123 (Ada 2012 feature) @noindent Equality of untagged record composes, so that the predefined equality for a composite type that includes a component of some untagged record type @code{R} uses the equality operation of @code{R} (which may be user-defined or predefined). This makes the behavior of untagged records identical to that of tagged types in this respect. This change is an incompatibility with previous versions of Ada, but it corrects a non-uniformity that was often a source of confusion. Analysis of a large number of industrial programs indicates that in those rare cases where a composite type had an untagged record component with a user-defined equality, either there was no use of the composite equality, or else the code expected the same composability as for tagged types, and thus had a bug that would be fixed by this change. @noindent RM References: 4.05.02 (9.7/2) 4.05.02 (14) 4.05.02 (15) 4.05.02 (24) 8.05.04 (8) @item @emph{AI-0088 The value of exponentiation (0000-00-00)} @cindex AI-0088 (Ada 2012 feature) @noindent This AI clarifies the equivalence rule given for the dynamic semantics of exponentiation: the value of the operation can be obtained by repeated multiplication, but the operation can be implemented otherwise (for example using the familiar divide-by-two-and-square algorithm, even if this is less accurate), and does not imply repeated reads of a volatile base. @noindent RM References: 4.05.06 (11) @item @emph{AI-0188 Case expressions (2010-01-09)} @cindex AI-0188 (Ada 2012 feature) @noindent Case expressions are permitted. This allows use of constructs such as: @smallexample X := (@b{case} Y @b{is when} 1 => 2, @b{when} 2 => 3, @b{when others} => 31) @end smallexample @noindent RM References: 4.05.07 (0) 4.05.08 (0) 4.09 (12) 4.09 (33) @item @emph{AI-0104 Null exclusion and uninitialized allocator (2010-07-15)} @cindex AI-0104 (Ada 2012 feature) @noindent The assignment @code{Ptr := @b{new not null} Some_Ptr;} will raise @code{Constraint_Error} because the default value of the allocated object is @b{null}. This useless construct is illegal in Ada 2012. @noindent RM References: 4.08 (2) @item @emph{AI-0157 Allocation/Deallocation from empty pool (2010-07-11)} @cindex AI-0157 (Ada 2012 feature) @noindent Allocation and Deallocation from an empty storage pool (i.e. allocation or deallocation of a pointer for which a static storage size clause of zero has been given) is now illegal and is detected as such. GNAT previously gave a warning but not an error. @noindent RM References: 4.08 (5.3/2) 13.11.02 (4) 13.11.02 (17) @item @emph{AI-0179 Statement not required after label (2010-04-10)} @cindex AI-0179 (Ada 2012 feature) @noindent It is not necessary to have a statement following a label, so a label can appear at the end of a statement sequence without the need for putting a null statement afterwards, but it is not allowable to have only labels and no real statements in a statement sequence. @noindent RM References: 5.01 (2) @item @emph{AI-139-2 Syntactic sugar for iterators (2010-09-29)} @cindex AI-139-2 (Ada 2012 feature) @noindent The new syntax for iterating over arrays and containers is now implemented. Iteration over containers is for now limited to read-only iterators. Only default iterators are supported, with the syntax: @code{@b{for} Elem @b{of} C}. @noindent RM References: 5.05 @item @emph{AI-0134 Profiles must match for full conformance (0000-00-00)} @cindex AI-0134 (Ada 2012 feature) @noindent For full conformance, the profiles of anonymous-access-to-subprogram parameters must match. GNAT has always enforced this rule. @noindent RM References: 6.03.01 (18) @item @emph{AI-0207 Mode conformance and access constant (0000-00-00)} @cindex AI-0207 (Ada 2012 feature) @noindent This AI confirms that access_to_constant indication must match for mode conformance. This was implemented in GNAT when the qualifier was originally introduced in Ada 2005. @noindent RM References: 6.03.01 (16/2) @item @emph{AI-0046 Null exclusion match for full conformance (2010-07-17)} @cindex AI-0046 (Ada 2012 feature) @noindent For full conformance, in the case of access parameters, the null exclusion must match (either both or neither must have @code{@b{not null}}). @noindent RM References: 6.03.02 (18) @item @emph{AI-0118 The association of parameter associations (0000-00-00)} @cindex AI-0118 (Ada 2012 feature) @noindent This AI clarifies the rules for named associations in subprogram calls and generic instantiations. The rules have been in place since Ada 83. @noindent RM References: 6.04.01 (2) 12.03 (9) @item @emph{AI-0196 Null exclusion tests for out parameters (0000-00-00)} @cindex AI-0196 (Ada 2012 feature) @noindent Null exclusion checks are not made for @code{@b{out}} parameters when evaluating the actual parameters. GNAT has never generated these checks. @noindent RM References: 6.04.01 (13) @item @emph{AI-0015 Constant return objects (0000-00-00)} @cindex AI-0015 (Ada 2012 feature) @noindent The return object declared in an @i{extended_return_statement} may be declared constant. This was always intended, and GNAT has always allowed it. @noindent RM References: 6.05 (2.1/2) 3.03 (10/2) 3.03 (21) 6.05 (5/2) 6.05 (5.7/2) @item @emph{AI-0032 Extended return for class-wide functions (0000-00-00)} @cindex AI-0032 (Ada 2012 feature) @noindent If a function returns a class-wide type, the object of an extended return statement can be declared with a specific type that is covered by the class- wide type. This has been implemented in GNAT since the introduction of extended returns. Note AI-0103 complements this AI by imposing matching rules for constrained return types. @noindent RM References: 6.05 (5.2/2) 6.05 (5.3/2) 6.05 (5.6/2) 6.05 (5.8/2) 6.05 (8/2) @item @emph{AI-0103 Static matching for extended return (2010-07-23)} @cindex AI-0103 (Ada 2012 feature) @noindent If the return subtype of a function is an elementary type or a constrained type, the subtype indication in an extended return statement must match statically this return subtype. @noindent RM References: 6.05 (5.2/2) @item @emph{AI-0058 Abnormal completion of an extended return (0000-00-00)} @cindex AI-0058 (Ada 2012 feature) @noindent The RM had some incorrect wording implying wrong treatment of abnormal completion in an extended return. GNAT has always implemented the intended correct semantics as described by this AI. @noindent RM References: 6.05 (22/2) @item @emph{AI-0050 Raising Constraint_Error early for function call (0000-00-00)} @cindex AI-0050 (Ada 2012 feature) @noindent The implementation permissions for raising @code{Constraint_Error} early on a function call when it was clear an exception would be raised were over-permissive and allowed mishandling of discriminants in some cases. GNAT did not take advantage of these incorrect permissions in any case. @noindent RM References: 6.05 (24/2) @item @emph{AI-0125 Nonoverridable operations of an ancestor (2010-09-28)} @cindex AI-0125 (Ada 2012 feature) @noindent In Ada 2012, the declaration of a primitive operation of a type extension or private extension can also override an inherited primitive that is not visible at the point of this declaration. @noindent RM References: 7.03.01 (6) 8.03 (23) 8.03.01 (5/2) 8.03.01 (6/2) @item @emph{AI-0062 Null exclusions and deferred constants (0000-00-00)} @cindex AI-0062 (Ada 2012 feature) @noindent A full constant may have a null exclusion even if its associated deferred constant does not. GNAT has always allowed this. @noindent RM References: 7.04 (6/2) 7.04 (7.1/2) @item @emph{AI-0178 Incomplete views are limited (0000-00-00)} @cindex AI-0178 (Ada 2012 feature) @noindent This AI clarifies the role of incomplete views and plugs an omission in the RM. GNAT always correctly restricted the use of incomplete views and types. @noindent RM References: 7.05 (3/2) 7.05 (6/2) @item @emph{AI-0087 Actual for formal nonlimited derived type (2010-07-15)} @cindex AI-0087 (Ada 2012 feature) @noindent The actual for a formal nonlimited derived type cannot be limited. In particular, a formal derived type that extends a limited interface but which is not explicitly limited cannot be instantiated with a limited type. @noindent RM References: 7.05 (5/2) 12.05.01 (5.1/2) @item @emph{AI-0099 Tag determines whether finalization needed (0000-00-00)} @cindex AI-0099 (Ada 2012 feature) @noindent This AI clarifies that ``needs finalization'' is part of dynamic semantics, and therefore depends on the run-time characteristics of an object (i.e. its tag) and not on its nominal type. As the AI indicates: ``we do not expect this to affect any implementation''. @noindent RM References: 7.06.01 (6) 7.06.01 (7) 7.06.01 (8) 7.06.01 (9/2) @item @emph{AI-0064 Redundant finalization rule (0000-00-00)} @cindex AI-0064 (Ada 2012 feature) @noindent This is an editorial change only. The intended behavior is already checked by an existing ACATS test, which GNAT has always executed correctly. @noindent RM References: 7.06.01 (17.1/1) @item @emph{AI-0026 Missing rules for Unchecked_Union (2010-07-07)} @cindex AI-0026 (Ada 2012 feature) @noindent Record representation clauses concerning Unchecked_Union types cannot mention the discriminant of the type. The type of a component declared in the variant part of an Unchecked_Union cannot be controlled, have controlled components, nor have protected or task parts. If an Unchecked_Union type is declared within the body of a generic unit or its descendants, then the type of a component declared in the variant part cannot be a formal private type or a formal private extension declared within the same generic unit. @noindent RM References: 7.06 (9.4/2) B.03.03 (9/2) B.03.03 (10/2) @item @emph{AI-0205 Extended return declares visible name (0000-00-00)} @cindex AI-0205 (Ada 2012 feature) @noindent This AI corrects a simple omission in the RM. Return objects have always been visible within an extended return statement. @noindent RM References: 8.03 (17) @item @emph{AI-0042 Overriding versus implemented-by (0000-00-00)} @cindex AI-0042 (Ada 2012 feature) @noindent This AI fixes a wording gap in the RM. An operation of a synchronized interface can be implemented by a protected or task entry, but the abstract operation is not being overridden in the usual sense, and it must be stated separately that this implementation is legal. This has always been the case in GNAT. @noindent RM References: 9.01 (9.2/2) 9.04 (11.1/2) @item @emph{AI-0030 Requeue on synchronized interfaces (2010-07-19)} @cindex AI-0030 (Ada 2012 feature) @noindent Requeue is permitted to a protected, synchronized or task interface primitive providing it is known that the overriding operation is an entry. Otherwise the requeue statement has the same effect as a procedure call. Use of pragma @code{Implemented} provides a way to impose a static requirement on the overriding operation by adhering to one of the implementation kinds: entry, protected procedure or any of the above. @noindent RM References: 9.05 (9) 9.05.04 (2) 9.05.04 (3) 9.05.04 (5) 9.05.04 (6) 9.05.04 (7) 9.05.04 (12) @item @emph{AI-0201 Independence of atomic object components (2010-07-22)} @cindex AI-0201 (Ada 2012 feature) @noindent If an Atomic object has a pragma @code{Pack} or a @code{Component_Size} attribute, then individual components may not be addressable by independent tasks. However, if the representation clause has no effect (is confirming), then independence is not compromised. Furthermore, in GNAT, specification of other appropriately addressable component sizes (e.g. 16 for 8-bit characters) also preserves independence. GNAT now gives very clear warnings both for the declaration of such a type, and for any assignment to its components. @noindent RM References: 9.10 (1/3) C.06 (22/2) C.06 (23/2) @item @emph{AI-0009 Pragma Independent[_Components] (2010-07-23)} @cindex AI-0009 (Ada 2012 feature) @noindent This AI introduces the new pragmas @code{Independent} and @code{Independent_Components}, which control guaranteeing independence of access to objects and components. The AI also requires independence not unaffected by confirming rep clauses. @noindent RM References: 9.10 (1) 13.01 (15/1) 13.02 (9) 13.03 (13) C.06 (2) C.06 (4) C.06 (6) C.06 (9) C.06 (13) C.06 (14) @item @emph{AI-0072 Task signalling using 'Terminated (0000-00-00)} @cindex AI-0072 (Ada 2012 feature) @noindent This AI clarifies that task signalling for reading @code{'Terminated} only occurs if the result is True. GNAT semantics has always been consistent with this notion of task signalling. @noindent RM References: 9.10 (6.1/1) @item @emph{AI-0108 Limited incomplete view and discriminants (0000-00-00)} @cindex AI-0108 (Ada 2012 feature) @noindent This AI confirms that an incomplete type from a limited view does not have discriminants. This has always been the case in GNAT. @noindent RM References: 10.01.01 (12.3/2) @item @emph{AI-0129 Limited views and incomplete types (0000-00-00)} @cindex AI-0129 (Ada 2012 feature) @noindent This AI clarifies the description of limited views: a limited view of a package includes only one view of a type that has an incomplete declaration and a full declaration (there is no possible ambiguity in a client package). This AI also fixes an omission: a nested package in the private part has no limited view. GNAT always implemented this correctly. @noindent RM References: 10.01.01 (12.2/2) 10.01.01 (12.3/2) @item @emph{AI-0077 Limited withs and scope of declarations (0000-00-00)} @cindex AI-0077 (Ada 2012 feature) @noindent This AI clarifies that a declaration does not include a context clause, and confirms that it is illegal to have a context in which both a limited and a nonlimited view of a package are accessible. Such double visibility was always rejected by GNAT. @noindent RM References: 10.01.02 (12/2) 10.01.02 (21/2) 10.01.02 (22/2) @item @emph{AI-0122 Private with and children of generics (0000-00-00)} @cindex AI-0122 (Ada 2012 feature) @noindent This AI clarifies the visibility of private children of generic units within instantiations of a parent. GNAT has always handled this correctly. @noindent RM References: 10.01.02 (12/2) @item @emph{AI-0040 Limited with clauses on descendant (0000-00-00)} @cindex AI-0040 (Ada 2012 feature) @noindent This AI confirms that a limited with clause in a child unit cannot name an ancestor of the unit. This has always been checked in GNAT. @noindent RM References: 10.01.02 (20/2) @item @emph{AI-0132 Placement of library unit pragmas (0000-00-00)} @cindex AI-0132 (Ada 2012 feature) @noindent This AI fills a gap in the description of library unit pragmas. The pragma clearly must apply to a library unit, even if it does not carry the name of the enclosing unit. GNAT has always enforced the required check. @noindent RM References: 10.01.05 (7) @item @emph{AI-0034 Categorization of limited views (0000-00-00)} @cindex AI-0034 (Ada 2012 feature) @noindent The RM makes certain limited with clauses illegal because of categorization considerations, when the corresponding normal with would be legal. This is not intended, and GNAT has always implemented the recommended behavior. @noindent RM References: 10.02.01 (11/1) 10.02.01 (17/2) @item @emph{AI-0035 Inconsistencies with Pure units (0000-00-00)} @cindex AI-0035 (Ada 2012 feature) @noindent This AI remedies some inconsistencies in the legality rules for Pure units. Derived access types are legal in a pure unit (on the assumption that the rule for a zero storage pool size has been enforced on the ancestor type). The rules are enforced in generic instances and in subunits. GNAT has always implemented the recommended behavior. @noindent RM References: 10.02.01 (15.1/2) 10.02.01 (15.4/2) 10.02.01 (15.5/2) 10.02.01 (17/2) @item @emph{AI-0219 Pure permissions and limited parameters (2010-05-25)} @cindex AI-0219 (Ada 2012 feature) @noindent This AI refines the rules for the cases with limited parameters which do not allow the implementations to omit ``redundant''. GNAT now properly conforms to the requirements of this binding interpretation. @noindent RM References: 10.02.01 (18/2) @item @emph{AI-0043 Rules about raising exceptions (0000-00-00)} @cindex AI-0043 (Ada 2012 feature) @noindent This AI covers various omissions in the RM regarding the raising of exceptions. GNAT has always implemented the intended semantics. @noindent RM References: 11.04.01 (10.1/2) 11 (2) @item @emph{AI-0200 Mismatches in formal package declarations (0000-00-00)} @cindex AI-0200 (Ada 2012 feature) @noindent This AI plugs a gap in the RM which appeared to allow some obviously intended illegal instantiations. GNAT has never allowed these instantiations. @noindent RM References: 12.07 (16) @item @emph{AI-0112 Detection of duplicate pragmas (2010-07-24)} @cindex AI-0112 (Ada 2012 feature) @noindent This AI concerns giving names to various representation aspects, but the practical effect is simply to make the use of duplicate @code{Atomic}[@code{_Components}], @code{Volatile}[@code{_Components}] and @code{Independent}[@code{_Components}] pragmas illegal, and GNAT now performs this required check. @noindent RM References: 13.01 (8) @item @emph{AI-0106 No representation pragmas on generic formals (0000-00-00)} @cindex AI-0106 (Ada 2012 feature) @noindent The RM appeared to allow representation pragmas on generic formal parameters, but this was not intended, and GNAT has never permitted this usage. @noindent RM References: 13.01 (9.1/1) @item @emph{AI-0012 Pack/Component_Size for aliased/atomic (2010-07-15)} @cindex AI-0012 (Ada 2012 feature) @noindent It is now illegal to give an inappropriate component size or a pragma @code{Pack} that attempts to change the component size in the case of atomic or aliased components. Previously GNAT ignored such an attempt with a warning. @noindent RM References: 13.02 (6.1/2) 13.02 (7) C.06 (10) C.06 (11) C.06 (21) @item @emph{AI-0039 Stream attributes cannot be dynamic (0000-00-00)} @cindex AI-0039 (Ada 2012 feature) @noindent The RM permitted the use of dynamic expressions (such as @code{ptr.@b{all})} for stream attributes, but these were never useful and are now illegal. GNAT has always regarded such expressions as illegal. @noindent RM References: 13.03 (4) 13.03 (6) 13.13.02 (38/2) @item @emph{AI-0095 Address of intrinsic subprograms (0000-00-00)} @cindex AI-0095 (Ada 2012 feature) @noindent The prefix of @code{'Address} cannot statically denote a subprogram with convention @code{Intrinsic}. The use of the @code{Address} attribute raises @code{Program_Error} if the prefix denotes a subprogram with convention @code{Intrinsic}. @noindent RM References: 13.03 (11/1) @item @emph{AI-0116 Alignment of class-wide objects (0000-00-00)} @cindex AI-0116 (Ada 2012 feature) @noindent This AI requires that the alignment of a class-wide object be no greater than the alignment of any type in the class. GNAT has always followed this recommendation. @noindent RM References: 13.03 (29) 13.11 (16) @item @emph{AI-0146 Type invariants (2009-09-21)} @cindex AI-0146 (Ada 2012 feature) @noindent Type invariants may be specified for private types using the aspect notation. Aspect @code{Type_Invariant} may be specified for any private type, @code{Type_Invariant'Class} can only be specified for tagged types, and is inherited by any descendent of the tagged types. The invariant is a boolean expression that is tested for being true in the following situations: conversions to the private type, object declarations for the private type that are default initialized, and [@b{in}] @b{out} parameters and returned result on return from any primitive operation for the type that is visible to a client. GNAT defines the synonyms @code{Invariant} for @code{Type_Invariant} and @code{Invariant'Class} for @code{Type_Invariant'Class}. @noindent RM References: 13.03.03 (00) @item @emph{AI-0078 Relax Unchecked_Conversion alignment rules (0000-00-00)} @cindex AI-0078 (Ada 2012 feature) @noindent In Ada 2012, compilers are required to support unchecked conversion where the target alignment is a multiple of the source alignment. GNAT always supported this case (and indeed all cases of differing alignments, doing copies where required if the alignment was reduced). @noindent RM References: 13.09 (7) @item @emph{AI-0195 Invalid value handling is implementation defined (2010-07-03)} @cindex AI-0195 (Ada 2012 feature) @noindent The handling of invalid values is now designated to be implementation defined. This is a documentation change only, requiring Annex M in the GNAT Reference Manual to document this handling. In GNAT, checks for invalid values are made only when necessary to avoid erroneous behavior. Operations like assignments which cannot cause erroneous behavior ignore the possibility of invalid values and do not do a check. The date given above applies only to the documentation change, this behavior has always been implemented by GNAT. @noindent RM References: 13.09.01 (10) @item @emph{AI-0193 Alignment of allocators (2010-09-16)} @cindex AI-0193 (Ada 2012 feature) @noindent This AI introduces a new attribute @code{Max_Alignment_For_Allocation}, analogous to @code{Max_Size_In_Storage_Elements}, but for alignment instead of size. @noindent RM References: 13.11 (16) 13.11 (21) 13.11.01 (0) 13.11.01 (1) 13.11.01 (2) 13.11.01 (3) @item @emph{AI-0177 Parameterized expressions (2010-07-10)} @cindex AI-0177 (Ada 2012 feature) @noindent The new Ada 2012 notion of parameterized expressions is implemented. The form is: @smallexample @i{function specification} @b{is} (@i{expression}) @end smallexample @noindent This is exactly equivalent to the corresponding function body that returns the expression, but it can appear in a package spec. Note that the expression must be parenthesized. @noindent RM References: 13.11.01 (3/2) @item @emph{AI-0033 Attach/Interrupt_Handler in generic (2010-07-24)} @cindex AI-0033 (Ada 2012 feature) @noindent Neither of these two pragmas may appear within a generic template, because the generic might be instantiated at other than the library level. @noindent RM References: 13.11.02 (16) C.03.01 (7/2) C.03.01 (8/2) @item @emph{AI-0161 Restriction No_Default_Stream_Attributes (2010-09-11)} @cindex AI-0161 (Ada 2012 feature) @noindent A new restriction @code{No_Default_Stream_Attributes} prevents the use of any of the default stream attributes for elementary types. If this restriction is in force, then it is necessary to provide explicit subprograms for any stream attributes used. @noindent RM References: 13.12.01 (4/2) 13.13.02 (40/2) 13.13.02 (52/2) @item @emph{AI-0194 Value of Stream_Size attribute (0000-00-00)} @cindex AI-0194 (Ada 2012 feature) @noindent The @code{Stream_Size} attribute returns the default number of bits in the stream representation of the given type. This value is not affected by the presence of stream subprogram attributes for the type. GNAT has always implemented this interpretation. @noindent RM References: 13.13.02 (1.2/2) @item @emph{AI-0109 Redundant check in S'Class'Input (0000-00-00)} @cindex AI-0109 (Ada 2012 feature) @noindent This AI is an editorial change only. It removes the need for a tag check that can never fail. @noindent RM References: 13.13.02 (34/2) @item @emph{AI-0007 Stream read and private scalar types (0000-00-00)} @cindex AI-0007 (Ada 2012 feature) @noindent The RM as written appeared to limit the possibilities of declaring read attribute procedures for private scalar types. This limitation was not intended, and has never been enforced by GNAT. @noindent RM References: 13.13.02 (50/2) 13.13.02 (51/2) @item @emph{AI-0065 Remote access types and external streaming (0000-00-00)} @cindex AI-0065 (Ada 2012 feature) @noindent This AI clarifies the fact that all remote access types support external streaming. This fixes an obvious oversight in the definition of the language, and GNAT always implemented the intended correct rules. @noindent RM References: 13.13.02 (52/2) @item @emph{AI-0019 Freezing of primitives for tagged types (0000-00-00)} @cindex AI-0019 (Ada 2012 feature) @noindent The RM suggests that primitive subprograms of a specific tagged type are frozen when the tagged type is frozen. This would be an incompatible change and is not intended. GNAT has never attempted this kind of freezing and its behavior is consistent with the recommendation of this AI. @noindent RM References: 13.14 (2) 13.14 (3/1) 13.14 (8.1/1) 13.14 (10) 13.14 (14) 13.14 (15.1/2) @item @emph{AI-0017 Freezing and incomplete types (0000-00-00)} @cindex AI-0017 (Ada 2012 feature) @noindent So-called ``Taft-amendment types'' (i.e., types that are completed in package bodies) are not frozen by the occurrence of bodies in the enclosing declarative part. GNAT always implemented this properly. @noindent RM References: 13.14 (3/1) @item @emph{AI-0060 Extended definition of remote access types (0000-00-00)} @cindex AI-0060 (Ada 2012 feature) @noindent This AI extends the definition of remote access types to include access to limited, synchronized, protected or task class-wide interface types. GNAT already implemented this extension. @noindent RM References: A (4) E.02.02 (9/1) E.02.02 (9.2/1) E.02.02 (14/2) E.02.02 (18) @item @emph{AI-0114 Classification of letters (0000-00-00)} @cindex AI-0114 (Ada 2012 feature) @noindent The code points 170 (@code{FEMININE ORDINAL INDICATOR}), 181 (@code{MICRO SIGN}), and 186 (@code{MASCULINE ORDINAL INDICATOR}) are technically considered lower case letters by Unicode. However, they are not allowed in identifiers, and they return @code{False} to @code{Ada.Characters.Handling.Is_Letter/Is_Lower}. This behavior is consistent with that defined in Ada 95. @noindent RM References: A.03.02 (59) A.04.06 (7) @item @emph{AI-0185 Ada.Wide_[Wide_]Characters.Handling (2010-07-06)} @cindex AI-0185 (Ada 2012 feature) @noindent Two new packages @code{Ada.Wide_[Wide_]Characters.Handling} provide classification functions for @code{Wide_Character} and @code{Wide_Wide_Character}, as well as providing case folding routines for @code{Wide_[Wide_]Character} and @code{Wide_[Wide_]String}. @noindent RM References: A.03.05 (0) A.03.06 (0) @item @emph{AI-0031 Add From parameter to Find_Token (2010-07-25)} @cindex AI-0031 (Ada 2012 feature) @noindent A new version of @code{Find_Token} is added to all relevant string packages, with an extra parameter @code{From}. Instead of starting at the first character of the string, the search for a matching Token starts at the character indexed by the value of @code{From}. These procedures are available in all versions of Ada but if used in versions earlier than Ada 2012 they will generate a warning that an Ada 2012 subprogram is being used. @noindent RM References: A.04.03 (16) A.04.03 (67) A.04.03 (68/1) A.04.04 (51) A.04.05 (46) @item @emph{AI-0056 Index on null string returns zero (0000-00-00)} @cindex AI-0056 (Ada 2012 feature) @noindent The wording in the Ada 2005 RM implied an incompatible handling of the @code{Index} functions, resulting in raising an exception instead of returning zero in some situations. This was not intended and has been corrected. GNAT always returned zero, and is thus consistent with this AI. @noindent RM References: A.04.03 (56.2/2) A.04.03 (58.5/2) @item @emph{AI-0137 String encoding package (2010-03-25)} @cindex AI-0137 (Ada 2012 feature) @noindent The packages @code{Ada.Strings.UTF_Encoding}, together with its child packages, @code{Conversions}, @code{Strings}, @code{Wide_Strings}, and @code{Wide_Wide_Strings} have been implemented. These packages (whose documentation can be found in the spec files @file{a-stuten.ads}, @file{a-suenco.ads}, @file{a-suenst.ads}, @file{a-suewst.ads}, @file{a-suezst.ads}) allow encoding and decoding of @code{String}, @code{Wide_String}, and @code{Wide_Wide_String} values using UTF coding schemes (including UTF-8, UTF-16LE, UTF-16BE, and UTF-16), as well as conversions between the different UTF encodings. With the exception of @code{Wide_Wide_Strings}, these packages are available in Ada 95 and Ada 2005 mode as well as Ada 2012 mode. The @code{Wide_Wide_Strings package} is available in Ada 2005 mode as well as Ada 2012 mode (but not in Ada 95 mode since it uses @code{Wide_Wide_Character}). @noindent RM References: A.04.11 @item @emph{AI-0038 Minor errors in Text_IO (0000-00-00)} @cindex AI-0038 (Ada 2012 feature) @noindent These are minor errors in the description on three points. The intent on all these points has always been clear, and GNAT has always implemented the correct intended semantics. @noindent RM References: A.10.05 (37) A.10.07 (8/1) A.10.07 (10) A.10.07 (12) A.10.08 (10) A.10.08 (24) @item @emph{AI-0044 Restrictions on container instantiations (0000-00-00)} @cindex AI-0044 (Ada 2012 feature) @noindent This AI places restrictions on allowed instantiations of generic containers. These restrictions are not checked by the compiler, so there is nothing to change in the implementation. This affects only the RM documentation. @noindent RM References: A.18 (4/2) A.18.02 (231/2) A.18.03 (145/2) A.18.06 (56/2) A.18.08 (66/2) A.18.09 (79/2) A.18.26 (5/2) A.18.26 (9/2) @item @emph{AI-0127 Adding Locale Capabilities (2010-09-29)} @cindex AI-0127 (Ada 2012 feature) @noindent This package provides an interface for identifying the current locale. @noindent RM References: A.19 A.19.01 A.19.02 A.19.03 A.19.05 A.19.06 A.19.07 A.19.08 A.19.09 A.19.10 A.19.11 A.19.12 A.19.13 @item @emph{AI-0002 Export C with unconstrained arrays (0000-00-00)} @cindex AI-0002 (Ada 2012 feature) @noindent The compiler is not required to support exporting an Ada subprogram with convention C if there are parameters or a return type of an unconstrained array type (such as @code{String}). GNAT allows such declarations but generates warnings. It is possible, but complicated, to write the corresponding C code and certainly such code would be specific to GNAT and non-portable. @noindent RM References: B.01 (17) B.03 (62) B.03 (71.1/2) @item @emph{AI-0216 No_Task_Hierarchy forbids local tasks (0000-00-00)} @cindex AI05-0216 (Ada 2012 feature) @noindent It is clearly the intention that @code{No_Task_Hierarchy} is intended to forbid tasks declared locally within subprograms, or functions returning task objects, and that is the implementation that GNAT has always provided. However the language in the RM was not sufficiently clear on this point. Thus this is a documentation change in the RM only. @noindent RM References: D.07 (3/3) @item @emph{AI-0211 No_Relative_Delays forbids Set_Handler use (2010-07-09)} @cindex AI-0211 (Ada 2012 feature) @noindent The restriction @code{No_Relative_Delays} forbids any calls to the subprogram @code{Ada.Real_Time.Timing_Events.Set_Handler}. @noindent RM References: D.07 (5) D.07 (10/2) D.07 (10.4/2) D.07 (10.7/2) @item @emph{AI-0190 pragma Default_Storage_Pool (2010-09-15)} @cindex AI-0190 (Ada 2012 feature) @noindent This AI introduces a new pragma @code{Default_Storage_Pool}, which can be used to control storage pools globally. In particular, you can force every access type that is used for allocation (@b{new}) to have an explicit storage pool, or you can declare a pool globally to be used for all access types that lack an explicit one. @noindent RM References: D.07 (8) @item @emph{AI-0189 No_Allocators_After_Elaboration (2010-01-23)} @cindex AI-0189 (Ada 2012 feature) @noindent This AI introduces a new restriction @code{No_Allocators_After_Elaboration}, which says that no dynamic allocation will occur once elaboration is completed. In general this requires a run-time check, which is not required, and which GNAT does not attempt. But the static cases of allocators in a task body or in the body of the main program are detected and flagged at compile or bind time. @noindent RM References: D.07 (19.1/2) H.04 (23.3/2) @item @emph{AI-0171 Pragma CPU and Ravenscar Profile (2010-09-24)} @cindex AI-0171 (Ada 2012 feature) @noindent A new package @code{System.Multiprocessors} is added, together with the definition of pragma @code{CPU} for controlling task affinity. A new no dependence restriction, on @code{System.Multiprocessors.Dispatching_Domains}, is added to the Ravenscar profile. @noindent RM References: D.13.01 (4/2) D.16 @item @emph{AI-0210 Correct Timing_Events metric (0000-00-00)} @cindex AI-0210 (Ada 2012 feature) @noindent This is a documentation only issue regarding wording of metric requirements, that does not affect the implementation of the compiler. @noindent RM References: D.15 (24/2) @item @emph{AI-0206 Remote types packages and preelaborate (2010-07-24)} @cindex AI-0206 (Ada 2012 feature) @noindent Remote types packages are now allowed to depend on preelaborated packages. This was formerly considered illegal. @noindent RM References: E.02.02 (6) @item @emph{AI-0152 Restriction No_Anonymous_Allocators (2010-09-08)} @cindex AI-0152 (Ada 2012 feature) @noindent Restriction @code{No_Anonymous_Allocators} prevents the use of allocators where the type of the returned value is an anonymous access type. @noindent RM References: H.04 (8/1) @end itemize @node Obsolescent Features @chapter Obsolescent Features @noindent This chapter describes features that are provided by GNAT, but are considered obsolescent since there are preferred ways of achieving the same effect. These features are provided solely for historical compatibility purposes. @menu * pragma No_Run_Time:: * pragma Ravenscar:: * pragma Restricted_Run_Time:: @end menu @node pragma No_Run_Time @section pragma No_Run_Time The pragma @code{No_Run_Time} is used to achieve an affect similar to the use of the "Zero Foot Print" configurable run time, but without requiring a specially configured run time. The result of using this pragma, which must be used for all units in a partition, is to restrict the use of any language features requiring run-time support code. The preferred usage is to use an appropriately configured run-time that includes just those features that are to be made accessible. @node pragma Ravenscar @section pragma Ravenscar The pragma @code{Ravenscar} has exactly the same effect as pragma @code{Profile (Ravenscar)}. The latter usage is preferred since it is part of the new Ada 2005 standard. @node pragma Restricted_Run_Time @section pragma Restricted_Run_Time The pragma @code{Restricted_Run_Time} has exactly the same effect as pragma @code{Profile (Restricted)}. The latter usage is preferred since the Ada 2005 pragma @code{Profile} is intended for this kind of implementation dependent addition. @include fdl.texi @c GNU Free Documentation License @node Index,,GNU Free Documentation License, Top @unnumbered Index @printindex cp @contents @bye tablishes the following set of restrictions: Pragma Shared