------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2004-2013, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations); with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys); with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations); with System; use type System.Address; package body Ada.Containers.Bounded_Ordered_Sets is ------------------------------ -- Access to Fields of Node -- ------------------------------ -- These subprograms provide functional notation for access to fields -- of a node, and procedural notation for modifying these fields. function Color (Node : Node_Type) return Red_Black_Trees.Color_Type; pragma Inline (Color); function Left (Node : Node_Type) return Count_Type; pragma Inline (Left); function Parent (Node : Node_Type) return Count_Type; pragma Inline (Parent); function Right (Node : Node_Type) return Count_Type; pragma Inline (Right); procedure Set_Color (Node : in out Node_Type; Color : Red_Black_Trees.Color_Type); pragma Inline (Set_Color); procedure Set_Left (Node : in out Node_Type; Left : Count_Type); pragma Inline (Set_Left); procedure Set_Right (Node : in out Node_Type; Right : Count_Type); pragma Inline (Set_Right); procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type); pragma Inline (Set_Parent); ----------------------- -- Local Subprograms -- ----------------------- procedure Insert_Sans_Hint (Container : in out Set; New_Item : Element_Type; Node : out Count_Type; Inserted : out Boolean); procedure Insert_With_Hint (Dst_Set : in out Set; Dst_Hint : Count_Type; Src_Node : Node_Type; Dst_Node : out Count_Type); function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Greater_Element_Node); function Is_Less_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Less_Element_Node); function Is_Less_Node_Node (L, R : Node_Type) return Boolean; pragma Inline (Is_Less_Node_Node); procedure Replace_Element (Container : in out Set; Index : Count_Type; Item : Element_Type); -------------------------- -- Local Instantiations -- -------------------------- package Tree_Operations is new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types); use Tree_Operations; package Element_Keys is new Red_Black_Trees.Generic_Bounded_Keys (Tree_Operations => Tree_Operations, Key_Type => Element_Type, Is_Less_Key_Node => Is_Less_Element_Node, Is_Greater_Key_Node => Is_Greater_Element_Node); package Set_Ops is new Red_Black_Trees.Generic_Bounded_Set_Operations (Tree_Operations => Tree_Operations, Set_Type => Set, Assign => Assign, Insert_With_Hint => Insert_With_Hint, Is_Less => Is_Less_Node_Node); --------- -- "<" -- --------- function "<" (Left, Right : Cursor) return Boolean is begin if Left.Node = 0 then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Right.Node = 0 then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "bad Left cursor in ""<"""); pragma Assert (Vet (Right.Container.all, Right.Node), "bad Right cursor in ""<"""); declare LN : Nodes_Type renames Left.Container.Nodes; RN : Nodes_Type renames Right.Container.Nodes; begin return LN (Left.Node).Element < RN (Right.Node).Element; end; end "<"; function "<" (Left : Cursor; Right : Element_Type) return Boolean is begin if Left.Node = 0 then raise Constraint_Error with "Left cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "bad Left cursor in ""<"""); return Left.Container.Nodes (Left.Node).Element < Right; end "<"; function "<" (Left : Element_Type; Right : Cursor) return Boolean is begin if Right.Node = 0 then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Right.Container.all, Right.Node), "bad Right cursor in ""<"""); return Left < Right.Container.Nodes (Right.Node).Element; end "<"; --------- -- "=" -- --------- function "=" (Left, Right : Set) return Boolean is function Is_Equal_Node_Node (L, R : Node_Type) return Boolean; pragma Inline (Is_Equal_Node_Node); function Is_Equal is new Tree_Operations.Generic_Equal (Is_Equal_Node_Node); ------------------------ -- Is_Equal_Node_Node -- ------------------------ function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is begin return L.Element = R.Element; end Is_Equal_Node_Node; -- Start of processing for Is_Equal begin return Is_Equal (Left, Right); end "="; --------- -- ">" -- --------- function ">" (Left, Right : Cursor) return Boolean is begin if Left.Node = 0 then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Right.Node = 0 then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "bad Left cursor in "">"""); pragma Assert (Vet (Right.Container.all, Right.Node), "bad Right cursor in "">"""); -- L > R same as R < L declare LN : Nodes_Type renames Left.Container.Nodes; RN : Nodes_Type renames Right.Container.Nodes; begin return RN (Right.Node).Element < LN (Left.Node).Element; end; end ">"; function ">" (Left : Element_Type; Right : Cursor) return Boolean is begin if Right.Node = 0 then raise Constraint_Error with "Right cursor equals No_Element"; end if; pragma Assert (Vet (Right.Container.all, Right.Node), "bad Right cursor in "">"""); return Right.Container.Nodes (Right.Node).Element < Left; end ">"; function ">" (Left : Cursor; Right : Element_Type) return Boolean is begin if Left.Node = 0 then raise Constraint_Error with "Left cursor equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "bad Left cursor in "">"""); return Right < Left.Container.Nodes (Left.Node).Element; end ">"; ------------ -- Assign -- ------------ procedure Assign (Target : in out Set; Source : Set) is procedure Append_Element (Source_Node : Count_Type); procedure Append_Elements is new Tree_Operations.Generic_Iteration (Append_Element); -------------------- -- Append_Element -- -------------------- procedure Append_Element (Source_Node : Count_Type) is SN : Node_Type renames Source.Nodes (Source_Node); procedure Set_Element (Node : in out Node_Type); pragma Inline (Set_Element); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Unconditional_Insert_Sans_Hint is new Element_Keys.Generic_Unconditional_Insert (Insert_Post); procedure Unconditional_Insert_Avec_Hint is new Element_Keys.Generic_Unconditional_Insert_With_Hint (Insert_Post, Unconditional_Insert_Sans_Hint); procedure Allocate is new Tree_Operations.Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Target, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Element := SN.Element; end Set_Element; Target_Node : Count_Type; -- Start of processing for Append_Element begin Unconditional_Insert_Avec_Hint (Tree => Target, Hint => 0, Key => SN.Element, Node => Target_Node); end Append_Element; -- Start of processing for Assign begin if Target'Address = Source'Address then return; end if; if Target.Capacity < Source.Length then raise Capacity_Error with "Target capacity is less than Source length"; end if; Target.Clear; Append_Elements (Source); end Assign; ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Item : Element_Type) return Cursor is Node : constant Count_Type := Element_Keys.Ceiling (Container, Item); begin return (if Node = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Ceiling; ----------- -- Clear -- ----------- procedure Clear (Container : in out Set) is begin Tree_Operations.Clear_Tree (Container); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is begin return Node.Color; end Color; ------------------------ -- Constant_Reference -- ------------------------ function Constant_Reference (Container : aliased Set; Position : Cursor) return Constant_Reference_Type is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong container"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Constant_Reference"); declare N : Node_Type renames Container.Nodes (Position.Node); begin return (Element => N.Element'Access); end; end Constant_Reference; -------------- -- Contains -- -------------- function Contains (Container : Set; Item : Element_Type) return Boolean is begin return Find (Container, Item) /= No_Element; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Set; Capacity : Count_Type := 0) return Set is C : Count_Type; begin if Capacity = 0 then C := Source.Length; elsif Capacity >= Source.Length then C := Capacity; else raise Capacity_Error with "Capacity value too small"; end if; return Target : Set (Capacity => C) do Assign (Target => Target, Source => Source); end return; end Copy; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Position : in out Cursor) is begin if Position.Node = 0 then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Delete"); Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node); Tree_Operations.Free (Container, Position.Node); Position := No_Element; end Delete; procedure Delete (Container : in out Set; Item : Element_Type) is X : constant Count_Type := Element_Keys.Find (Container, Item); begin if X = 0 then raise Constraint_Error with "attempt to delete element not in set"; end if; Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Set) is X : constant Count_Type := Container.First; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end if; end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Set) is X : constant Count_Type := Container.Last; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end if; end Delete_Last; ---------------- -- Difference -- ---------------- procedure Difference (Target : in out Set; Source : Set) renames Set_Ops.Set_Difference; function Difference (Left, Right : Set) return Set renames Set_Ops.Set_Difference; ------------- -- Element -- ------------- function Element (Position : Cursor) return Element_Type is begin if Position.Node = 0 then raise Constraint_Error with "Position cursor equals No_Element"; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "bad cursor in Element"); return Position.Container.Nodes (Position.Node).Element; end Element; ------------------------- -- Equivalent_Elements -- ------------------------- function Equivalent_Elements (Left, Right : Element_Type) return Boolean is begin return (if Left < Right or else Right < Left then False else True); end Equivalent_Elements; --------------------- -- Equivalent_Sets -- --------------------- function Equivalent_Sets (Left, Right : Set) return Boolean is function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean; pragma Inline (Is_Equivalent_Node_Node); function Is_Equivalent is new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); ----------------------------- -- Is_Equivalent_Node_Node -- ----------------------------- function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is begin return (if L.Element < R.Element then False elsif R.Element < L.Element then False else True); end Is_Equivalent_Node_Node; -- Start of processing for Equivalent_Sets begin return Is_Equivalent (Left, Right); end Equivalent_Sets; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Item : Element_Type) is X : constant Count_Type := Element_Keys.Find (Container, Item); begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end if; end Exclude; -------------- -- Finalize -- -------------- procedure Finalize (Object : in out Iterator) is begin if Object.Container /= null then declare B : Natural renames Object.Container.all.Busy; begin B := B - 1; end; end if; end Finalize; ---------- -- Find -- ---------- function Find (Container : Set; Item : Element_Type) return Cursor is Node : constant Count_Type := Element_Keys.Find (Container, Item); begin return (if Node = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Find; ----------- -- First -- ----------- function First (Container : Set) return Cursor is begin return (if Container.First = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Container.First)); end First; function First (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the First (and Last) selector function. -- When the Node component is 0, this means the iterator object was -- constructed without a start expression, in which case the (forward) -- iteration starts from the (logical) beginning of the entire sequence -- of items (corresponding to Container.First, for a forward iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is positive, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (forward) partial iteration begins. if Object.Node = 0 then return Bounded_Ordered_Sets.First (Object.Container.all); else return Cursor'(Object.Container, Object.Node); end if; end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Set) return Element_Type is begin if Container.First = 0 then raise Constraint_Error with "set is empty"; end if; return Container.Nodes (Container.First).Element; end First_Element; ----------- -- Floor -- ----------- function Floor (Container : Set; Item : Element_Type) return Cursor is Node : constant Count_Type := Element_Keys.Floor (Container, Item); begin return (if Node = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Floor; ------------------ -- Generic_Keys -- ------------------ package body Generic_Keys is ----------------------- -- Local Subprograms -- ----------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local Instantiations -- -------------------------- package Key_Keys is new Red_Black_Trees.Generic_Bounded_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Keys.Ceiling (Container, Key); begin return (if Node = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Ceiling; ------------------------ -- Constant_Reference -- ------------------------ function Constant_Reference (Container : aliased Set; Key : Key_Type) return Constant_Reference_Type is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin if Node = 0 then raise Constraint_Error with "key not in set"; end if; declare N : Node_Type renames Container.Nodes (Node); begin return (Element => N.Element'Access); end; end Constant_Reference; -------------- -- Contains -- -------------- function Contains (Container : Set; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Key : Key_Type) is X : constant Count_Type := Key_Keys.Find (Container, Key); begin if X = 0 then raise Constraint_Error with "attempt to delete key not in set"; end if; Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end Delete; ------------- -- Element -- ------------- function Element (Container : Set; Key : Key_Type) return Element_Type is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin if Node = 0 then raise Constraint_Error with "key not in set"; end if; return Container.Nodes (Node).Element; end Element; --------------------- -- Equivalent_Keys -- --------------------- function Equivalent_Keys (Left, Right : Key_Type) return Boolean is begin return (if Left < Right or else Right < Left then False else True); end Equivalent_Keys; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Key : Key_Type) is X : constant Count_Type := Key_Keys.Find (Container, Key); begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end if; end Exclude; ---------- -- Find -- ---------- function Find (Container : Set; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin return (if Node = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Find; ----------- -- Floor -- ----------- function Floor (Container : Set; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Keys.Floor (Container, Key); begin return (if Node = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Floor; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin return Key (Right.Element) < Left; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin return Left < Key (Right.Element); end Is_Less_Key_Node; --------- -- Key -- --------- function Key (Position : Cursor) return Key_Type is begin if Position.Node = 0 then raise Constraint_Error with "Position cursor equals No_Element"; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "bad cursor in Key"); return Key (Position.Container.Nodes (Position.Node).Element); end Key; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; ------------------------------ -- Reference_Preserving_Key -- ------------------------------ function Reference_Preserving_Key (Container : aliased in out Set; Position : Cursor) return Reference_Type is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong container"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in function Reference_Preserving_Key"); -- Some form of finalization will be required in order to actually -- check that the key-part of the element designated by Position has -- not changed. ??? declare N : Node_Type renames Container.Nodes (Position.Node); begin return (Element => N.Element'Access); end; end Reference_Preserving_Key; function Reference_Preserving_Key (Container : aliased in out Set; Key : Key_Type) return Reference_Type is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin if Node = 0 then raise Constraint_Error with "key not in set"; end if; declare N : Node_Type renames Container.Nodes (Node); begin return (Element => N.Element'Access); end; end Reference_Preserving_Key; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; Key : Key_Type; New_Item : Element_Type) is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin if Node = 0 then raise Constraint_Error with "attempt to replace key not in set"; end if; Replace_Element (Container, Node, New_Item); end Replace; ----------------------------------- -- Update_Element_Preserving_Key -- ----------------------------------- procedure Update_Element_Preserving_Key (Container : in out Set; Position : Cursor; Process : not null access procedure (Element : in out Element_Type)) is begin if Position.Node = 0 then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Update_Element_Preserving_Key"); -- Per AI05-0022, the container implementation is required to detect -- element tampering by a generic actual subprogram. declare N : Node_Type renames Container.Nodes (Position.Node); E : Element_Type renames N.Element; K : constant Key_Type := Key (E); B : Natural renames Container.Busy; L : Natural renames Container.Lock; Eq : Boolean; begin B := B + 1; L := L + 1; begin Process (E); Eq := Equivalent_Keys (K, Key (E)); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; if Eq then return; end if; end; Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node); Tree_Operations.Free (Container, Position.Node); raise Program_Error with "key was modified"; end Update_Element_Preserving_Key; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; end Generic_Keys; ----------------- -- Has_Element -- ----------------- function Has_Element (Position : Cursor) return Boolean is begin return Position /= No_Element; end Has_Element; ------------- -- Include -- ------------- procedure Include (Container : in out Set; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, New_Item, Position, Inserted); if not Inserted then if Container.Lock > 0 then raise Program_Error with "attempt to tamper with elements (set is locked)"; end if; Container.Nodes (Position.Node).Element := New_Item; end if; end Include; ------------ -- Insert -- ------------ procedure Insert (Container : in out Set; New_Item : Element_Type; Position : out Cursor; Inserted : out Boolean) is begin Insert_Sans_Hint (Container, New_Item, Position.Node, Inserted); Position.Container := Container'Unrestricted_Access; end Insert; procedure Insert (Container : in out Set; New_Item : Element_Type) is Position : Cursor; pragma Unreferenced (Position); Inserted : Boolean; begin Insert (Container, New_Item, Position, Inserted); if not Inserted then raise Constraint_Error with "attempt to insert element already in set"; end if; end Insert; ---------------------- -- Insert_Sans_Hint -- ---------------------- procedure Insert_Sans_Hint (Container : in out Set; New_Item : Element_Type; Node : out Count_Type; Inserted : out Boolean) is procedure Set_Element (Node : in out Node_Type); pragma Inline (Set_Element); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Conditional_Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); procedure Allocate is new Tree_Operations.Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Container, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Element := New_Item; end Set_Element; -- Start of processing for Insert_Sans_Hint begin Conditional_Insert_Sans_Hint (Container, New_Item, Node, Inserted); end Insert_Sans_Hint; ---------------------- -- Insert_With_Hint -- ---------------------- procedure Insert_With_Hint (Dst_Set : in out Set; Dst_Hint : Count_Type; Src_Node : Node_Type; Dst_Node : out Count_Type) is Success : Boolean; pragma Unreferenced (Success); procedure Set_Element (Node : in out Node_Type); pragma Inline (Set_Element); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); procedure Local_Insert_With_Hint is new Element_Keys.Generic_Conditional_Insert_With_Hint (Insert_Post, Insert_Sans_Hint); procedure Allocate is new Tree_Operations.Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Dst_Set, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Element := Src_Node.Element; end Set_Element; -- Start of processing for Insert_With_Hint begin Local_Insert_With_Hint (Dst_Set, Dst_Hint, Src_Node.Element, Dst_Node, Success); end Insert_With_Hint; ------------------ -- Intersection -- ------------------ procedure Intersection (Target : in out Set; Source : Set) renames Set_Ops.Set_Intersection; function Intersection (Left, Right : Set) return Set renames Set_Ops.Set_Intersection; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Set) return Boolean is begin return Container.Length = 0; end Is_Empty; ----------------------------- -- Is_Greater_Element_Node -- ----------------------------- function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean is begin -- Compute e > node same as node < e return Right.Element < Left; end Is_Greater_Element_Node; -------------------------- -- Is_Less_Element_Node -- -------------------------- function Is_Less_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean is begin return Left < Right.Element; end Is_Less_Element_Node; ----------------------- -- Is_Less_Node_Node -- ----------------------- function Is_Less_Node_Node (L, R : Node_Type) return Boolean is begin return L.Element < R.Element; end Is_Less_Node_Node; --------------- -- Is_Subset -- --------------- function Is_Subset (Subset : Set; Of_Set : Set) return Boolean renames Set_Ops.Set_Subset; ------------- -- Iterate -- ------------- procedure Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Count_Type); pragma Inline (Process_Node); procedure Local_Iterate is new Tree_Operations.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Count_Type) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; S : Set renames Container'Unrestricted_Access.all; B : Natural renames S.Busy; -- Start of processing for Iterate begin B := B + 1; begin Local_Iterate (S); exception when others => B := B - 1; raise; end; B := B - 1; end Iterate; function Iterate (Container : Set) return Set_Iterator_Interfaces.Reversible_Iterator'class is B : Natural renames Container'Unrestricted_Access.all.Busy; begin -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is 0 (as is the case here), this means the iterator object -- was constructed without a start expression. This is a complete -- iterator, meaning that the iteration starts from the (logical) -- beginning of the sequence of items. -- Note: For a forward iterator, Container.First is the beginning, and -- for a reverse iterator, Container.Last is the beginning. return It : constant Iterator := Iterator'(Limited_Controlled with Container => Container'Unrestricted_Access, Node => 0) do B := B + 1; end return; end Iterate; function Iterate (Container : Set; Start : Cursor) return Set_Iterator_Interfaces.Reversible_Iterator'class is B : Natural renames Container'Unrestricted_Access.all.Busy; begin -- It was formerly the case that when Start = No_Element, the partial -- iterator was defined to behave the same as for a complete iterator, -- and iterate over the entire sequence of items. However, those -- semantics were unintuitive and arguably error-prone (it is too easy -- to accidentally create an endless loop), and so they were changed, -- per the ARG meeting in Denver on 2011/11. However, there was no -- consensus about what positive meaning this corner case should have, -- and so it was decided to simply raise an exception. This does imply, -- however, that it is not possible to use a partial iterator to specify -- an empty sequence of items. if Start = No_Element then raise Constraint_Error with "Start position for iterator equals No_Element"; end if; if Start.Container /= Container'Unrestricted_Access then raise Program_Error with "Start cursor of Iterate designates wrong set"; end if; pragma Assert (Vet (Container, Start.Node), "Start cursor of Iterate is bad"); -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is positive (as is the case here), it means that this -- is a partial iteration, over a subset of the complete sequence of -- items. The iterator object was constructed with a start expression, -- indicating the position from which the iteration begins. (Note that -- the start position has the same value irrespective of whether this -- is a forward or reverse iteration.) return It : constant Iterator := Iterator'(Limited_Controlled with Container => Container'Unrestricted_Access, Node => Start.Node) do B := B + 1; end return; end Iterate; ---------- -- Last -- ---------- function Last (Container : Set) return Cursor is begin return (if Container.Last = 0 then No_Element else Cursor'(Container'Unrestricted_Access, Container.Last)); end Last; function Last (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the Last (and First) selector function. -- When the Node component is 0, this means the iterator object was -- constructed without a start expression, in which case the (reverse) -- iteration starts from the (logical) beginning of the entire sequence -- (corresponding to Container.Last, for a reverse iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is positive, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (reverse) partial iteration begins. if Object.Node = 0 then return Bounded_Ordered_Sets.Last (Object.Container.all); else return Cursor'(Object.Container, Object.Node); end if; end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Set) return Element_Type is begin if Container.Last = 0 then raise Constraint_Error with "set is empty"; end if; return Container.Nodes (Container.Last).Element; end Last_Element; ---------- -- Left -- ---------- function Left (Node : Node_Type) return Count_Type is begin return Node.Left; end Left; ------------ -- Length -- ------------ function Length (Container : Set) return Count_Type is begin return Container.Length; end Length; ---------- -- Move -- ---------- procedure Move (Target : in out Set; Source : in out Set) is begin if Target'Address = Source'Address then return; end if; if Source.Busy > 0 then raise Program_Error with "attempt to tamper with cursors (container is busy)"; end if; Target.Assign (Source); Source.Clear; end Move; ---------- -- Next -- ---------- function Next (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "bad cursor in Next"); declare Node : constant Count_Type := Tree_Operations.Next (Position.Container.all, Position.Node); begin if Node = 0 then return No_Element; end if; return Cursor'(Position.Container, Node); end; end Next; procedure Next (Position : in out Cursor) is begin Position := Next (Position); end Next; function Next (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Next designates wrong set"; end if; return Next (Position); end Next; ------------- -- Overlap -- ------------- function Overlap (Left, Right : Set) return Boolean renames Set_Ops.Set_Overlap; ------------ -- Parent -- ------------ function Parent (Node : Node_Type) return Count_Type is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- function Previous (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "bad cursor in Previous"); declare Node : constant Count_Type := Tree_Operations.Previous (Position.Container.all, Position.Node); begin return (if Node = 0 then No_Element else Cursor'(Position.Container, Node)); end; end Previous; procedure Previous (Position : in out Cursor) is begin Position := Previous (Position); end Previous; function Previous (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Previous designates wrong set"; end if; return Previous (Position); end Previous; ------------------- -- Query_Element -- ------------------- procedure Query_Element (Position : Cursor; Process : not null access procedure (Element : Element_Type)) is begin if Position.Node = 0 then raise Constraint_Error with "Position cursor equals No_Element"; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "bad cursor in Query_Element"); declare S : Set renames Position.Container.all; B : Natural renames S.Busy; L : Natural renames S.Lock; begin B := B + 1; L := L + 1; begin Process (S.Nodes (Position.Node).Element); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; end; end Query_Element; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Container : out Set) is procedure Read_Element (Node : in out Node_Type); pragma Inline (Read_Element); procedure Allocate is new Tree_Operations.Generic_Allocate (Read_Element); procedure Read_Elements is new Tree_Operations.Generic_Read (Allocate); ------------------ -- Read_Element -- ------------------ procedure Read_Element (Node : in out Node_Type) is begin Element_Type'Read (Stream, Node.Element); end Read_Element; -- Start of processing for Read begin Read_Elements (Stream, Container); end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Cursor) is begin raise Program_Error with "attempt to stream set cursor"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; New_Item : Element_Type) is Node : constant Count_Type := Element_Keys.Find (Container, New_Item); begin if Node = 0 then raise Constraint_Error with "attempt to replace element not in set"; end if; if Container.Lock > 0 then raise Program_Error with "attempt to tamper with elements (set is locked)"; end if; Container.Nodes (Node).Element := New_Item; end Replace; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Container : in out Set; Index : Count_Type; Item : Element_Type) is pragma Assert (Index /= 0); function New_Node return Count_Type; pragma Inline (New_Node); procedure Local_Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Local_Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post); procedure Local_Insert_With_Hint is new Element_Keys.Generic_Conditional_Insert_With_Hint (Local_Insert_Post, Local_Insert_Sans_Hint); Nodes : Nodes_Type renames Container.Nodes; Node : Node_Type renames Nodes (Index); -------------- -- New_Node -- -------------- function New_Node return Count_Type is begin Node.Element := Item; Node.Color := Red_Black_Trees.Red; Node.Parent := 0; Node.Right := 0; Node.Left := 0; return Index; end New_Node; Hint : Count_Type; Result : Count_Type; Inserted : Boolean; Compare : Boolean; -- Per AI05-0022, the container implementation is required to detect -- element tampering by a generic actual subprogram. B : Natural renames Container.Busy; L : Natural renames Container.Lock; -- Start of processing for Replace_Element begin -- Replace_Element assigns value Item to the element designated by Node, -- per certain semantic constraints, described as follows. -- If Item is equivalent to the element, then element is replaced and -- there's nothing else to do. This is the easy case. -- If Item is not equivalent, then the node will (possibly) have to move -- to some other place in the tree. This is slighly more complicated, -- because we must ensure that Item is not equivalent to some other -- element in the tree (in which case, the replacement is not allowed). -- Determine whether Item is equivalent to element on the specified -- node. begin B := B + 1; L := L + 1; Compare := (if Item < Node.Element then False elsif Node.Element < Item then False else True); L := L - 1; B := B - 1; exception when others => L := L - 1; B := B - 1; raise; end; if Compare then -- Item is equivalent to the node's element, so we will not have to -- move the node. if Container.Lock > 0 then raise Program_Error with "attempt to tamper with elements (set is locked)"; end if; Node.Element := Item; return; end if; -- The replacement Item is not equivalent to the element on the -- specified node, which means that it will need to be re-inserted in a -- different position in the tree. We must now determine whether Item is -- equivalent to some other element in the tree (which would prohibit -- the assignment and hence the move). -- Ceiling returns the smallest element equivalent or greater than the -- specified Item; if there is no such element, then it returns 0. Hint := Element_Keys.Ceiling (Container, Item); if Hint /= 0 then -- Item <= Nodes (Hint).Element begin B := B + 1; L := L + 1; Compare := Item < Nodes (Hint).Element; L := L - 1; B := B - 1; exception when others => L := L - 1; B := B - 1; raise; end; -- Item is equivalent to Nodes (Hint).Element if not Compare then -- Ceiling returns an element that is equivalent or greater than -- Item. If Item is "not less than" the element, then by -- elimination we know that Item is equivalent to the element. -- But this means that it is not possible to assign the value of -- Item to the specified element (on Node), because a different -- element (on Hint) equivalent to Item already exsits. (Were we -- to change Node's element value, we would have to move Node, but -- we would be unable to move the Node, because its new position -- in the tree is already occupied by an equivalent element.) raise Program_Error with "attempt to replace existing element"; end if; -- Item is not equivalent to any other element in the tree -- (specifically, it is less than Nodes (Hint).Element), so it is -- safe to assign the value of Item to Node.Element. This means that -- the node will have to move to a different position in the tree -- (because its element will have a different value). -- The nearest (greater) neighbor of Item is Hint. This will be the -- insertion position of Node (because its element will have Item as -- its new value). -- If Node equals Hint, the relative position of Node does not -- change. This allows us to perform an optimization: we need not -- remove Node from the tree and then reinsert it with its new value, -- because it would only be placed in the exact same position. if Hint = Index then if Container.Lock > 0 then raise Program_Error with "attempt to tamper with elements (set is locked)"; end if; Node.Element := Item; return; end if; end if; -- If we get here, it is because Item was greater than all elements in -- the tree (Hint = 0), or because Item was less than some element at a -- different place in the tree (Item < Nodes (Hint).Element and Hint /= -- Index). In either case, we remove Node from the tree and then insert -- Item into the tree, onto the same Node. Tree_Operations.Delete_Node_Sans_Free (Container, Index); Local_Insert_With_Hint (Tree => Container, Position => Hint, Key => Item, Node => Result, Inserted => Inserted); pragma Assert (Inserted); pragma Assert (Result = Index); end Replace_Element; procedure Replace_Element (Container : in out Set; Position : Cursor; New_Item : Element_Type) is begin if Position.Node = 0 then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Replace_Element"); Replace_Element (Container, Position.Node, New_Item); end Replace_Element; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Count_Type); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Tree_Operations.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Count_Type) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; S : Set renames Container'Unrestricted_Access.all; B : Natural renames S.Busy; -- Start of processing for Reverse_Iterate begin B := B + 1; begin Local_Reverse_Iterate (S); exception when others => B := B - 1; raise; end; B := B - 1; end Reverse_Iterate; ----------- -- Right -- ----------- function Right (Node : Node_Type) return Count_Type is begin return Node.Right; end Right; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : in out Node_Type; Color : Red_Black_Trees.Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is begin Node.Right := Right; end Set_Right; -------------------------- -- Symmetric_Difference -- -------------------------- procedure Symmetric_Difference (Target : in out Set; Source : Set) renames Set_Ops.Set_Symmetric_Difference; function Symmetric_Difference (Left, Right : Set) return Set renames Set_Ops.Set_Symmetric_Difference; ------------ -- To_Set -- ------------ function To_Set (New_Item : Element_Type) return Set is Node : Count_Type; Inserted : Boolean; begin return S : Set (1) do Insert_Sans_Hint (S, New_Item, Node, Inserted); pragma Assert (Inserted); end return; end To_Set; ----------- -- Union -- ----------- procedure Union (Target : in out Set; Source : Set) renames Set_Ops.Set_Union; function Union (Left, Right : Set) return Set renames Set_Ops.Set_Union; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Container : Set) is procedure Write_Element (Stream : not null access Root_Stream_Type'Class; Node : Node_Type); pragma Inline (Write_Element); procedure Write_Elements is new Tree_Operations.Generic_Write (Write_Element); ------------------- -- Write_Element -- ------------------- procedure Write_Element (Stream : not null access Root_Stream_Type'Class; Node : Node_Type) is begin Element_Type'Write (Stream, Node.Element); end Write_Element; -- Start of processing for Write begin Write_Elements (Stream, Container); end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Cursor) is begin raise Program_Error with "attempt to stream set cursor"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; end Ada.Containers.Bounded_Ordered_Sets;