/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1996 by Silicon Graphics. All rights reserved. * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ /* * These are extra allocation routines which are likely to be less * frequently used than those in malloc.c. They are separate in the * hope that the .o file will be excluded from statically linked * executables. We should probably break this up further. */ #include #include "private/gc_priv.h" extern ptr_t GC_clear_stack(); /* in misc.c, behaves like identity */ void GC_extend_size_map(); /* in misc.c. */ GC_bool GC_alloc_reclaim_list(); /* in malloc.c */ /* Some externally visible but unadvertised variables to allow access to */ /* free lists from inlined allocators without including gc_priv.h */ /* or introducing dependencies on internal data structure layouts. */ ptr_t * GC_CONST GC_objfreelist_ptr = GC_objfreelist; ptr_t * GC_CONST GC_aobjfreelist_ptr = GC_aobjfreelist; ptr_t * GC_CONST GC_uobjfreelist_ptr = GC_uobjfreelist; # ifdef ATOMIC_UNCOLLECTABLE ptr_t * GC_CONST GC_auobjfreelist_ptr = GC_auobjfreelist; # endif GC_PTR GC_generic_or_special_malloc(lb,knd) word lb; int knd; { switch(knd) { # ifdef STUBBORN_ALLOC case STUBBORN: return(GC_malloc_stubborn((size_t)lb)); # endif case PTRFREE: return(GC_malloc_atomic((size_t)lb)); case NORMAL: return(GC_malloc((size_t)lb)); case UNCOLLECTABLE: return(GC_malloc_uncollectable((size_t)lb)); # ifdef ATOMIC_UNCOLLECTABLE case AUNCOLLECTABLE: return(GC_malloc_atomic_uncollectable((size_t)lb)); # endif /* ATOMIC_UNCOLLECTABLE */ default: return(GC_generic_malloc(lb,knd)); } } /* Change the size of the block pointed to by p to contain at least */ /* lb bytes. The object may be (and quite likely will be) moved. */ /* The kind (e.g. atomic) is the same as that of the old. */ /* Shrinking of large blocks is not implemented well. */ # ifdef __STDC__ GC_PTR GC_realloc(GC_PTR p, size_t lb) # else GC_PTR GC_realloc(p,lb) GC_PTR p; size_t lb; # endif { register struct hblk * h; register hdr * hhdr; register word sz; /* Current size in bytes */ register word orig_sz; /* Original sz in bytes */ int obj_kind; if (p == 0) return(GC_malloc(lb)); /* Required by ANSI */ h = HBLKPTR(p); hhdr = HDR(h); sz = hhdr -> hb_sz; obj_kind = hhdr -> hb_obj_kind; sz = WORDS_TO_BYTES(sz); orig_sz = sz; if (sz > MAXOBJBYTES) { /* Round it up to the next whole heap block */ register word descr; sz = (sz+HBLKSIZE-1) & (~HBLKMASK); hhdr -> hb_sz = BYTES_TO_WORDS(sz); descr = GC_obj_kinds[obj_kind].ok_descriptor; if (GC_obj_kinds[obj_kind].ok_relocate_descr) descr += sz; hhdr -> hb_descr = descr; if (IS_UNCOLLECTABLE(obj_kind)) GC_non_gc_bytes += (sz - orig_sz); /* Extra area is already cleared by GC_alloc_large_and_clear. */ } if (ADD_SLOP(lb) <= sz) { if (lb >= (sz >> 1)) { # ifdef STUBBORN_ALLOC if (obj_kind == STUBBORN) GC_change_stubborn(p); # endif if (orig_sz > lb) { /* Clear unneeded part of object to avoid bogus pointer */ /* tracing. */ /* Safe for stubborn objects. */ BZERO(((ptr_t)p) + lb, orig_sz - lb); } return(p); } else { /* shrink */ GC_PTR result = GC_generic_or_special_malloc((word)lb, obj_kind); if (result == 0) return(0); /* Could also return original object. But this */ /* gives the client warning of imminent disaster. */ BCOPY(p, result, lb); # ifndef IGNORE_FREE GC_free(p); # endif return(result); } } else { /* grow */ GC_PTR result = GC_generic_or_special_malloc((word)lb, obj_kind); if (result == 0) return(0); BCOPY(p, result, sz); # ifndef IGNORE_FREE GC_free(p); # endif return(result); } } # if defined(REDIRECT_MALLOC) && !defined(REDIRECT_REALLOC) # define REDIRECT_REALLOC GC_realloc # endif # ifdef REDIRECT_REALLOC /* As with malloc, avoid two levels of extra calls here. */ # ifdef GC_ADD_CALLER # define RA GC_RETURN_ADDR, # else # define RA # endif # define GC_debug_realloc_replacement(p, lb) \ GC_debug_realloc(p, lb, RA "unknown", 0) # ifdef __STDC__ GC_PTR realloc(GC_PTR p, size_t lb) # else GC_PTR realloc(p,lb) GC_PTR p; size_t lb; # endif { return(REDIRECT_REALLOC(p, lb)); } # undef GC_debug_realloc_replacement # endif /* REDIRECT_REALLOC */ /* Allocate memory such that only pointers to near the */ /* beginning of the object are considered. */ /* We avoid holding allocation lock while we clear memory. */ ptr_t GC_generic_malloc_ignore_off_page(lb, k) register size_t lb; register int k; { register ptr_t result; word lw; word n_blocks; GC_bool init; DCL_LOCK_STATE; if (SMALL_OBJ(lb)) return(GC_generic_malloc((word)lb, k)); lw = ROUNDED_UP_WORDS(lb); n_blocks = OBJ_SZ_TO_BLOCKS(lw); init = GC_obj_kinds[k].ok_init; if (GC_have_errors) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); DISABLE_SIGNALS(); LOCK(); result = (ptr_t)GC_alloc_large(lw, k, IGNORE_OFF_PAGE); if (0 != result) { if (GC_debugging_started) { BZERO(result, n_blocks * HBLKSIZE); } else { # ifdef THREADS /* Clear any memory that might be used for GC descriptors */ /* before we release the lock. */ ((word *)result)[0] = 0; ((word *)result)[1] = 0; ((word *)result)[lw-1] = 0; ((word *)result)[lw-2] = 0; # endif } } GC_words_allocd += lw; UNLOCK(); ENABLE_SIGNALS(); if (0 == result) { return((*GC_oom_fn)(lb)); } else { if (init && !GC_debugging_started) { BZERO(result, n_blocks * HBLKSIZE); } return(result); } } # if defined(__STDC__) || defined(__cplusplus) void * GC_malloc_ignore_off_page(size_t lb) # else char * GC_malloc_ignore_off_page(lb) register size_t lb; # endif { return((GC_PTR)GC_generic_malloc_ignore_off_page(lb, NORMAL)); } # if defined(__STDC__) || defined(__cplusplus) void * GC_malloc_atomic_ignore_off_page(size_t lb) # else char * GC_malloc_atomic_ignore_off_page(lb) register size_t lb; # endif { return((GC_PTR)GC_generic_malloc_ignore_off_page(lb, PTRFREE)); } /* Increment GC_words_allocd from code that doesn't have direct access */ /* to GC_arrays. */ # ifdef __STDC__ void GC_incr_words_allocd(size_t n) { GC_words_allocd += n; } /* The same for GC_mem_freed. */ void GC_incr_mem_freed(size_t n) { GC_mem_freed += n; } # endif /* __STDC__ */ /* Analogous to the above, but assumes a small object size, and */ /* bypasses MERGE_SIZES mechanism. Used by gc_inline.h. */ ptr_t GC_generic_malloc_words_small_inner(lw, k) register word lw; register int k; { register ptr_t op; register ptr_t *opp; register struct obj_kind * kind = GC_obj_kinds + k; opp = &(kind -> ok_freelist[lw]); if( (op = *opp) == 0 ) { if (!GC_is_initialized) { GC_init_inner(); } if (kind -> ok_reclaim_list != 0 || GC_alloc_reclaim_list(kind)) { op = GC_clear_stack(GC_allocobj((word)lw, k)); } if (op == 0) { UNLOCK(); ENABLE_SIGNALS(); return ((*GC_oom_fn)(WORDS_TO_BYTES(lw))); } } *opp = obj_link(op); obj_link(op) = 0; GC_words_allocd += lw; return((ptr_t)op); } /* Analogous to the above, but assumes a small object size, and */ /* bypasses MERGE_SIZES mechanism. Used by gc_inline.h. */ #ifdef __STDC__ ptr_t GC_generic_malloc_words_small(size_t lw, int k) #else ptr_t GC_generic_malloc_words_small(lw, k) register word lw; register int k; #endif { register ptr_t op; DCL_LOCK_STATE; if (GC_have_errors) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); DISABLE_SIGNALS(); LOCK(); op = GC_generic_malloc_words_small_inner(lw, k); UNLOCK(); ENABLE_SIGNALS(); return((ptr_t)op); } #if defined(THREADS) && !defined(SRC_M3) extern signed_word GC_mem_found; /* Protected by GC lock. */ #ifdef PARALLEL_MARK volatile signed_word GC_words_allocd_tmp = 0; /* Number of words of memory allocated since */ /* we released the GC lock. Instead of */ /* reacquiring the GC lock just to add this in, */ /* we add it in the next time we reacquire */ /* the lock. (Atomically adding it doesn't */ /* work, since we would have to atomically */ /* update it in GC_malloc, which is too */ /* expensive. */ #endif /* PARALLEL_MARK */ /* See reclaim.c: */ extern ptr_t GC_reclaim_generic(); /* Return a list of 1 or more objects of the indicated size, linked */ /* through the first word in the object. This has the advantage that */ /* it acquires the allocation lock only once, and may greatly reduce */ /* time wasted contending for the allocation lock. Typical usage would */ /* be in a thread that requires many items of the same size. It would */ /* keep its own free list in thread-local storage, and call */ /* GC_malloc_many or friends to replenish it. (We do not round up */ /* object sizes, since a call indicates the intention to consume many */ /* objects of exactly this size.) */ /* We return the free-list by assigning it to *result, since it is */ /* not safe to return, e.g. a linked list of pointer-free objects, */ /* since the collector would not retain the entire list if it were */ /* invoked just as we were returning. */ /* Note that the client should usually clear the link field. */ void GC_generic_malloc_many(lb, k, result) register word lb; register int k; ptr_t *result; { ptr_t op; ptr_t p; ptr_t *opp; word lw; word my_words_allocd = 0; struct obj_kind * ok = &(GC_obj_kinds[k]); DCL_LOCK_STATE; # if defined(GATHERSTATS) || defined(PARALLEL_MARK) # define COUNT_ARG , &my_words_allocd # else # define COUNT_ARG # define NEED_TO_COUNT # endif if (!SMALL_OBJ(lb)) { op = GC_generic_malloc(lb, k); if(0 != op) obj_link(op) = 0; *result = op; return; } lw = ALIGNED_WORDS(lb); if (GC_have_errors) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); DISABLE_SIGNALS(); LOCK(); if (!GC_is_initialized) GC_init_inner(); /* Do our share of marking work */ if (GC_incremental && !GC_dont_gc) { ENTER_GC(); GC_collect_a_little_inner(1); EXIT_GC(); } /* First see if we can reclaim a page of objects waiting to be */ /* reclaimed. */ { struct hblk ** rlh = ok -> ok_reclaim_list; struct hblk * hbp; hdr * hhdr; rlh += lw; while ((hbp = *rlh) != 0) { hhdr = HDR(hbp); *rlh = hhdr -> hb_next; hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no; # ifdef PARALLEL_MARK { signed_word my_words_allocd_tmp = GC_words_allocd_tmp; GC_ASSERT(my_words_allocd_tmp >= 0); /* We only decrement it while holding the GC lock. */ /* Thus we can't accidentally adjust it down in more */ /* than one thread simultaneously. */ if (my_words_allocd_tmp != 0) { (void)GC_atomic_add( (volatile GC_word *)(&GC_words_allocd_tmp), (GC_word)(-my_words_allocd_tmp)); GC_words_allocd += my_words_allocd_tmp; } } GC_acquire_mark_lock(); ++ GC_fl_builder_count; UNLOCK(); ENABLE_SIGNALS(); GC_release_mark_lock(); # endif op = GC_reclaim_generic(hbp, hhdr, lw, ok -> ok_init, 0 COUNT_ARG); if (op != 0) { # ifdef NEED_TO_COUNT /* We are neither gathering statistics, nor marking in */ /* parallel. Thus GC_reclaim_generic doesn't count */ /* for us. */ for (p = op; p != 0; p = obj_link(p)) { my_words_allocd += lw; } # endif # if defined(GATHERSTATS) /* We also reclaimed memory, so we need to adjust */ /* that count. */ /* This should be atomic, so the results may be */ /* inaccurate. */ GC_mem_found += my_words_allocd; # endif # ifdef PARALLEL_MARK *result = op; (void)GC_atomic_add( (volatile GC_word *)(&GC_words_allocd_tmp), (GC_word)(my_words_allocd)); GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); (void) GC_clear_stack(0); return; # else GC_words_allocd += my_words_allocd; goto out; # endif } # ifdef PARALLEL_MARK GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); DISABLE_SIGNALS(); LOCK(); /* GC lock is needed for reclaim list access. We */ /* must decrement fl_builder_count before reaquiring GC */ /* lock. Hopefully this path is rare. */ # endif } } /* Next try to use prefix of global free list if there is one. */ /* We don't refill it, but we need to use it up before allocating */ /* a new block ourselves. */ opp = &(GC_obj_kinds[k].ok_freelist[lw]); if ( (op = *opp) != 0 ) { *opp = 0; my_words_allocd = 0; for (p = op; p != 0; p = obj_link(p)) { my_words_allocd += lw; if (my_words_allocd >= BODY_SZ) { *opp = obj_link(p); obj_link(p) = 0; break; } } GC_words_allocd += my_words_allocd; goto out; } /* Next try to allocate a new block worth of objects of this size. */ { struct hblk *h = GC_allochblk(lw, k, 0); if (h != 0) { if (IS_UNCOLLECTABLE(k)) GC_set_hdr_marks(HDR(h)); GC_words_allocd += BYTES_TO_WORDS(HBLKSIZE) - BYTES_TO_WORDS(HBLKSIZE) % lw; # ifdef PARALLEL_MARK GC_acquire_mark_lock(); ++ GC_fl_builder_count; UNLOCK(); ENABLE_SIGNALS(); GC_release_mark_lock(); # endif op = GC_build_fl(h, lw, ok -> ok_init, 0); # ifdef PARALLEL_MARK *result = op; GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); (void) GC_clear_stack(0); return; # else goto out; # endif } } /* As a last attempt, try allocating a single object. Note that */ /* this may trigger a collection or expand the heap. */ op = GC_generic_malloc_inner(lb, k); if (0 != op) obj_link(op) = 0; out: *result = op; UNLOCK(); ENABLE_SIGNALS(); (void) GC_clear_stack(0); } GC_PTR GC_malloc_many(size_t lb) { ptr_t result; GC_generic_malloc_many(lb, NORMAL, &result); return result; } /* Note that the "atomic" version of this would be unsafe, since the */ /* links would not be seen by the collector. */ # endif /* Allocate lb bytes of pointerful, traced, but not collectable data */ # ifdef __STDC__ GC_PTR GC_malloc_uncollectable(size_t lb) # else GC_PTR GC_malloc_uncollectable(lb) size_t lb; # endif { register ptr_t op; register ptr_t *opp; register word lw; DCL_LOCK_STATE; if( SMALL_OBJ(lb) ) { # ifdef MERGE_SIZES if (EXTRA_BYTES != 0 && lb != 0) lb--; /* We don't need the extra byte, since this won't be */ /* collected anyway. */ lw = GC_size_map[lb]; # else lw = ALIGNED_WORDS(lb); # endif opp = &(GC_uobjfreelist[lw]); FASTLOCK(); if( FASTLOCK_SUCCEEDED() && (op = *opp) != 0 ) { /* See above comment on signals. */ *opp = obj_link(op); obj_link(op) = 0; GC_words_allocd += lw; /* Mark bit ws already set on free list. It will be */ /* cleared only temporarily during a collection, as a */ /* result of the normal free list mark bit clearing. */ GC_non_gc_bytes += WORDS_TO_BYTES(lw); FASTUNLOCK(); return((GC_PTR) op); } FASTUNLOCK(); op = (ptr_t)GC_generic_malloc((word)lb, UNCOLLECTABLE); } else { op = (ptr_t)GC_generic_malloc((word)lb, UNCOLLECTABLE); } if (0 == op) return(0); /* We don't need the lock here, since we have an undisguised */ /* pointer. We do need to hold the lock while we adjust */ /* mark bits. */ { register struct hblk * h; h = HBLKPTR(op); lw = HDR(h) -> hb_sz; DISABLE_SIGNALS(); LOCK(); GC_set_mark_bit(op); GC_non_gc_bytes += WORDS_TO_BYTES(lw); UNLOCK(); ENABLE_SIGNALS(); return((GC_PTR) op); } } #ifdef __STDC__ /* Not well tested nor integrated. */ /* Debug version is tricky and currently missing. */ #include GC_PTR GC_memalign(size_t align, size_t lb) { size_t new_lb; size_t offset; ptr_t result; # ifdef ALIGN_DOUBLE if (align <= WORDS_TO_BYTES(2) && lb > align) return GC_malloc(lb); # endif if (align <= WORDS_TO_BYTES(1)) return GC_malloc(lb); if (align >= HBLKSIZE/2 || lb >= HBLKSIZE/2) { if (align > HBLKSIZE) return GC_oom_fn(LONG_MAX-1024) /* Fail */; return GC_malloc(lb <= HBLKSIZE? HBLKSIZE : lb); /* Will be HBLKSIZE aligned. */ } /* We could also try to make sure that the real rounded-up object size */ /* is a multiple of align. That would be correct up to HBLKSIZE. */ new_lb = lb + align - 1; result = GC_malloc(new_lb); offset = (word)result % align; if (offset != 0) { offset = align - offset; if (!GC_all_interior_pointers) { if (offset >= VALID_OFFSET_SZ) return GC_malloc(HBLKSIZE); GC_register_displacement(offset); } } result = (GC_PTR) ((ptr_t)result + offset); GC_ASSERT((word)result % align == 0); return result; } #endif # ifdef ATOMIC_UNCOLLECTABLE /* Allocate lb bytes of pointerfree, untraced, uncollectable data */ /* This is normally roughly equivalent to the system malloc. */ /* But it may be useful if malloc is redefined. */ # ifdef __STDC__ GC_PTR GC_malloc_atomic_uncollectable(size_t lb) # else GC_PTR GC_malloc_atomic_uncollectable(lb) size_t lb; # endif { register ptr_t op; register ptr_t *opp; register word lw; DCL_LOCK_STATE; if( SMALL_OBJ(lb) ) { # ifdef MERGE_SIZES if (EXTRA_BYTES != 0 && lb != 0) lb--; /* We don't need the extra byte, since this won't be */ /* collected anyway. */ lw = GC_size_map[lb]; # else lw = ALIGNED_WORDS(lb); # endif opp = &(GC_auobjfreelist[lw]); FASTLOCK(); if( FASTLOCK_SUCCEEDED() && (op = *opp) != 0 ) { /* See above comment on signals. */ *opp = obj_link(op); obj_link(op) = 0; GC_words_allocd += lw; /* Mark bit was already set while object was on free list. */ GC_non_gc_bytes += WORDS_TO_BYTES(lw); FASTUNLOCK(); return((GC_PTR) op); } FASTUNLOCK(); op = (ptr_t)GC_generic_malloc((word)lb, AUNCOLLECTABLE); } else { op = (ptr_t)GC_generic_malloc((word)lb, AUNCOLLECTABLE); } if (0 == op) return(0); /* We don't need the lock here, since we have an undisguised */ /* pointer. We do need to hold the lock while we adjust */ /* mark bits. */ { register struct hblk * h; h = HBLKPTR(op); lw = HDR(h) -> hb_sz; DISABLE_SIGNALS(); LOCK(); GC_set_mark_bit(op); GC_non_gc_bytes += WORDS_TO_BYTES(lw); UNLOCK(); ENABLE_SIGNALS(); return((GC_PTR) op); } } #endif /* ATOMIC_UNCOLLECTABLE */